Storage 2- Containment: Keeping CO,
in the Subsurface

Potential CO, escape mechanisms
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: CO, escapes through thin or eroded section of seal,

: CO, buoyancy pressure exceeds capillary pressure and passes through the seal,

: CO, migrates from reservoir and up transmissive fault,

: CO, escapes up wellbore via poorly completed injection well and into shallower formation,

: CO, escapes up wellbore and into shallower formation via poorly plugged old abandoned well,
: Hydrodynamic flow transports dissolved CO, out of closure,
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G: CO, migrates updip beyond influence of regional seal
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Containment of CO,: caprocks and faults
« Caprock properties controlling confinement
— Petrophysical

Geometric .
Seal Potential

Geomechanical
— Geochemical
— Hydrodynamics
¢ Fault properties controlling confinement
— Juxtaposition
— Fault plane / zone properties
— Reactivation

* Qualitative assessment methodology for site screening

Seal potential
« Capacity, Geometry and Integrity of caprock

* Capacity: maximum CO, column that can be retained
by caprock

* Geometry: thickness and lateral extent of the caprock

« Integrity: geomechanical properties of caprock
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Evaluating seal capacity of caprocks and
intraformational barriers for CO, containment

® If a capillary (“rock” seal) can support a column of hydrocarbon, then it should
support a column of CO,. (CO, column will be smaller than CH, column, but bigger
than oil column)

®|f the seal capacity is calculated as being insufficient to hold the required column, the
cap rock may still be viable as low permeabilities may inhibit migration (“rate” seal)

® |f upward migration through the seal does occur, it would be at very slow rates
(3um-30mm /1000 years) with low volume

® Break-through rates can take >0.3Ma/ 100m for migration via diffusion (e.g.
Muderong Shale)

Seal geometry

e Structural position, thickness and areal extent of
caprocks

« Estimated by integrated studies of seismics, core
data, well correlations and geological/depositional
models

« Caprock thickness (z) does not influence capillary
entry pressure, but is critical for continuity in faulted
regimes (z > fault throw)
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Intraformational seals (baffles)
increase length of CO, migration pathways & potential for Sgr and dissolution
potential seal lithologies
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Intraformational seals: Sleipner . .
P The role of faults in CO, containment
Fault intersection Qu esti O n
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The role of faults in CO, containment Shale-sand juxtaposition traps CO,

¢ Faults do not necessarily act as conduits; empirical
evidence that many thousands of hydrocarbon
accumulations are trapped by sealing faults

« In such cases, either the fault itself is acting as a
seal or the juxtaposition of rocks across the fault
results in sealing

« Fault movement (reactivation) results in fluid
migration along the fault
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Juxtaposition:

* Not the only mechanism for fault sealing

¢ Sand on sand may also be sealing via grain sliding,
cataclasis, diagenesis, clay smear / shale gouge

« Need to consider fault zone deformation processes
(FZDP) along with juxtaposition

Principle fault zone deformation processes

» Grain Sliding:- Grain slippage along fault plane due to
minor fault movement or high pore pressure

» Cataclasis:- Grain breakage and crushing to cause fine
grained gouge along fault

» Diagenesis:- Preferential cementation (or dissolution)
along permeable fault plane

» Shale Gouge / Clay Smear:- high shale/sand ratio
causes clay to be incorporated into fault plane

« Understanding of deformation processes needed to predict the fault rock
properties along the fault plane (risk of seal vs “leak”)
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Clay Smear (Shale Gouge)
I o

Yielding et al 1997

Which fault zone deformation
processes result in best seals?

Cléy | Cementation
Smear
’ Cataclasis
OIL COLUMN
RETAINED
Grain
Boundary
Sliding North Sea Oil & Gas
Example

(Knipe,1992)
PORE THROAT RADIUS —>
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Reactivation of faults

“Reactivation of faults results in creation of
structural permeability networks permitting

hydraulic flow”.

(Sibson, 1996)

Juxtaposition + Reactivation
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Juxtaposition + Reactivation
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Juxtaposition + Reactivation

Residual Saturation
(S9rcoz)
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Relative risk of reactivation Risk assessment of caprock seal
f?{"«\l 128° 128° 130° 1.0
{ . {
N/ /7
b2V / 30 = A caprock seals if it has
_\ | adequate seal capacity, to
|0 5 retain the required CO,
\‘ \t | ’ column, continuously
N $ | covers the trap and is not
N cut by open fractures*.
\% I *fractures here taken to be those below seismic resolution:
i L_Ko¥s) if fractures (faults) cutting the seal are recognised on seismic
: data, the trap is considered a fault trap
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Risk assessment of caprock seal

Pcap = i*j*k

Probabilities (0-1)
i: cap rock capacity
j: cap rock geometry
k: cap rock integrity

Risk assessment of fault seal

A fault seals if it juxtaposes sealing rocks against
reservoir rocks or fault zone properties cause
adequate seal capacity, and the fault has not
been reactivated post CO, injection.
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Risk assessment of fault seal
Pfault = {1-[(1-a)*(1-b)]}*(1-c)

Probabilities (0-1)
a: juxtaposition (x-fault lithologies)
b: fault zone properties

c: post-injection reactivation
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Risk assessment of caprock & fault seal

A fault bounded trap is confining if
both the caprock and the fault are
sealing.

Ptrap = (Pcap * Pfault)

Ptrap = (i*j*k) * {1-[(1-a)*(1-b)I}*(1-c)

Caprocks & faults for containment:
summary

» Assessment of caprocks & faults highly site-specific
* Caprock seal potential a function of capacity, geometry and integrity

« Fault seal controlled by juxtaposition relationships, fault zone
properties, risk of reactivation

« Key knowledge gaps include:
— Wettability and IFT for water-rock-scCO, systems
— Hydrodynamic effects on caprocks during large scale storage
— Coupled geochemical / geomechanical models
— Upscaling lab scale properties to regional scale

— Effects & prediction of subseismic faults
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