

IEAGHG Information Paper 2017-IP57; A Review of Hybrid CO₂ Capture Processes

Although CCS has been widely recognised as one of the mitigation pathways to cut down CO₂ emissions, the energy penalty associated to carbon capture technologies is still high. An overview of the energy investment points for each technology is summarised in the table below. For example, the integration of an absorption-based process with MEA (3.0-4.5 GJ/ton CO₂) in a power plant would decrease the power plant efficiency by approximately 10% and the 80% of the energy required for the capture would be invested in the solvent regeneration. Enhanced systems with lower energy consumption for regeneration (saving 1GJ/ton CO₂) would potentially decrease this efficiency penalty by 2%. For example, the use of Cansolv (2-2.3 GJ/ton CO₂, electric energy) has reported an efficiency reduction of approximately 8% when used together with a proper heat integration strategy [2].

Technology	Driving Energy Factors	
Absorption	Thermal energy needed for regeneration Electric energy for the machine operation	
Adsorption	Electric energy to generate pressure difference(PSA) Thermal energy to provide desorption heat (TSA)	
Membranes	Electric energy for compressor or vacuum pump	
Cryogenic and hydrate separation	Electric consumption for conditions and operation	

A potential alternative is the use of hybrid systems, which combine two/three types of primary capture systems and can mitigate the disadvantages shown by the single systems. In this regard, Song et al. [1], have collected available information on hybrid systems. As a starting point, a table of available hybrid technologies, their advantages and challenges is shown on page 3. Linking this review on hybrid technologies to the IEAGHG report in 2014 (see http://ieaghg.org/docs/General_Docs/Reports/2014-TR4.pdf), membrane-cryogenic systems and adsorption-catalysis were identified as emerging technologies at TRL6 and 1 respectively, with a potential to reduce LCOE by 30 and 7% compared to chemical absorption with MEA. Cryogenic capture was classified as TRL3 (expected to advance quickly) and low temperature separation was catalogued as very low TRL.

Within the list of hybrid technologies included, three of the membrane hybrid systems stand out due to their low electric energy requirements: membrane- pressurized water scrubbing, low temperaturemembrane-cryogenic, and membrane contactor, with 0.64, 0.78-0.87 and 0.86 GJ/ton CO₂ (electric consumption). In this group, membrane contactor is the most advanced one. Advantages compared to absorption system comprise the reduction of solvent evaporation and emissions, and lower capital cost and footprint. Nevertheless, the selection of the membrane material is key to avoid stability issues and wetting phenomena in long-term operation. PCCC4 recently reported some results, and NETL include current funded projects this configuration (see http://ieaghg.org/docs/General Docs/Information Papers/2017-IP51.pdf). Recent advanced systems are being tested in the NCCC facilities (0.5 MWe) and fast advance of this hybrid technology is expected in the coming years, based on the recent scaled-up and many research groups combining novel membrane materials and innovative amine solutions.

Still, most of the technologies with higher potential in cost reduction are at low TRL and must be proved at proper scale. In addition, those solutions are very site-specific and the configuration (series, parallel and integration arrangements) must be optimized based on the operation conditions. Due to those factors, although promising, hybrid technologies must be studied further.

Mónica García 02/11/2017

For more information about this review, see:

[1] Song C., Liu Q., Ji N., Deng S., Zhao J., Li Y., Song Y., Li H. (2018) Alternative pathways for efficient CO2 Capture by hybrid processes- A review. Renewable and Sustainable Energy Reviews 82, pp. 215-231

[2] Just P.E., Mirfendereski Y., Geuzebroek F. (2009). Cansolv Technologies: The Value of Integration. http://www.ieaghg.org/docs/General_Docs/12%20cap/3-3%20Sec.pdf

Hybrid system	Advantages	Cha
Absorption-based		
Membrane contactor	 High selectivity due to the absorption Modularity and compactness through the membrane configuration Effective at low CO₂ concentration 	 Increased mass transfer resistance Issues related to the membrane perfo Thermal and chemical stability
Absorption-membrane	 Series arrangement: Reduction of regeneration energy Mitigation of amine emissions Parallel arrangement: Reduction of capital costs due to the reduction of the absorber 	 Capture cost is still high Influence of O₂ dilution in the membra
Absorption-adsorption	 Higher CO₂ carrying capacity Lower heat capacity due to the lack of water 	 Potential high pressure-drop across the Need to use advanced sorbents Potential to block the pore and collaption
Adsorption-based		
Adsorption-catalysis	 Increase on the CO conversion Lower capital costs as it needs just one reactor instead of two H₂ production is enhanced 	 Advanced sorbents are needed The sorbents deteriorate and its react
Adsorption-catalysis-membrane	 Enhanced conversion of CO to CO₂ and H₂ Lower capital costs as the process is carried out in one unit and with lower membrane area Lower operation cost due to lower steam usage Higher H₂ purity 	 High energy requirement for regeneration can also potentially affect the catalyst Poison the membrane caused by CO It is needed to enhance the selectivity The integration of this technology is selected.
Adsorption-cryogenic	 Reduction of total energy consumption Higher CO₂ purity stream Liquid CO₂ for supercritical state 	 Pre-treatment of the gas (drying) High energy consumption in low temp
Adsorption-membrane	 Enhanced process energy efficiency Higher CH₄ purity Stream High CO₂ purity stream 	Heat exchanger is expensive
Adsorption-hydrate	 Enhanced mass transfer between gas and liquid phases Reduction on energy requirement due to less mechanical agitation 	 A promoter is needed to facilitate the CO₂ recovery is low
Membrane-based		
Membrane-cryogenic	 Reduction of the compression work Reduction of cost of CO₂ avoided Lower capital cost due to smaller cryogenic equipment Lower operation cost Can be combined with other capture systems 	• It is needed an O ₂ enrichment unit
Membrane-absorption	 Reduction of energy penalty High purity CO₂ stream 	 Still high energy consumption Deterioration of the membrane Requirements of the membrane mate
Low temperature-based	·	·
Cryogenic-hydrate	Lower energy requirement and lower cost compared to standard cryogenic distillation	Low CO₂ recoveryIt is still an immature technology
Low temperature membrane-cryogenic	 Increase on the CO₂/N₂ selectivity Minimal CO₂ permeance loss Enhanced separation compared to commercial modules 	Increase of capital costSensible to moisture
Low temperature absorption	 High CO₂ purity in pre-combustion Lower energy requirement in post-combustion 	 It is needed a better understanding o Still needed to reduce regeneration e Absorbents can be volatile
Phase of CO ₂ product	 Reduction of energy consumption Potential to recover latent heat 	

allenges

ormance: wetting, fouling and plugging

ane performance

he absorber

ose its structure (reduction of porosity)

tivity is decreased

ration due to high temperature needed, which stability

:y H₂/CO₂ still challenging

perature unit

e hydrate formation

erials

of the dissociation of the CO₂ hydrate energy