

Meeting the challenges of the Paris Agreement

The role of carbon capture and storage technologies in a carbonconstrained world

Jasmin Kemper¹, Tim Dixon¹, John Gale¹

¹IEA Greenhouse Gas R&D Programme, Pure Offices, Cheltenham Office Park, Hatherley Lane, Cheltenham, GL51 6SH, UK

1.5°C and 2°C scenarios

Carbon budget 3500

3000

250

ja 2000

1500

Carbon balance of energy systems

adapted from ecofriendlymag.com; grey denotes carbon of fossil origin, blue denotes carbon of biogenic origin

- Past/current energy systems based on the far left (fossil fuels)
- Now efforts underway transitioning to the mid

Carbon budgets usually include fossil sources as well as land use change (LUC)

2°C-INDC

(2030 - 2100)

Net negative emissions are crucial for achieving a **1.5°C target**

Non-CO₂ greenhouse gases (GHGs) can contribute up to 33%

Carbon budget 1750-2500 is ~3670 GtCO₂ \rightarrow already used up half of this until 2009 \rightarrow only 1800 GtCO₂ left (to have a 50%) chance of meeting 2°C) (Allen et al. 2009)

biomass)

combustion

underway

- **Estimation of carbon budgets contains uncertainties**
- But: current emissions rate 40 GtCO₂/yr \rightarrow quick erosion of carbon budget

What are CCS, NETs and Bio-CCS/BECCS?

Case study: Bio-CCS/BECCS

Bio-CCS/BECCS status

RED/FQD cover Bio-CCS

limited and contradictory on Bio-CCS

Main drivers/barriers for Bio-CCS:

feedstocks, public perception

Many studies conclude: Bio-CCS, incl. its CCS components,

 \rightarrow would be less so for fuels due to release of CO₂ during

5 operating Bio-CCS projects: 0.1-1 MtCO₂/yr (all ethanol

Plenty of research on public perception of CCS but very

Bio-CCS generally has lower profile than Fossil-CCS

CO₂/NG price, infrastructure/clusters, sustainable

Biomass

price

based, 3 for EOR, 4 in US, 1 rather Bio-CCU), several more

GHG accounting: only 2006 IPCC GLs, CDM/JI, Ca LCFS and EU

technically feasible as of today (TRL 3-7) (except microalgal

Perceived "double benefit": heat/power + negative emissions

NFRC

CCS (carbon capture and storage)

 Process of capturing, transporting and permanently storing CO₂ emission from anthropogenic large-point sources

Capture

• Pre-combustion, post-combustion, oxyfuel-combustion

Transport • Pipeline, ship

Storage

• Enhanced oil recovery (EOR), depleted oil/gas fields, deep saline aquifers

All parts of CCS chain technically feasible, issues remain with costs and public perception

15 large-scale projects with 29 MtCO₂/yr in operation, 7 with additional 11 MtCO₂/yr under construction (GCCSI 2016)

NETs (negative emission technologies)

Bio-CCS/BECCS (bioenergy with CCS) – using biomass that has previously taken up CO_2 during growth to produce power/heat/fuels, then capturing and storing the emitted CO₂

A/R (afforestation/reforestation) – planting trees where previously (a) there were none or (b) they have been cut down

DAC(S) (direct air CCS) – capturing CO_2 directly from air

EW/MC (enhanced weathering/mineral carbonation) – spreading pulverised rock on land/water to take up CO₂ and form bicarbonate **SOCS (soil organic carbon sequestration)** – storing CO₂ in soil through advanced farming methods, restoration and land creation

- **Biochar** adding burnt/torrefied biomass to soil for long term storage
- **Ocean fertilisation** adding Fe or N to accelerate CO₂ uptake by microorganisms for photosynthesis
- Cloud/ocean treatment (a) using alkalis to wash CO₂ out of the atmosphere, (b) using lime to absorb CO_2 from the oceans

three technologies (Fossil-CCS, RE, bioenergy)

- Should we stop at Fossil-CCS/RE/bioenergy?
- Need help from the far right (NETs) to make up for "damage done" in the past

"Unburnable carbon" concept

"Unburnable carbon":

- Carbon budget for emission scenarios implies \rightarrow certain amount of fossil fuel reserves "unburnable", i.e. their carbon not emittable, to stay within target
- CCS prevents/reduces emission of carbon to the atmosphere

Virgin Earth Challenge

infrastructure, trade, and supply chains Impact of climate change on crop yields Water footprint of Bio-CCS systems Effects of increased fertiliser use Land availability and lock-in Land use change (LUC) impacts Biomass sustainability

Main nexus concerns

Image: World Business Council on Sustainable Development 2014

How to overcome the "lack" of land?

Demand-side changes

average use per persor

- > Yield increases
- **Better land management**

Land area in Mha (FAO 2010) ■ pasture ■ crops ■ energy crops

price **Bio-C**CS can reduce upward pressure on food prices by lowering carbon price and biomass demand (Muratori et al. 2016)

Food

Grown kcals per person and day are ~6000

Berners-Lee 2016)

post-harvest wast

fed to animals but wasted due to inefficienc

Carbon price

NETs can even remove historic emissions from the atmosphere

Both are key to enable continued use of fossil fuels

Key messages from IEAGHG/SGI study:

Investigated effect of CCS on unburnable carbon Impact of CCS is material until 2050 and further increases until 2100

11% resp. 32% more fossil fuels can be used with CCS in a 2°C scenario

For scenarios < 2°C higher capture rates, i.e. >> 90%, might be necessary

Acknowledgements

Pieter van Breevoort)

Conclusions

Further work requirements

Due to quick erosion of remaining carbon budget for a 1.5°C scenario \rightarrow timely action required!

CCS technology components are mature and CCS can enable continued access to fossil fuels under carbon-constrained scenarios

NETs, like Bio-CCS/BECCS, could make up for historic emissions and previous inaction

Mitigation portfolio containing various options is best bet, as each has pros and cons

Whole systems approaches required to address the food-water-energy-climate nexus

Evaluate/quantify the role of CCS and NETs on "unburnable carbon" under a 1.5°C scenario

Quantification of Bio-CCS/BECCS nexus \rightarrow water/land/carbon/energy intensities

Identify the sweet spots for CCS and NET implementation

For Bio-CCS/BECCS: develop/optimise supply chains for sustainable biomass

Develop financial mechanisms and policy frameworks to support CCS and NETs

We would like to thank the following for undertaking studies under **IEAGHG:**

Sustainable Gas Institute/Imperial College London (Sara Budinis, Adam Hawkes, Samuel Krevor, Niall Mac Dowell) Carbon Counts (Greg Cook, Justin French-Brooks, Paul Zakkour) Ecofys (Chris Hendriks, Monique Hoogwijk, Klaas Koops, Joris Koornneef, Michéle Koper, Luchien Luning, Paul Noothout,

Sieaghg Sieaghg Sieaghg Sieaghg CAN CO₂ CAPTURE BIOMASS AND CCS – POTENTIAL FOR POTENTIAL FOR AND STORAGE **BIOMASS AND GUIDANCE FOR** BIOMETHANE UNLOCK ACCOUNTING FOR **CARBON DIOXIDI PRODUCTION WITH 'UNBURNABLE** CAPTURE AND NEGATIVE **CARBON DIOXID** CARBON'? STORAGE **CAPTURE AND EMISSIONS** STORAGE Report: 2011/06 Report: 2014/05 Report: 2013/11 Report: 2016/05 May 2016 uly 2011 July 2014 ptember 2013

http://www.ieaghg.org/publications/technical-reports

Contact: jasmin.kemper@ieaghg.org