

International Oxy-Combustion Research Network for CO₂ Capture

Report on Inaugural (1st) Workshop

Report Number: 2006/4 Date: July 2006

This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat.

INTERNATIONAL ENERGY AGENCY

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Cooperation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements.

DISCLAIMER

This report was prepared as an account of work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights, including any party's intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply an endorsement, recommendation or any favouring of such products.

ACKNOWLEDGEMENTS AND CITATIONS

The IEA Greenhouse Gas R&D Programme supports and operates a number of international research networks. This report presents the results of a workshop held by one of these international research networks. The report was prepared by the IEA Greenhouse Gas R&D Programme as a record of the events of that workshop.

The International Research Network on Oxy-Combustion is organised by IEA Greenhouse Gas R&D Programme. The organisers acknowledge the hospitality provided by the hosts:

The report should be cited in literature as follows:

IEA Greenhouse Gas R&D Programme (IEA GHG), "International Oxy-Combustion Research Network for CO_2 Capture: Report on Inaugural (1st) Workshop", 2006/4, July 2006.

Further information on the network activities or copies of the report can be obtained by contacting the IEA GHG Programme at:

IEA Greenhouse R&D Programme, Orchard Business Centre, Stoke Orchard, Cheltenham Glos. GL52 7RZ. UK Tel: +44 1242 680753 Fax: +44 1242 680758 E-mail: mail@ieaghg.org Website: www.ieagreen.org.uk

International Oxy-Combustion Research Network for CO₂ Capture

Report on Inaugural (1st) Workshop

Vattenfall Europe Mining and Generation Cottbus, Germany

29th and 30th November 2005

An afternoon visit to the Schwarze Pumpe Power Station

This workshop is organised by IEA Greenhouse Gas R&D Programme with the support of Vattenfall AB.

© July 2006

INTERNATIONAL OXY-COMBUSTION NETWORK FOR CO₂ CAPTURE Report on 1st Workshop

Vattenfall Europe Generation and Mining AG Cottbus, Germany

29th and 30th November 2005

1. INTRODUCTION

This report summarises the presentations of the inaugural workshop on International Oxy-Combustion Network for CO_2 Capture that was organised by IEA Greenhouse Gas R&D Programme and was hosted by Vattenfall AB.

The workshop was held at the head office of Vattenfall Europe Generation and Mining AG in Cottbus, Germany on the 29th and 30th of November 2005. A visit to the Schwarze Pumpe Power Station, one of the world's most advanced lignite power plant and the future site of the 30MW Oxy-Coal Combustion Pilot Plant, was arranged in the afternoon of the 29th of November.

IEAGHG would like to acknowledge and thank Prof. Lars Strömberg of Vattenfall AB for his full support to this workshop.

2. NETWORK OVERVIEW

Carbon dioxide capture and storage is now included in most OECD countries' energy policies and R&D programmes as one of the strategies to mitigate carbon dioxide emissions from large emitters. One of the leading carbon capture technology considered for power generation industry is the use of oxy-fuel combustion technique.

In recognition to the different efforts by the industry, academe and research institutes to demonstrate the techno-economic feasibility of this technology as carbon capture option for a power plant in the near future; IEA Greenhouse Gas has initiated the establishment of the International Network for Oxy-Fuel Combustion.

The aim of this Network for Oxy-Fuel Combustion is to provide an international forum for organisations with interest in the development of Oxy-Fuel Combustion Technology.

Due to the broadness of this topic, it was decided to focus the theme of the first workshop on the "Oxy-Fuel Combustion for Coal Fired Power Plant". Nevertheless, the future workshop will also attend to the development in Oxy-Fuel Combustion for Gas Fired Power Plants and other novel oxy-combustion processes.

3. WORKSHOP ATTENDEES

The workshop brought together 64 participants from the power generation industries, boiler and combustion equipment manufacturers, oxygen production and CO_2 processing industries, research institutes and universities covering 17 countries worldwide. The workshop has been over-subscribed with 20 other potential participants in the waiting list. The attendance list is given in Appendix 1.

4. WORKSHOP PROGRAMME AND HIGHLIGHTS

The agenda is given in Pages 3 and 4. Over the $1\frac{1}{2}$ days, the workshop covered the following topics:

- Technology Benchmarking and Modelling Studies A Review of the Oxy-Fuel Combustion R&D Activities.
- Work-in- Progress, Development in Oxy-Fuel Combustion Studies.
- Oxygen Production and CO₂ Processing Overview to the Different R&D Activities for Power Generation Industry.
- An Overview, Progress and Development in Large Scale Oxy-Fuel Combustion Project

The theme of the first meeting focused on the "Development of the Oxy-Combustion Technology for Coal Fired Power Plant" featuring an update to the progress in the development of large scale oxy-coal combustion pilot plant studies currently on-going in Europe and Australia.

The workshop started with the welcome address given by Mr. Reinhardt Hassa, Member of the Management. Board, Vattenfall Europe Mining and Generation AG. He discussed about the role of Vattenfall Europe Mining and Generation its role in the power generation sector in Germany and their commitment toward sustainability and clean environment.

This is followed by welcome address by Dr. John Topper, presenting the role of IEA Greenhouse Gas R&D Programme in establishing this network, its role and the objectives of the meeting. He clearly stressed the importance of obtaining feedback from the participants firstly to enhance communications to develop collaborative action toward the deployment of carbon capture and storage technology.

A keynote presentation was given by Prof. Keiji Makino, chief executive engineer of IHI, who is also one of the pioneers in the development of this technology in Japan which started in 1990s. He presented an overview of the different Oxy-Coal Combustion R&D activities carried out in Japan. He clearly noted the important role of coal in the power generation sector of Japan and highlights the potential of this technology for retrofitting existing coal fired power plants. He also provided a good insight to the technical background and feasibility study currently on-going in co-operation with the Australian consortium under the Callide-A project. A summary of his presentation was presented in succeeding section.

A total of 13 other presentations were made during the one and half day meeting. Also included was a plant visit to the Schwarze Pumpe Power Station, the future site of the 30MW Oxy-Combustion Pilot Plant with a plan to commission the facility by 2008. Figure 1 shows the proposed location of the pilot plant within the premise of the power station.

Prof. Lars Stromberg and Mr. Uwe Burchardt provided an insight to the background and programme of the 30 MW Pilot Plant study of Vattenfall. Prof. Stromberg stressed the importance of reliability and availability of the power generation plant as one of the primary reasons to proceed with their study.

Inaugural Workshop Oxy-Fuel Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Vom Stein Strasse 39 Cottbus, Germany

29th and 30th November 2005

Day 1 – Outline Agenda

0900 - 0930	Welcome Address - Vattenfall Europe Mining & Generation: The Backbone of the Energy Group Reinhardt Hassa, Member of the Mgmt. Board, Vattenfall Europe Mining and Generation AG
	IEA Greenhouse Gas R&D Programme: Background and Introduction to Oxy-Coal Network John Topper, Managing Director, IEA Environmental Project Ltd.
0930 – 1030	Overview of the Oxy-Fuel Combustion Studies in Japan Keiji Makino, Chief Executive Engineer, IHI, Japan
1030 - 1045	Coffee Break
	<i>Technology Benchmarking and Modelling Studies:</i> <i>Review of the Oxy-Fuel Combustion R&D Activities</i> <i>Session Chairman: John Topper, IEA Greenhouse Gas R&D Programme, UK</i>
1045 - 1115	Oxy-Fuel Combustion Application for Coal Fired Power Plant: What is the Current State of Knowledge Stanley Santos, IEA Greenhouse Gas R&D Programme, UK
1115 – 1145	Fundamentals of Oxy-Fuel Combustion Prof. Terry Wall, University of Newcastle, Australia
1145 – 1215	Technology Choice and Benchmarking Studies Prof. Lars Stromberg, Vattenfall, Sweden
1215 – 1300	Lunch
1330 - 1515	SCHWARZE PUMPE POWER STATION: Plant Visit & Grp. Photo Co-ordinated by Vattenfall Europe AG
	Coffee Break
	Development in Oxy-Fuel Combustion Studies: Work in Progress Session Chairman: Prof. Klaus Hein, University of Stuttgart, Germany
1515 – 1545	Vattenfall's Activities on Oxy-Fuel Combustion Studies Prof. Lars Stromberg, Vattenfall, Sweden
1545 – 1615	An Overview of Oxy-Fuel Combustion R&D Programme in CANMET Kourosh Zanganeh, CANMET, Canada
1615 - 1645	Fundamental Oxy-Fuel Combustion Research Carried Out within the ENCAP Project Klas Anderson, Chalmers University, Sweden
1645 - 1715	Development in Oxy-Coal Combustion Boiler: A View from Boiler Manufacturer Timo Hyppänen, Foster Wheeler Oy, Finland
1930	Workshop Dinner

DAY2 – Outline Agenda

0845 - 0900	Opening of Day 2 Sessions Review of the Progress of the Workshop
	<i>O2 Production and CO2 Processing Overview of R&D Activities for Power Generation Industry Session Chairman: Roger Dudill, Air Products, UK</i>
0900 - 0915	Air Liquide Air Separation Units – Mastering Design and Operations Guillaume de Souza, Air Liquide, France
0915 - 0930	Oxy-Combustion for CO₂ Capture in Pulverized Coal Boilers Guillaume de Smedt and Guillaume de Souza, Air Liquide, France
0930 - 1000	Capturing CO ₂ from Oxy-Fuel Combustion Flue Gas Minish Shah, Praxair, USA
1000 - 1015	Coffee Break
	An Overview, Progress and Development in Large Scale Oxy-Fuel Combustion Project Session Chairman: Sho Kobayashi, Praxair, USA
1015 - 1030	Vattenfall Oxy-fuel Pilot Plant Study – Programme Overview Uwe Burchardt, Vattenfall Europe Generation and Mining, Germany
1030 - 1115	Australian Japanese Co-operation on OxyFuel Pilot Project for Plant Retrofit – Callide-A Project Chris Spero, CSEnergy, Australia
1115 – 1230	Discussion Forum Session 1: Boiler and Burner Development – Future R&D Requirements Session 2: Development in O ₂ Production and CO ₂ Processing – Requirements for Energy & Cost Reduction.
1230 - 1245	Closing Session Wrapping Up and Future Activities
1245 - 1400	Lunch

Figure 1: Proposed site for the 30MW_{th} Oxy-Coal Pilot Plant in Schwarze Pumpe Power Station. (Picture courtesy of Vattenfall)

Dr. Chris Sphero presented an overview to the programme of the Callide-A Project. This project as mentioned earlier is the Australian-Japanese cooperation looking at the different aspects of retrofitting a coal fired power plant with an oxy-combustion boiler. He also highlighted the proximity of the Callide–A Power Station to a potential CO_2 storage site. Figure 2 presents the 25MWe Callide–A Power Plant and the geographical location showing the proximity to CO_2 storage site.

Figure 2: Location of Callide-A Project. A Planned retrofit to a coal fired power plant with an oxy-combustion boiler

The workshop also provided the opportunity to look at the development of the Oxy-Coal Combustion Technology from the boiler manufacturer's point of view. This was presented by Dr. Timo Hypannen of Foster Wheeler Oy. A view in the development of oxygen production was presented by Mr. Guillaume de Souza of Air Liquide. The impact and technical issues on the processing of a CO_2 rich flue gas in relation to the operation of the oxy-coal combustion boiler was presented by Dr. Minish Shah of Praxair.

With regard to on-going studies, Dr. Klas Anderson presented some of the results gathered from the studies undertaken by Chalmers and Stuttgart University with regard to combustion and radiation properties. Dr. Kourosh Zanganeh provided an overview of the works done by CANMET. Mr. Guillaume de Smedt of Air Liquide presented an insight to their work in-cooperation with Babcock & Wilcox.

The final agenda of the workshop was on the discussion of various issues. IEAGHG in cooperation with Prof. Terry Walls of Newcastle University released an issue paper during the meeting which was used as a guide for the discussion which was led by Dr. Sho Kobayashi of Praxair.

The issue paper covers four general topics including:

- Boiler and burner development
- Plant operation and safety
- O₂ production
- CO₂ rich flue gas processing and compression.

The issue paper is included in the Appendix. IEAGHG will still welcome any additional comments or reaction to the issue paper.

5. PRESENTATION SUMMARY

5.1. Overview of the Oxy-Fuel Combustion Studies in Japan Prof. Keiji Makino, Chief Executive Engineer, IHI

Since the early part of the 1990s, Japan has been active in the development of oxy-coal combustion with recycled flue gas for the purpose of investigating its viability for plant retrofit suitable for capturing CO_2 . This presentation provided a good overview to the work done under the NEDO programme during the last 15 years, the results of the current research activities, and the introduction to the Australian-Japanese co-operation under the Callide-A Project.

Specifically, this presentation discussed the following points:

- Japanese strategy for CO₂ Reduction
- Oxy-firing studies in Japan
- Study of 1000 MW oxy-firing super critical unit
- Japan-Australia oxy-firing project

The presentation briefly explained the strategy undertaken by the Japanese government in dealing with the challenges of reducing CO_2 and maintaining energy security. Under the Kyoto Protocol, Japan is required to reduce 6% of their overall greenhouse gas emissions. At the same time, the government also recognises the role of coal and its importance to the energy security of Japan. Thus, the government has initiated the Clean Coal Cycle (C3) initiatives with the following key objectives:

- (a.) To promote and develop innovative clean coal technologies.
- (b.) To demonstrate other diversified clean coal technologies.

Under the first objective of C3 initiatives covers the development of oxy-fuel combustion boiler for plant retrofit. In the past 20 years, IHI has initiated various fundamental studies in Japan and this covers the following:

- Study on ignition and flame propagation.
- Fundamental study on oxy-firing (experimental work done by Tokyo Institute of Technology TIT)
- In-furnace desulfurisation study of oxy-firing (also undertaken by TIT)
- 1.2 MW Combustion test
- CO₂ compression demonstration test

From these fundamental studies, the presentation summarised the following results:

- Ignition and flame propagation study was undertaken using small gravity test. Results have indicated that ignition and flame propagation was shown to be slower in the O_2/CO_2 environment as compared to that of the O_2/N_2 environment.
- Fundamental study undertaken by Tokyo Institute of Technology covers the investigation of NOx formation and reduction mechanisms of oxy-combustion with recycled flue gas.
- The study by Tokyo Institute of Technology also investigated the mechanism for infurnace desulphurisation of oxy-firing combustion based on CaCO₃ injection.
- IHI undertaken a pilot scale combustion test of oxy-coal combustion with recycled flue gas using their 1.2MW test rigs. This covers various in-flame measurements looking at the combustion characteristics of two different types of burners and their pollution

emissions. Unique to this study is their in-flame measurements taken for NH_3 and HCN in attempt to understand NOx formation mechanism in an industrial scale boiler.

• The study led by IHI during the 1990s also involves the demonstration of liquefaction of flue gas. One of the aims of this study was to demonstrate the viability of connecting compression equipment to the boiler. CO_2 was successfully recovered under 0°C and a 7MPa condition was noted.

The fundamental experimental studies described above were complimented by simulation study of 1000MW class oxy-firing advanced super critical unit. Primary results presented in these work include the attempt to understand the dynamic operation of a 1000MW power plant operating with an air separation unit and flue gas compression.

Finally, the presentation concludes with an introduction to the Australian-Japanese cooperation under the Callide-A project. The overall schedule for this project was presented. It was aimed to demonstrate how to retrofit the 30MWe oxy-coal firing boiler by 2006-2010.

5.2. Oxy-fuel Combustion Application for Coal Fired Power Plant: What is the... Stanley Santos, IEA Greenhouse Gas R&D Programme

The results of the techno-economic study commissioned by IEA Greenhouse Gas R&D Programme on Oxy-Combustion for Coal Fired Power plant were presented. This study (IEAGHG Report No. 2005/9) was undertaken by Mitsui Babcock Energy Ltd. in co-operation with Air Products and Alstom Power. The report consists of study for both natural gas fired and coal fired power plant based on oxy-combustion capture processes; however, only the results for the coal fired case were presented.

The results of the study indicated an energy efficiency penalty of 8% as compared to reference conventional coal fired power plant operating with advanced supercritical steam and equipped with SCR and FGD.

The second part of the presentation presented an overview to the early works done on Oxy-Coal Combustion pilot scale study. This includes the an overview to the study done by:

- Argonne National Laboratory which include some results gathered from the 115 kW pilot scale experiment of Battelle and 3 MW pilot scale test of EERC.
- International Flame Research Foundation (3 MW)
- Mitsui Babcock Energy Ltd. (120 kW)
- International Combustion Ltd. (35 MW)

Various key issues were raised regarding the development in boilers and burners and these include:

- Effect of recycled flue gas to the heat transfer profile of the boiler
- Effect of recycled flue gas to the ash deposition
- Requirements for coal characterisation (devolatilisation and char combustion)
- Issue regarding the air-ingress, start-up, turn down operation, and O₂ handling

5.3. Fundamentals of Oxy-Fuel Combustion Prof. Terry Wall, University of Newcastle

The fundamental principles of oxy-coal combustion with recycle flue gas were explained. The following issues were discussed in detail:

• Pollutant emissions – including key results from various work on NOx and SO2.

- Heat Transfer which include the impact of recycle flue gas to the radiative and convective heat transfer
- Reactivity of coal under a O₂/CO₂/H₂O environment
- Mathematical modelling for furnace operating in oxy-combustion with recycled flue gas

The presentation explained how the mathematical model for furnace firing in oxy-combustion mode was developed. Specifically, it was noted that the significant difference in the adsorption and emission spectra for triatomic gases. This implies that combustion environment for oxy-combustion will have a higher emissivity. The radiation model was developed based on band model.

The mechanisms for NOx formation were explained. This is based on the results undertaken by Okazaki's research during the 1990s. The potential for increase in sulfur capture efficiency was also noted. The increase in desulfurisation efficiency was attributed to the inhibition of $CaSO_4$ decomposition at higher temperature (> 1500K) and increase in recycled flue gas at the intermediate temperature (< 1450 K).

5.4. Technology Choice and Benchmarking Studies Prof. Lars Strömberg, Vattenfall AB

The point of view of Vattenfall choosing Oxy-Coal Combustion for further development and validation as their choice of technology for CO_2 capture for their power plant was explained. In this regard, it was clearly noted the following:

- Oxy-fuel is currently the technology that provides the least cost within their benchmarking studies.
- It is their view that oxy-combustion is suitable for coal and has little development work required.
- It is their view that it could make good use of their experience with their present fleet of pulverised coal fired power plants.

The benchmarking study done by Vattenfall presented a comprehensive review on the various results on techno-economic studies on CO_2 free power plant published in the literature. The gap and difference among the results presented in various literatures were critically analysed. A specific example was presented showing the big difference in cost analysis among the different studies published was due to higher assumption for their fixed and O&M cost.

Results of their IGCC benchmark study were presented. It was noted that reference IGCC today is not competitive with the current pulverised coal fired power plant. Likewise, it also explained why IGCC has been unfavourable in the point of view of several power generation companies. This is especially stressed on the requirements for high availability which could be easily achieved by PF power plant.

One of the conclusions noted that with CO_2 emission penalty of $\in 20$ per tonne, the competition is between coal power plant with capture and natural gas fired power plant without capture.

5.5. Vattenfall's Activity on Oxy-Fuel Combustion Studies Prof. Lars Strömberg, Vattenfall AB

The CO_2 free power plant project of Vattenfall was introduced. An overview to the main driver of the current oxy-fuel combustion activities and the $30MW_{th}$ pilot plant study were presented. This project has been active since 2001. It consists of 5 stages and it will end with a proposal of

how to build a full size demonstration plant. A pre-engineering phase for the demonstration plant is planned during 2008 – 2010.

The five stages of the project include:

- Phase 0: Is it possible?
- Phase 1: Gap analysis
- Phase 2: Concept development
- Phase 3: Technology development and engineering
- Phase 4: Construction and operation of a demonstration plant.

The technical target for this project was as follows:

- Total cost of capture should achieve below €20. / tonnes CO2
- Capture efficiency of 95%

Currently, the project is now under Phase 2 which also includes the construction of the pilot plant and various test programmes.

The allocated budget of the pilot plant project was $\notin 37$ million for construction of the plant and $\notin 20$ million for the test programme. The pilot plant consists of oxy-combustion boiler, gas cleaning, CO₂ processing and cleaning, and air separation unit. Further details to the experimental programme will be presented in Section 5.11.

5.6. An Overview of Oxy-Fuel Combustion R&D Programme in CANMET Kourosh Zanganeh, CANMET

An overview to the Climate Change Plan of Canada was presented. CCS technology was noted to have an important role in the energy future in the carbon constrained energy economy. In line with Canadian Government programme on zero emission technology, various programme and activities were initiated and one these programme includes the CETC Oxy-Fuel Research Consortium.

The goal consortium is to develop oxy-fuel combustion technologies for improved efficiency and capture of CO_2 from flue gas streams. Under this consortium, research programmes were initiated and currently on-going in the field of:

- Burner development
- Boiler performance simulation
- Multi-pollutant capture integration
- Advance process and cycle development
- Field demonstration of oxy-fuel combustion
- CO₂ capture and compression unit development.

The focus area of the current programme is working toward the development of 2^{nd} generation oxy-fuel combustion systems for power generation. This will be looking at various oxy-fuel combustion developments in boilers and burners and these includes:

- 2nd generation oxy-fuel combustor design and optimisation which will include study on oxy-firing mode with reduced amount or no flue gas recycle.
- Oxy-steam combustion process development
- Advance oxy-fuel and oxy-steam burner design and development.
- Multi-pollutant sorbent for oxy-combustion process
- Zero emission gas turbine combine cycle.

• Novel and efficient CO₂ capture and compression process development, pilot scale unit design and implementation. The programme will also focus on CO₂ capture and compression performance testing and optimisation

5.7. Fundamental Oxy-Fuel Combustion Research Carried Out within the ENCAP Project Klas Anderson, Chalmers University

The fundamental studies on oxy-fuel combustion under the ENCAP project were presented. This includes combustion study undertaken in the 20 kW test rig of Stuttgart IVD and the 100 kW test rig of Chalmers University.

The objective of these combustion tests aims to establish combustion characteristic data for validation of CFD modelling and to support selection of flue gas treatment technology.

The coal combustion test includes characterisation of emission behaviour, ash quality, particle temperature under oxy-combustion mode as compared to air combustion mode. From this study, the results for the gas emission and temperature profiles for air fired vs 27% O₂ with recycled flue gas were shown. The effect of HNO injection and staging combustion on NOx emissions were also presented.

The oxy-natural gas combustion test includes characterisation of flame properties, gas concentrations, in-flame temperature measurements and radiation characteristics. From this study, the calculated emissivity for oxy-fuel combustion determined using a narrow angle radiometer was presented.

Finally, the presentation concludes with up-coming activities within the ENCAP experimental programme. This will involve the development of burner concept and design, investigation of radiation characteristics, burnout and emission behaviour and slagging, fouling test in a 100 kW and 500 kW combustion test rig.

5.8. Development in Oxy-Combustion Boiler: A View From Boiler Manufacturer Timo Hyppänen, Foster Wheeler Oy

The point of view of the boiler manufacturer in the development for both oxy-combustion for PC and CFB boilers were presented.

The development in oxy-combustion for PC boilers is primarily aimed to establish optimum plant design and to maximise overall efficiency. This includes development and design of burners that will have stable ignition, safe operation and minimise NOx. The development in boilers is now focused on the determination of optimum location of burner and ports (secondary and tertiary comburent ports) and the design of internal radiant surfaces.

An update to the R&D effort in the development of oxy-CFB boiler development was presented. Advantages of CFB oxy-combustion were enumerated. Opportunities to significant size reduction and high boiler efficiency were stressed during the presentation. Some of the results from the bench test done in VTT (Technical Research Centre of Finland) showed the combustion profile of an Oxy-CFB in terms of their emissions and performance.

Finally, the presentation concluded by showing a roadmap of oxy-CFB development indicating the aim of demonstrating oxy-CFB power plant in the range of 20-50 MW_e range in the next 3 years and a 250 MW_e by 2015.

5.9. Air Liquide's Air Separation Units: Mastering Design and Operations Guillaume de Souza, Air Liquide

The requirements for large air separation units for oxy-combustion pulverised coal boiler were noted. Air Liquide noted that currently oxygen production companies are capable of the following:

- Designing and operating very large ASU.
- Optimising ASU with significant energy savings
- Allow potential integration within the customer process
- Provide reliability and high availability

This presentation showcase that ASU could be designed and built based on customer requirements. This includes the possibility of providing an ASU which could be optimised depending on CAPEX and OPEX requirements and potential for process integration with high availability and reliability.

5.10. Oxy-Combustion for CO2 Capture in Pulverised Coal Boilers Guillaume de Smedt, Air Liquide

Air Liquide presented their experience in the development of oxy-combustion technologies for various types of fuel. They have presented work on a 1.5 MW_{th} boiler simulator and demonstrated the safe and smooth conversion from air-fired to O₂/Flue Gas Recirculation operation.

Test result has achieved significant reduction in flue gas volume, an increase in CO_2 concentration from 15% to 80% (dry basis) with 5% air ingress. They noted an experience of NOx reduction by 60% - 70%. Test results showed that by controlling the amount of flue gas recirculation, heat transfer profile is not significantly affected thus it is not anticipated that there will be adverse side effect on boiler performance.

5.11. Capturing CO₂ from Oxy-Fuel Combustion Flue Gas Minish Shah, Praxair

Considerations for CO_2 purity for use in EOR were discussed. Critical issues such as requirements for pipeline transport and reservoir safety were noted. The following were recommended as the preferred quality of the CO_2 for EOR application:

- Minimum recommended purity of 95%
- O₂ content should be less than 10 ppm
- H_2O is preferred to be reduced to a very low level but to what extent will require further investigation.
- High level of impurities could potentially form a second phase therefore resulting to hammering

Results and assumptions used for their techno-economic study were presented. Factors affecting power consumption in CO_2 processing were noted and these include:

- Excess O₂ in combustion
- Air ingress
- O₂ purity
- CO₂ purity requirement

From the results of their study, the following conclusions were noted:

- Air ingress or leakage is a significant factor affecting power consumption; minimising air ingress will benefit oxy-combustion the most.
- Power savings in 95% O₂ vs 99.5% O₂ more than offsets extra power in CO2 purification
- Need to define CO2 purity requirement for sequestration
- Two stage flash provide slight advantage over one stage flash.

Research needs in CO₂ processing were identified:

- Purity specification for EOR and sequestration
 - Impact of impurities on pipeline materials
 - Impact of impurities on effectiveness of storage
 - Interaction with impurities from other capture sources
- Drying of CO₂ containing SO₂
- VLE of high pressure CO₂ containing flue gas impurities

5.12. Vattenfall Oxy-fuel Pilot Plant Study: Programme Overview Uwe Burchardt, Vattenfall Europe Generation and Mining AG

The programme for their 30 MW_{th} pilot plant study was presented. The rationale behind the upscaling study for burner and boiler development was explained.

This presentation briefly describes the following:

- Combustion test programme for both lignite and bituminous coal.
- Sources of air-ingress has been identified
- Operation procedure to be implemented. This consists of the start-up procedure with airfired process, shift to oxy-combustion mode then to be followed by the assimilation of the CO₂ liquefaction process.
- Time schedule of the construction, commission and operation of the pilot plant

The primary aims of the oxyfuel pilot plant operation were discussed in detail:

- Test of the complete technology chain (C-input to CO₂ purity)
- Test the feasibility of oxy-combustion for lignite
- Practical test of the interaction of all components
- Determination of the actual CO₂ capture rate and attainable CO₂ purity.
- Testing for start-up and break down. Analysis of trouble cases
- Knowledge for officially demanding monitoring
- Experiences to the permission of a CO₂ free power station

5.13. Australian Japanese Cooperation on Oxy-Fuel Project for Plant Retrofit: Callide-A Project Chris Spero, CS Energy

An update to the Japanese-Australian oxy-fuel combustion feasibility study and demonstration project was clearly spelled out in this presentation. This project consists of a feasibility study and test programme evaluating the viability of the oxy-firing technology. The demonstration plant feasibility study has a primary objective of assessing the technical and economic merit of oxy-fuel combustion for a plant retrofit.

The main deliverables for this feasibility study include application study based on 1000 MW plant simulation and the reference design for the Callide-A 30 MWe power plant.

The primary purpose of the test and evaluation is to provide data input to boiler model proposed by IHI and the optimisation of oxy-firing condition matching the heat transfer profile of the air fired case.

The current project involves the following tasks:

- Feasibility study under the CCSD R&D Programme which will include:
 - o initial process design
 - assessment of primary design factors (coal reactivity, heat transfer properties, ash characterisation, and emissions)
 - o process optimisation
 - o preliminary design, layout and costing of ASU and product recovery train,
 - o detailed design and costing of Callide-A retrofit boiler
 - preliminary assessment of CO₂ storage
 - o large scale application study.
- Engineering design and funding
 - Reference design and EPC specification
 - o EIS, risk review
 - Final costing
 - Contracts for construction
 - Incorporated Joint Venture Agreement
 - Agreements for funding, O&M and services
- Test and evaluation
 - Combustion behaviour of oxy-firing as compared to air-firing
 - Volatile matter yield and char reactivity
 - Coal ash properties
 - Boiler heat transfer characteristics and design parameters

The development programme and time schedule for this project was presented. The value proposition for this project was enumerated. Basically, this project aims to:

- Address to key knowledge gaps and issues relevant to oxy-firing in full scale boiler
- Provide a platform for commercialisation of oxy-fuel technology and a new technology benchmark
- Provide substantial IP benefit for future large scale plant design and project implementation experience

6. WORKSHOP DISCUSSION – THE HIGHLIGHTS

The workshop discussion was led by Dr. Sho Kobayashi of Praxair. Specifically, the discussion is based on the various points raised in the issue paper prepared by IEA Greenhouse Gas R&D Programme (See Appendix 3).

The discussion was focused on the following main topics:

• Various operation issues relevant to the recycled flue gas and its impact to the flame properties.

- Availability of basic technical information required in understanding the combustion characteristics of the oxy-coal combustion with recycled flue gas.
- The importance of establishing baseline information for the development of a reliable model that could be used as tools for design and analysis of the oxy-combustion flame.
- Understanding the mechanisms of pollutant emissions from an oxy-combustion flame which includes for NOx, SOx, particulate matters and mercury.
- Various operational issues involving plant safety, procedural routine for starting up, turn down and shut down, and dynamics involving the integration of operating the air separation unit, the power plant island and the CO₂ processing and compression train.

During the discussion, there are several points were highlighted. A few of these issues were noted below:

- The importance of ensuring high availability and reliability was clearly stressed during the discussion. Primarily, the goal of the Vattenfall's 30 MW pilot plant project and CSEnergy's Calide-A project is to establish a good understanding and learn the fundamental operation requirements of an oxy-coal combustion power plant to increase their confidence of having the desired reliability similar to current fleet of pulverised coal fired power plant.
- A discussion was on the potential benefits and possible failure of having an oxy-coal combustion boiler operating with minimal flue gas recirculation. It was noted that there could be a gain in terms of reduction in capital cost due to a more compact boiler however it was clearly stressed that this should be balanced against potential problems (ie. slagging) that may occur due to the higher temperature condition created by a higher oxygen concentration.
- An important point was raised with regard to regulations requirement with regard to the dispersion of the flue gas. It was clearly noted that due to lower volume and higher density of the flue gas, the dispersion radius could be smaller as compared to current PC boilers. This issue was raised during the discussion to highlight the importance of knowing the minimum stack height of an oxy-combustion boiler in case where emergency release of the flue gas is necessary.
- Another discussion was raised on the level of understanding toward processing and compression of CO_2 with high level of impurities. It was noted that there is still a significant gaps in knowledge with regard to the fundamental understanding of the phase diagram of CO_2 especially in the presence of other impurities.

7. NEXT STEPS

• The IEAGHG will place the copies of presentations and this meeting report on <u>http://www.captureandstorage.info</u>.

• The IEAGHG will continually monitor any new development in the R&D areas of Oxy-Combustion for power generation. This will not be limited to Oxy-Coal Combustion Technology.

8. LIST OF APPENDICES

Appendix 1: List of Attendees

Appendix 2: Workshop Presentations

Appendix 3: Issue Paper

Appendix 4: Other reference materials and contributed materials

This page is intentionally left blank

APPENDIX I

List of Delegates

1st International Oxy-Combustion Workshop Cottbus, Germany 29th – 30th November 2005

Klas Andersson Chalmers University Göteborg, Sweden

Tel. No.:	+46 31 772 1000
Fax No.:	+46 31 772 3592
Email:	klon@entek.chalmers.se

Ole Biede

Energi E2 Copenhagen, Denmark

Tel. No.:	+45 4480 6447
Fax No.:	+45 4480 6604
Email:	<u>obi@e2.dk</u>

Eric Croiset

University of Waterloo Canada

Tel. No.:	+1 519 888 4567 x6472
Fax No.:	+1 519 746 4979
Email:	ecroiset@uwaterloo.ca

Guillaume de Souza

Air Liquide France

Tel. No.: +33 1 39 07 65 94 Fax No.: Email: <u>guillaume.desouza@airliquide.com</u>

Mario Ditaranto

Sintef Energy Research Trondheim, Norway

Tel. No.:	+47 7359 3166
Fax No.:	+47 7359 2889
Email:	mario.ditaranto@sintef.no

Hans Eklund

Norsk Hydro ASA Oslo, Norway

 Marie Anheden

Vattenfall Utveckling AB Stockholm, Sweden

Tel. No.:	+46 8 739 62 12
Fax No.:	+46 8 739 68 02
Email:	marie.anheden@vattenfall.com

Luis Cañadas

Inerco SA Seville, Spain

Tel. No.: Fax No.: Email: +34 629 058 543 +34 954 461 329 Icanadas@inerco.es

Guillaume De Smedt

Air Liquide Jouy en Josas, France

Tel. No.:	+33 1 39 07 62 89
Fax No.:	+33 1 39 07 61 13
Email:	guillaume.de-smedt@airliquide.com

Hans Dekker

DCMR / VROM Schiedam, The Netherlands

Tel. No.:	+31 10 246 8286
Fax No.:	+31 10 246 8283
Email:	jsd@dcmr.nl

Roger Dudill

Air Products Crewe, Cheshire, United Kingdom

Tel. No.: +44 780 117 8571 Fax No.: Email: <u>dudillr@airproducts.com</u>

Reiner Feist

Vattenfall Europe Power Consult GmbH Vetschau, Spreewald, Germany

Tel. No.:	+49 35433 752419
Fax No.:	+49 354433 2353
Email:	reiner.feist@vattenfall.de

Udo Gade

Vattenfall Europe Power Consult GmbH Vetschau, Spreewald, Germany

Tel. No.:	+49 35433 752501
Fax No.:	+49 354433 2353
Email:	udo.gade@vattenfall.de

Scheffknecht Günter

University of Stuttgart Stuttgart, Germany

 Tel. No.:
 +49 711 685 8913

 Fax No.:
 +49 711 685 3781

 Email:
 guenter.scheffknecht@ivd.uni-stuttgart.de

Klaus Hein

University of Stuttgart Eutingen, Germany

Tel. No.:	+49 7457 91690
Fax No.:	+49 7457 91691
Email:	klaus.r.g.hein@t-online.de

Daniel Hultqvist

Vattenfall Europe Power Consult GmbH Vetschau, Spreewald, Germany

Tel. No.:	+49 35433 752419
Fax No.:	+49 354433 2353
Email:	daniel.hultqvist@vattenfall.de

Mohamed Kanniche

EDF R&D Chatou, France

Tel. No.:	+33 1 30 87 70 93
Fax No.:	+33 1 30 87 71 08
Email:	mohamed.kanniche@edf.fr

Mario Klemm

TU Dresden Dresden, Germany

Tel. No.:	+49 351 463 33471
Fax No.:	+49 351 463 37753
Email:	mklemm@metrs1.mw.tu-dresden.de

Sho Kobayashi

Praxair Inc. Danbury , USA

Tel. No.:	+1 203-837-2652
Fax No.:	+1 203-837-2469
Email:	sho_kobayashi@praxair.com

Ben Goh

E.On UK Nottingham, United Kingdom

Tel. No.:	+44 115 936 2451
Fax No.:	+44 115 936 2205
Email:	<u>ben.goh@eon-uk.com</u>

Reinhardt Hassa

Vattenfall Europe Mining and Generation AG Germany

Tel. No.: Fax No.: Email:

Arto Hotta

Foster Wheeler Energia Oy Varkaus, Finland

Tel. No.:	+358 10 393 7588
Fax No.:	+358 10 393 7689
Email:	arto.hotta@fwfin.fwc.com

Timo Hyppänen

Foster Wheeler Energia Oy Varkaus, Finland

 Tel. No.:
 +358 10 393 7587

 Fax No.:
 +358 10 393 7689

 Email:
 timo.hyppanen@fwfin.fwc.com

Alfons Kather

Hamburg University of Technology Hamburg, Germany

Tel. No.:	
Fax No.:	
Email:	

+49 40 428 78 3043 +49 40 42 878 2467 kather@tu-harburg.de

Frank Kluger

Alstom Power Boiler GmbH Stuttgart, Germany

 Tel. No.:
 +49 7 11917 1029

 Fax No.:
 +49 7 11 917 1239

 Email:
 frank.kluger@power.alstom.com

Henrik Kobro

Statoil Stavanger, Norway

+47 971 46 387
+47 5199 0050
hkobro@statoil.com

Stein Koren

Gassnova Porsgrunn, Norway

Tel. No.:	+47 48195122
Fax No.:	+47 35932201
Email:	sk@gassnova.no

Etienne Lebas

IFP Vernaison, France

Tel. No.:	+33 4 78 02 25 14
Fax No.:	+33 4 78 02 20 09
Email:	etienne.lebas@ifp.fr

Mette Lindal Madsen

Energi E2 Copenhagen, Denmark

Tel. No.:	+45 4480 6000
Fax No.:	+45 4480 6604
Email:	<u>mlm@e2.dk</u>

Keiji Makino

Ishikawajima-Harima Heavy Industry Tokyo, Japan

Tel. No.:	+81 3 3534 4302
Fax No.:	+81 3 3534 4460
Email:	keiji_makino@ihi.co.jp

Stuart Mitchell

Mitsui Babcock Energy Ltd. Renfrew, United Kingdom

 Tel. No.:
 +44 141 885 3953

 Fax No.:
 +44 141 885 3860

 Email:
 smitchell@mitsuibabcock.com

Dong-Soon Noh

Korea Institute of Energy Research Daejeon, South Korea

Tel. No.:	+82 42 860 3347
Fax No.:	+82 42 860 3102
Email:	dsnoh@kier.re.kr

Miro Podhorsky

Balcke-Dürr GmBH Ratingen, Germany

Tel. No.:	+49 2102 1669 596
Fax No.:	+49 2102 1669 617
Email:	miroslav.podhorsky@cts.spx.com

Axel Kranzmann COORETEC Germany

Tel. No.: Fax No.: Email: <u>axel.kranzmann@bam.de</u>

Göran Lindgren Vattenfall Utveckling AB Stockholm, Sweden

Tel. No.: Fax No.: Email: <u>goran.lindgren@vattenfall.com</u>

Jörg Maier University of Stuttgart Stuttgart, Germany

 Tel. No.:
 +49 711 685 3396

 Fax No.:
 +49 711 685 3491

 Email:
 j.maier@ivd.uni-stuttgart.de

Heike Meyer

Vattenfall Europe Power Consult GmbH Vetschau, Spreewald, Germany

 Tel. No.:
 +49 35433 752437

 Fax No.:
 +49 354433 2353

 Email:
 heike.meyer@vattenfall.de

Miguel Morales

Inerco SA Seville, Spain

Tel. No.: Fax No.: Email: +34 606 384 104 +34 954 461 329 mmorales@inerco.es

Per Ottosen

Energi E2 Copenhagen, Denmark

Tel. No.:	+45 4480 6000
Fax No.:	+45 4480 6604
Email:	pot@e2.dk

Keith Pronske

Clean Energy Systems Inc. USA

Tel. No.:	+1 916 379 9143
Fax No.:	+1 916 379 9146
Email:	klpronske@cleanenergysystems.com

Detlef Radunsky

Vattenfall Europe Power Consult GmbH Vetschau, Spreewald, Germany

Tel. No.:	+49 35433 752552
Fax No.:	+49 354433 2353
Email:	detlef.radunsky@vattenfall.de

Nicola Rossi

ENEL SpA Pisa, Italy

Tel. No.:

Fax No.: Email: +39 050 6185686 nicola.rossi@enel.it

Frank Schwendig

RWE Power AG Essen, Germany

Tel. No.:	+49 201 12 41376
Fax No.:	+49 201 12 27408
Email:	frank.schwendig@rwe.com

William Simmons

Coaltek LLC / Jupiter Oxygen Corp. Evansville, Indiana, USA

Tel. No.:	+1 812 402 2211
Fax No.:	+1 812 402 2212
Email:	wsimmons@coalteck.com

Fred Starr

Institute of Energy - EC/JRC Petten, The Netherlands

Tel. No.:	+31 224 565 085
Fax No.:	+31 224 565 623
Email:	frederick.starr@jrc.nl

Lars Stromberg

Vattenfall AB Stockholm, Sweden

Tel. No.:	+46 8 739 55 11
Fax No.:	+46 8 739 50 48
Email:	lars.stromberg@vattenfall.com

Metz Thomas

Siemens Erlangen, Germany

Tel. No.:	+49 9131 18 5069
Fax No.:	+49 9131 18 7403
Email:	thomas.metz@siemens.com

Anand Rao

Carnegie Mellon University Pittsburgh, PA, USA

Tel. No.:	+1 412 268 5489
Fax No.:	+1 412 268 3757
Email:	<u>abr@cmu.edu</u>

Stanley Santos

IEA Greenhouse Gas R&D Programme Cheltenham, United Kingdom

Tel. No.:	+44 1242 680753
Fax No.:	+44 1242 680758
Email:	stanley@ieagreen.org

Minish Shah

Praxair Inc. Tonawanda, NY, USA

Tel. No.:	+1 716 879 2623
Fax No.:	+1 716 879 7931
Email:	minish_shah@praxair.com

Chris Spero

CSEnergy Queenslands, Australia

Tel. No.: Fax No.: Email: <u>cspero@csenergy.com.au</u>

Bob Stobbs

Canadian Clean Power Coalition Regina, Sk., Canada

Tel. No.:			
Fax No.:			
Email:			

+1 306 566 3326 +1 306 566 3348 bstobbs@saskpower.com

Nick ten Asbroek

TNO Apeldoorn, The Netherlands

Tel. No.:	+31 555493370
Fax No.:	+31 555493410
Email:	nick.tenasbroek@tno.nl

Henrik Thuman

Chalmers University Göteborg, Sweden

Tel. No.:	+46 31 772 1000
Fax No.:	+46 31 772 3592
Email:	henrik.thuman@chalmers.se

John Topper IEA Greenhouse Gas R&D Programme Cheltenham, United Kingdom

Tel. No.:	+44 1242 680753
Fax No.:	+44 1242 680758
Email:	john.topper@iea-coal.org.uk

Vince White

Air Products plc Walton on Thames, United Kingdom

Tel. No.:	+44 1932 249948
Fax No.:	+44 1932 258135
Email:	whitev@airproducts.com

Jen Wolf

Vattenfall Utveckling AB Stockholm, Sweden

Tel. No.: Fax No.: Email: jens.wolf@vattenfall.com

Yinying Yan

Vattenfall Utveckling AB Stockholm, Sweden

Tel. No.: Fax No.: Email: jinying.yan@vattenfall.com

Terry Wall

University of Newcastle New South Wales, Australia

 Tel. No.:
 +61 2 49 216179

 Fax No.:
 +61 2 49 21 6920

 Email:
 terry.wall@newcastle.edu.au

Dieter Winkler

Alstom (Switzerland) Baden, Switzerland

Tel. No.: Fax No.: Email: +41 56 486 7003 +41 56 486 7389 dieter.winkler@power.altsom.com

Toshihiko Yamada

Ishikawajima-Harima Heavy Industry Tokyo, Japan

Tel. No.:	+81 3 3534 4381
Fax No.:	+81 3 3534 4460
Email:	toshihiko_yamada@ihi.co.jp

Kourosh Zanganeh

CANMET Nepean, Ontario, Canada

Tel. No.: Fax No.: Email: <u>kzangane@nrcan.gc.ca</u> This page is intentionally left blank

APPENDIX 2

LIST OF PRESENTATIONS

- <u>Welcome Address Vattenfall AB</u>
 Welcome Address Vattenfall Europe Mining & Generation: The Backbone of the Energy Group
 Reinhardt Hassa, Member of the Mgmt. Board, Vattenfall Europe Mining and Generation AG
- <u>Welcome Address IEA Greenhouse Gas R&D Programme</u> IEA Greenhouse Gas R&D Programme: Background and Introduction to Oxy-Coal Network John Topper, Managing Director, IEA Environmental Project Ltd.
- <u>Keynote Presentation</u>
 Overview of the Oxy-Fuel Combustion Studies in Japan Keiji Makino, Chief Executive Engineer, IHI, Japan
- <u>Presentation 01</u>
 Oxy-Fuel Combustion for Coal Fired Power Plant: What is the Current State of Knowledge Stanley Santos, IEA Greenhouse Gas R&D Programme, UK
- <u>Presentation 02</u>
 Fundamentals of Oxy-Fuel Combustion Prof. Terry Wall, University of Newcastle, Australia
- <u>Presentation 03</u>
 Technology Choice and Benchmarking Studies Prof. Lars Strömberg, Vattenfall AB, Sweden
- <u>Presentation 04</u>
 Vattenfall's Activities on Oxy-Fuel Combustion Studies Prof. Lars Strömberg, Vattenfall AB, Sweden
- <u>Presentation 05</u>
 An Overview of Oxy-Fuel Combustion R&D Programme in CANMET Kourosh Zanganeh, CANMET, Canada
- <u>Presentation 06</u>
 Fundamental Oxy-Fuel Combustion Research Carried Out within the ENCAP Project Klas Anderson, Chalmers University, Sweden
- <u>Presentation 07</u>
 Development in Oxy-Coal Combustion Boiler: A View from Boiler Manufacturer Timo Hyppänen, Foster Wheeler Oy, Finland
- <u>Presentation 08</u>
 Air Liquide Air Separation Units Mastering Design and Operations Guillaume de Souza, Air Liquide, France
- <u>Presentation 09</u>
 Oxy-Combustion for CO₂ Capture in Pulverized Coal Boilers Guillaume de Smedt and Guillaume de Souza, Air Liquide, France
- <u>Presentation 10</u>
 Capturing CO₂ from Oxy-Fuel Combustion Flue Gas Minish Shah, Praxair, USA
- <u>Presentation 11</u>
 Vattenfall Oxy-fuel Pilot Plant Study Programme Overview
 Uwe Burchardt, Vattenfall Europe Generation and Mining, Germany
- <u>Presentation 12</u>
 Australian Japanese Co-operation on OxyFuel Pilot Project for Plant Retrofit Callide-A Project Chris Spero, CSEnergy, Australia

This page is intentionally left blank

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

WELCOME ADDRESS

Vattenfall Europe Mining & Generation The Backbone of the Energy Group

by:

Reinhardt Hassa Member of the Mgmt. Board, Vattenfall Europe Mining & Generation AG

This page is intentionally left blank

Dever Plant Pa		VATTENFALL EUROPE
Power Plant Pa Base load 4 lignite-fired power plants 3 nuclear power station shares Medium load 1 hard coal-fired power plant Peak load 10 water power plants 5 gas turbine power plants Total	7.420 1.470 553 2.902 968 13.313	
	5	VATTENFALL 😂

		VATTENFALL EUROPE
Power Plant	t Park II	
Lignite Jänschwalde Boxberg Schwarze Pumpe Lippendorf Hard coal Rostock Total	3.000 MW 1.900 MW 1.600 MW 920 MW 553 MW 7.973 MW	
	6	VATTENFALL 叁

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

WELCOME ADDRESS

IEA Greenhouse Gas R&D Programme Background & Introduction to Oxy-Combustion Network

by:

John Topper Managing Director, IEA Environmental Project Ltd.

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

KEYNOTE PRESENTATION

Overview of the Oxy-Fuel Combustion Studies in Japan

by:

Prof. Keiji Makino Chief Executive Engineer, IHI

IHI

IEA Greenhouse Gas R&D Programme Oxy-Fuel Combustion Research Network

Overview of

Oxy-Fuel Combustion Studies in Japan

Keiji MAKINO

Executive Chief Engineer Ishikawajima-Harima Heavy Industries Co., Ltd. Tokyo, JAPAN

Coal Combustion under CO ₂ Atmosphere III								
Item		Combustion with air	Combustion with oxygen					
Windbox	O2	21%	21~30%					
	N2	79%	(0)~10%					
	CO2	0%	40~50%					
	H2O	Small	10~20%					
	Others	-	NOx, SO2···					
Flue gas	O2	3~4%	3~4%					
	N2	70~75%	(0)~10%					
	CO2	12~14%	60~70%					
	H2O	10~15%	20~25%					
	Others	NOx, SO2···	NOx, SO2···					
			(Wet % base)					

Drastic NOx Redu (Drastic decrease of Co Summary of CR*	<u>ICtion</u> nversion R values for O₂/	From (NOx: mainl atio from I (CO ₂ coal com	Prof. Okazaki y due to Fuel-NC Fuel-N to NOx) ^{bustion}	Dx)		
λ (oxygen-fuel stoichiometric ratio)	0.7	1.0	1.2			
NO concentration in exhaust gas	1130 ppm	1710 ppm	1490 ppm			
CR*	0.05	0.12	0.13			
Ratio of <i>CR</i> [*] to that of air combustion	17 % (1/6)	25 % (1/4)	26 % (1/4)			
CR*: conversion ratio from fuel-N to exhausted NO						
Ratio of <i>CR</i> *to that of air = <u>CR</u> combustion	Ratio of <i>CR</i> *to that of air combustion = $\frac{CR^* \text{ in } O_2/CO_2 \text{ coal combustion}}{CR^* \text{ in conventional coal combustion in air}}$					
School of Engineering Tokyo Institute of Technology						

Basic Design of 1,000MWe Class Power Plant IHI

Steam condition	24.1MPa, 538/566°C	
Fuel	Coal (Bituminous coal)	
	Light oil at the start up	
Air separation unit	Cryogenic air separation	
	58–100% range	
Flue gas	Axial-type compressors	
Compressors	20 MPa of outlet	
Others	Base load unit	
	Min. load 60%L (600 MWe)	
	at Oxy-fuel combustion	

Keynote Presentation - K. Makino

Dynamic Plant Simulation IHI						
Starting up procedu	<u>ire</u>					
Plant condition ①Start up (Light off) ②Turbine roll ③Synchronization ④Turbine master auto ⑤Combustion change ⑥Fuel change ⑦Furnace draft control	300M 1 2 3 4 5	4W 600MW CO ₂ recover 6 7				
Main fuel	Light oil	Coal				
Furnace draft control	Non-control (Forced draft)	Compressors (Balanced draft)				
Flue gas O ₂ control	Air flow(GRF outlet)	O ₂ flow				
Burner WB O ₂ control	Non-control (Air)	Recirculation gas flow (GRF outlet)				

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 01

Oxy-Fuel Combustion Application for Coal Fired Power Plant: What is the Current State of Knowledge

by:

Stanley Santos IEA Greenhouse Gas R&D Programme, UK

This page is intentionally left blank

IEA Greenhouse Gas R&D Programme				
Performance and costs (coal)				
Assumptions and Basis of Calculation - Handouts				
Cost of power ¢ / kwh				
Base case Oxy-combustion		Pre/Post		
4.4		6.1	6.3	
Net efficiency %				
Base case		Oxy-	Oxy-combustion	
	44.3		35.4	
Gross MW	740		737	
Net MW	677		532	
www.ieagreen.org.uk				

This page is intentionally left blank
Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

PRESENTATION - 02

Fundamentals of Oxy-Fuel Combustion

by:

Prof. Terry Wall University of Newcastle, Australia

This page is intentionally left blank

Differences between oxy-fuel combustion and air combustion, identified in PECS review (31, 283-307, 2005).

To attain a similar adiabatic flame temperature the O2 proportion of the gases passing through the burner is higher, typically 30%, higher than that for air of 21%, and necessitating that about 60% of the flue gases are recycled.

The high proportions of CO2 and H2O in the furnace gases result in higher gas emissivities, so that similar radiative heat transfer for a boiler retrofitted to oxy-fuel will be attained when the O2 proportion of the gases passing through the burner is less than 30%.

The volume of gases flowing through the furnace is reduced somewhat, and the volume of flue gas (after recycling) is reduced by about 80%.

The density of the flue gas is increased, as the molecular weight of CO2 is 44, compared to 28 for N2.

Differen air and o	ces in ra oxy-fuel	diating ga	ses between
Factor $CO2 + H2O$	Air firing	Oxy-fuel	Implications for oxy-fuel
H2O / CO2	1	0.1, dry recycle 0.3, wet recycle	Emissivity of large furnaces cannot be estimated by standard Hottel charts, so band models must be used
		0.8, wet recycle, lignite	CCSD

RESULTS for Furnace F-B	14 J	Charles .	
for achieving similar boiler heat transfe	r (Q) a	s the air (case
Cases	Air	Oxy-Dry	Oxy-Wet
% XS Air/ Oxygen	20	3.5	4.6
O ₂ fraction at burner inlet	0.21	0.38	0.25
O ₂ fraction in flue gas	0.033	0.033	0.033
Adiabatic flame temperature (AFT) °K	2200	2359	2040.7
Gas Temperature (°K)	1432	1364	1348
Recycle Ratio	-	1.36	2.55
Emissivity (Gas)	0.36	0.47	0.58
Emissivity (combined)	0.50	0.65	0.70
Heat associated with fuel/ m ² of surface area	235.3	198.3	240.7
Heat absorbed /m ² of surface area (kW/m ²)	94.93	95.7	95.6
			ر درج

Estimated dif	ferences in FEGT, fuel temperatures	compared to are lower
	Oxy-Dry	Oxy-Wet
Furnace	dT (°K)	dT (°K)
F-A	36.7	49.9
F-B	68.1	84.3
F-C	40.8	44.4
		CCSD

Convection pass heat transf	er pred	icted	
	4		
Table 12: Convective neat transfer results for air, ox	y-dry and ox	Ovy Day	Oww Wet
Flue gas entering convective pass $(^{\circ}K)$	1/32	1365	1348
Velocity of flue gas entering convective pass (m/s)	9.8	5.0	75
Flue gas temperature leaving the convection pass	700	547	653
(°K) and entering economizer	,	(iteration)	(iteration)
Overall Heat Transfer coefficient $(W/m^2.k)$	46.4	39.4	48.9
% Increase in convective heat transfer	-	-15.1 %	5.4 %
Notes: Flue gas velocity calculated for air firing, scaled Tube area is not known, therefore flue gas tempo set at 700K for air firing to establish area require	l for oxy-cas erature leavi ed, set at this	es ng convectio s value for or	on pass xy-
cases			

	Coal A	Coal B	Coal C	Coal D
Proximate Analysis				
Volatile Matter (a.d.)	25.6	24.5	40.5	33.8
N ₂ V*	36.7	30.9	52.4	53.5
Q factor	1.43	1.26	1.29	1.58
CO ₂ V*	43.3	32.2	55.3	66.2
Q factor	1.69	1.32	1.36	1.96

Fi	ts for A based on firs	r order
	Constant particle size	Constant density
N ₂	$A = 2.04 (pO_2)^{-0.76*}$ R ² = 0.98	$A = 4.90(pO_2)^{-0.56}$ R ² = 0.97
CO ₂	$A = 1.66(pO_2)^{-0.86}$ R ² = 0.99	$A = 4.87(pO_2)^{-0.61}$ R ² = 0.99
		د د د د د د د ک

			10000		1000	F	Carl Martin C
Factors de	termi	ining c	oal cha	ar burnou	it wh	en furi	nace
heat transf	er is	match	ned for	a retrofit			
neut transi		mator		arctront			
						100	6
Operational	Air	Ох	yfuel	Equivalent	Air	Change,	compared
factor	fired			factor	fired	to air	firing
		NV 4	D	determining		XXZ 4	D
		wet	Dry	coal char		wet	Dry
Ovygan through	210/	26%	280/	The arrigan pa	utial nua	iecycle sure experi	anood by
burners % v/v	21/0	2070	3870	burning coal cl	har is hig	her in oxyfu	eliceu by
Eurnace flue gas	56630	43950	29870	Coal	2.05	2 51	3.80
volumetric flow	50050	43730	29070	residence	2.05	2.31	5.00
expressed as				<i>time</i> in			
kmol/hr				furnace is			
				higher in			
				oxyfuel, s			
Change in	-	-60°C	+160°C	The gas tempe	rature ex	perienced b	y coal
adiabatic flame				char will differ	in oxyfu	el, being lov	wer with
temperature. C		0.4.90	(0 ⁹ C	wet recycle			
Change in	-	-84 C	-08 C				
temperature							2
(FEGT) °C							
(1201), 0							CSD

NOx Reduction - Decr Fuel-N to NOx	rease of Co	onversion F	Ratio nom	
Summary of <i>CR</i> *	values for O ₂ /	CO ₂ coal com	bustion	1
λ (oxygen-fuel stoichiometric ratio)	0.7	1.0	1.2	
NO concentration in exhaust gas	1130 ppm	1710 ppm	1490 ppm	
CR^*	0.05	0.12	0.13	
Ratio of <i>CR</i> [*] to that of air combustion	17 %	25 %	26 %	
CR *: conversion ratio	from fuel-N	N to exhaust	ed NO	
Ratio of CR to that of air = $-CR^*$	<i>CR</i> [*] in O ₂ in conventi	/CO ₂ coal co onal coal co	mbustion mbustion in	air
			0	CSD

Final commen whereby fund	t: Cfd fur amental r	nace simu csearch ca	lation is th n be applic	e t <mark>ogiland</mark>	
	Air-case	Oxy-case1	Oxy-case2	Oxy-case3	
Total gas flow rate O_2 content (WB O_2 content	142t/h 21% 21%	117t/h 30.2% 50%	140t/h 26.0% 40%	170t/h 1.7% 30%)	
Left From Fight East					
<u>Air-case</u>	<u>Oxy-case1</u>	<u>Oxy</u>	<u>case2</u>	<u>Oxy-case3</u>	
					SD

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

PRESENTATION - 03

Technology Choice and Benchmarking Studies

by:

Prof. Lars Stromberg Vattenfall AB, Sweden

This page is intentionally left blank

	Adjustments
•	 It was noted that the IEA commissioned studies generally presented very high fixed O&M costs (insurance and taxes specifically) on the coal fired plants compared to data from ENCAP partners and some of our own internal information IEA data adjusted to the same level as in the ENCAP guidelines (25.2 €/kWe gross for all PF coal cases, 2.6% of total investment in the IGCC cases) Capture cases were adjusted so that the fixed O&M (% of investment) is kept constant between reference and capture cases After this adjustment, the coal fired reference cases present total COE at approximately the same level which indicates that the cases uses similar basic assumptions In addition, natural gas and coal reference cases show total COEs that are in the same range – seems to agree with actual situation today considering the variations in fuel price Reference IGCC today is not competitive with PF – also agrees with actual situation
© Vattenfall AB	

Presentation 03 - L. Stromberg

	Choice of av Acid gas removal
aMDEA DEA NMP DGA DMPEG Purisol Rectisol Selexol Sulfinol	Activivated Methyl-Di-Ethanol-Amine, technology offered by BASF. di-ethanol-amine n-methyl-2 pyrrolidon di-glycol-amine dimethyl-ether-polyethylene-glycol NMP (n-methyl-2 pyrrolidon) technology from Lurgi Cold (-60°C) Methanol as solvent Physical solvent with dimethyl ether of polyethylene glycol MDEA technology with license from Shell
© Vattenfall AB	58 VATTENFALL 😂

	VUAB IGCC Dry	VUAB IGCC Dry CO ₂	VUAB IGCC Wet	VUAB IGCC Wet CO ₂	VUAB Wet no quench	VUAB Wet no quench CO ₂	IGCC Shell	IGCC Shell CO₂	IGCC Texaco	IGCC Texaco CO ₂
Gasification	25	25	25	25	25	25	37	37	65	65
AGR	aMDEA	aMDEA	aMDEA	aMDEA	aMDEA	aMDEA	aMDEA	aMDEA	Selexol	Selexol
GT press. atio	17	17	17	17	17	17	15,8	15,8	15,8	15,8
GT firing emp. [C]	1401,5	1401,5	1401,5	1401,5	1401,5	1401,5	1352	1352	1352	1352
Coal LHV kJ/kg]	26016	26016	26016	26016	26016	26016	26016	26016	26016	26016
Coal [MW]	1821,6	1976,5	1891,7	2033,3	1929,1	1983,5	1800,8	1950,3	2177,3	2322,5
El. Gross MW]	939,7	885,8	906,6	876,3	976,5	876,3	909,8	883,3	988,7	979,9
Aux. Cons. MW]	110,1	182	117,5	187	122,4	184,1	132,9	199,2	160,2	237,1
EI. Net [MW]	829,6	703,8	789,1	689,3	854,1	692,2	776,9	684,1	828,5	742,8
]e [%]	45,5	35,6	41,7	33,9	44,3	34,9	43,1	35,1	38,0	32,0
Fot. invest. MEUR]	935,4	1044,9	769,4	856,3	943,8	982,6	936,8	1038,6	865	925,4
Spec.inv. EUR/kWe]	1297	1707	1121	1429	1271	1632	1387	1746	1200	1432,8
Tot. invest. [MEUR] Spec. inv. [EUR/kWe]	935,4 1297	1044,9 1707	769,4 1121	856,3 1429	943,8 1271	982,6 1632	936,8 1387	1038,6 1746	865 1200	925,4 1432,8

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

PRESENTATION - 04

Vattenfall's Activities on Oxy-Fuel Combustion Studies

by:

Prof. Lars Stromberg Vattenfall AB, Sweden

This page is intentionally left blank

	C 15	O ₂ free Pov	wer Plant search and d	levelopment	i	
	Phase 0	Phase 1 GAP-analysis	Phase 2 Concept developments	Phase 3 Technology development/ engineering	Phase 4 Construction and operation of demo plant	
:	 The tech Ta Ta The proj Way In sti Ca 	2001 hnical target is otal cost below is apture efficience ject contains 5 //e are in the end a 2008 we shall ructure, technol onstruction of a	2003 a expressed as: 20 €/ton stored 0 y above 95 % 5 stages of the Concept have enough kno ogy and budget full scale demo	2006 CO ₂ development ph owledge to prop plant is schedul	2010 hase, which conta lose a feasible der led to start 2010	2015 ins pilot plant(s) moplant location,
© Vattenfall AB				10		VATTENFALL 😂

Storage at Schweir	nrich of 10 N	/ton CO	, per vear o	ver 40 vears:	
Parameter	Units	Base	High cost case		
Discount rate	%	12	18		
Number of wells	-	6	12		
Drilling cost	€/m	1000	2000		
Platform cost - Feasibility phase - Investigation phase - Injection equipment	ME	20 0.3 5.7 14	50 1 9 40		
0&M	M€	3	10		
Post operational cost	M€	0.3	1		
Deputting cost	€/ton CO₀	0.7	3		

Time schedule, budget				
	• Time schedule for the project is still depending on negotiations with the vendors and the permission process. The permission process is still uncertain.			
	 Present estimation gives that the plant can produce CO₂ in mid 2008. The ambition is, if circumstances permit, to shorten the timescale. Physical construction starts in 2006 			
	• The budget for the plant includes a three year test program			
	• The estimated cost of the plant itself is 37 mio € and the test program will cost about 20 mio €			
	 Industrial and institutional partners are invited to participate, reduce cost, contribute with experience and share knowledge 			
© Vattenfall AB	24 VATTENFALL 😂			

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 05

An Overview of Oxy-Fuel Combustion R&D Programme in CANMET

by:

Kourosh Zanganeh CANMET, Canada

This page is intentionally left blank

CETC CANMET ENERGY TECHNOLOGY CENTRE				
Canada's Climate Change Plan 2005				
<i>"It is estimated that the approaches outlined in the Plan, with an associated federal investment in the range of \$10 billion through 2012, could reduce GHG emissions by about 270 Mt annually in the 2008–2012 period."</i>				
www.climatechange.gc.ca				
 Funding provided in 2005 budget Climate Fund: \$1 billion (purchase GHG reduction & removal credits in Canada and abroad) 				
 Partnership Fund: \$250 million (could grow to \$2-\$3 billion over the next decade) 				
 Renewable: total of \$600 million (\$200M for Wind PPI, \$100M Renewable PPI, and \$300M tax incentives) 				
Programs: \$2 billion (for existing climate change programs)				
Natural Resources naturelles canada 4 Canada				

CETC CANMET ENERGY TECHNOLOGY CENTRE	
Additional	Web Sites
Corporate Image: Corporate http://www.cetc.nrcan.gc.ca/ http://www.cleanenergy.gc.ca/ www2.nrcan.gc.ca/es/es exporttech.gc.ca	Industrial Innovation Group www.cga.ca/ www.capp.ca/default.asp www.caddet-ee.org www.iea-coal.org.uk
www.climatechange.gc.ca/english/CCAF	or Welcome to
Sustainable Built Environment	Canadi
www.canren.gc.ca/	
www.cansia.ca/ www.cansia.ca/ www.ekocomfort.com/ www.super-e.com www.cdea.ca wows sci ac ca/	Hydrogen, Fuel Cells & Transportation <u>www.h2.ca/</u> <u>www.nrcan.gc.ca/es/etb/ctfca/</u> <u>www.greenfuels.org/assn.html</u> <u>www.evac.ca/</u>
www.sci.gc.ca/ www.ecbcs.org/	Hell Reserve Control
Clean Electric Power Generation http://www.cleancoaltrm.gc.ca http://www.co2trm.gc.ca winger edgradamentary Ressources naturelles	Canada

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 06

Fundamental Oxy-Fuel Combustion Research Carried Out within the ENCAP Project

by:

Klas Anderson Chalmers University, Sweden

This page is intentionally left blank

Oxy-fuel workshop, Cottbus, 29-30th November 2005

Fundamental oxy-fuel combustion research carried out within the ENCAP project

KLAS ANDERSSON Department of Energy and Environment, Chalmers University of Technology

CHALMERS		University Stuttgart				
ENCAP Oxyfuel Boiler technologies - Participating Organizations						
Vattenfall AB, Sweden	۲	University of Stuttgart, Germany				
ENERGI 📴 Energi E2 AS, Denmark	CHALMERS 👹	Chalmers University of Technology, Sweden				
MitsuiBabcook Mitsui Babcock Energy Limited, UK	SIEMENS	Siemens Aktiengesellschaft, Germany				
L'Air Liquide, France	ALSTOM	ALSTOM Power Centrales Steam Power Plant, France ALSTOM Power Boilers SA, France ALSTOM Power Boiler GmbH, Germany RWE Power AG, Germany				
Public Power Corporation S.A., Greece	ULSTER	University of Ulster, United Kingdom				

CHALMERS	University Stuttgart			
Test conditions in 20 and 100 kW units				
Same test conditions used in both reactors:				
 Three different combustion environments Air as reference case OF 21, same volumetric cond. as for air: 21% O₂ and 79% CO₂ OF 27, similar temperature cond. as for air: 27% O₂ and 73% CO₂ 				
• Same stoichiometric conditions in all test set-ups $- \lambda = 1.15$				
 Three different fuels tested: Gas (C₃H₈) Lausitz, lignite Kleinkopje, bituminous coal 				

CHALMERS

Conclusions from coal fired tests

• Gas emissions:

Small decrease in NO_X emission rate for OF 27 without flue gas recycle No difference in SO_2 generation

Negligleble CO emissions, identical for air and oxyfuel case

• Oxyfuel staging:

Reduction of NO_x emission rate equal or better for oxyfuel case compared to air case

• Ignition behavior:

Particle ignition and burnout is accelerated with higher oxyfuel concentrations

Temperatures reached for 27% oxyfuel are comparable to those for air

• Ash quality:

Little change in oxyfuel ashes compared to ashes from air combustion

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 07

Development in Oxy-Coal Combustion Boiler: A View from Boiler Manufacturer

by:

Timo Hyppänen Foster Wheeler Oy, Finland

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 08

Air Liquide's Air Separation Units: Mastering Design and Operations

by:

Guillaume de Souza Air Liquide, France

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

PRESENTATION - 09

Oxy-Combustion for CO₂ Capture in Pulverized Coal Boilers

by:

Guillaume de Smedt Air Liquide, France

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

PRESENTATION - 10

Capturing CO₂ from Oxy-Fuel Combustion Flue Gas

by:

Minish Shah Praxair, USA

Praxair Gas Separations Technologies for Oxy-Fuel Combustion

VPSA Oxygen

• Up to 250 tpd from a single unit

Cryogenic Oxygen

- Built plants up to 3000 tpd
- Larger plants being designed
- ▶ CO₂
 - CO₂ capacity > 15,000 tpd
 - Leader in 80% of markets served
 - Purification experience with wide range of sources (NH₃, H₂, NG, EtOH, Combustion)

Praxair Applications Technologies for Oxy-Fuel Combustion

Praxair Experience in Oxy-Fuel Combustion

 Over 300 commercial oxy-fuel fired industrial furnaces in different industries

Boiler Applications

- Provided tech assistance to the first pilot scale oxy-FGR-coal boiler simulator tests by ANL-EERC in 1988
- Advised on the pilot scale oxy-heavy oil fired industrial boiler (no FGR) project in Japan in 1993-1999
- Joint techno-economic study with Alstom Power for oxy-fired refinery boilers with and without FGR in 2000
- Commercialized the Oxygen Enhanced NOx Reduction Process for coal fired boilers in 2004 (30-50% NOx reduction in a125 MW utility boiler and two industrial boilers)

IPRAXAIR

VPSA Oxygen

5

Conventional Oxygen Process

PRAXAIN

Low-Purity Oxygen Process

CO₂ Purity Considerations for EOR

EOR Performance

- Minimum miscibility pressure (MMP), reservoir depth and oil's API gravity determines suitability of CO₂ for EOR
- MMP decreases if the impurity has a greater critical temperature than CO₂
- SO₂, H₂S, C₃+ decreases MMP
- O₂, N₂, Ar, NO increases MMP
- Pipeline Issues Corrosion and Two Phase Flow
 - With SO₂ present, H₂O must be reduced to very low levels (?)
 - O₂ with H₂O can accelerate cathodic reaction
 - High level of impurities could form second phase \rightarrow Hammering

Reservoir Safety

- Oil operators prefer oxygen < 10 ppm
- Minimum purity of 95% preferred

CO₂ Purification designed to achieve <10 ppm O₂

PRAXAIR

IPRAXAI

CO₂ Purity for Sequestration

CO₂ Sequestration/Storage Efficiency

- Impact of impurities on integrity of injection well and geological formation?
- Volume occupied by impurities

Pipeline Network Considerations

- Same corrosion issues as EOR
- Interaction of impurities from different sources
 - Oxy-fuel: O₂, SO₂, NO
 - IGCC: H₂, CO, H₂S
 - Other sources refineries, ethylene oxide, cement: ?

CO₂ Compression

Power for compressing impurities vs. separating them

CO₂ Purification designed to achieve 96% CO₂

Baseline USC PC Boiler

452 MW
44% (LHV)
\$1200/kW
Illinois #6
0.8 t(short tons)/MWh
\$2/MMBtu (HHV)
\$43/MWh

Oxy-Fuel Schematics

11

Factors Affecting Power Consumption in CO₂ Processing

- Excess O₂ in Combustion
- > Air Leak (% of wet flue gas before FGR)
- O₂ Purity
- CO₂ Purity

Excess O ₂	Air Leak	O ₂ Purity	CO ₂ in	Relativ Proc	ve Power for CO ₂ cessing/ton CO ₂			
%	%	%	%	Compressed as such	96% CO ₂	99.9% CO ₂		
0	0	99.5	98.4	1.00		19 - 19		
15	0	99.5	94.0	1.05				
15	3	99.5	82.2	1.20	1.29	1.43		
15	3	95.0	78.4	1.26	1.35	1.49		

Air leak is a significant factor

PRAXAIR

Total Power Consumption in Oxy-Fuel Combustion

Excess 0 ₂	xcess O ₂ Air Leak	O ₂ Purity	CO ₂ in	Relative P Proc	ower for A essing/ton	$SU + CO_2$ CO_2
% %	%	%	Fille Gas %	Compressed as such	96% CO ₂	99.9% CO ₂
0	0	99.5	98.4	1.00		
15	0	99.5	94.0	1.02		
15	3	99.5	82.2	1.08	1.16	1.22
15	3	95.0	78.4	1.00	1.10	1.15

Power savings in 95% O_2 vs. 99.5% O_2 more than offsets extra power in CO_2 purification

Effect of O₂ Purity and Air Leak Air Leak 3% O₂ Purity 95% \$60 \$60 Cost of CO 2 Avoided, Cost of CO 2 Avoided, \$50 \$50 \$40 \$40 \$10u \$30 \$/ton \$30 \$20 \$20 \$10 \$10 \$0 \$0 1% 3% 5% 10% 90.0% 95.0% 97.5% 99.5% Air Leak % **Oxygen Purity** 80% 70% % CO 2 Avoided 68% % CO 2 Avoided 70% 66% 60% 64% 50% 62% 40% 60% 1% 3% 5% 10% 90.0% 95.0% 97.5% 99.5% Air Leak % **Oxygen Purity** Minimizing air leak will benefit oxy-fuel combustion the most

13

Effect of CO₂ Purity Requirement

Need to define CO₂ purity requirement for sequestration

Presentation 10 - M. Shah

]]PRAXAII

NOx and SOx

- Oxy-fuel combustion will reduce NOx generation
- NOx emissions will depend on CO₂ purification process
 - No purification no emissions
 - 96% CO₂ ~75% NO vented
 - 99.9% CO₂ 100% NO vented
- If NOx control is desired, vent stream treated in SCR
- FGR will convert ~25% of SO₂ into SO₃, which will separate out during condensation of water
- SO₂ will remain with CO₂ after purification
- Drying CO₂ with SO₂ present is challenging
- Material of construction issues for processing SOx and NOx in cold box need to be investigated

17

Research Needs in CO₂ Processing

- Purity specifications for EOR and sequestration
 - Impact of impurities on pipeline materials
 - Impact of impurities on effectiveness of storage
 - Interaction with impurities from other capture sources
- Drying CO₂ containing SO₂
- VLE of high pressure CO₂ containing flue gas impurities

Praxair Advanced Boiler Concept

Oxy-fuel combustion without producing oxygen

19

PRAXAII

Advanced Boiler Status

- Working with gaseous fuels on a bench-scale multi-tube reactor
- Developed reliable materials
 - Cumulative 10,000 hrs of failure-free operation
- Achieved 30% of commercial flux targets
 - Target flux by mid-2006

	Oxy-Coal Boiler 99.5% O ₂	Adv. Coal Boiler 100% O ₂
PowerGen Efficiency	34.5%	39.6%
Cost of CO ₂ Avoided \$/ton	40.8	30.0
% CO ₂ Avoided	66.8	80.0

CO₂ Purity - 96%; Air Leak - 3%

Summary

- Praxair products/services for oxy-fuel combustion
 - Oxygen, CO₂ processing, burners, coatings for boilers and turbines
- Optimum oxygen purity 95 to 97.5%
- Minimizing air leak important for oxy-fuel combustion
- Need for CO₂ purity specifications
- Advanced boiler promising technology for future

PRAXAIR

Acknowledgements

- Sho Kobayashi, Dante Bonaquist, Neil Prosser, Ben Neu, Hank Howard, Bob Zawierucha, Bart VanHassel, Stefan Laux, all of Praxair
- Mark Holtz of Gulf Coast Carbon Center, U. of Texas at Austin

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 11

Vattenfall Oxy-fuel Pilot Plant Study: Programme Overview

by:

Uwe Burchardt Vattenfall Europe Generation and Mining AG, Germany

			Jhace	anny)
Development step	Scale-up Factor	Content	Year	Participant
Burning tests 10/55 kW (th.)		Basis tests to the Oxyfuel burning-behave	2004 2005	Uni Stuttgart (IVD), Chalmers University, TU Dresden, Vattenf
Test rig 500 kW (th.)	1:50	Bases for the burning with recirculation	2006	CEBra, BTU Cottbus Alstom, Vattenfall
Pilot plant 30 MW (th.)	1:60	Test of the complete technology chain	from 2008	Vattenfall
Demonstration plant approx. 600 MW (th.)	1:20	Realization with CO ₂ - transport and storage, proof of the economy	from 2015	
Commercial power station approx. 1000 MW (el.)	approx. 4-5	Costs for CO ₂ capture, transport and storage $< 20 \notin /t_{CO2}$	from 2020	

	V A	TTENFALL EUROPE
Basic data		
Boiler: dust fired	Combustion heat performance Steam production Steam parameter	30 MW _{th} 40 t/h 25 bar / 350 °C
Coal: pulverized lignite (Lausitz)	LHV Moisture Coal demand	21.000 kJ/kg 10,5 % 5,2 t/h
Media:	Oxygen (purity > 95%) Own consumption CO_2 (liquid)	8,5 t/h 6,5 MW 10 t/h
Other:	Required area Erecting time Investment	14.500 m ² 22 month 37 Mio. €
30.11.2005 Uwe Burchhardt Vattenfall Eu	rrope Generation 4	VATTENFALL 参

				VATTENFA	LL EUROPE
Usec	l fuel qua	lities			
Fuel	Dry ligr	nite dust	Bitumin	ous coal	Light oil
	Design	Range	Design	Range	HEL
Granu- lation	0 – 1 mm		0-50 mm		
Distribution	60%< 0,1 mm 13%> 0,2 mm	3-18% >0,2mm	Max.15% bis 200 mm		
LHV	21.0 MJ/kg	20-22,5 MJ/kg	25,1 MJ/kg	23-26,8 MJ/kg	42,6 MJ/kg
Analyse W	10,5 Mass%	8-12 M%	10,0 Mass%	7-21 M%	
A	6,0 Mass%	4,5-7,5 M%	13,0 Mass%	5-17 M%	
С	56,5 Mass%	54-60 M%	62,0 Mass%	56-71 M%	86,3 Mass%
O ₂	21,5 Mass%	20-22 M%	8,6 Mass%	??? M%	O = 0,4 M%
H ₂	4.0 Mass%	3,5-4,5 M%	4,2 Mass%	3,5-4,8 M%	H = 13 M%
S	< 0,8 Mass%	0 ,4-1,2 M%	< 0,7 Mass%	0,3-1,0 M%	0,2 Mass%
N	0,1 Wass%	0,6-1,1 M%	1,5 Mass%	1,0-2,0 M%	
CI		80-260 mg/kg			
FI		15-70 mg/kg			
30.11.2005 Uwe	Burchhardt Vattenfall Europe Gener	ation	5		VATTENFALL 😂

				V A	TTENFAL	L EUROPE
Time	schedu	le				
				1		
2005	2006	2007	2008	2009	2010	2011
	Pre- an	d Order plan	ning			
•	•	Permission p	lanning			
		Execution pl	anning			
	-		Erect	ion		
			Cor	nmissioning		
				5	Operation	
					operation	
30.11.2005 Uwe Br	urchhardt Vattenfall Europe Ge	ineration	14			VATTENFALL 🈂

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

PRESENTATION - 12

Australian Japanese Cooperation on OxyFuel Pilot Project for Plant Retrofit: The Callide-A Project

by:

Chris Spero CSEnergy, Australia

EDO		004121	Mark ONeill/ Ross MdKimon				
Coal	Dr Takashi Kiga	CCSD	Frank van Schagen				
H	Prof. Keiji Makino		Dr Lila Gutba				
	Toshihiko Yamada		Dr Noel Simento				
	Dr Toshiro Fujimori		Dr Lauis Wildberley				
	Barry Waining		Doug Palfreyman				
Power	Ndouhiro Masawa	Xstrata Coal	Barry Isherwood				
		Univ. Newcastle	Prot. Terry Wall				
			Assoc. Hot. Rajender Gupta				
		Sameer Khare					
		ACARP	Mark Bennetts				
			Jim Craigen				
		CO2CRC	Dr Peter Cook				
			Andy Rgg				
			Dr Tobias Payerburg				
		CS Energy	Dr Chris Spero				
			Tony Andersen				
		Stanwell Corp.	Howard Morrison				
		Tarong Energy	But Beesley				

COAL21 Roa	dmap				
Lignite drying	Pilot	Implement			
Black & Brown coal IGCC with CO2 capture	Demo		Comme	rcial	-
Geological storage of CO2	Pilot Demo		Comme	rcial	
Oxy-fuel combustion	F/S Dem	0	Comme	rcial	
Ultra Clean Coal	Pilot Demo		Comme	rcial	
2000 F/S - Feasibility Study	2005 2010	2015	2020	2025	2030
			Gcs	energy	ی CCSD

CS Energy Production	Statistics 2004/05
Total capacity	2470 MW
	(+ 750 MW under construction at Kogan Creek)
Electricity sent-out	12.490 TWh
Electricity from coal	75.7 %
Electricity from gas	24.0 %
Electricity from renewables	0.3 %
	G cs energy CCSD

Case	Pnet	Pgros	NTE	Coal	02	N2	Processed Gas	CO2	SOx	NOx	Part.	Ash
	MWe	MWe	%, HHV			kg/s			k	g/MWh S	50	
Air-fired PF	500	524	41	49	110	350	500	780	3.0	1.9	0.10	75
Air-fired PF + Capture	500	633	34	59	130	415	610	100	3.7	2.3	< 0.01	90
Oxy-PF + Capture	500	633	34	59	130	3	180	100	0.02	0.9	< 0.01	90
IGCC + Capture	500	588	35.7	56	40	1	85	95	0.01	0.1	< 0.01	85
Excess combustion	O2 = 3.	2 mass	%, dry		170, 111	•						
CO2 recovery from	oxy-firin	.g = 90%	5									

Project	history
Period	Activity
1992 - 2000	NEDO (Japan) with IHI funded the construction of a 150 kg/h pilot facility.
	A series of tests were conducted and CO2 was liquefied from a flue gas stream.
	Process design and assessment made of a 1000 MWe super-critical boiler.
Nov. 2002	At the 1 st CCSD Annual Conf. Prof. Keiji Makino presented on the Japan Technology Road Map – which included oxy-firing.
Apr. 2003	Meeting at Newcastle (Wall, Beasley, Wibberley, Makino, Waining & Spero) to discuss R&D in oxy-fuel in Australia.
	CCSD Project 3.4 was initiated.
Nov. 2003	Submission prepared on an oxy-fuel feasibility study for COAL21 National Plan of Action.
Mar. 2004	COAL21 National Plan of Action launched.
Apr. 2004	CCSD/COAL21 Oxy-fuel Working Group formed, and CCSD Project 3.5 was developed.
Sep. 2004	MOU signed to formalize oxy-fuel feasibility study.

Total Moisture %, ar 9 14 12.8 8 14.9 Sah %, ar 12.6 21.5 30.7 21.7 6.4 Volatile matter %, ar 32.1 22.0 20.3 35.7 29.2 %, daf 40.9 34.1 35.92 50.8 37.1 Bross Calorific Value MJ/kg, ar 26.88 19.1 15.85 24.24 24.43 MJ/kg, daf 34.29 29.61 28.05 34.48 31.04 Carbon %, daf 5.78 4.4 4.46 6.96 4.96 Vydrogen %, daf 1.79 1.14 1.13 1.14 2.10 Sulfur %, daf 1.79 1.14 1.13 1.14 2.10 Xygen %, daf 1.13 0.27 0.3 0.62 0.76 Sulfur %, daf 1.13 0.27 0.3 0.62 0.76 Xygen %, daf 1.13 0.27 0	Coal		Reference Coal 1 Drayton	Design Coal 2 Callide	Coal 3 Callide – Low CV	Coal 4 Acland	Coal 5 Rolleston Premium Export	
Ash %, ar 12.6 21.5 30.7 21.7 6.4 Volatile matter %, ar 32.1 22.0 20.3 35.7 29.2 %, daf 40.9 34.1 35.92 50.8 37.1 Gross Calorific Value MJ/kg, ar 26.88 19.1 15.85 24.24 24.43 MJ/kg, daf 34.29 29.61 28.05 34.48 31.04 Carbon %, daf 5.78 4.4 4.46 6.96 4.96 Nitrogen %, daf 1.79 1.14 1.13 1.14 2.10 Suffur %, daf 1.79 1.14 1.13 1.14 2.10 Suffur %, daf 8.00 16.39 19.71 10.48 13.78 Ash Fusibility - Reducing	Total Moisture	%, ar	9	14	12.8	8	14.9	
Volatile mattler %, ar 32.1 22.0 20.3 35.7 29.2 %, daf 40.9 34.1 35.92 50.8 37.1 Gross Calorific Value M/kg, ar 26.88 19.1 15.85 24.24 24.43 MJ/kg, ar 26.88 19.1 15.85 24.24 24.43 MJ/kg, adr 34.29 29.61 28.05 34.48 31.04	\sh	%, ar	12.6	21.5	30.7	21.7	6.4	
%, daf 40.9 34.1 35.92 50.8 37.1 jöross Calorific Value MJ/kg, ar 26.88 19.1 15.85 24.24 24.43 MJ/kg, daf 34.29 29.61 28.05 34.48 31.04 arbon %, daf 5.78 4.4 80.8 78.4 itrogen %, daf 1.79 1.14 1.13 1.14 2.10 ulfur %, daf 1.79 1.14 1.13 0.27 0.3 0.62 0.76 kygen %, daf 1.13 0.27 0.3 0.62 0.76 sh Fusibility - Reducing	olatile matter	%, ar	32.1	22.0	20.3	35.7	29.2	
Mukg, ar 26.88 19.1 15.85 24.24 24.43 Mukg, daf 34.29 29.61 28.05 34.48 31.04 Carbon %, daf 83.3 77.8 74.4 80.8 78.4 Vgdrogen %, daf 5.78 4.4 4.46 6.96 4.96 Nitrogen %, daf 1.79 1.14 1.13 1.14 2.10 Vgdrogen %, daf 1.79 1.14 1.13 1.14 2.10 Vgrup %, daf 1.79 1.14 1.13 1.14 2.10 Vgrup %, daf 8.00 16.39 19.71 10.48 13.78 Sygen %, daf 8.00 16.39 19.71 10.48 13.78 Petromation °C 1280 1400 >1600 1510 1140 piphere °C 1330 1470 >1600 1500 1240 low °C 1380 1500 >1600 1260 1260		%, daf	40.9	34.1	35.92	50.8	37.1	
MJkg, daf 34.29 29.61 28.05 34.48 31.04 Carbon %, daf 83.3 77.8 74.4 80.8 78.4 hydrogen %, daf 5.78 4.4 4.46 6.96 4.96 hitrogen %, daf 1.79 1.14 1.13 1.14 2.10 bildr %, daf 1.13 0.27 0.3 0.62 0.76 Dxygen %, daf 8.00 16.39 19.71 10.48 13.78 sh Fusibility - Reducing	Bross Calorific Value	MJ/kg, ar	26.88	19.1	15.85	24.24	24.43	
Carbon %, daf 83.3 77.8 74.4 80.8 78.4 tydrogen %, daf 5.78 4.4 4.46 6.96 4.96 titrogen %, daf 1.79 1.14 1.13 1.14 2.10 Sulfur %, daf 1.13 0.27 0.3 0.62 0.76 Dxygen %, daf 8.00 16.39 19.71 10.48 13.78 Rolleston coal m Sh Fusibility - Reducing		MJ/kg, daf	34.29	29.61	28.05	34.48	31.04	
Jaron Nr, Jail OS.5 17.5 14.4 4.4 6.05 10.4 jkrogen %, daf 5.78 4.4 4.46 6.96 4.96 jitrogen %, daf 1.79 1.14 1.13 1.14 2.10 ultur %, daf 1.79 1.14 1.13 1.14 2.10 vkygen %, daf 1.13 0.27 0.3 0.62 0.76 sh Fusibility - Reducing 0.64 8.00 16.39 19.71 10.48 13.78 sh Fusibility - Reducing 1140 1378 phere °C 1280 1400 >1600 1510 1140 phere °C 1320 1470 >1600 1220 1200 low °C 1380 1500 >1600 1260 1260	arbon	% daf	92.2	77.9	74.4	80.8	79.4	
Visitingen %, daf 0.70° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 4.4° 0.00° 1.14 1.13 1.14 1.14 1.13 1.14 1.13 0.27 0.3 0.62 0.76 0.76 0.00° 0.	lydrogen	% daf	5 78	4.4	4.46	6.96	4.96	
Mingen As dat 1.13 1.14 1.14 2.16 Daygen %, daf 1.13 0.27 0.3 0.62 0.76 Dxygen %, daf 8.00 16.39 19.71 10.48 13.78 Ash Fusibility - Reducing	litrogen	% daf	1 79	1 14	1.13	1 14	2.10	
Deformation °C 1280 1400 >1600 1510 1140 Sphere °C 1280 1400 >1600 1510 1140 Sphere °C 1300 1470 >1600 1500 1220 Fowward °C 1380 1500 >1600 1240	Sulfur	% daf	1.73	0.27	0.3	0.62	0.76	
Ash Fusibility - Reducing Image: Constraint of the state	Dxygen	%, daf	8.00	16.39	19.71	10.48	13.78	Rolleston coal mir
Shsh Fusibility - Reducing C 1280 1400 >1600 1510 1140 Deformation °C 1280 1400 >1600 1510 1140 Sphere °C 1300 1470 >1600 1600 1220 Hemisphere °C 1320 1480 >1600 >1600 1240 Flow °C 1380 1500 >1600 >1260								
Operation *C 1280 1400 >1600 1510 1140 Sphere *C 1300 1470 >1600 1600 1220 Hemisphere *C 1320 1480 >1600 1240 Flow *C 1380 1500 >1600 1260	Ash Fusibility - Reduci	ng						
Sphere *C 1300 1470 >1600 1620 1220 Hemisphere -C 1320 1480 >1600 >1200 1240 Flow *C 1380 1500 >1600 1260 1260	Deformation	°C	1280	1400	>1600	1510	1140	
Hemisphere °C 1320 1480 >1600 >1600 1240 Flow °C 1380 1500 >1600 1260	Sphere	°C	1300	1470	>1600	1600	1220	and the south of the stand
Flow °C 1380 1500 >1600 >1600 1260	Hemisphere	°C	1320	1480	>1600	>1600	1240	STATISTICS STATISTICS
	low	°C	1380	1500	>1600	>1600	1260	
		-	4.04	0.44	4.74	4.00	0.40	CARL ENDER
	Silica/Alumina ratio		1.81	2.11	1.74	4.02	2.43	

O2/N2 vs O2/CO2 Design Low CV High Temp VM VM (%, ad) 25.6 24.5 40.5 33.4 Char reactivity (pre-exponential factor) Q factor 1.43 1.26 1.29 1.56 Pyrolysis rates Q factor 1.69 1.32 1.36 1.94 Modelling PF: 63 – 90 um PF: 63 – 90 um PF: 63 – 90 um 1st order kinetics to be verified	O2/N2 vs O2/CO2High Temp VM	VM (%, ad)	Design			
• High Temp VM VM (%, ad) 25.6 24.5 40.5 33.4 • Char reactivity (pre-exponential factor) V* _{N2} (%, daf) 36.7 30.9 52.4 53.4 • Pyrolysis rates Q factor 1.43 1.26 1.29 1.56 V* _{CO2} (%, daf) 43.3 32.2 55.3 66.3 Q factor 1.69 1.32 1.36 1.99 Modelling PF: 63 – 90 um PF: 63 – 90 um PF: 63 – 90 um • HIH CFD Model for Callide A to evaluate effect of O2 on heat transfer PF: 63 – 90 um PF: 63 – 90 um • Fluent model also being developed 1st order kinetics to be verified PF: 63 – 90 um PF: 63 – 90 um	High Temp VM	VM (% ad)				
Char reactivity (pre-exponential factor) V [×] _{N2} (%, daf) 36.7 30.9 52.4 53.4 Q factor 1.43 1.26 1.29 1.56 V [×] _{CO2} (%, daf) 43.3 32.2 55.3 66.2 Q factor 1.69 1.32 1.36 1.99 PF: 63 - 90 um IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer Fluent model also being developed 1 st order kinetics to be verified		viii (70, aa)	25.6	24.5	40.5	33.8
factor) Q factor 1.43 1.26 1.29 1.58 Pyrolysis rates V* _{CO2} (%, daf) 43.3 32.2 55.3 66.3 Q factor 1.69 1.32 1.36 1.99 Modelling PF: 63 – 90 um PF: 63 – 90 um • IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer PF: 63 – 90 um • • Fluent model also being developed • • • • 1 st order kinetics to be verified • •	 Char reactivity (pre-exponential 	V* _{N2} (%, daf)	36.7	30.9	52.4	53.5
Pyrolysis rates V [*] _{CO2} (%, daf) 43.3 32.2 55.3 66.2 Q factor 1.69 1.32 1.36 1.90 PF: 63 − 90 um IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer Fluent model also being developed 1 st order kinetics to be verified	factor)	Q factor	1.43	1.26	1.29	1.58
Q factor 1.69 1.32 1.36 1.94 Modelling PF: 63 – 90 um • IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer • Fluent model also being developed • 1st order kinetics to be verified	Pyrolysis rates	V* _{CO2} (%, daf)	43.3	32.2	55.3	66.2
Modelling PF: 63 – 90 um I HI CFD Model for Callide A to evaluate effect of O2 on heat transfer Fluent model also being developed Fluent model also being developed Ist order kinetics to be verified		Q factor	1.69	1.32	1.36	1.96
 IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer Fluent model also being developed 1st order kinetics to be verified 	Modelling	PF: 63 – 90 um				
Fluent model also being developed 1 st order kinetics to be verified	 IHI CFD Model for Callide A to evaluate effect of O2 on heat transfer 					
1 st order kinetics to be verified	 Fluent model also being developed 					
	 1st order kinetics to be verified 					

Convective I	neat trans	fer	1		
- Convec	tive heat tra	nsfer model	looks at con	nparative	
– Effected (includii – Lower h change	d by volume ng T) neat transfer s to gas proj	of gas, com is due to ga perties	aposition and	ptroperties duction and	
Gas		Air case	Oxy (Dry)	Oxy (wet)	
Tc, in	К	1432	1365	1348	
u	m/s	9.8	5	7.5	
Tc, out	K	700	547	653	
h	W/m ² K	46.4	39.4	48.9	
Delta h			-15	5.4	
			(cs energy	ر درجم

APPENDIX 3

Oxy-Combustion Issue Paper

1st International Oxy-Combustion Workshop Cottbus, Germany 29th – 30th November 2005

1. Background

This issue paper was prepared by IEA Greenhouse Gas R&D Programme in co-operation with Prof. Terry Wall and Prof. Keiji Makino.

This paper was distributed among the participants of the workshop with an aim to provide a brief overview of the various issues involving in development of oxy-combustion technology for power generation to be discussed during the workshop. These questions was used as the basis for discussion by Dr. Sho Kobayashi who was the moderator during the discussion session.

Additional comments and feedback were collected after the workshop and the results were summarised below.

This is an informal survey initiated by IEA Greenhouse Gas R&D Programme to help identify other issues that were not discussed during the workshop. In the future, the discussion and other points arise from this informal survey will be reviewed and discussed during future workshop.

2. Summary of Results

The informal survey received 14 replies from the participants of the workshop.

Among the 30 questions presented in the issue paper, the questions listed obtained greater than 4 votes from the respondents. Table A3-1 shows the list of questions with their corresponding votes.

		Question	Votes
30.	What is	s the purity of CO_2 required for transport and further usage/storage?	
	30.1.	Is there a CO2 purity required for compression? Is a binary equilibrium approximation suitable for this estimation?	
	30.2.	To what extent it is necessary to remove non-condensable gas from the flue gas stream?	11
	30.3.	To what level dehydration of the flue gas is necessary to prevent any corrosion within the transport line?	
	30.4.	To what extent should SO_2 / NOx and other pollutant to be separated from the final flue gas stream?	

1.	For a transfe depend made that hat elucida	boiler retrofit, what is the optimum recycled flue gas ratio where heat er profile could be similar to the air-fired system, and will this be dent on the type of boiler and its configuration? – Clarification should be from the different values reported in the literature. Different parameters ave an affect on the optimum amount of flue gas recycled should be ated.	10
8.	What a type of	are the data available in characterisation and performance of different coal under the firing condition of an $O_2/CO_2/H_2O$ environment?	
	8.1.	Where are we in the understanding of the devolatilisaton and char burnout properties of the coal under oxy-firing environment?	
	8.2.	Where are we in the understanding of coal ignition (related to coal devolatilisation) and level of unburned carbon in ash (related to char burnout)?	10
	8.3.	How could we consolidate available experimental data to develop models for devolatilisation and char burnout kinetics under oxy-firing conditions? What further experiments are required to compliment or supplement the available data?	
	8.4.	Will flame detection techniques differ for oxyfuel firing?	
10.	It has firing c be und 1990's model	been reported that NOx and SO_2 emission tend to reduce during oxy- onditions; unfortunately, mechanisms behind these reduction has yet to lerstood. What else to be done to reinforce the studies done during the funded under NEDO project to achieve a good understanding in aid to development?	10
2.	For ne enable the op and co	ew boiler development, what are the experimental data available to the development of CFD models that will aid in the determination of timum flue gas recycle ratio and the design of appropriate boiler size nfiguration?	9
27.	What i and C oxyfirir	s the dynamic matching between oxygen production, boiler operation O_2 processing? What is the process bottle neck when operating ng unit under higher load change?	8
9.	What a	are the different flame properties in terms of varying flue recycle ratio?	
	9.1.	Where are we in the understanding gas phase chemistry and kinetics under a combustion regime of $O_2/CO_2/H_2O$ atmosphere?	
	9.2.	What is the optimum level of excess oxygen necessary for complete burnout of CO and char?	8
	9.3.	For boiler retrofit, it is established that volume is reduced during oxy- fired conditions with optimum flue recycle ratio – similar heat transfer profile to air fired system; do we have good understanding on issues relevant to the aerodynamics mixing? combustion rate?	

17.	What is the behaviour of ash under $O_2/CO_2/H_2O$ atmosphere in terms of slagging and fouling propensity? Will the ash deposition characteristics differ to the air-fired system?	8
6.	What are the different issues to be considered in terms of the level of treatment necessary for the recycled flue gas?	6
19.	What are the effect of $O_2/CO_2/H_2O$ environment to the metal and refractory materials and its propensity of high temperature corrosion?	6
11.	Some literature has also reported increased in SO_3 and retention of sulphur in the ash. What level of understanding do we have on this issue?	5
16.	Given our understanding regarding corrosion and SO_2/SO_3 , will the oxy-fuel firing techniques be limited to low sulphur coal?	5
21.	What operational factors must be established in demonstration, including $O_{\rm 2}$ supply for load following?	4
7.	What correlations could be established between amount of flue gas recycled and the different heat transfer properties (ie. radiative heat flux to the wall, heat transfer coefficient and many others)?	4
12.	Improvement of sulphur capture in FGD operation has been reported when firing coal under oxy-firing conditions. To what extent can we verify these results?	4

Development of Oxy-Coal Combustion for Power Generation Industry Issue Paper

IEA Greenhouse Gas R&D Programme

OVERVIEW

This document provides a series of questions that are relevant to the development of the oxycoal combustion as an option for carbon capture technology in the power generation industry.

The inaugural workshop of the Oxy-Fuel Combustion Network aims to address developmental issues through presentation of data and discussion of results. <u>One of the primary objectives of this workshop is to list down the critical issues which limit oxyfuel applications and development.</u>

Submissions from participants regarding these issues will be welcome. Please feel free to also add any other issues required for the discussion. These will be circulated to participants of the workshop.

AGENDA

The main objective of the International Oxy-Fuel Combustion Network is to establish a forum where people could open up discussion on several issues important to the successful development and demonstration of this technology.

The ultimate goal is to provide an avenue that will create environment where information could be shared in a manner that could be mutually beneficial to participants.

It is envisioned that the inaugural workshop could be an opportunities where co-operation among interested parties could be established. We aim to achieve this by bringing together engineers, researchers and scientists who are working on this area to initiate the discussion.

For the inaugural workshop, the following agenda were put on the table for an open discussion and these could be subdivided in the following headings:

- Burner and Boiler Development
- Plant Operation and Safety Issues
- O₂ Production and CO₂ Processing and Compression
- Development of Large Scale Pilot Plant and Demonstration Studies

For this document, a series of questions were presented under each sub-group to stimulate discussion during the workshop. <u>The discussion will not, however, be limited to these questions as participants will be free to raise other issues.</u>

Many potential issues are listed here, but the Network meeting should identify the **critical issues limiting oxyfuel development**, as well as considering those desirable. In other words, what are the real priority areas?

I. KEY ISSUES INVOLVING BURNER AND BOILER DEVELOPMENT

It could be established that issues relevant to burners and boiler performance optimisation when firing under $O_2/CO_2/H_2O$ environment will require further experimental work and CFD modelling studies. Consideration should be stressed in the understanding of the effect of coal properties and the amount of flue gas recycled to the different flame properties, near-burner aerodynamics, burner-burner / burner-"overfire air" interaction and boiler configuration.

Most notable difference between oxy-fired and air-fired system is the variation of the heat transfer profile due to the different properties of CO_2 and H_2O as compared to N_2 . This could clearly affect the thermal performance of the boiler, and there may be local regions of excessive heat transfer in some cases.

Further studies are also necessary in the development where internal flue gas recycle could be used to reduce the amount of external flue gas recycle required. Several combustion techniques have been applied in controlling flame temperature in different oxy-fuel burners used in other industries. This could help in the reduction of boiler size, reduction in the requirement of ID fan for flue gas recycle and as a result an increase in the overall efficiency.

Issues Regarding Recycled Flue Gas

It is expected that firing of any fuel with oxygen tends to increase temperature and reduce volume of the combustion products. To moderate the flame temperature, a part of the flue gas is recycled. This determines the O_2 level through the burner. However, it is well established that there is an upper limit on the amount of flue gas that can be recycled to maintain a stable flame.

On issue related to effect of flue gas recycle, a series of questions where presented below for further discussion.

- 31. For a boiler retrofit, what is the optimum recycled flue gas ratio where heat transfer profile could be similar to the air-fired system, and will this be dependent on the type of boiler and its configuration? Clarification should be made from the different values reported in the literature. Different parameters that have an affect on the optimum amount of flue gas recycled should be elucidated.
- 32. For new boiler development, what are the experimental data available to enable the development of CFD models that will aid in the determination of the optimum flue gas recycle ratio and the design of appropriate boiler size and configuration?
- 33. What recycle ratio that will prevent any flame blow out or burner over heating?
- 34. What are the different flame shapes / heat transfer profile at different level of flue gas recycle ratio and during turn-down operation?
- 35. What are the different issues to be considered regarding the use of "Wet Recycle" or "Dry Recycle"?

- 36. What are the different issues to be considered in terms of the level of treatment necessary for the recycled flue gas?
- 37. What correlations could be established between amount of flue gas recycled and the different heat transfer properties (ie. radiative heat flux to the wall, heat transfer coefficient and many others)?

Flame Properties

- 38. What are the data available in characterisation and performance of different type of coal under the firing condition of an $O_2/CO_2/H_2O$ environment?
 - 38.1. Where are we in the understanding of the devolatilisaton and char burnout properties of the coal under oxy-firing environment?
 - 38.2. Where are we in the understanding of coal ignition (related to coal devolatilisation) and level of unburned carbon in ash (related to char burnout)?
 - 38.3. How could we consolidate available experimental data to develop models for devolatilisation and char burnout kinetics under oxy-firing conditions? What further experiments are required to compliment or supplement the available data?
 - 38.4. Will flame detection techniques differ for oxyfuel firing?
- 39. What are the different flame properties in terms of varying flue recycle ratio?
 - 39.1. Where are we in the understanding gas phase chemistry and kinetics under a combustion regime of $O_2/CO_2/H_2O$ atmosphere?
 - 39.2. What is the optimum level of excess oxygen necessary for complete burnout of CO and char?
 - 39.3. For boiler retrofit, it is established that volume is reduced during oxy-fired conditions with optimum flue recycle ratio similar heat transfer profile to air fired system; do we have good understanding on issues relevant to the aerodynamics mixing? combustion rate?

Pollutant Formation and Reduction

- 40. It has been reported that NOx and SO₂ emission tend to reduce during oxy-firing conditions; unfortunately, mechanisms behind these reduction has yet to be understood. What else to be done to reinforce the studies done during the 1990's funded under NEDO project to achieve a good understanding in aid to model development?
- 41. Some literature has also reported increased in SO₃ and retention of sulphur in the ash. What level of understanding do we have on this issue?
- 42. Improvement of sulphur capture in FGD operation has been reported when firing coal under oxy-firing conditions. To what extent can we verify these results?

- 43. What is the behaviour of mercury and other trace elements in coal when fired in an $O_2/CO_2/H_2O$ atmosphere?
- 44. What are the level of PM_{10} and $PM_{2.5}$ when firing coal under oxy-firing condition?
- 45. Some pilot scale studies have reported mercury emission reduction, is this so?
- 46. Given our understanding regarding corrosion and SO_2/SO_3 , will the oxy-fuel firing techniques be limited to low sulphur coal?

Slagging and Fouling

- 47. What is the behaviour of ash under $O_2/CO_2/H_2O$ atmosphere in terms of slagging and fouling propensity? Will the ash deposition characteristics differ to the air-fired system?
- 48. What are the properties composition and size distribution of the ash? Is it similar to ash composition of the air fired system?

Effect on Furnace and Boiler Material

49. What are the effect of $O_2/CO_2/H_2O$ environment to the metal and refractory materials and its propensity of high temperature corrosion?

II. PRACTICAL PLANT OPERATION AND SAFETY ISSUES

- 50. For plant retrofit, the challenge will be on how to minimise air ingress. One possible solution is to operate boiler with a slight positive pressure in this case what are the different safety issues to be considered when boiler is operated under such condition?
- 51. What operational factors must be established in demonstration, including O₂ supply for load following?
- 52. What factors should be considered in terms of starting up and turn down operation in the point of view of safety especially in the handling of oxygen?
- 53. For plant safety, what kinds of safety interlock must be considered especially in the oxygen supply side in cases where problem occur involving the recirculation fan?
- 54. For plant retrofit, what is optimum operating temperature of the flue gas that will not reduce the performance of the ESP or bag filter?
- 55. For plant retrofit, what are the different issues to be considered during the operation of soot blowers especially when handling a lower volume of flue gas?
- 56. Handling of recycled flue gas for coal transport What level of flue gas treatment necessary to prevent any disruption of the fuel supply side? ie. effect of higher moisture content of the transport gas.

III. O₂ PRODUCTION and CO₂ PROCESSING & COMPRESSION

The purity of the oxygen required and the level of final treatment of flue gas (ie. in terms of CO_2 purity) will strongly depend on the target storage or final utilisation of the flue gas captured. On this basis, consideration should be made based on assumptions that flue gas captured could be used in the following cases:

- for Enhanced Oil Recovery (EOR) and Enhanced Gas Recovery (EGR)
- for Enhanced Coal Bed Methane Recovery (ECBM)
- for Storage in Saline Aquifier
- for Geological Storage or Ocean Storage
- 57. What is the dynamic matching between oxygen production, boiler operation and CO₂ processing? What is the process bottle neck when operating oxyfiring unit under higher load change?
- 58. What is the optimum purity of oxygen required to reduce electric consumption?
 - 58.1. Is there any other possible utilisation for cold waste N_2 produced?
 - 58.2. Assuming oxygen will be produced via cryogenic process, what are the optimum arrangements for columns to produce the necessary O_2 required to achieve minimum operation and capital cost?
- 59. What level of backup supply of oxygen is necessary to ensure smooth operation of the power plant?
- 60. What is the purity of CO_2 required for transport and further usage/storage?
 - 60.1. Is there a CO2 purity required for compression? Is a binary equilibrium approximation suitable for this estimation?
 - 60.2. To what extent it is necessary to remove non-condensable gas from the flue gas stream?
 - 60.3. To what level dehydration of the flue gas is necessary to prevent any corrosion within the transport line?
 - 60.4. To what extent should SO_2 / NOx and other pollutant to be separated from the final flue gas stream?

Note:

We would like to acknowledge the comments provided by Prof. Terry Wall and Mr. Keiji Makino in preparing this document.

GENERAL SURVEY

To the participants / interested parties:

The general questions prepared in this document are numbered accordingly. we would be glad to know what you think is important. What is the priority area for research?

Please return this survey to Stanley Santos at

stanley@ieaghg.org

or bring this piece of paper along with you when you're in Cottbus.

What are the TOP 10 questions / issues you think should be the highest priority? – Please list down the question number.

If you have any other specific questions that you would like to include please feel free to send it over to the workshop secretariat.

Other questions / issues that you would like to raise?

Name:		Organisation:	
-------	--	---------------	--

APPENDIX 4

Poster Contribution

1st International Oxy-Combustion Workshop Cottbus, Germany 29th – 30th November 2005

- Oxy-Fuel Combustion Studies for CO₂ Capture R&D Programme in Korea Dong-Soon Noh^{*}, Kook-Young Ahn, and Chang-Ha Lee
 * Korea Institute of Energy Research, South Korea
- Oxyfuel Combustion Technology for CO₂ Capture at Power Plants Anand B. Rao, Michael B. Berkenpas and Edward S. Rubin Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, USA
- Clean Energy Systems Inc. Demo Project Summary and Update (Nov. 2005)
 Keith Pronske
 Clean Energy System Inc., California, USA
- Oxyfuel Process for Hard Coal with CO₂ Capture ADECOS Project First Results

Prof. Alfons Kather Hamburg University Of Technology, Hamburg, Germany

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

Poster Contribution

Oxy-Fuel Combustion Studies for CO₂ Capture R&D Programme in Korea

by:

Dong-Soon Noh¹*, Kook-Young Ahn², and Chang-Ha Lee³

- ¹ Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea
- ² Korea Institute of Machinery and Materials, 171 Jang-dong, Yuseong-gu, Daejeon, 305-343, Korea
- ³ Department of Chemical Engineering, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul, 120-749, Korea

Inaugural Workshop of the International Oxy-Fuel Combustion Network Participants' Poster Contribution

> 29th – 30th November 2005 Cottbus, Germany

Oxy-Fuel Combustion Studies for CO₂ Capture R&D Programme in Korea

Dong-Soon Noh^{1*}, Kook-Young Ahn², and Chang-Ha Lee³

¹ Korea Institute of Energy Research, 71-2 Jang-dong, Yuseong-gu, Daejeon 305-343, Korea

² Korea Institute of Machinery and Materials,
171 Jang-dong, Yuseong-gu, Daejeon, 305-343, Korea

³ Department of Chemical Engineering, Yonsei University, Shinchon-dong, Seodaemun-gu, Seoul, 120-749, Korea

ABSTRACT

In this paper the latest developments of high performance oxy-fuel combustion reheating furnace system including oxy-burner and high purity O₂ generation is presented. The flame characteristics of CH₄/O₂ turbulent diffusion flames have been investigated in the present study with small amount of nitrogen doped to simulate oxy-fuel combustion in the industrial furnace. Results show that flame length and shape can be controlled by varying flow conditions. NOx formation was decreased by the high velocity injection of fuel or oxygen, which was made possible by oxy-fuel combustion due to enhanced flame stability. The high velocity injection enhances the entrainment of product gas to flame zone, decreasing flame temperature and resulting in NOx decrease, which is called as in-furnace recirculation effect. The heating performance of the oxy-fuel combustion were also investigated experimentally by using furnace simulator and compared with those of air-fuel combustion. A three-bed pressure vacuum swing adsorption (PVSA) process, combined equilibrium separation with kinetic separation, was developed to overcome the 94% O₂ purity restriction inherent to air separation in the adsorption process. To produce 97+% and/or 99+% purity O₂ directly from air, the PVSA process was executed at 0.33-0.45 to 2.5 atm. In addition, the effluent gas from the CMS bed to be used for O_2 purification was backfilled to the zeolite 10X bed to improve its purity, recovery and productivity in bulk separation of the air. A non-isothermal dynamic model was applied to predict the process dynamics. Using the LDF model for the equilibrium separation bed and a modified LDF model for the kinetic separation bed, the dynamic model was able to accurately predict the results of the experiment.

INTRODUCTION

Industrial furnaces such as reheat furnace, melting furnace and so on shares about 12% of domestic energy consumption in Korea. Enhancement of thermal efficiency of reheat furnaces is an important issue in conjunction with global warming and fuel economy. Oxy-fuel combustion, which utilizes oxygen as an oxidizer instead of conventional air, has aroused considerable interest as a new industrial combustion technology. Energy efficiency can be greatly increased by oxy-fuel combustion since the unnecessary heating of nitrogen in air will be eliminated. Because

^{*} Corresponding author: E-mail: dsnoh@kier.re.kr

of the exclusion of nitrogen in the oxidizer, the volume of exhaust gas significantly decreases and the NOx formation can be eliminated theoretically, but not practically. This will be explained in the following paragraph. Further advantages such as higher temperature, faster flame propagation speed and better flame stability are expected from the oxy-fuel combustion.

The oxy-fuel combustion, which will facilitate CO_2 capture from exhaust, is reported to be one of the most effective and active ways to cope with the future CO_2 regulation internationally agreed on by the 1997 Kyoto Protocol. However, the high cost of oxygen separation has been a main roadblock in the development of the oxyfuel combustion technologies. Pollutant emissions such as CO and NOx caused by high flame temperatures have also been a significant problem. NOx problems arise since it is impossible to totally eliminate nitrogen even with the oxyfuel combustion. The two main sources of nitrogen are the inherent nitrogen in separated oxygen and the air entrainment through leakages or the load inlet/outlet in furnaces.

As the air separation technologies improve and the cost of oxygen diminishes, the oxyfuel burners recently have started to be applied for high-temperature industrial processes such as glass melting, steel refining and iron foundry to improve productivity and save fuel consumption. As the applications increase, the reduction of NOx emissions becomes important requirement in many burner designs. Various methods such as flue gas recirculation (FGR) and staged combustion have been developed and applied to reduce temperature and enhance temperature uniformity.

For the meantime, the primary concerns in the steel industry are productivity, energy efficiency and reduced emissions. These demands can and indeed have been satisfied by the use of oxy-fuel combustion in a wide range of both batch and continuous type furnaces and, O_2 /pulverized-coal combustion is considered as a cost-effective CO_2 capture technology in power plant as well.

EXPERIMENT

Burner Development

The apparatus consisted of a combustor, a combustion chamber, flow controlling system and a gas analyzer. The combustor was a typical normal co-flow burner with fuel being supplied through the inner nozzle. The fuel was chemically-pure grade (> 99.9 %) methane and the oxidizer was oxygen doped with small amount of nitrogen. Nitrogen was added to simulate industrial combustion system using air separation unit. The resulting NOx concentration can be the indicator of maximum flame temperature. The flow rates of methane, oxygen and nitrogen were fixed at 50 lpm (0.03 MW), 110 lpm (10 % excess O_2) and 3.3 lpm (3 % of O_2), respectively. The flow velocities of fuel and oxidizer were varied by changing the inner and the outer nozzle diameters.

A cylindrical quartz tube with 50 cm i.d. was used as a combustion chamber for visualization. Emissions such as CO and NOx were measured by a gas analyzer (Greenline MK-2) using a water-cooled sampling probe.

Heating Performance Test

Oxy-natural gas burner was used and the heating performance was tested with small scale batch furnace system in the present study. Figure 1 shows a schematic diagram of the furnace simulator, and real view of simulator.

Figure 1. Schematic of the furnace simulator and its actual view

Four burners were installed on both side wall (two burners in each for horizontal firing). The burner used here was designed to use oxygen only and/or air as an oxidant respectively by delicate control of fuel nozzle position. The fuel nozzle is located in center and the oxidant flows through the outer annulus. By positioning the burner eccentrically, about 70cm away from the center of burner block, the relative burner location to the steel can be changed by rotating the burner block. Methane base d town gas was used as a fuel and liquid oxygen was used as an oxidant.

Measurements were performed on the steel materials (0.6 tons) and furnace inside temperature, and flue gas properties. The temperature was measured using R-type thermocouples for the inside of furnace and K-type for steel, and flue gas was measured by using a gas analyzer through the middle of exhaust duct with sampling probe.

<u>A Three-Bed PVSA Process for High Purity O₂ Generation</u>

A schematic diagram of the three-bed PVSA unit is shown in Figure 2. Zeolite 10X (Baylith, WE-G 639) and CMS (Takeda Chem., 3A) were used as adsorbents in the PVSA experiments. Prior to the experimental runs, the zeolite 10X was regenerated at 613K overnight and the CMS at 423K. Each activated adsorbent bed was filled with pure O_2 (99.9+%) to prevent contamination from the outside air. Prior to running each experiment, the adsorption beds were vacuumed for 2 hours. As an initial condition, the PVSA experiments were conducted at the bed saturated with pure O_2 (99.9+%) under the same level of adsorption pressure as used throughout the experiment. The temperatures of the feed, bed, and surroundings were kept in the range of 297K to 300K during the experiments. The ternary mixture (N₂/O₂/Ar; 78:21:1 vol.%, DaeSung Ind. Gas) was used as feed gas for the PVSA experiments.

Inaugural Workshop of the International Oxy-Fuel Combustion Network Participants' Poster Contribution

Figure 2. A schematic diagram of the three-bed PVSA unit

RESULTS AND DISCUSSION

Behavior of Oxy-fuel Flames by Varying Flow Velocities

Figure 3 shows the oxy-fuel flame images with increasing coflow oxidizer velocity at $u_f = 40$ m/s. It is to be noted that flame stabilization is hardly achieved with either fuel or air velocities over 10 m/s when air is use as oxidizer. As shown in Figure 3, the flames were attached to the fuel nozzle without a swirler or a quarl demonstrating that oxy-fuel combustion significantly enhances flame stabilization, which can be attributed to the 10-times higher flame propagation speed for oxyfuel flames than air-fuel flames.

Figure 4 shows the variation of flame lengths by varying fuel and oxidizer velocities. Flame length decreases as either fuel or oxidizer velocity increases due to increased turbulent mixing effect. Flame lengths were reported to be well correlated with turbulent kinetic energy. As fuel or coflow velocity increases, yellowish flame luminosity from soot particles decreases as well as flame length and volume as shown in Figure 3 due to the decrease of residence time. Measured CO level was under 100 ppm for all cases meaning that the reduction of flame length does not affect overall combustion (CO even decreases with increasing co-flow velocity as shown in Figure 5.).

In-Furnace Recirculation Effect

Figure 5 shows the NOx concentration with increasing coflow velocity at $u_f = 40$ m/s. NOx concentration monotonically decreases as coflow velocity increases while it was expected to decrease since the flame volume decreases. This result can be explained by *in-furnace recirculation effect* as drawn in Figure 6. Oxy-fuel combustion made high velocity injection

Inaugural Workshop of the International Oxy-Fuel Combustion Network Participants' Poster Contribution

possible, which entrains the significant amount of product gas in furnace recirculated to flame. Thus, NOx decreases with increasing flow velocities since adiabatic flame temperature decreases by the entrainment.

This effect can be applied to DOC (Dilute Oxygen Combustion) and high velocity burners. In order to confirm the in-furnace recirculation effect, the inner fuel nozzle extrusion was varied to enhance or block the product-gas entrainment. As shown in Figure 7, NOx was increased by the nozzle intrusion and decreased by the nozzle extrusion from the burner surface, confirming the in-furnace recirculation effect.

Based on these experimental results, scaled-up 300kW oxy-fuel combustors were tested as shown in Figure 8 and four 30kW oxy-fuel burners were installed in steel reheating furnace simulator.(Figure 1)

Inaugural Workshop of the International Oxy-Fuel Combustion Network Participants' Poster Contribution

Figure 7. Variation of NOx concentration by varying nozzle extrusion.

Figure 8. 300kW oxy-fuel burners and flames

Steel Reheating Performance

For the same burner position, it is easily expected that the more fuel rate, the higher temperature. In other hands, for the same fuel rate, there is no influence of burner locations in reaching the $1200 \,^{\circ}$ C of steel temperature. It is because the radiation heat transfer in oxy combustion is one of the main effects on raise of steel temperature.

Figure 9 shows temperature profiles according to oxygen and air combustion for the same test conditions. Oxy-fuel combustion takes 310 minute to raise the steel temperature up to 1200°C, while air-combustion takes 800 minute. It is about 61% reduction of heating time, which related directly with energy saving and efficiency. At the aspects of operating cost, in addition, the fuel cost is about \$58.2 for air-fuel combustion. On oxy-fuel combustion, however, its total costs are \$44.5 (\$22.4 for fuel and \$22.1 for oxygen) based on current market price in Korea. It brings not only about 23% reduction of operation cost, but also higher productivity compare to air-fuel combustion.

As can be presumed, measured CO_2 concentration in flue gas leaving the furnace was about 89% and nearly 100% after condensation of water vapor in case of oxy-combustion. Higher CO_2 concentration provides a relatively cost effective CO_2 capture and possibility of flame control by CO_2 recirculation for various furnace operations.

Figure 9. The effect of oxidants on temperature profiles

A THREE-BED PVSA PROCESS

Effect of Feed Composition

First of all, the study about 2-bed PSA process to purify oxygen was performed before 3-bed PVSA study was developed. As reported in lots of studies [5-6], most of the O_2 PSA systems using a zeolite molecular sieve showed a result of 90-93% purity with 50+% recovery or 95+% purity with below 30% recovery. Since various concentrations of nitrogen were included with the product from the O_2 generation systems, there was a need to study the effect of a nitrogen composition in the feed gas on an O_2 purification PSA process. In order to compare the effect of the composition of nitrogen impurity on the total cyclic performance, three different feeds containing 0%, 1%, and 6% nitrogen were applied, which the amount of Ar in the feed was fixed at 4 vol.%.

Figure 10 show the effect of nitrogen impurity on O_2 purity and recovery. The maximum purity of O_2 was 99.8% or higher. The O_2 purity was slightly decreased as increasing amounts of nitrogen impurities in feed, while O_2 recovery became higher with an increase of nitrogen impurities in feed.

Cyclic Performance of PVSA I with a Single Blowdown/Backfill step

Figure 11 shows the pressure variation profiles at bed end under the cyclic steady-state of PVSA I. Since the effluent from the zeolite 10X bed during the AD step at 2.5 atm was supplied as feed gas for the PR and AD steps of the CMS bed, the CMS bed was pressurized to 1.6 atm. The effluent from the AD step of the CMS bed was backfilled into the other zeolite 10X bed. Therefore, the pressure of the zeolite bed increased slightly after the VU step (Figure 3(a)). It is noteworthy that the CMS bed underwent two cycles for every one cycle of the zeolite bed since each of the zeolite beds and the CMS bed was tied to the same cycle time.

Inaugural Workshop of the International Oxy-Fuel Combustion Network Participants' Poster Contribution

Effect of Adsorption StepTtime in the CMS Bed on Performance of PVSA I

As shown in Figure 12(a), as the AD step time of the CMS bed decreased from 30 to 10sec (the PR step time of the CMS bed increased from 10sec to 30sec), the purity of both the zeolite 10X and the CMS beds decreased linearly because of the reduced amount of backfill gas in the zeolite bed and the diminished time for impurity removal in the CMS bed. The effect of the AD step time of the CMS bed on the purity of each bed was slightly greater in the zeolite bed than in the CMS bed. As shown in Figure 12(b), with a decrease in the AD step time, O2 recovery substantially increased to 85% because the extended PR step time of the CMS bed led to increased adsorption pressure in the CMS bed.

Cyclic performance of PVSA II with double blowdown / backfill steps

Figure 13 shows the pressure variation profile during PVSA II. Unlike PVSA I in Figure 11, an additional BF step (BF2) was added in the zeolite 10X bed and two consecutive BD steps (BD1 and BD2) were applied to the CMS bed. The effluents from the AD and BD1 steps in the CMS bed were used to partially pressurize the zeolite 10X bed at the BF1 and BF2, respectively.

Effect of Adsorption Step Time in the CMS bed on performance of PVSA II

As shown in Figure 14(a), when the AD step time of the CMS bed increased from 10sec to 30sec, the purity of both the zeolite 10X and CMS beds increased linearly, similar to the results noted in Figure 12(a). Consequently, oxygen with 99.2% purity was produced at the AD step time of 30 sec because a greater amount of impurities had been removed from the CMS bed and a greater amount of O_2 had been supplied to the zeolite bed through the BF1 step. Therefore, the O_2 purity of the zeolite 10X bed also increased to 97% under this AD step time. However, as shown in Figure 14(b), the recovery diminished as the PR step time decreased because the decreased PR step time of the CMS bed led to a lower adsorption pressure in the bed.

Compared with the results of PVSA I, it is clear that PVSA II can produce higher purity of O_2 than PVSA I under the same conditions in cyclic time, pressure and feed flow rate.

CONCLUSION

1.) The flame characteristics of CH₄/O₂ turbulent diffusion flames have been investigated by varying flow conditions in order to provide design factors of oxy-fuel burners. The results are summarized as follows:

- Flame stability was significantly enhanced by oxy-fuel combustion, which makes high velocity injection possible.
- Flame length was decreased with increasing flow velocities caused by the increased turbulent mixing.
- Oxy-fuel combustion with high velocity injection can facilitate the entrainment of product gas in furnace to flame, causing the decrease of flame temperature and NOx generation.
- 2.) The heating performance of the oxy-fuel combustion were investigated experimentally by using furnace simulator and compared with those of air-fuel combustion. The following results were obtained.
 - Based on this furnace simulator, the reaching time of 1200oC on steel materials has about 61% fuel savings compared to air-fuel combustion and 23% reduction of operation cost. It can be noted that the reduction of operation cost is likely to dependent on the ratio of oxygen cost/fuel cost.
 - Further substantial dilution by combustion products (CO2 recirculation) is also essential to control the flame and furnace temperature in order to extend the technology to the industrial furnace applications and oxy-coal combustion power plant.
- 3.) The PVSA process overcame the purity limit of common adsorption processes using zeolites because of the one or two-stage backfill steps supplied from the CMS bed. Thus, PVSA could produce an O₂ purity of 95.4-99.2% with a recovery of 43.4-84.8% through the CMS bed. The increased AD step time of the CMS bed led to an increase in O₂ purity and a decrease in O₂ recovery in the PVSA process. However, because more highly concentrated O₂ was supplied from the zeolite bed in PVSA II rather than in PVSA I, the CMS bed in PVSA II could be kept fairly clean after the production step, regardless of the applied AD step time in the CMS bed. Therefore, the CMS bed had more favorable conditions for the purification of feed in PVSA II. It is noted that the amounts of N₂ in the product were in the level of 4000-5000ppm at the PVSA I and several tens of ppm at the PVSA II.

FUTURE WORKS

- CO₂ Recirculation Assimetric O2 Burner for Industrial Furnace Applications
 Burner/furnace design and system integration
- Field Demonstration of Oxy-Fuel Combustion Reheat Furnaces
 Batch furnace (50ton-steel/charge), Continuous type furnace (10ton/hr)
- O₂/ CO₂ Coal Combustion for CO2 Capture in PC Power Plant
 - Low NOx O2/CO2-Coal combustion burner & control

ACKNOWLEDGMENTS

The authors wish to thanks the financial support for this research provided by Carbon Dioxide Reduction and Sequestration (CDRS) Research Center for the Ministry of Science and Technology (MOST), Korea.

REFERENCES

- [1.] C.E. Baukal, "Industrial Burners Handbook", CRC Press, 2004.
- [2.] J.C. Sautet, L. Salenty and M. DiTaranto, Int. Comm. Heat Mass Transfer, 28(2), (2001) 277.
- [3.] H.K. Kim, S.M. Lee, H.S. Kim and K.Y. Ahn, KOSCO Journal, (2004) Submitted
- [4.] Brown, T. Ekman and C. L. Axelsson, "The Development and Application of Oxy-fuel technology for Use in Heating Furnace Applications", AFRC/JFRC/IEA 2001 Joint International Combustion Symposium, 2001.
- [5.] Delabroy, et al. "Oxy-combustion for Reheat Furnace", AFRC/JFRC/IEA 2001 Joint International Combustion Symposium, 2001.
- [6.] Marin, et al., "Oxygen Enrichment in Boilers", AFRC/JFRC/IEA 2001 Joint International Combustion Symposium, 2001.
- [7.] T. Suwa, "Overview of Application Technologies using Oxy-Fuel Combustion in Japan", AFRC/JFRC/IEA 2001 Joint International Combustion Symposium, 2001.
- [8.] R. Kumar, Sep. Sci. and Tech., 31, (1996) 877.
- [9.] S. U. Rege and R. T. Yang, Adsorption, 6, (2000) 15.
- [10.] J.-G. Jee, M.-B. Kim, and C.-H. Lee, Chem. Eng. Sci., 60, (2004) 869.
- [11.] Y.-S. Bae and C.-H. Lee, Carbon, 43, (2005) 95.
- [12.] J.-G. Jee, J.-S. Lee, and C.-H. Lee, Ind. Eng. Chem. Res., 40, (2001) 3647.
- [13.] D. M. Ruthven, S. Farooq, and K. S. Knaebel, "Pressure Swing Adsorption," VCH, New York, 1994.

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

Poster Contribution

Oxyfuel Combustion Technology for CO₂ Capture at Power Plants

by:

Anand B. Rao, Michael B. Berkenpas and Edward S. Rubin

Department of Engineering and Public Policy, Carnegie Mellon University, Pittsburgh, USA

	_	
Process Performan	ce Parame	eters
Parameter	Typical	Range
• Oxygen purity (%v/v)	95	90-100
• Excess air (%)	5	0-19
• Air leakage (%)	2*	0-19
• Flue gas recycle ratio	0.7	0-0.9
• FGR fan pressure head (psi)	0.2	
• FGR fan efficiency (%)	75	
• CO_2 product pressure (psig)	2000	
• CO ₂ product purity (%w/w)	97	95-99

• CO₂ compression

5

- An on-going case study of CO₂ retrofit options for existing coal-fired plants is presented here.
- The reference plants have been characterized on the basis of analysis of US power plants database.

-		
,		

Baseline Assump	tions	
Reference Plant (Sub-critical)	R1	R2
Gross Plant Size	250 MW	500 MW
Fuel Type	0.6%S Bit	2.1%S Bit
Coal HHV (MJ/kg)	30.4	30.8
Net HHV Efficiency (%)	32.1	32.7
Capacity Factor (%)	62	77
Particulate Control	ESP	ESP
SO ₂ Control	-	FGD
SO ₂ Control Efficiency	-	~80%
Also: age of both plants ~40 years (capita coal cost = \$1.2/GJ; fixed charge factor = 0.148; all costs in constant 2002 US\$	l cost of the plants is	s completely paid off

C(D ₂ Retr	ofit	Cases			
Case	Boiler	η _{net} (%)	FGD	η _{SO2} (%)	CO ₂ Capture System	η _{co2} (%)
R1(ref)	old, sub		-	-	-	-
А	old, sub		new	99	MEA	90
В	new, super		new	99	MEA	90
C1	old, sub		-	-	OXYFUEL	90
C2	old, sub		-	-	OXYFUEL	100*
D1	new, super		-	-	OXYFUEL	90
D2	new, super		-	-	OXYFUEL	100*

old = part of existing plant; new = installed as a part of the CO₂ retrofit option; MEA = monoethanolamine based CO2 scrubber system;

 $\begin{array}{l} \text{MEL} = \text{monomentation matching of a set of of a set of a$

			JUJUJ		(U.)	
<u> </u>	-		EGE	`		
Case	Boiler	η _{net} (%)	FGD	η _{SO2} (%)	CO ₂ Capture System	η _{CO2} (%)
R2(ref)	old, sub		old	80	-	-
E	old, sub		upgrade	99	MEA	90
F	new, super		upgrade	99	MEA	90
G1	old, sub		old	80	OXYFUEL	90
G2	old, sub		old	80	OXYFUEL	100*
H1	new, super		old	80	OXYFUEL	90
H2	new, super		old	80	OXYFUEL	100*

 $sub=Sub-critical; super = Super-critical; \\old = part of existing plant; new/upgrade = installed/upgraded as a part of the CO₂ retrofit option;$ MEA = monoethanolamine based CO2 scrubber system;OXYFUEL = oxyfuel combustion with flue gas recycle system for CO₂ capture*Oxyfuel combustion cases with zero emission to atmosphere, all the flue gas (predominantly CO₂) 10is assumed to be compressed for transport and disposal

Pe	erform	ance ar	nd Co	st Res	ults
Case	Net Power (MW)	Emission rate gCO ₂ /kWh	TCR (\$/kW)	COE (\$/MWh)	CO ₂ avoidance co (\$/tonne CO ₂)
R1(ref)	253.1	969	0	22.3	
A	172.7	143	890	70.9	58.8
В	189.9	102	1286	69.0	53.7
C1	167.3	139	1527	84.6	75.1
C2	168.7	0	1502	83.6	63.2
D1	185.7	98	1746	78.6	64.7
D2	186.8	0	1730	78.0	57.4

Pe	rform	ance ar	nd Co	st Res	ults (conto
Case	Net Power (MW)	Emission rate gCO ₂ /kWh	TCR (\$/kW)	COE (\$/MWh)	CO ₂ avoidance cos (\$/tonne CO ₂)
R2(ref)	496.5	973	0	20.7	
E	348.7	139	589	51.9	37.5
F	377.5	105	1030	52.3	36.4
G1	348.9	131	1332	64.7	52.2
G2	351.7	0	1298	63.5	44.0
H1	377.6	99	1650	63.6	49.1
H2	379.9	0	1625	62.8	43.3

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

29th and 30th November 2005

Poster Contribution

Clean Energy Systems Inc. Demo Project Summary and Update (November 2005)

by:

Keith Pronske

Clean Energy System Inc. 11330 Sunco Drive, Suite A Rancho Cordova, CA 95742-7500

This page is intentionally left blank

Clean Energy Systems, Inc. Summary and Update November 2005

www.cleanenergysystems.com

Clean Energy Systems, Inc. (CES) is developing zero-emissions fossil-fueled power generation technology, integrating proven aerospace technology into conventional power systems. The core of CES' process involves replacing steam boilers and flue gas cleaning systems with "gas generator" technology adapted from rocket engines. The gas generator burns a combination of oxygen and a gaseous hydrocarbon fuel to produce a mixed gas of steam and carbon dioxide at high temperature and pressure, which powers conventional or advanced steam turbines. High efficiencies are obtained for utility-sized power plants, but without any atmospheric emissions. Possible fuel sources include renewable biomass, natural gas, or coal syngas, and the cycle is a net producer of water when air cooled condensers are used.

From the turbines, the steam/ CO_2 exhaust gas is cooled, separating into its components, water and CO_2 , with the latter either sold or stored. The gas generator technology has been used successfully in aerospace applications for decades, including in the Space Shuttle Main Engines, where hydrogen and oxygen are combusted to produce pure steam at high temperature and pressure. Likewise, high-temperature, high-pressure turbines have been used successfully in aerospace applications.

The CES Process

Achievements of the company include:

Technology Status

• CES has 23 issued patents and more than 30 pending applications, domestic and foreign.

"Proof of Concept" Prototype

• In 2000 CES proved its concept with a 110 kW_t pilot project at the University of California, Davis, with co-funding provided by the California Energy Commission (CEC).

20 MW_t Gas Generator

• US DOE awarded CES a \$2.5 million grant under the Vision 21 Program to design and build a 20 MW_t gas generator. CES has built and successfully tested in 2003 its 20 MW_t, unit, operating at pressures of up to 100 bar and temperatures between 300 °C and 1650 °C.

<u>20 MWt Demonstration Project – Kimberlina Power Plant</u>

• The CEC awarded CES \$4 million in funding to design and build a Demonstration Plant using CES technology, as part of a \$12 million project. Major corporations Mirant and Air Liquide are participants, along with the US Department of Energy. In August 2003 CES acquired a 5 MW_e idle biomass plant, which has been repowered as a multi-fuel zero emission plant. Initial tests are being conducted with natural gas, with coal or biomass in subsequent phases. First synchronization to the grid occurred in February 2005, and more than 900 hours have been logged to date. Testing will continue through 2006.

DOE-supported Oxy-Fuel Rankine Cycle Systems Development

- In September 2005 the DOE signed two contracts with CES and Siemens Power Generation, Inc. to develop advanced turbines and combustors capable of operating on coal syngas. This program will enable 100% separation and capture of CO₂ and will achieve long-term power system efficiencies of 50% to 60%.
- CES will develop and demonstrate a new combustor technology powered by coal syngas and oxygen. The project team will evaluate and redesign the combustion sequence to achieve the ideal ratio of oxygen to fuel, a critical parameter in achieving optimum combustion and reducing costs. The DOE portion of this contract is \$4.5 million, and the project duration is 39 months. The kickoff meeting was held in November 2005. Project participants include Siemens Power Generation, ConocoPhillips, Kinder Morgan, Air Products, and Air Liquide.
- Siemens Power Generation will combine current steam and gas turbine technologies to design an optimized turbine that uses oxygen with coal-derived hydrogen fuels in the combustion process. In this break-through project, system studies will show how this totally new turbine can be integrated into a highly efficient near-zero emission power plant. The DOE portion of this contract is \$14.5 million, and the project duration is 56 months. The kickoff meeting was held in November 2005. CES is a project participant with Siemens Power Generation on this contract.

Commercial Applications

• Funded feasibility studies are currently underway for 50 MW zero-emission plants in Norway (see www.co2.no) and the Netherlands. Projects are also under development in the United States. Investment decisions on these "first generation" zero emission plants are expected in 2006.

CES 20 MW_t Gas Generator

Reheater for CES System (designed by DOE- NASA tested)

CES 20 MWt Gas Generator – 100 bar & 850 $^{o}\mathrm{C}$

CES 20 MW_t Gas Generator – 100 bar & 1650 $^{\rm o}C$

20 MW_t Multi-Fuel Testing Facility – Bakersfield, California USA (venting the Steam/CO₂ drive gas – oxygen plant to the left)

5.5 MW Steam Turbine (operating on a steam/CO2 drive gas) and Generator

Inaugural Workshop

International Oxy-Combustion Research Network

Vattenfall Europe Mining and Generation AG Head Office Cottbus, Germany

 29^{th} and 30^{th} November 2005

Poster Contribution

Oxyfuel Process for Hard Coal with CO₂ Capture – ADECOS Project First Results

by:

Prof. Alfons Kather

Hamburg University Of Technology Institute Of Energy Systems Denickestraße 15, 21073 Hamburg

This page is intentionally left blank

Oxyfuel Process for Hard Coal with CO₂ Capture

First Results

Fourth Nordic Minisymposium on Carbon Dioxide Capture and Storage, Helsinki, September 8-9th, 2005

Oxyfuel Process – Simplified Process Scheme

C. Hermsdorf A. Kather M. Klostermann K. Mieske

Hamburg University of Technology

Current Research Projects at the TUHH

Flue Gas Recycle Design Considerations

Low-dust recycle

- + enables high-efficiency axial-flow fan
- temperature limited to 190 °C,
 270 °C with blade cooling
 - mill internal coal drying usually at approx. 300 °C
- large dust precipitator
- long recycle ducts

max. dust load: **76 g/m³ @STP Coal** up to 76 g dust per m³ (@STP)

High-dust recycle

- requires low-efficiency radial-flow fan
- increases wear
- + short recycle ducts
- + small dust precipitator
- + temperature up to 350 °C possible
 - mill internal coal drying

Factors that are Influencing the Recycle Requirement

South Africa

South Africa

Indonesia

Russia

400

+ 300K

300

adiabatic w Air

200

Temperature of recycle, t_{Recyle}, in °C

• Condition:

t_{adiabatic w/ Air} = t_{adiabatic w/ O2}+Recycle

98 %

- Underlying assumptions:
 - $t_{Air} = 320 \ ^{\circ}C$ $t_{O_2} = 25 \ ^{\circ}C$ $t_{Coal} = 40 \ ^{\circ}C$ O_2 -excess: 15 %

Composition (in wt%)								NCV	t _{ad,Air}
Coal	С	н	0	S	Ν	Ash	H ₂ O	MJ/kg	°C
South Africa	65,93	3,63	7,25	0,61	1,58	13,60	7,40	25,40	2126
Indonesia	58,70	4,43	8,82	1,00	1,05	5,00	21,0	22,69	2008
Russia	70,09	3,70	7,37	0,30	1,23	9,81	7,50	27,20	2160

100

► Flue Gas Recycle

69

68 67

66

65 64

63

62

61 60

59

58

57

0

Recycle requirement in % of total flue gas

5

500

Combustion

O₂ -purity:

Combustion

69

68

67

62

0

200

300

Temperature of recycle in °C

400

100

Combustion

combustion

• First Assumption: Oxygen and recycled flue gas are

mixed completely before

Oxygen concentration

combustion

First combustion

experiments (+)

• Later experiments

benefits using different

oxygen concentrations at different phases of the

► CO₂ Separation

10 %

15 %

20 %

34

33

32

31

30

29

28

27

7

500

O₂ concentration in vol% after mixing

An 100 % CO₂ liquefaction is not possible in the presence of non-condensables!

Note: exact numbers cannot be predicted until phase equilibrium data are available

CO₂ Separation

Sources of Non-Condensables and their Minimization Potential

Sources of non-condensables

- fuel's nitrogen (and sulfur)
- oxygen excess (\Rightarrow O₂ residue)
- ► incomplete air separation (➡ Ar)
- Ieakage air

Leakage Air

- approx. 3 % of flue gas flow for a new conventional power plant
- up to 10 % over the years for power plants in use
- Leakage is <u>the</u> most influential source of non-condensables and could be radically minimized

9

Overall Process Considerations

• Underlying reference technology

• Key power consumers (based on 600 MW gross power output)

Air Separation Unit:

- approx. 110 MW to attain 98 vol% oxygen purity
 - 70 MW at the expense of oxygen purity (95 %) using a new, not yet realized separation technology (3-column-process)

▶ CO₂ Separation Unit:

- 50 MW worst case
- < 30 MW possibly when using absorption refrigeration

• Estimated efficiency loss: $\Delta \eta = 8...13$ % (abs.)

11