2016-IP38: Small Nuclear Reactors There seems to be a growing interest and discussion with regard to the deployment of small nuclear reactors or small modular reactors as they are called by the IAEA¹ (SMRs) in countries like the UK and USA, but is deployment of SMRs a real prospect in the next 10-20 years? The IAEA in 2014 produced a report on the status of development of SMRs, see https://www.iaea.org/NuclearPower/Downloadable/SMR/files/IAEA SMR Booklet 2014.pdf The status of development of SMR technology globally is illustrated in the figure below: It seems that some 11 countries are working on the design of SMRs for use within their countries, designs include those based on water cooled, High Temperature Gas-cooled, Liquid-metal cooled and a metal salt cooled reactor. Also SMRs could be deployed In 4 countries as early as 2018, see figure v below. - ¹ International Atomic Energy Authority ## **SMRs Under Construction for Immediate** Deployment - the front runners ... Site, Plant ID, Reactor Number Country Output Designer Commercial and unit # Start Model (MWe) of units Argentina CAREM-25 27 CNEA Near the Atucha-2 site 2017 ~ 2018 China HTR-PM 250 Tsinghua 2 mods, Shidaowan unit-1 2017 ~ 2018 Univ./Harbin 1 turbine India PFBR-500 500 **IGCAR** Kalpakkam 2015 ~ 2016 KLT-40S ОКВМ 2016~2017 Russian 70 2 Akademik Lomonosov units 1 & 2 modules Federation (ship-borne) Afrikantov **RITM-200** ОКВМ RITM-200 nuclear-propelled 2017 ~ 2018 Afrikantov modules icebreaker ship Four more reactors in Korea, USA and China are on a path for deplyment around 2020 onwards. What is the interest in SMR technology? The IAEA lists their advantages as: - Incresased energy security; - A reduction in lengthy construction times while simultaneously increasing quality, thereby minimising the costs associated with the current time for construction that span 5 to 8 years. - Ability to meet a need for flexible power generation for wider range of users and applications; - Replacement of ageing fossil fuel-fired power plants; - Enhanced safety performance through inherent and passive safety features; offering better upfront capital cost affordability; - Suitability for cogeneration and non-electric applications; - Options for remote regions with less developed infrastructures; - They also offer possibilities for synergetic hybrid energy systems that combine nuclear and alternate energy sources, including renewables. Simlarly the Climate and Energy Intelligence Unit in the UK in 2016² has listed the percieved benefits of the technology compared to large nuclear stations as: - Lower absolute capital cost; potentially easing the path for investors - Reduced construction risk via off-site factory production and standardisation of components and systems - Shorter construction and installation times - Lower cooling requirements, potentially allowing installation on inland sites - Reduced investment in the transmission network (as they could be deployed in a more dispersed pattern) - Easier to decommission - Design of safety features made easier by smaller reactors, since less heat would need to be dissipated in the case of emergency - Reduced refuelling needs, with some plants anticipated to operate for 30 years without replenishment of uranium - In addition to generating electricity, the size of SMRs makes them attracrive to more bespoke applications like water desalination. Interestingly the IAEA do not list potential disadvantages of the technology, the Climate and Energy Inteillgence however do and list them as: - Only some SMR designs potentially offer significant safety advantages in that they are literally 'fail-safe'; if all safety processes failed, the reactors would turn themselves off with no potential for release of radioactive substances. - SMRs do not actually exist yet and there is no obvious market for them - A fleet of smaller, dispersed nuclear installations would they consider provoke more problems with public acceptance and incur a greater cost for security. In summary, SMRs are being talked about increasingly as a low carbon technology option with the potential for reduced cost and shorter construction times than their larger cousins. The technology is close to demonstration but not demonstrated fully yet. Issues I would have is: Are they flexible i.e. can they meet the new increasing demands for fliexible power generation placed on electricty grids world wide with the growing introduction of variable renewable energy technologies? ² http://eciu.net/assets/Briefing-SMR.pdf - In terms of cost they may well be competitive cost with larger nuclear plants but how competive are they with other low carbon technology options that are already in the commercial market place and whose costs are decreasing through earlier deployment than SMR's. - They do of course tick the energy secutiry box, but how will the public react to SMRs is an open question certainly in a post Fukushima world. - Then there is the added issue of the "heightended terrorism" scenario and whether distrbuted small nuclear reactors can be secure from terroist attacks. John Gale 06/10/16