

3rd MEETING OF THE OXY-COMBUSTION NETWORK

Report Number: 2008/5

Date: November 2008

This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat.

INTERNATIONAL ENERGY AGENCY

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Cooperation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements.

DISCLAIMER

This report was prepared as an account of work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights, including any party's intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply an endorsement, recommendation or any favouring of such products.

ACKNOWLEDGEMENTS AND CITATIONS

The IEA Greenhouse Gas R&D Programme supports and operates a number of international research networks. This report presents the results of a workshop held by one of these international research networks. The report was prepared by the IEA Greenhouse Gas R&D Programme as a record of the events of that workshop.

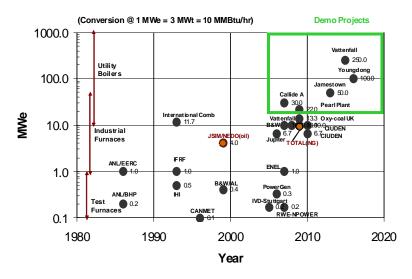
The international research network on Oxy-Combustion is organised by IEA Greenhouse Gas R&D Programme in cooperation with IHI, JPower and JCoal.

The report should be cited in literature as follows:

IEA Greenhouse Gas R&D Programme (IEA GHG), "3rd Meeting of the Oxy-Combustion Network, 2008/5, November and 2008".

Further information on the network activities or copies of the report can be obtained by contacting the IEA Greenhouse Gas R&D Programme at:

IEA Greenhouse Gas R&D Programme, Orchard Business Centre, Stoke Orchard, Cheltenham Glos. GL52 7RZ. UK Tel: +44 1242 680753 Fax: +44 1242 680758 E-mail: mail@ieaghg.org www.ieagreen.org.uk


3rd IEA GHG INTERNATIONAL OXY-FUEL COMBUSTION RESEARCH NETWORK

Yokohama, Japan5th and 6th March 2008

EXECUTIVE SUMMARY

The IEA Greenhouse Gas R&D Programme (IEA GHG) has been active in providing a forum for key industry players and stakeholders in the development of oxy-fuel combustion for power generation with CO_2 capture to present and discuss progress made. An international research network on oxy-fuel combustion was launched by IEA GHG in November 2005. At that time, there only 2 major large scale projects had been announced worldwide (Vattenfall's Schwarze Pumpe Project and CS Energy Callide Power Plant Retrofit Project). However at the 3rd network workshop held at Yokohama, Japan on the 5th and 6th of March 2008 presentations were given on 12 major large scale (i.e. >15MW_{th}) oxy-fuel combustion projects. These projects cover both large scale burner tests and feasibility studies for oxy-fuel combustion demonstration power plant,ranging from 50MWe to 250MWe. The number of projects now being discussed indicates the rapid development of oxy-fuel combustion as a capture technology option.

The development and the current status of oxy-fuel combustion technology are summarized in the figure below.

Oxy-Fuel Combustion Boiler Projects

Updates on the various large scale oxy-fuel demonstration projects were presented during the meeting. Most of the large scale pilot plant projects, which also include the CO_2 storage, will be commissioned in mid-2008 to 2010. These include notable projects such as the Vattenfall Schwarze Pumpe project, the TOTAL Lacq Project and the CS Energy Callide-A Project. Several of the large scale burner tests will be operational between now and 2009. This includes the B&W 30MW_{th} (currently operational), the Jupiter Oxygen 15MW_{th} (testing to start this year), the Doosan Babcock 40MW_{th} (testing to start in 2009) and the CIUDEN test facility to be commissioned in 2010.

During the 3rd network workshop several major developments were reviewed and new results are presented. These new developments included:

- In the area of development in oxy-fuel combustion burners and boilers (including emissions) it has been demonstrated that SO₃ emissions will be significantly higher compared to air firing. Increases in H₂S formation in the furnace are a possible impact of SO₂ accumulation due to flue gas recycle, however evidence of increased sulphur capture in the ash may be coal specific. Lower ash carbon contents have been observed with oxy-fuel combustion. Whilst, new SEM measurement data indicates that with oxy-fuel combustion larger particle sizes are formed during char burnout and ash formation.
- Development activities in oxy-CFB have gathered pace. This is primarily driven by two of the major large scale projects recently announced the CIUDEN Project in Europe and the Jamestown Project in the USA.
- Industrial gas companies (notably Air Liquide and Air Products) have confirmed that they are now offering improvements in the specific energy consumption of oxygen production from their cryogenic Air Separation Units (reduced from 200-220 kWh/tonne O₂ to 150-170 kWh/tonne O₂ by 2009–2010).
- New experimental results have been presented on the phase equilibria involving binary mixtures of CO₂ with various impurities. These results will aid in the validation of the coefficients used in the different equations of state (i.e. Peng Robinsons EOS). Further unresolved issues on this topic have been identified (for example the coefficients suggested for N₂O₄ and CO₂ mixture presented in 1901 literature should be further verified). On-going work/studies will be implemented within this year has been noted.

Additional issues and questions were raised over the course of the workshop included:

- CO₂ purity, which is a key design parameter of oxy-fuel combustion. The London and OSPAR Conventions have specified that the CO₂ streams allowed for storage under the seabed should be "Overwhelmingly CO₂". However this was considered too vague by the workshop participants. The Japanese Government has adopted a 99% purity specification in its marine law. Other regulatory developments in Europe, Australia and the USA have not yet set specific purity requirements. The discussion during the workshop highlighted the importance of clarifying and narrowing down the wide ranging specification of the CO₂ purity quoted in various the literature.
- It has been highlighted that there is a lack of information on Hg emissions from oxy-coal combustion has been highlighted. Potential operation impact of mercury on the CO₂ processing unit has been noted.

In addition, there is a general question on what and how much new information from the large scale demonstration projects will be publicly shared has been raised. Most of the major stakeholders within the oxy-fuel combustion community have agreed that it is important information should be shared both ways in order to validate and to prevent any duplication of work. However, unrestrained knowledge sharing is still under discussion because of commercial interest and proprietary knowledge issues.

3rd IEA GHG INTERNATIONAL OXY-FUEL COMBUSTION RESEARCH NETWORK

Yokohama Conference Centre Yokohama, Japan

$5^{th} - 6^{th}$ March 2008

1. INTRODUCTION

The IEA Greenhouse Gas R&D Programme (IEA GHG) has developed an international research network on oxy-fuel combustion to provide a forum to various key industry players and stakeholders to discuss developments in oxy-fuel combustion for power generation with CO_2 capture.

This report covers the third workshop in the series which was held at the Yokohama Conference Centre, Yokohama, Japan on the 5th and 6th of March 2008. The workshop was was hosted by IHI, JCoal, and JPower.

During the inaugural workshop held in Cottbus, Germany, there were only 2 major large scale projects announced worldwide (Vattenfall's Schwarze Pumpe Project and CS Energy Callide Power Plant Retrofit Project). This year, at the 3^{rd} details of 12 major large scale (i.e. >15MW_{th}) oxy-fuel combustion projects covering large scale burner testing to feasibility studies on oxy-fuel combustion demonstration power plant (100MWe to 250MWe)) were discussed.

This report presents an overview of the workshop and summarises the current status of development of oxy-fuel combustion. The presentations and discussions at the workshop covered a wide range of topics looking at; on-going studies and experimental results, modelling studies, new developments in oxygen production and CO_2 processing, and identification of various issues relevant to the demonstration of oxy-fuel combustion technology.

IEA GHG would like to acknowledge and thank Prof. Keiji Makino (IHI), Dr. Toshihiko Yamada (IHI), Dr. Takashi Kiga (JCoal), and Dr. Nobuhiro Misawa (JPower) and their colleagues for their support and assistance in organising the 3rd oxy-fuel combustion network workshop.

2. WORKSHOP OVERVIEW

In recognition of the different efforts by industry, academia and other research institutes to develop and demonstrate the techno-economic feasibility of oxy-fuel combustion technology as a CO_2 capture option for power plant application in the near future; the IEA GHG initiated the International Network for Oxy-Fuel Combustion.

The aim of this network is: to provide an international forum for organisations with interests in the development of oxy-fuel combustion technology to discuss issues relevant to the development of the technology.

The inaugural workshop of the network was hosted by Vattenfall AB in Cottbus, Germany on the 29th and 30th of November 2005. The workshop was accompanied by a visit to the Schwarze

Pumpe Power Plant, the future site of the first complete oxy-coal combustion pilot plant with CO_2 capture demonstration.. The 2nd meeting of Oxy-Combustion Research Network was held in Windsor, CT, USA and was hosted by Alstom.

To follow up the discussions from the earlier workshops, 3rd workshop was organised this time in Japan. The 3rd workshop started with a facility visit to Central Research Institute of Electric Power Industry (CRIEPI) on the 4th of March 2008 anmd with a visit to several research facilities which includes the combustion research facility, biomass syngas production facility, fuel cell technology and gasification unit.

Figure 1: Group photograph taken during the CRIEPI facility visit.

The opening session started with two keynote presentations by Dr. Makoto Akai of AIST and Prof. Ken Okazaki of Tokyo Institute of Technology. The second day started with a keynote presentation by Dr. Marie Anheden of Vattenfall Research R&D AB.

The two day meeting consists of 38 other presentations which presented a wide range of topics looking at; experimental results, on-going studies, new developments and included discussion on various issues regarding oxy-fuel combustion technology for power plant applications.

The first day of the meeting ended with a discussion forum led by Prof. Jost Wendt (Utah University covering the various key issues related to regulatory requirements, permitting issues and CO_2 quality. The 2nd day concluded with a panel discussion providing an opportunity for major large scale pilot/demonstration projects to present any updates to their projects.

The agenda of the workshop is presented in Table 1.

5 th March 2008	– AGENDA (Day 01)		
Presentation 01	Welcome Remarks / Brief Introduction, T. Namiki (JCoal),		
Presentation 02	Welcome Response / Administrative Announcement, J. 7	Copper (IEA Greenhouse Gas R&D Programme)	
	SESSION 1: Challenges of CCS and Oxy-Combust Chairperson: John Topper, IEA Greenhous		
Keynote Presenta	tion 01: CCS Policy and Overview in Japan – Dr. Makoto	×	
Keynote Presenta	tion 02: Technical Consideration and Challenges of Oxy-	Combustion – Prof. Ken Okazaki, TIT, Japan	
	Session 2a: Oxy-Combustion Fundamentals Chair: Klas Andersson, Chalmers University, Sweden	Session 2b: On-going Experimental Studies Chair: John Smart, RWE Npower, UK	
Presentations 03 & 07	Performance of PF Boilers Retrofitted with Oxy-Coal Combustion: Understanding Coal Burnout, Coal Reactivity, Burner Operation, and Furnace Heat Transfer T. Wall - Newcastle University, Australia	E.On UK's Pilot Scale Oxy-Fuel Combustion Experience: Development, Testing and Modelling B. Goh - E.On UK	
Presentations 04 & 08	Evaluation of Gas Radiation Modelling in Oxy-Fired Furnaces R. Johansson - Chalmers University, Sweden	Fundamental Studies and Pilot Scale Evaluation of Oxy-Coal Firing in Circulating Fluidized Bed Boilers E. Eddings -University of Utah, USA	
Presentations 05 & 09	Stabilising Swirl Pulverized Coal Flames Under Oxy-fuel Conditions D. Toporov - RWTH Aachen University, Germany	Impact of Combustion Conditions on Emission Formation (SO ₂ , NO) and Fly Ash Composition J. Maier – IVD University of Stuttgart	
Presentations 06 & 10	Model Validation Studies for Pulverised Coal Jet Ignition in O2/CO2 Environment J. Wendt - University of Utah, USA	Technical Consideration of Mercury Emissions in an Oxy-Coal Power Plant with CO ₂ Capture S. Santos – IEA Greenhouse Gas R&D Programme, UK	
	Session 2c: Oxy-Combustion Systems Studies Chair: Kevin McCauley, B&W, USA	Session 2d: On-Going Experimental Studies Chair: Takashi Kiga, JCoal, Japan	
Presentations 11 & 15	Efficiency Increase of the Oxyfuel Process by Waste Heat Recovery Considering the Effects of Flue Gas Treatment M. Klostermann - TUHH, Germany	Understanding Potential Environmental Impacts of Oxy-Fuel Combustion C. W. Lee and A. Miller - US EPA	
Presentations 12 & 16	Consideration for Oxy-Fuel Coal Fired Combustion Power Plant System Integration H. Hack - Foster Wheeler	High Temperature Reduction of Nitrogen Oxides in Oxy-Fuel Combustion F. Normann, Chalmers University, Sweden	
Presentations 13 & 17	3rd Generation Oxy-Combustion Systems C. Salvador - CANMET, Canada	Understanding the Effects of O ₂ and CO ₂ on NOx Formation During Oxy-Coal Combustion C. R. Shaddix - Sandia Laboratory	
Presentations 14 & 18	Oxy-Combustion: Research, Development and Systems Analysis T. Fout - DOE/NETL, USA	Evaluation of CO ₂ Capturing – Repowering System Based on Oxy- Fuel Combustion for Utilising Low Pressure Steam P. S. Pak Osaka University, Japan	
	Session 3: Oxygen Production and Chairperson: Minish Shah,		
Presentation 19	Phase Equillibria Measurements and their Application for the CO ₂ Sep R. Eggers, and D. Köpke, TUHH, Germany		
Presentation 20	Purification of Oxy-Fuel Derived CO ₂ V. White, Air Products, UK		
Presentation 21	Update on Advanced Developments for ASU and CO ₂ Purification Units for Oxy-Combustion J.P. Tranier, N. Perrin, A. Darde, Air Liquide, France		
Presentation 22	Consideration for Removal of Impurities from CO ₂ Rich Flue Gas of Oxy-Fuel Combustion M. Anheden, Vattenfall, Sweden		
Presentation 23	Technical Consideration for a Very Large Scale Air Separation Unit for K. Fogash, Air Products, UK	or Large Scale Coal Fired Power Plant Application	

Table 1: Agenda of the Workshop

Session 4: Discussion Forum: Quality of CO ₂ for Storage – What are the Issues and Opportunities		
	Chairperson: Prof. Jost Wendt, University of Utah, USA	
Presentations 24 & 25	Andy Miller, US Environmental Protection Agency, USA Vince White, Air Products, UK	

6 th March 2008 –	AGENDA (Day 02)
	Session 5: Future of Oxy-Coal Combustion – Keynote Address (Day 02)
Keynote Presentati	Chairperson: Prof. Keiji Makino, IHI, Japan on 03, Vattenfall Schwarze Pumpe Pilot Plant _ Dr Maries Anheden, Vattenfall R&D AB, Sweden
Presentation 26	APP Project: Overview of Oxy-Fuel Working Group – A Platform for Cooperation Prof. Terry Wall, University of Newcastle, Australia
Presentation 27	Oxy-Combustion Activities at Tsinghua University: CO ₂ Capture Based on Chemical Looping Cycles Prof. Ningsheng Cai, Tsinghua University, China
Presentation 28	Capture Ready Plant Concept: Retrofitting Power Plant with Oxy-Combustion John Davison, IEA Greenhouse Gas R&D Programme, UK
Session 6	<i>Exarge Scale Burner and Boiler Development – Technology and Equipment Manufacturer Perspective</i> <i>Chairperson: Chris Spero, CS Energy, Australia</i>
Presentation 29	Recent Test Results on Oxy-Fuel Combustion Using the Pilot-Scale Test Facilities T. Uchida, T. Yamada, K. Hashimoto, S. Watanabe; IHI, Japan
Presentation 30	Scale Up of Oxy-Coal Combustion at B&W's 30MWth CEDF H.Farzan, K.J. McCauley, Babcock & Wilcox, USA; R.Varagani, Air Liquide, USA
Presentation 31	Alstom Development of Oxy-Fired PC and CFB Power Plants J. Marion, Alstom Power, USA
Presentation 32	Oxy-Combustion UK Project Update: Development of 40MWth Burner Testing Programme D. Fitzgerald, Doosan Babcock, UK
Presentation 33	Jupiter Oxygen - 15MWth Oxy-Combustion Boiler Test Results B. Patrick, Jupiter Oxygen, USA
	Session 7: Large Scale Demonstration and Pilot Scale Projects Chairperson: Sho Kobayashi, Praxair, USA
Presentation 34	Callide Oxyfuel Project – Technical evaluation of the oxy-combustion and CO ₂ capture system design C. Spero, T. Yamada, E. Sturm, and D. McGregor CS Energy, Australia; IHI, Japan; Air Liquide, France and GLP, Australia
Presentation 35	The CO ₂ Pilot at Lacq: An Integrated Oxy-Combustion CO ₂ Capture and Geological Storage Project N. Aimard, and C. Prebende TOTAL, France
Presentation 36	Test Facilities for Advanced Technologies for CO ₂ Abatement and Capture in Coal Power Generation V. Cortes CIUDEN, Fundacion Estata Ciudad de la Energia, Spain
Presentation 37	Oxy-Combustion Research Activities in S. Korea – Overview to the Youngdong 100MWe Oxy-Combustion Power Station Project Development J. S. Kim, S. M. Choi, Y. J. Kim and S. C. Kim* KIST, KAIST, KEPRI, Korea
Presentation 38	Oxy-Coal Combustion Demonstration Project M. Shah, D. Bonaquist, R. Victor, M. Shah, H. Hack, A. Hotta, D. Leathers Praxair, USA; Foster Wheeler, USA/Finland; and Jamestown Board of Public Utilities

3. ATTENDANCE

The workshop brought together 103 participants from industry, research institutes and universities covering 18 countries worldwide. The delegate list is given in Annex I. The number of participants attending the workshop has grown significantly over the three years.

4. AGENDA – Presentations by Attendees

The agenda of the meeting is presented in Table 1 . Copies of slides appear in the same order in Annex II.

5. CURRENT STATE OF UNDERSTANDING – PRESENTATION HIGHLIGHTS What were the new developments in oxy-fuel combustion presented during the workshop?

- a) Regulatory and permitting issues were raised as an important issue during the workshop. The presentation by Dr. Akai [Keynote Presentation 01] presented the Japanese approach and interpretation of the International Maritime Organisations conventions for CO₂ storage under the sea bed. However, several participants considered the adoption of 99% purity for CO₂ as an unnecessary economic penalty for oxy-fuel combustion. The workshop [see presentations 22, 25, and 31] highlighted the importance and need to clarify and narrow down the range values for CO₂ purity suggested in various public domain literatures on oxy-fuel combustion. Whilst it is noted that CO₂ streams from oxy-fuel combustion could be technically processed to achieve a high purity, this would come at a cost.
- b) Prof. Okazaki [Keynote Presentation 02] highlighted the importance of developing various sub-models that can be used in CFD to simulate the combustion process of the oxy-PC and oxy-CFB. This includes development of:
 - heat transfer sub-model for the radiant and convective sections of the boiler,
 - coal jet ignition sub-model,
 - char burnout and devolatilisation sub-model,
 - ash partitioning sub-model which also to include modelling of ash deposition and speciation of the trace metal,
 - combustion by-product sub-model which also to include the modelling of specific pollutant (i.e. NOx and SOx) emissions and trace metal emissions in the flue gas.
 - integrated furnace sub-mode.

Development of these sub-models requires further work on the fundamental understanding of the combustion chemistry, aerodynamics, and pollutant formation/reduction mechanisms.

c) The industrial gas companies present (namely Air Liquide and Air Products) confirmed that they are now offering improvements in the specific energy consumption of oxygen production from the cryogenic Air Separation Unit's - reduced from 200-220 kWh/tonne O₂ three years ago to 150-170 kWh/tonne O₂ (by 2009–2010). [Presentation 21 & 23]

- d) Development activities in oxy-CFB have gathered pace. This is primarily driven by two of the major large scale projects announced one in Europe (CIUEDEN Project) and one in the USA (Jamestown Project). [Presentations: 08, 12, 31, 36, 38]
- e) New experimental results have been presented on phase equilibria between impurities and CO₂ looking at validation of experimental data and empirical models for coefficient characterising the properties of the gas mixtures (ternary and binary mixtures). Further unresolved issues on this topic have been identified with on-going work/studies to be implemented within this year. [Presentations: 19, 21].

New experimental results were presented that aid the further understanding of the oxy-fuel combustion process. Some of these important results are enumerated below:

a) In the area of heat transfer modelling:

The presentation by Mr. Johansson [Presentation 04] has indicated that the flame intensity measurement is significantly higher that the results obtained from Weighted Sum of Gray Gases (WSGG) Model. This further stressed that the existing parameters of the WSGG model are intended for air fired conditions and often yield significant errors for conditions relevant for oxy-fired furnaces.

It was also noted that the latest WSGG parameters give results within 20% of the reference model (based on narrow band model). These parameters could be acceptable in terms of computational cost and accuracy.

b) In the area of coal jet ignition:

Work done by IHI and NSW University [Presentation 03] indicated that there are significant ignition delays during partial load firing with oxy-fuel combustion. This has been attributed to the difference between the furnace temperature and the momentum flux as observed during the combustion trials done at the IHI test facility in Aiolo, Japan.

c) In the area of char burn out modelling:

The presentation by Prof. Wall [Presentation 03] indicated that char morphology is significantly larger in oxy-fuel combustion mode than in air fired mode.

The amount of carbon in ash (an indication of combustibility of the char) could be significantly lower during oxy-fuel combustion than during air-firing. However, current results indicated that this observation could be coal specific and could also be affected by the manner on how the flue gas is recycled [Presentations 03 & 07].

This observation has been indirectly corroborated from the new results obtained by IVD Stuttgart indicating an increase in the level of carbonization and sulphation from the ash deposit collected in various combustion tests [Presentation 09].

d) In the area of Pollutant formation and reduction mechanisms:

An increase in SO_3 emissions during oxy-fuel firing using the Lausitz Lignite were observed during tests at IVD Stuttgart done last year. These results confirm the results

obtained from the early studies done by ANL during the 1980s indicating increased emissions by about 4-5 times as compared to air fired case. Further investigations should be pursued since this observation could be very coal specific. [Presentation 09 & 10].

The results presented by Dr. Maier [Presentation 09] with regard to the sulphation of the ash clearly supported the mechanisms suggested by Prof. Okazaki [Keynote Presentation 01] suggesting that oxy-fuel combustion promotes sulphur absorption by calcium based solids (i.e. $CaCO_3$ or CaO) at high temperature conditions due to high level recirculation of SO_2 and also inhibit the decomposition $CaSO_4$. The keynote presentation by Prof. Okazaki [Keynote Presentation 02] explained in detail the mechanism involved.

e) In the area of ash deposition, fouling and slag formation:

Recent results presented by Dr. Goh [Presentation 07] indicated that a normally nonslagging coal when burned during air fired conditions could turn out to be slagging when burned under oxy-fuel combustion conditions. Currently there is no clear explanation to why this has occurred. Nonetheless, they have attributed this observation to the tendency of higher deposition rate and longer residence time during oxy-fuel combustion in which this theory should be validated further.

6. **KEY ISSUES** *What are the key issues and on-going work identified during the workshop?*

- a. During the discussion forum, Dr. Miller [Presentation 25] raised the following fundamental questions which would impact the deployment of oxy-fuel combustion technology for power generation with CO_2 capture.
 - Who owns the CO₂?
 - What are the subsurface resource rights and laws?
 - Who has the liability for leaks into the air or groundwater, long-term monitoring, and accidents?
 - How are trans-boundary reservoirs handled?
 - Is CO₂ a waste or a commodity? Does CO₂ purity change the classification of the CO₂ product stream?
- b. These questions all need to be addressed in a comprehensive way with respect to CO_2 capture and storage. It is noted that these issues are being discussed in different forums both regionally and internationally, IEA GHG is actively involved in many of these forums.
- c. CO_2 purity is a key design parameter of oxy-fuel combustion. The international agreement based on London and OSPAR Conventions has ruled that the CO_2 streams allowed for storage under the seabed should be "Overwhelmingly CO_2 ". However this was considered to be too vague. This has been adapted in recent Japanese government policy where a 99% purity limit was set for CO_2 that would be injected into sub sea bed geological structures. No other regulatory development in Europe, Australia or North America had yet set a limit for CO_2 purity. The discussion during the workshop has highlighted the importance of clarifying and narrowing down the wide ranging specification on the CO_2 quality quoted in the literature.

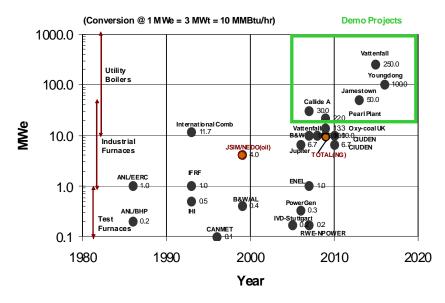
- d. The following important aspects have been identified as an area where collaboration among major stakeholders should be undertaken. These includes
 - Permitting and long term liability issue in capture of CO₂ and its storage.
 - Health and Safety (especially in the safety handling of CO_2 / O_2 mixture).
 - Education and training
- e. The presentation by Dr. Tranier [Presentation 21] highlighted the importance of knowing as much as possible about the phase equilibria between mixtures of impurities and CO₂. One of the key mixtures missed out from the phase equilibrium work done by TUHH [Presentation 20] was the CO₂-NO₂/N₂O₄, because this was assumed to be of negligible importance. However, it was stressed by Dr. Tranier that this mixture should be further investigated since data obtained during the early 1900's are not sufficiently reliable enough to be used for the current work.
- f. The lack of current information on Hg emissions from oxy-coal combustion has been highlighted. The potential adverse operation impact of mercury on the CO₂ processing unit has been noted. [Presentation 10].
- g. A key area of development in oxy-fuel combustion technology is the development of flue gas clean-up equipment for removal of impurities such as Cl and SO₃ prior to the flue gas being introduced to the CO₂ processing unit. Some indicative activities on these aspects have been presented during the meeting [Presentation 29, 30, 32].

7. SUMMARY

During the 1^{st} oxy-fuel combustion workshop, several different issues involving the development of oxy-fuel burner and boilers, as well as development in the Air Separation Unit and CO₂ processing unit were identified. During the 2^{nd} and 3^{rd} workshops several of these issues were discussed in more detail. In a positive note, several new results have been presented sin this meeting therefore indicating good progress has been made in the past three years. A During this workshop, 12 major large scale projects were presented and updated. A list of these projects is given in Table 2. The development and the current status of oxy-fuel combustion technology are summarized in the Figure 2.

Most of the stakeholders involved in these projects agreed that demonstration of the technology is the next step in the development of oxy-fuel combustion application for power generation applications. Depending on the success of the various pilot plant projects, it could be inferred that by 2015, at least one demonstration project of > 250MWe would be deployed. In parallel to the development of high efficiency pulverised coal fired boilers (i.e. development of 700°C and 300 bar steam parameter), it should be expected that the integration of such technology to the oxy-fuel fired boiler would be the next step in the development of this technology in the next decade to come.

During the discussion forum, one of the key issues identified is the requirement for clarity in the regulatory and permitting procedures. This also includes clarity on the appropriate rules for CO_2 purity.


Finally, one of the important messages during the meeting was conveyed by Prof. Makino, who stressed the importance of collaboration. He likened the oxy-fuel combustion community to

several ships connected to each other. He noted that each of these ships represents a major in oxy-fuel combustion development in the next couple of years. He further noted that if one of the ships sinks then this could cause all of the other ships to sink with it.

An important point for future considerations, which have implications for future network meetings, is the question on what and how much new information from large scale demonstration projects would be publicly shared? Most of the major stakeholders within the oxy-fuel combustion community have agreed that it is important information should be shared both ways in order to validate and to prevent any duplication of work. However, unrestrained knowledge sharing is still under discussion because of commercial interest and proprietary knowledge issues.

PROJECT	Location	MWt	Start up	Boiler Type	Main Fuel	CO ₂ Train
B & W	USA	30	2007	Pilot PC	Bit, Sub B., Lig.	
Jupiter	USA	20	2007	Industr. No FGR	NG, Coal	
Oxy-coal UK	UK	40	2008	Pilot PC		
Vattenfall	Germany	30	2008	Pilot PC	Lignite (Bit.)	With CCS
Total, Lacq	France	30	2009	Industrial	Nat gas	With CCS
Pearl Plant	USA	66	2009	22 MWe PC	Bit	Side stream
Callide	Australia	90	2010	30 MWe PC	Bit.	With CCS
Ciuden - PC	Spain	20	2010	Pilot PC	Anthra.(Pet ck)	?
Ciuden - CFB	Spain	30	2010	Pilot CFB	Anthra.(Pet ck)	?
Jamestown	USA	150	2013	50 MWe CFB	Bit.	With CCS
Vattenfall Janschwalde	Germany	~1000	2015	~250 MWe?	Lignite (Bit.)	With CCS
Youngdong	Korea	~400	2016?	~100 MWe PC?	?	?

 Table 2: Major oxy-fuel combustion projects underway or planned for power generation applications

Oxy-Fuel Combustion Boiler Projects

Figure 2: Development and Current Status of the Oxy-fuel Combustion Technology

3rd Oxy-Combustion Network Meeting, Yokohama, 5th-6th March 2008 Attendee List

Ali Hoteit Akemitsu Akimoto Andreas Kempf Antonio Diego-Marin Arto Hotta **Barry Waining** Ben Goh **Brian Patrick** Cai Ningsheng **Charles McConnell Charles Miller** Chris Spero **Christian Bergins Christopher Shaddix Claude Prebende** Daniel Koepke David Fitzgerald **Denis Cieutat Dobrin Toporov Eric Eddings Etienne Sturm** Euan Cameron Frank Kluger Fredrik Normann Gerald Kinger Gerard Hesselmann Gyung-Min Choi Hamid Farzan Kunjuraman Sivaramakrishnan

JCOAL Imperial College London Instituto de Investigaciones Electricas Foster Wheeler Energia Ov IEA E.On UK Jupiter Oxygen Corp **Tsinghua University** Praxair Inc. **EPA Office of Research and Development** CS Energy Ltd. Hitachi Power Europe GmBH Sandia National Laboratories TOTAL Hamburg University of Technology Doosan Babcock Energy Ltd. Air Liquide **RWTH** Aachen University of Utah Air Liquide Doosan Babcock Energy Ltd. Alston Power Systems GmbH Chalmers University of Technology EVN AG Doosan Babcock Energy Ltd. Pusan National University Babcock & Wilcox Company Bharat Heavy Electrical Ltd. (BHEL)

IFP

Hideki Gotou Hiromichi Kameyama Hisao Makino Hisashi Kobayashi Hong-Shig Shim Honma Kazumichi Horst Hack Jean-Pierre Tranier Jianglong Yu Jim Craigen John Davison John Marion John Smart John Topper John Wheeldon Jong Soo Kim Jörg Maier José Miguel González Santaló Jost Wendt Katsuvoshi Ando Keiichiro Hashimoto Keiji Makino Ken Okazaki Ken Yamamura Kentaro Nishida Kevin Fogash Kevin McCauley **Klas Andersson** Kourosh Zanganeh

J-POWER Japan CRIEPI Praxair Inc. **Reaction Engineering International** Mitsui Foster Wheeler North America Corp. Air Liquide University of Newcastle ACARP / COAL21 IEA Greenhouse Gas R&D Programme Alstom Power Inc. **RWE Npower PLC** IEA Greenhouse Gas R&D Programme EPRI Korea Institute of Science and Technology **IVD-Stuttgart** Instituto de Investigaciones Electricas University of Utah JCOAL IHI IHI TIT Mitsui J-POWER Air Products Babcock & Wilcox Company Chalmers University of Technology CANMET, Natural Resources Canada

Lars Strömberg Makoto Akai Marie Anheden Mario Ditaranto Martin Burböck Masaharu Yamamoto Masahiro Hosokawa Mathias Klostermann Mikko Varonen Minish Shah Nobuhiro Misawa Ole Biede Per Christer Lund **Philippe Court** Pyong Sik Pak Ram Narula **Robert Johansson** Sheishier Krishnamoorthy Sangmin Choi Satoshi Motohashi Seung-Mo Kim Shinichiro Omachi Stanley Santos Stina Rydberg Sung Chui Kim Susan Roces Syuzo Watanabe Tadashi Itoh Takashi Kiga Terry Wall

Vattenfall AB AIST Vattenfall R&D AB SINTEF Energy Research EVN AG J-POWER J-POWER Hamburg University of Technology Metso Power Praxair Inc. J-POWER Vattenfall A/S Royal Norwegian Embassy, Tokyo Air Liquide Osaka University **Bechtel Power Corporation** Chalmers University of Technology Bharat Heavy Electrical Ltd. (BHEL) Korea Advanced Institute of Science and Technology Chivoda Pusan National University Mitsui IEA Greenhouse Gas R&D Programme Vattenfall Power Consultant Korea Electric Power Research Institute De La Salle University IHI Chivoda JCOAL

University of Newcastle

Terutoshi Uchida **Thomas Paarup Pedersen** Timothy Fout Toru Namiki Toshihiko Yamada Toshiomi Higuchi Tsuyoshi Honda Valentin Becher Vicente Cortes-Galeano Vince White Yasuo Arai Young Ju Kim Yoshito Yoshimura Yuji Fukuda Fukuda Yuko Yamasaki Yuzo Shirai

IHI Dong Energy US DOE - NETL JCOAL IHI Air Products Japan Inc. Mitsui Technische Universität München CIUDEN Air Products PLC ICOAL Korea Electric Power Research Institute JCOAL Babcock-Hitachi KK JCOAL CRIEPI

3rd Oxy-Combustion Network Meeting

5th-6th March 2008 Yokohama Symposia, Yokohama, Japan

Organised by

IEA Greenhouse Gas R&D Programme IHI JCOAL and JPOWER

4th March 2008 Visit to CREIPI Research Facility

13.00 to 16.30 Meeting Point: Hotel New Grand Reception 13.00

10.15 Pre-Registration, Lobby New Grand Hotel

5th March 2008 Day 1

09.00 to 09.20 Welcome Remarks/Brief Introduction: IHI/JCoal/JPower 09.20 to 09.30 Welcome Response/Administrative Announcement: John Topper IEA GHG

Session 1 Challenges of CCS and Oxy-Combustion—Keynote Address Chair: John Topper, IEA GHG, UK

		A DECEMBER OF A	
09.30 to 10.10	CCS Policy and Overview: Makoto Akai, AIST, J	lapan	
10.10 to 10.50	Technical Consideration and Challenges of Ox	y-Combustion: Ken Okazaki, TIT, Japan	
10.50 to 11.05 (Coffee Break		
	Session 2a Oxy-Combustion Fundamentals	Session 2b On-going Experimental Studies Chair: John	
	Chair: Klas Andersson, Chalmers, Sweden	Smart, RWE NPower, UK	
11.05 to 11.25	Performance of PF Boilers Retrofitted with	E.On UK's Pilot Scale Oxy-Fuel Combustion Experience:	
	Oxy-Coal Combustion: Understanding Coal Burnout, Coal Reactivity, Burner Operation,	Development, Testing and Modelling: B. Goh, E.On UK	
	and Furnace Heat Transfer: T.Wall,	B. GOI, E.OITOK	
	Newcastle University, Australia		
11.25 to 11.45	Evaluation of Gas Radiation Modelling in	Fundamental Studies and Pilot Scale Evaluation of Oxy-	
	Oxy-Fired Furnaces: R. Johansson, Chalmers	Coal Firing in Circulating Fluidized Bed Boilers:	
	University Sweden	E. Eddings, University of Utah, USA	
11.45 to 12.05	Stabilising Swirl Pulverised Coal Flames	Impact of Combustion Conditions on Emissions Forma-	
	Under Oxy-Fuel Conditions: D. Toporov, RWTH Aachen University, Germany	tion (SO2, NO) and Fly Ash Composition: J. Maier, IVD University of Stuttgart, Germany	
12.05 to 12.25			
12.00 10 12.20	Jet Ignition in $02/CO_2$ Environment:	Oxy-Coal Power Plant with CO ₂ Capture:	
	J. Wendt, University of Utah, USA	S. Santos - IEA Greenhouse Gas R&D Programme, UK	
12.25 to 13.25 L	unch		
	Session 2c Oxy-Combustion System Studies	Session 2d On-going Experimental Studies Chair:	
	Chair: Kevin McCauley, B&W, USA	Takashi Kiga, JCOAL, Japan	
13.25 to 13.45	Efficiency Increase of the Oxyfuel Process by	Understanding Potential Environmental Impacts of Oxy-	
10.20 (0 10.40	Waste Heat Recovery Considering the Ef-	Fuel Combustion: C.W. Lee and A. Miller, US EPA, USA	
	fects of Flue Gas Treatment:		
	M. Klostermann, TUHH Germany		
13.45 to 14.05	Consideration for Oxy-Fuel Coal Fired Com-	High Temperature Reduction of Nitrogen Oxides in Oxy-	
	bustion Power Plant System Integration:	Fuel Combustion: F. Normann, Chalmers university,	
14.05 to 14.25	H. Hack, Foster Wheeler, USA 3rd Generation Oxy-Combustion Systems:	Sweden Understanding the effects of O2 and CO ₂ on NOx For-	
14.03 (0 14.23	C. Slavador, CANMET, Canada	mation During Oxy-Coal Combustion:	
	o. olavadol, o/initizi, oanada	C.R. Shaddix, Sandia Laboratory, USA	
14.25 to 14.45	Oxy-Combustion: Research, Development	Evaluation of CO ₂ Capturing – Repowering System	
	and Systems Analysis: T. Fout, DOE/NETL,	Based on Oxy-Fuel Combustion for Utilising Low Pres-	
		sure Steam: P.S. Pak, Osaka University, Japan	
14.45 to 15.00 Break			
Session 3: Oxygen Production and CO ₂ Processing Chair: Minish Shah, Praxair, USA			
15.00 to 15.20	Phase Equilibria Measurements and their Ac	pplication for the CO ₂ Separation from CO ₂ Rich Gases:	

15.00 to 15.20	Phase Equilibria Measurements and their Application for the CO ₂ Separation from CO ₂ Rich Gases:
	R. Eggers and D. Kopke, TUHH, Germany
15.20 to 15.40	Purification of Oxy-Fuel Derived CO ₂ : V. White, Air Products, UK
15.40 to 16.00	Update on Advanced Developments for ASU and CO ₂ purification Units for Oxy Combustion:
	J.P. Trainer, N. Perrin, A Darde, Air Liquide, France
16.00 to 16.20	Consideration for Removal of Impurities from CO ₂ Rich Flue Gas of Oxy-Fuel Combustion:
	M. Anhaden, Vattenfall, Sweden
16.20 to 16.40	Technical Consideration for a Very Large Scale Air Separation for Large Scale Coal Fired Power Plant
	Application: V. White Air Droducto III

Application: V. White, Air Products, UK

Session 4: Discussion Forum: Oxygen Production and CO₂ Processing Chair: Jost Wendt, university of Utah, USA

16.40 to 17.30 Mini Panel Discussion

Close Day 2 18.25 Dinner–Cruise round Yokohama Bay

6th March 2008 Day 2

Session 5: Future of Oxy-Coal Combustion Chair: Prof. Keiji Makino, IHI, Japan 09.00 to 09.30 Vattenfall Schwarze Pumpe Pilot Plant: Dr Marie Anheden, Vattenfall R&D AB, Sweden 09.30 to 09.45 APP Project: Overview of Oxy-Fuel Working Group-A Platform for Cooperation: Terry Wall, University of Newcastle, Australia 09.45 to 10.05 Oxy-Combustion Activities at Tsinghua University: CO₂ Capture Based on Chemical Looping: Ningsheng Cai, Tshingua University, China 10.05 to 10.25 Capture Ready Plant Concept: Retrofitting Power Plant with Oxy-Combustion: John Davison, IEA GHG, UK 10.25 to 10.45 Break Session 6: Large Scale Burner and Boiler Development-Technology and Equipment Manufacturer Perspective Chair: Chris Spero, CS Energy, Australia 10.45 to 11.05 Recent Test Results on Oxy-Fuel Combustion Using the Pilot-Scale Test Facilities: T. Uchida, T. Yamada, K. Hashimoto, S. Watanabe; IHI, Japan 11.05 to 11.25 Scale Up of Oxy-Coal Combustion at B&W's 30MWth SCDF: H. Farzan and K. McCauley, Babcock and Wilcox, USA; R.Varagani, Air Liquide, USA 11.25 to 11.45 Alstom Development of Oxy-Fired PC and CFB Power Plants: J. Marion, Alstom Power, USA 11.45 to 12.05 Oxy-Combustion UK Project Update: Development of 40MWth Burner Testing Programme: D. Fitzgerald, Doosan Babcock, UK 12.05 to 12.25 Jupiter Oxygen-15 MWth Oxy-Combustion Boiler Test Results: B. Patrick, Jupiter Oxygen, USA 12 to 13 40 Lunch Session 6: Large Scale Demonstration and Pilot Scale Projects Chair: Sho Kobayashi, Praxair, USA 13.40 to 16.00 Panel Discussion Panel members: Marie Anheden, Vattenfall, Sweden Frank Kluger, Alstom power, Germany Claude Prebende, TOTAL, France Chris Spero, CS Energy, Australia Vicente Cortez Galeano, CUIDEN, Spain Jong Soo Kim, KIST, Korea Minish Shah, Praxair, USA Dante Bonaquist, Praxair, USA P1 Callide Oxy-Fuel Project—Technical Evaluation of the Oxy-Combustion and CO₂ Capture System Design: C. Spero, T. Yamada, E.Sturm and D. McGregor, CS Energy, Australia and IHI, Japan The CO₂ Pilot at Lacq: An Integrated Oxy-Combustion CO₂ Capture and Geological Storage Project: P2

- N. Aimard and C. Prebende, TOTAL, France
- P3 Test Facilities for Advanced Technologies for CO₂ Abatment and Capture in Coal Power Generation: V. Cortes, CUIDEN, Fundacion Estata Cuidad de la Energia, Spain
- P4 Oxy-Combustion Research Activities in S. Korea–Overview to the Youngdong 100MWe Oxy-Combustion Power Station Project Development: J. S. Kim, KIST, Korea
- P5 Oxy-Coal Combustion Demonstration Project: D. Bonaquist, R. Victor, M. Shah, H. Hack, A. Hotta, D. Leathers, Praxair, USA; Foster Wheeler, USA/Finland; and Jamestown Board of Public Utilities

3rd Workshop IEAGHG International Oxy-Combustion Network Yokohama, Japan

Approach to Oxy-Fuel Combustion

5th March, 2008

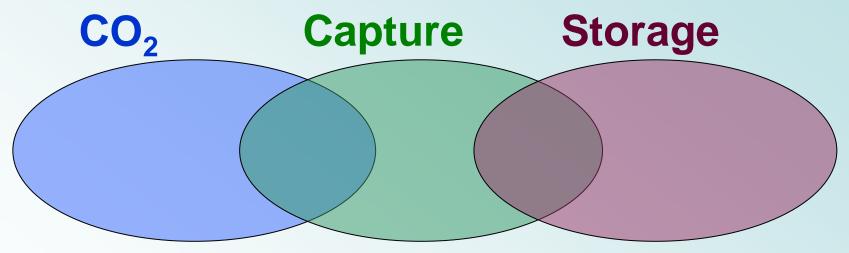
Toru Namiki

President


Japan Coal Energy Center, JCOAL

For the Best Mix of Energy Sources

Even though more amount of CO2 would be emitted from coal, so as to keep the situation of best mix of energy sources, technologies to reduce CO2 must be developed, demonstrated and actually applied.



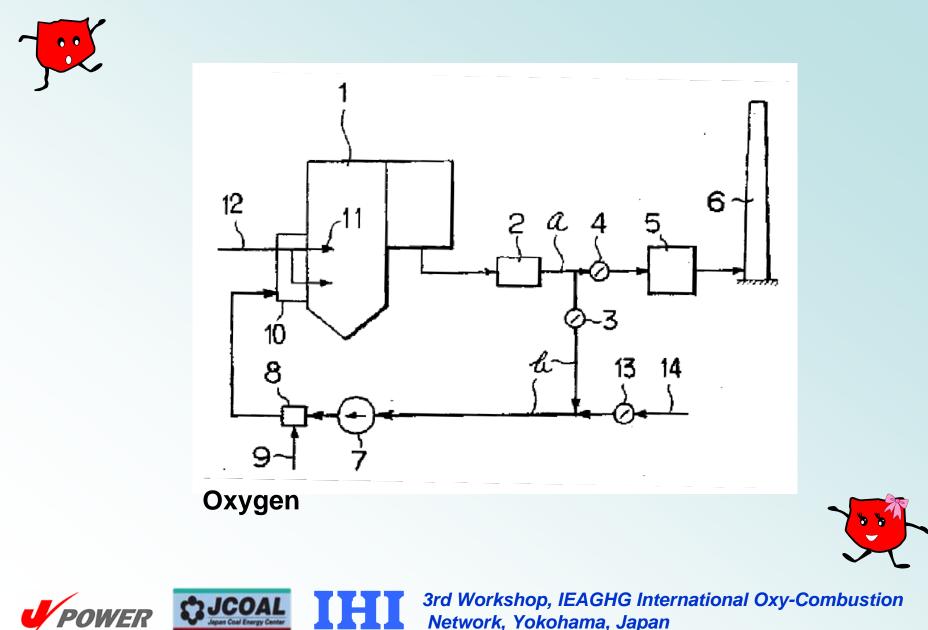
3rd Workshop, IEAGHG International Oxy-Combustion Network, Yokohama, Japan

CCS, Carbon Dioxides Capture & Storage

CCS technology we are expecting to be applicable not only to newly installed plants but also to existing ones in the near future is Oxy-fuel Combustion.

Coal effectively and most commonly used in pulverized coal firing boilers Oxy-fuel Combustion technology

Every kind of option



3rd Workshop, IEAGHG International Oxy-Combustion Network, Yokohama, Japan

Technology Development

Network, Yokohama, Japan

4

(Source: Yokohama city HP)

Thank you for your attention!

3rd Workshop, IEAGHG International Oxy-Combustion Network, Yokohama, Japan

IEA Greenhouse Gas R&D Programme

International Network for Oxy-Combustion with CO₂ Capture

Introduction to 3rd Workshop

Yokohama, Japan

John M. Topper

by

Managing Director IEA Environmental Projects Ltd

www.ieagreen.org.uk

IEA Greenhouse Gas R&D Programme

- A collaborative research programme which started in 1991.
- Its main role is to evaluate technologies that can reduce greenhouse gas emissions.
- Aim is to:

Provide our members with informed information on the role that technology can play in reducing greenhouse gas emissions

www.ieagreen.org.uk

International Network for Oxy-Combustion with CO2 Capture

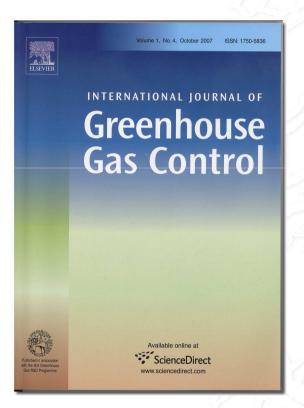
- AIM: To establish a forum that will encourage practical work on oxy combustion based CO₂ capture.
- WHY CO-OPERATE?:
 - avoid duplication of effort
 - encourage development
 - minimise cost of participation
 - enhance technology credibility
 - reduce risks

Earlier Workshop

- 1st Workshop was hosted by Vattenfall at their Schwarze Pumpe Power station in Cottbus, Germany.
 - It was attended by 64 Participants from 17 Countries.
- 2nd Workshop was hosted by Alstom in Windsor, Ct, USA
 - It was attended by 88 participants from 16 Countries
- Reports and/or copies of presentations can be obtained at our website:

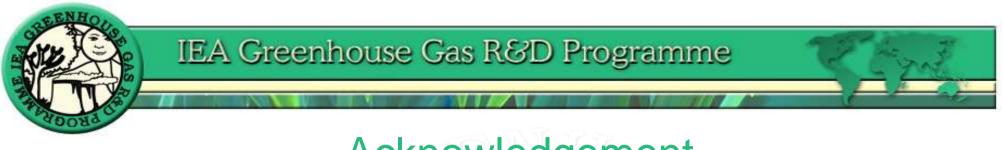
http://www.co2captureandstorage.info/networks/oxyfuelmeetings.htm

At this Meeting


- We have had to close registration list early because of the demand about 105 people are attending
- Excluding participants from Japan, breakdown of participants shows that there are:
 - > 19 participants from N. America
 - 2 persons from Mexico
 - 37 from Europe
 - 10 from Asia
 - 6 persons from S. Korea
 - 2 from India
 - 1 from China
 - 1 from Philippines
 - 5 from Australia
- Participants from 18 different countries are present today
- Excellent networking

Today: Housekeeping Points

- Coffee breaks around 10.50 and 14.45
- Lunch at 12.25
- Session 02 Rooms Assignment
 - Sessions 2b and 2c at Main Room
 - Sessions 2a and 2d at Second Room
- Afternoon session will finish at around 17.30
- Dinner this evening is during a Cruise around Yokohama Bay –
 - Please be at the meeting point indicated on your location map at 18.10.
- ALL PRESENTERS ensure Stanley gets a copy of their presentation on data storage stick if you want it on the GHG website next week
- Mobile phones off or on vibrating alert


IEA Greenhouse Gas R&D Programme

GHGT-9 16th – 19th November 2008 Washington D.C. <u>http://mit.edu/ghgt9</u> CALL FOR PAPERS CLOSES 28th MARCH 2008

www.ieagreen.org.uk

Acknowledgement

- Thanks to IHI, JCoal and JPower for local organisation and for workshop dinner arrangement.
- And thanks to CRIEPI for the facility visit.

CCS Policy Development in Japan

IEA-GHG 3rd MEETING of the OXY-FUEL COMBUSTION NETWORK 5 March 2008 Yokohama Symposia, Yokohama, Japan

Makoto Akai, AIST

Contents

Background

- Technical R&D
- Research on non-technological aspects
- R&D to policy agenda
 - Development of regulatory framework by the Ministry of Environment
 - Advisory committee on CCS under METI
- Prime Minister's "Cool Earth 50" initiative
- Conclusions

Technical R&D on CCS in Japan

Late 80's - :

 Proposal of the concept of CCS including various capture technologies including post-combustion, pre-combustion and oxy-fuel.

Early 90's - :

- Independent research activities in National Labs., Electric Utilities, Universities, etc.
- Comprehensive feasibility study on performance and cost analysis

Mid 90's - :

 Establishment of R&D projects under METI (former MITI)

METI's Technical R&D Program on CCS (1997 -)

Diversified portfolio approach considering the storage potential, risk, etc.

- CO₂ capture
 - Development of chemical absorbent and membrane;
 Application to ironworks; Oxy-fuel; etc.
- Ocean sequestration (1997 -)
 - Focused on environmental assessment and development on near-zero impact technology
- Geological storage (2000)
 - Nagaoka project
 - Injected CO₂: 10,405 t (2003 2005)

ECBM (2000 -)

Yubari project

Non-technical R&D

Public perception

- Identification of public's concern and development of communication strategy
- Accounting
 - National Inventory and Project Based Accounting
 - Contribution to develop 2006 IPCC Guideline
- Applicability to CDM
 - Submission of two new methodology to CDM-EB
- Confidence building on CCS
 - Risk assessment, communication strategy,etc.

Toward a Policy Agenda

M. Akai, AIST

Recent Progress on Regulatory Framework for Sub-seabed Storage of Captured CO₂

M. Akai, AIST

Background

In conjunction with the amendment of Annex I to the London Protocol 1996, Japan schedules to amend *Law Relating* to the Prevention of Marine Pollution and **Maritime Disaster in order to manage** and implement Carbon Dioxide (CO₂) sequestration in sub-seabed geological formations in an appropriate manner.

Recent Development

September 25, 2006

 Environment Minister consulted Central Environment Council about the utilization of the sub-seabed CCS to help prevent climate change and on the framework for regulating SS-CCS to protect marine environment.

February 20, 2007

- The Council submitted the report to the Minister.
 March 9, 2007
- Based on the Council report, GOJ(MOEJ) drafted the bill on the revision of Marine Pollution Control Law, and submitted to the Diet.

<u>May 23, 2007</u>

The bill was adopted by the Diet (promulgated on May 30).
 M. Akai, AIST

Permit from Minister of the Environment

- Any party who plans to conduct CO₂ Storage to Sub Seabed Formation (CS-SSGF) shall submit application document including, but not limited to, the implementation plan, the environmental impact assessment and the monitoring plan, and shall obtain a fix-term permit from the Minister of the Environment.
- The Minister of the Environment issues the permit to the applicant only when:
 - 1. Proposed site and method of the CS-SSGF do not cause any adverse effects on the marine environment where the CS-SSGF takes place; and
 - 2. No other appropriate disposal methods are available.

Application range of the framework

- In the event of a CO₂ leak, its impact on the marine environment will be the same regardless of the pathway or method of CO₂ injection into sub-seabed geological formations.
- Therefore, CS-SSGF with direct access from on-shore, which is excluded from definition of "dumping" in the London Protocol 1996, is also subject to this provision and shall obtain a permit from the Minister of the Environment.

Term of permit and its renewal

- The permit is issued for a maximum period of five years.
- The Minister of the Environment will consider the renewal of the permit taking the state of operation and the possible impact on the environment into consideration.

Site-selection criteria

- Any party who plans to conduct CS-SSGF shall evaluate migration of CO₂ and leakage pathways, by reservoir simulations or other appropriate methods, based on the geological/hydrological features of the site.
- The party shall prove:
 - 1. that the stability/integrity of storage is guaranteed;
 - 2. that the capacity of reservoir is large enough compared to the total anticipated volume of the CO₂ steams; and
 - 3. that appropriate mitigation measures are available in the event of a leak.

Consideration of reducing disposal amounts of CO₂ and other disposal options

- Under the current regulatory framework on disposal into the sea of wastes and other matter from vessels, etc., further attempts to reduce the necessity for disposal into the sea are required before disposal into the sea, based on WAF.
- In the case of CS-SSGF, the practical regulatory framework will be discussed, based on conditions to be included in CO2-WAG.

Action list concerning the concentration of CO₂ and impurities in a CO₂ stream

The amended Annex I to the London Protocol 1996 stated that CO_2 streams to be considered for dumping consist overwhelmingly of CO_2 . In addition, Annex II requires developing a national Action List to provide a mechanism for screening, which in principle bans dumping if it is not in compliance.

- In the case of CS-SSGF in Japan, the numerical limits are to be established in order to judge if CO₂ streams consist overwhelmingly of CO₂, and to confirm absence of high concentration of toxic substances such as sulfur dioxide.
- Those numerical limits and necessary criteria will be determined later in consideration with the international trends.

Specific Guidelines

Government ordinance (7 Sep. 2007)

- Quality of CO₂ streams (Action List)
 - 1. CO₂ should be captured by chemical reaction using amines
 - **2.** CO_2 concentration should be > 99 vol%
 - > 98 vol % if captured from hydrogen production in oil refinery
 - 3. CO₂ stream should not include wastes or other matter for the purpose of disposing of those wastes or other matter

Assessment of potential effects on the marine environment in the event of a leak

- Any party who plans to conduct CS-SSGF shall submit an impact assessment report to address potential impacts in the event of a leak, as stated in CO2-WAG. Main items of the assessment are described below.
 - 1. Characterization of CO₂ streams to be disposed into a sub-seabed geological formation
 - 2. Leakage case scenarios with its location and amount of leakage
 - 3. Description of the current marine environment including marine life
 - 4. Simulation results of possible changes in the marine environment and assessment of its impact, based on the leakage case scenarios
- The Minister of the Environment examines the impact assessment report, and issues a permit only when the minister confirms that the CCS has no potential risks to the marine environment.

Monitoring

Monitoring:

- to verify that no CO₂ leaks from the reservoir,
- to know the possible changes in the marine environment.
- Monitoring plan shall be submitted as a part of application documents for the review by the Minister of the Environment.
 - Required not only for the duration of injection, but also after the cease of injection (post closure).
- The actual period of the post closure monitoring is left for future solution
- The party conducting CS-SSGF is required to report the monitoring results periodically to the Minister of the Environment.

Response to the potential impact on the marine environment

- In case monitoring results indicate that CO₂ migration or impact on the marine environment does not stay within the range of assessments, the party shall take corrective actions.
- If this is the case, the party shall immediately inform the Minister of the Environment of the monitoring results and the planned corrective actions.
- The party is also required to report on the implementation of the actions as well as subsequent periodical monitoring results.

Development of Guidelines

- With this amendment, the regulatory framework for CS-SSGF was established in accordance with Annex II (WAF) to the London Protocol 1996.
- Specific Guidelines for the Assessment of Carbon Dioxide Streams for Disposal into Sub-seabed Geological Formations have been developed.

METI From R&D towards a Policy Agenda

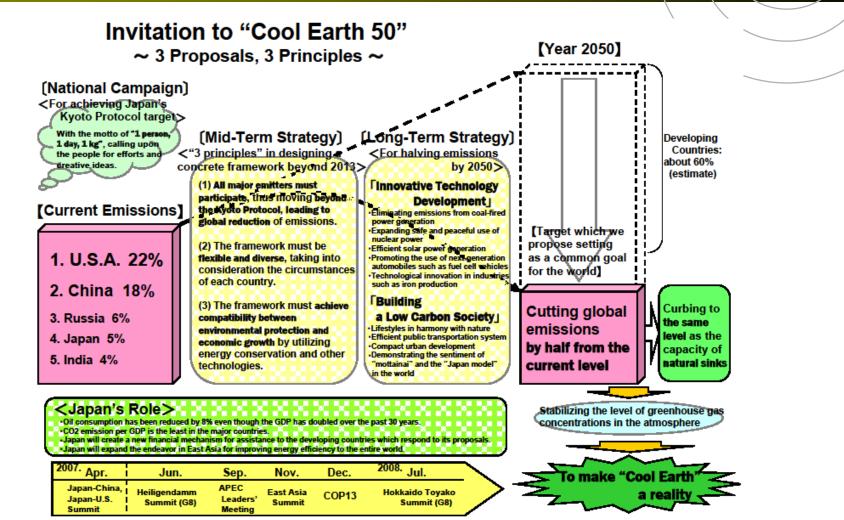
- Until recently, CCS has been discussed under the environmental R&D policy in METI
- Agency for Natural Resources and Energy, Ministry of Economy, Trade and Industry discussed CCS in the development of *Energy Technology Vision* 2100 released in 2005.
- New National Energy Strategy (2006) and revised Basic Plan on Energy (2007) refers to CCS

METI - Advisory Committee on CCS Policy (October 2006 to October 2007)

Conclusions and recommendations:

Recognizing,

- CCS is an important policy option to mitigate climate change
- In general, there is no economic incentive and economic burden is extremely great


Recommend

- To carry out R&D on innovative technologies
- To conduct larger scale demonstration
- To make proposal on the business environment to facilitate the introduction of CCS

Response to the Recommendation by the Advisory Committee on CCS Policy

- R&D on innovative technologies
 - On-going R&D, Cool earth initiative
- Larger scale demonstration
 - Under discussion
- Business environment (socio-economic system)
 - Legal and institutional issues
 - Business law, long term liability, accounting, etc.
 - Financial issues and business model
 - Incentives, business insurance, etc.
 - Confidence building

Prime Minister's "Cool Earth 50" Initiative

M. Akai, AIST

Innovative Technologies for Significant Reductions of CO₂ Emissions

Innovative Zero-emissions Coal-fired Power Generation

The combination of the efficiency improvements of coal gasification power generation and CO2 capture and storage (CCS) technology to realize zero-emissions coal-fired power generation, which currently accounts for around 30% of the global emissions

Advanced Reactors for Nuclear Power Generation

The development and commercialization of next generation light water reactors, small and medium reactors, high temperature gas-cooled reactors, and fast breeder reactors (FBR) to significantly increase zero-emissions nuclear power generation

3. Innovative Technology for High-efficiency and Low-cost Solar Power Generation

A significant improvement in the efficiency of solar power generation to reduce its cost to the level of thermal power generation, together with the capacity increase and cost reduction of rechargeable batteries

Innovative Technology for the Use of Hydrogen

The cost reduction and efficiency improvements of fuel cells for the wide use of fuel cell vehicles to realize zero emissions in the automobile sector, which currently accounts for nearly 20% of the global emissions

5. Ultra High Energy Efficiency Technology

Ultra high energy efficiency technologies for production processes and equipment to realize significant energy saving and emission reductions, e.g. iron and steel making technology to partially substitute hydrogen for coke as a reducer

Cool Earth – Innovative Energy Technology Program

5 March 2008 Ministry of Economy, Trade and Industry

Prepared for IEA/CERT meeting. Courtesy of Mr. Shirai (METI)

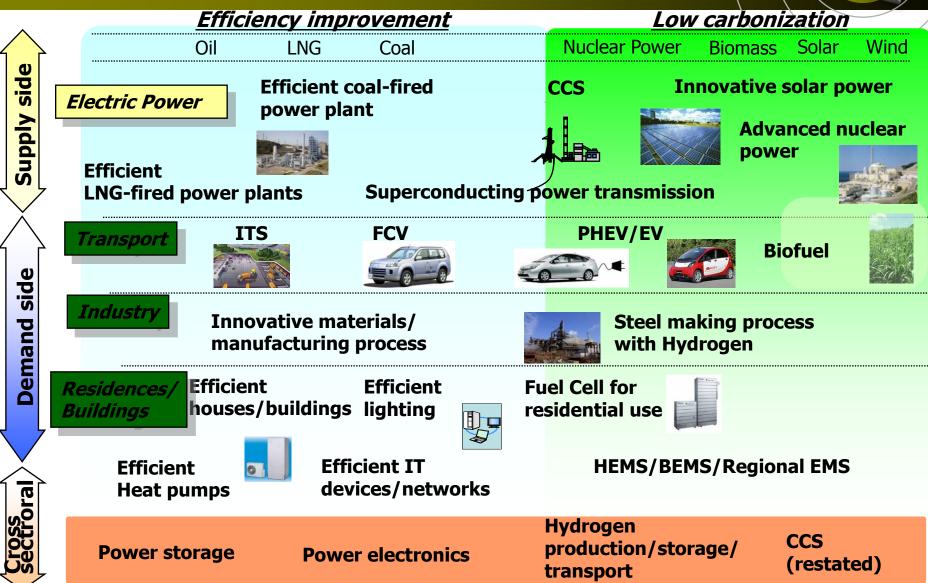
M. Akai, AIST

Japan's proposal: Cool Earth 50

- Cutting global greenhouse gases emissions by half of the current level by 2050.
- Presenting a long-term vision for developing innovative technologies and building a low-carbon society.
- 2. Three principles for establishing a post-2013 framework
 - All major emitters must participate, thus moving beyond the Kyoto Protocol, leading to global reduction of emissions.
 - The framework must be flexible and diverse, taking into consideration the circumstances of each country.
 - The framework must achieve compatibility between environmental protection and economic growth <u>by utilizing</u> <u>energy conservation and other technologies.</u>

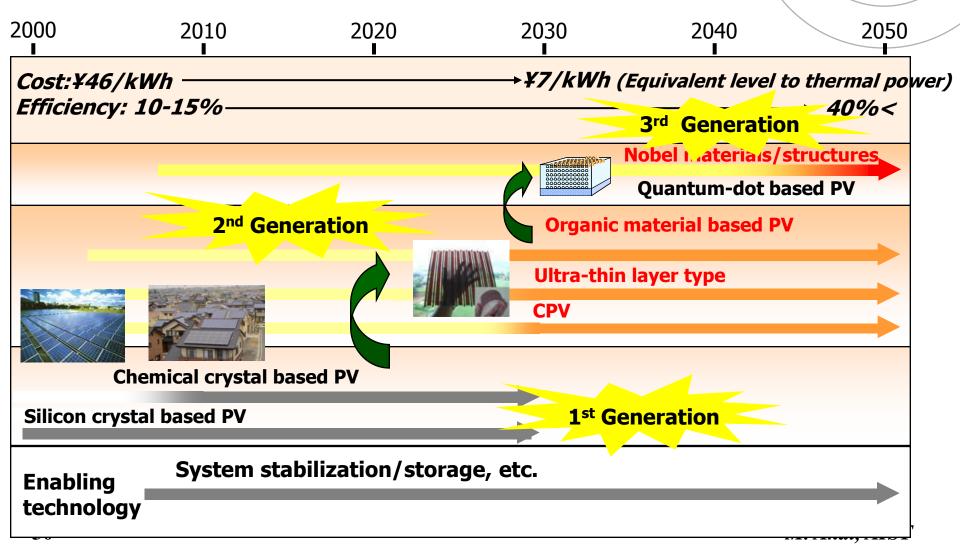
h's proposal; Cool Earth 50

Innovative Technology RDD&D


• Japan is working on formulating "Cool Earth - Innovative Energy Technology Program" by March 2008.

The program will:

- Identify innovative energy technologies to be focused on with high priority.
- Formulate the technology roadmaps for them, which give RD&D direction and milestones on performance with timelines toward long-term goals.
- Identify activities for accelerating deployment of technologies.
- Strengthen international cooperation to accelerate innovative technology RD&D.


Identifying Key Innovative Energy Technologies in Key Sectors: 21 Candidates

Formulating technology roadmaps toward 2050 to coordinate global RD&D

An image of our technology roadmap for innovative solar power generation

Accelerating global RDD&D

- It is essential to secure substantial investment to develop innovative technologies.
- A long-term strategy is necessary to promote investment.

The EU, U.S. and Japan have already taken substantial steps:

"Europe Strategic Energy Technology Plan" (2007)

"Climate Change Technology Plan" (2006)

"Energy Technology Strategy" (2007) "Cool Earth -Innovative Energy Technology Program" (coming soon)

"Energy Technology Perspective 2008" (coming soon)

Share the long-term roadmaps of energy technologies to accelerate global technology RDD&D.

global RDD

International Cooperation (1)

- Technology Roadmaps -

How can technology roadmaps help ensure the efforts leading to the long-term goal?

- ⇒ Underpin the technology strategy to achieve long-term goal by clarifying technology milestones/challenges to overcome
- ⇒ Promote long-term, coherent investment in energy technology to address climate change by clarifying the technology direction
- ⇒ Ensure global efforts through reviewing technology progress based on the roadmaps
- ⇒ Identify areas of focus where further global efforts or cooperation is needed
- ⇒ Implement the international cooperation through existing partnerships/IEA's implementing agreements

International Cooperation (2)

- Deepen the collaboration through existing partnerships -
 - Build upon existing international frameworks
 - Explore areas where further global efforts are needed
 - Enhance cross-linking among projects
 - Near-zero emission coal, CCS: FutureGen, CSLF, APP
 - Nuclear: GNEP, GIF
 - Fuel Cells: IPHE
 - Others: Implementing agreements in IEA

M. Akai, AIST

Summary

- CCS is now became an agenda for energy and environmental policy, however ... there still exist needs for
 - Significant cost reduction
 - Incentives including appropriate "mechanisms"
 - Confidence by public, scientists and policy makers
 - and ... if CCS is inevitable for Japan's policy
 - Responsible body promoting RD&DD

Political Will as a key driver!

Towards the Future

 Difficulties in implementing large scale CCS are becoming obvious

- Cancellation of proposed projects, Re-structuring of FutureGen, etc.
- Public awareness, etc.

Extended and enhanced cooperation should be essential

– International or inter-projects

IEA-GHG would be the core body of such cooperation

Technical Consideration and Challenges of Oxy-Pulverized Coal Combustion

Ken OKAZAKI

Dean, School of Engineering Professor, Dept. of Mechanical and Control Engineering Tokyo Institute of Technology (Tokyo Tech), Japan

e-mail: okazakik@mech.titech.ac.jp

3rd Workshop IEA GHG International Oxy-Combustion Network March 5-6, 2008, Yokohama Symposia

School of Engineering

Tokyo Institute of Technology

The Global Warming is obviously accelerated !

Past 100 years

temp. rise : 0.74 C (> 0.6 C in the 3rd report)

• The end of 21st century (without active measures) temperature rise : 6.4 C sea level rise : 59 cm

"Stop the global warming" is urgent issue, but not so easy.

- Global warming is due to a huge amount of CO₂ emissions.
- Net amount of CO₂ reduction is most important.
- Contributions by renewable energies are negligibly small at present.
- We have to depend on fossil fuels for a while with CCS.
- Only energy-saving or high-efficiency is definitely not enough.

Clearwater Coal Conference, June 10-14, 2007

concentrated on oxy-firing of coal for CO2 capture

 $\mathbf{\nabla}$

The Power of Coal

Proceedings of The 32nd International Technical Conference on Coal Utilization & Fuel Systems June 10 – 15, 2007 Sheraton Sand Key Clearwater, Florida, USA

The Clearwater Coal Conference

Panel: Oxy-Fuel Technology

Oxy-Coal Combustion

	Presentations
2004	No presentation
2005	One presentation
2006	One session
2007	Full sessions (full of audience)

Oxy-Fuel I: Overview & New Developments

Oxy-Fuel II: Oxy-Fuel vs. Air Combustion

Oxy-Fuel III: Pressurized Oxy-Fuel Combustion System

Oxy-Fuel IV: CFB Oxy-Fuel Combustion and Oxy-Fuel Burner

The Future of Coal

AN INTERDISCIPLINARY MIT STUDY 2007

OPTIONS FOR A CARBON-CONSTRAINED WORLD

School of Engineering

Study Participants

PROFESSOR STEPHEN ANSOLABEHERE Department of Political Science, MIT

PROFESSOR JANOS BEER Department of Chemical Engineering, MIT

PROFESSOR JOHN DEUTCH – CO-CHAIR Institute Professor Department of Chemistry, MIT

DR. A. DENNY ELLERMAN Alfred P. Sloan School of Management, MIT

DR. S. JULIO FRIEDMANN Visiting Scientist, Laboratory for Energy and the Environment, MIT Carbon Management Program Energy & Environment Directorate Lawrence Livermore National Laboratory

HOWARD HERZOG Laboratory for Energy and the Environment, MIT

PROFESSOR HENRY D. JACOBY Alfred P. Sloan School of Management, MIT

PROFESSOR PAUL L. JOSKOW Elizabeth and James Killian Professor of Economics and Management Department of Economics and Alfred P. Sloan School of Management, MIT Director, Center for Energy and Environmental Policy Research

PROFESSOR GREGORY MCRAE Department of Chemical Engineering, MIT

PROFESSOR RICHARD LESTER Director, Industrial Performance Center Department of Nuclear Engineering, MIT

PROFESSOR ERNEST J. MONIZ – CO-CHAIR Cecil and Ida Green Professor of Physics and Engineering Systems Department of Physics, MIT Director, Laboratory for Energy and the Environment

PROFESSOR EDWARD STEINFELD Department of Political Science, MIT

Copyright © 2007 Massachusetts Institute of Technology. All rights reserved.

ISBN 978-0-615-14092-6

DR. JAMES KATZER *Executive Director*

4

BOX 1 ILLUSTRATING THE CHALLENGE OF SCALE FOR CARBON CAPTURE

- Today fossil sources account for 80% of energy demand: Coal (25%), natural gas (21%), petroleum (34%), nuclear (6.5%), hydro (2.2%), and biomass and waste (11%). Only 0.4% of global energy demand is met by geothermal, solar and wind.¹
- 50% of the electricity generated in the U.S. is from coal.²
- There are the equivalent of more than five hundred, 500 megawatt, coal-fired power plants in the United States with an average age of 35 years.²
- China is currently constructing the equivalent of two, 500 megawatt, coal-fired power plants per week and a capacity comparable to the entire UK power grid each year.³
- One 500 megawatt coal-fired power plant produces approximately 3 million tons/year of carbon dioxide (CO₂).³
- The United States produces about 1.5 billion tons per year of CO₂ from coal-burning power plants.
- If all of this CO₂ is transported for sequestration, the quantity is equivalent to three times the weight and, under typical operating conditions, one-third of the annual volume of natural gas transported by the U.S. gas pipeline system.
- If 60% of the CO₂ produced from U.S. coal-based power generation were to be captured and compressed to a liquid for geologic sequestration, its volume would about equal the total U.S. oil consumption of 20 million barrels per day.
- At present the largest sequestration project is injecting one million tons/year of carbon dioxide (CO₂) from the Sleipner gas field into a saline aquifer under the North Sea.³

Notes

- 1. IEA Key World Energy Statistics (2006)
- EIA 2005 annual statistics (www.eia.doe.gov)
 Derived from the MIT Coal Study

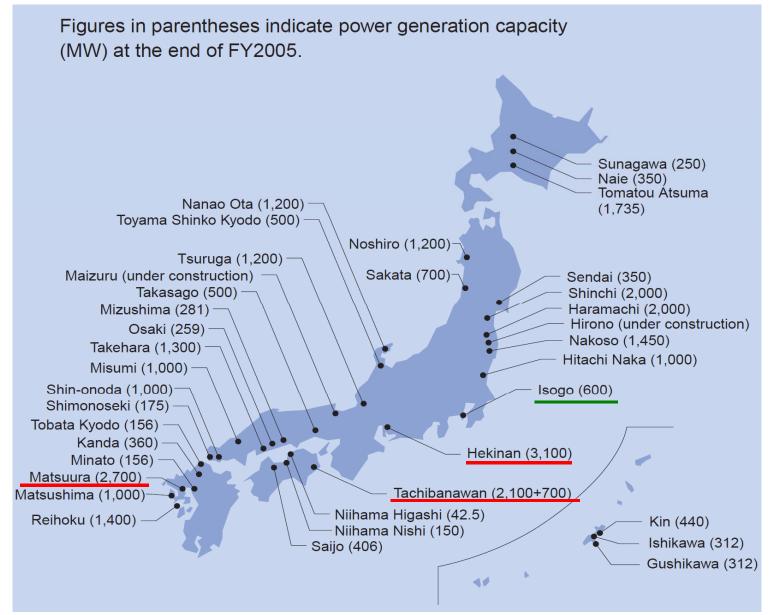
(from FOREWARD)

Our audience is government, industry and academic leaders and decision makers interested in the management of the interrelated set of technical, economic, environmental, and political issues that must be addressed in seeking to limit and to reduce greenhouse gas emissions to mitigate the effects of climate change. Coal is likely to remain an important source of energy in any conceivable future energy scenario. Accordingly, our study focuses on identifying the priority actions needed to reduce the CO₂ emissions that coal use produces. We trust that our integrated analysis will stimulate constructive dialogue both in the United States and throughout the world.

This study reflects our conviction that the MIT community is well equipped to carry out interdisciplinary studies of this nature to shed light on complex socio-technical issues that will have major impact on our economy and society.

(from EXECUTIVE SUMMARY)

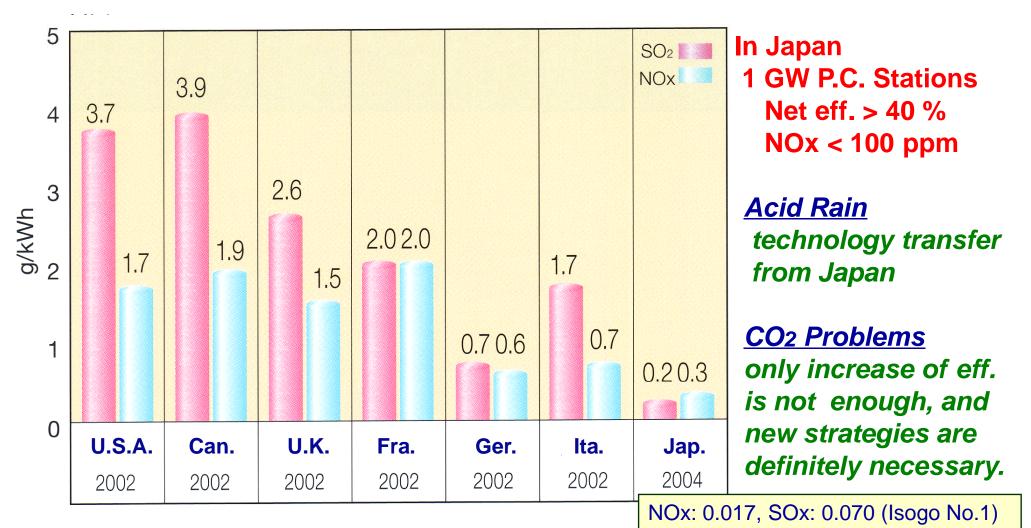
We conclude that <u>CO₂ capture and sequestration (CCS) is</u> the critical enabling technology that would reduce <u>CO₂</u> <u>emissions significantly</u> while also allowing coal to meet the world's pressing energy needs.


Outline

- Japan's Status of Coal-fired Power Plants
- World Trend of CO₂-free Clean Coal Technology
- O₂/CO₂ (Oxy-firing) Coal Combustion
 - easy CO₂ recovery without separation process
 - drastic NOx reduction and its mechanism
 - further NOx reduction by heat recirculation
 - high in-furnace desulfurization efficiency
 - Flame propagation velocity in high CO₂ conc.
 - Australia/Japan Oxy-firing Project
- IGCC and IGFC with CO2 Recovery
 - high CO2 recovery rate and high net efficiency
- CO₂ Sequestration Methodology
- Concluding Remarks

School of Engineering

Coal-Fired Power Plants in Japan


School of Engineering

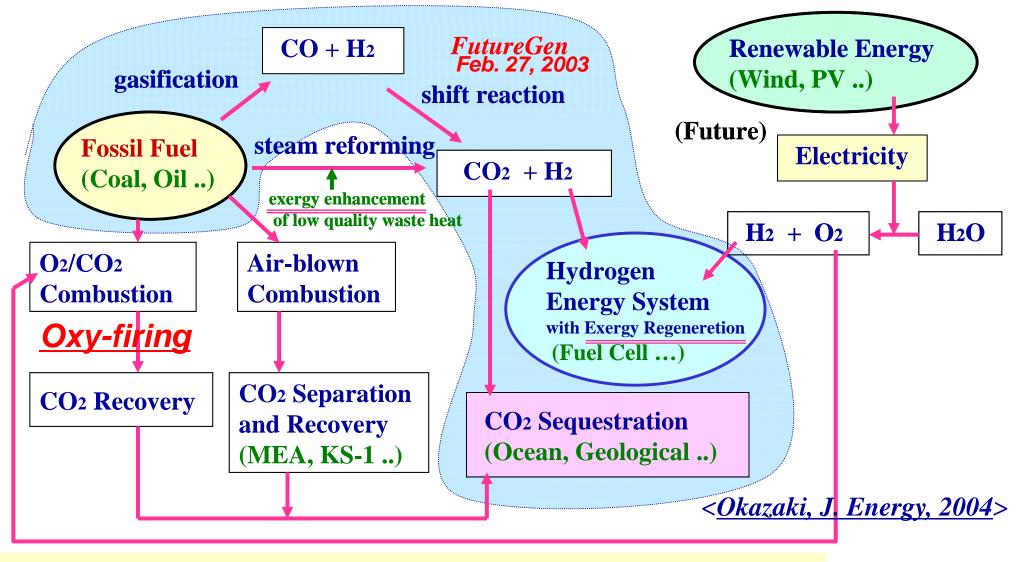
Tokyo Institute of Technology

7

 $\overline{\mathbf{M}}$

Present Status of Clean Coal Technology

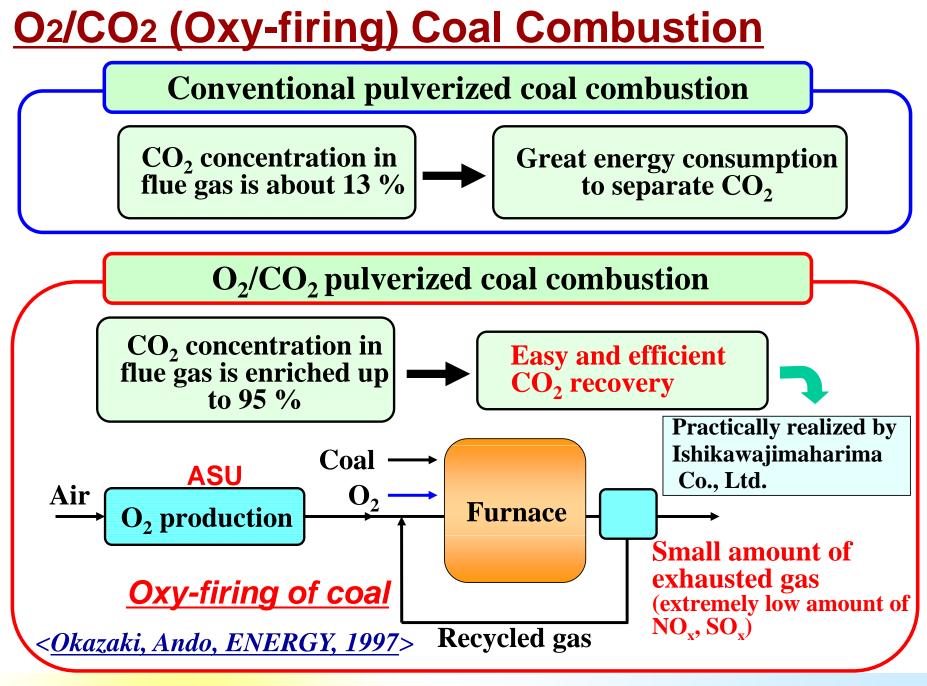
NOx and SOx emissions from fossil fuel fired power stations


8

 \mathbf{x}

No.1 Isogo Power Station of J-POWER (600 MW)

World Trend of CO₂-free Clean Coal Technology


Integration of Coal, Hydrogen and CO₂ Sequestration

10

School of Engineering

Tokyo Institute of Technology

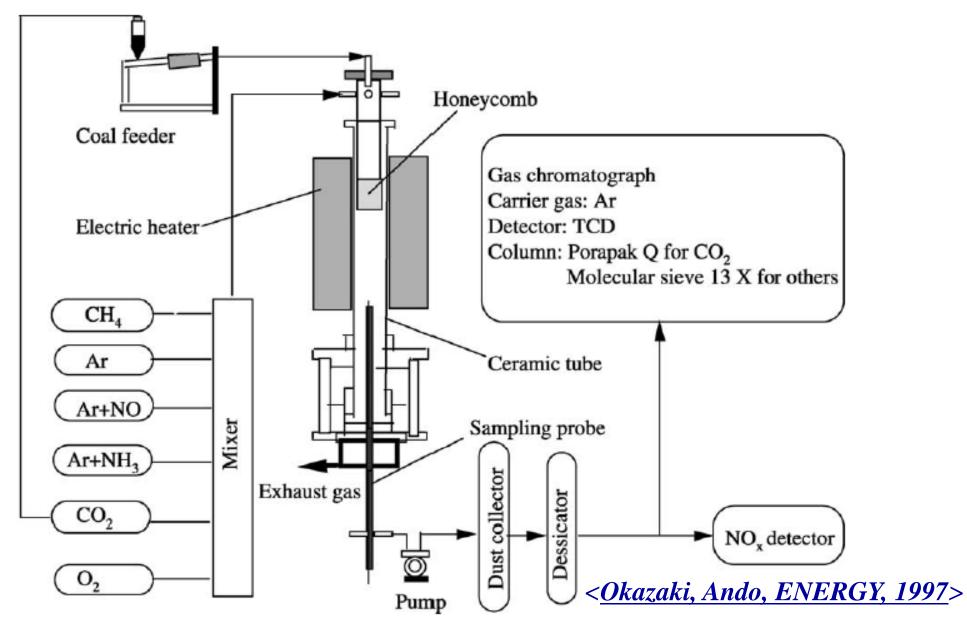
 \mathbf{x}

Tokyo Institute of Technology

 \mathbf{n}

Needed Sub-Models for Oxy-PC Furnace

- Heat transfer sub-model
 - Radiant zone
 - Convection zone
- Coal jet ignition sub-model
 - Chemistry
 - Burner aerodynamics and heat transfer
- Char burnout sub-model
- Ash partitioning sub-model
 - Deposition
 - Trace metals
- Combustion by-products
 - NO_x, SO_x, Hg <u>Trace element behavior (JST-NSFC</u>)
- Integrated furnace model


<J.O.L. Wendt, 2007 AIChE Meeting>

TIT - HUST

School of Engineering

Experimental system to simulate O₂/CO₂ coal combustion

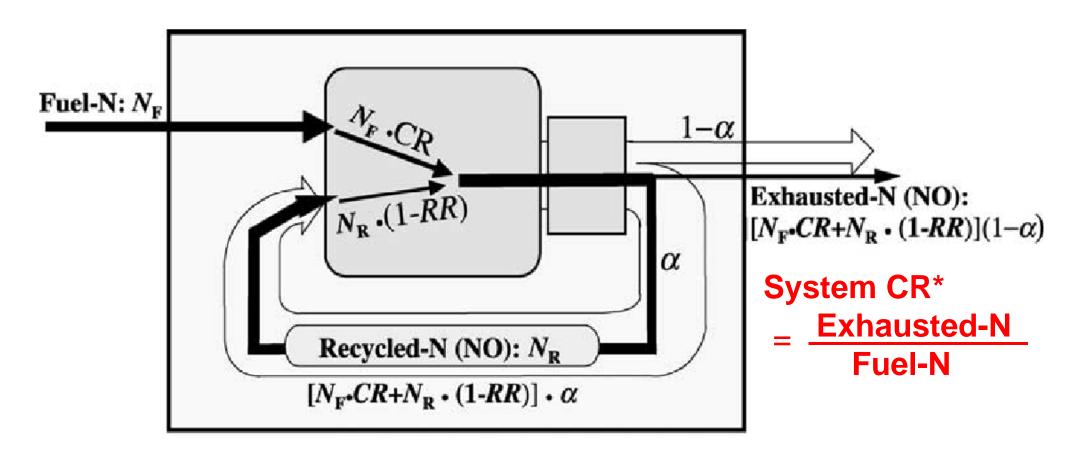
13

School of Engineering

Drastic NOx Reduction (NOx: mainly due to Fuel-NOx)

(Drastic decrease of Conversion Ratio from Fuel-N to NOx)

Summary of CR^* values for O_2/CO_2 coal combustion

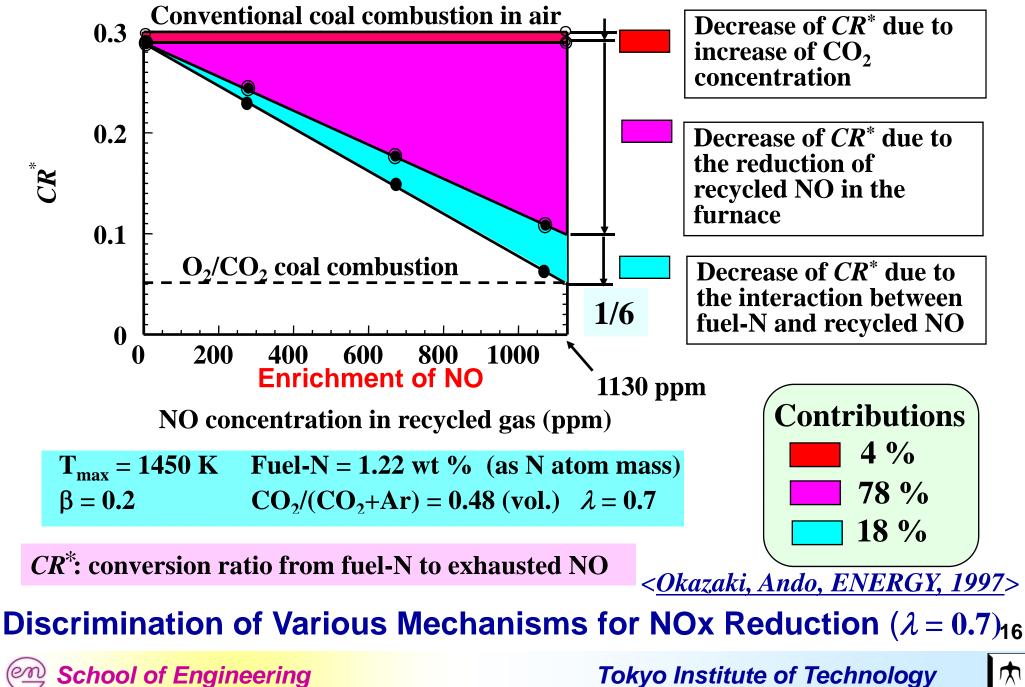

λ (oxygen-fuel stoichiometric ratio)	0.7	1.0	1.2				
NO concentration in exhaust gas	1130 ppm	1710 ppm	1490 ppm				
<i>CR</i> *	0.05	0.12	0.13				
Ratio of <i>CR</i> [*] to that of air combustion	17 % (1/6)	25 % (1/4)	26 % (1/4)				
CR *: conversion ratio from fuel-N to exhausted NO							
Ratio of CR^* to that of air combustion = $\frac{CR^* \text{ in } O_2/CO_2 \text{ coal combustion}}{CR^* \text{ in conventional coal combustion in air}}$							

School of Engineering

Tokyo Institute of Technology

 $\overline{\mathbf{M}}$

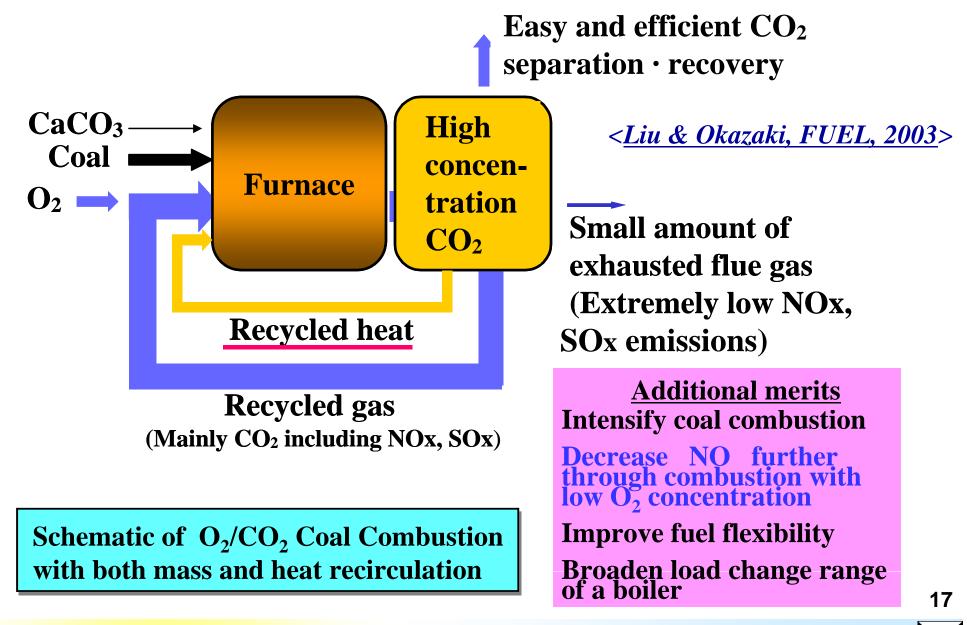
Mass balance of N-atoms


 $N_{\rm R} = \alpha \cdot N_{\rm F} \cdot CR / [1 - \alpha (1 - RR)]$

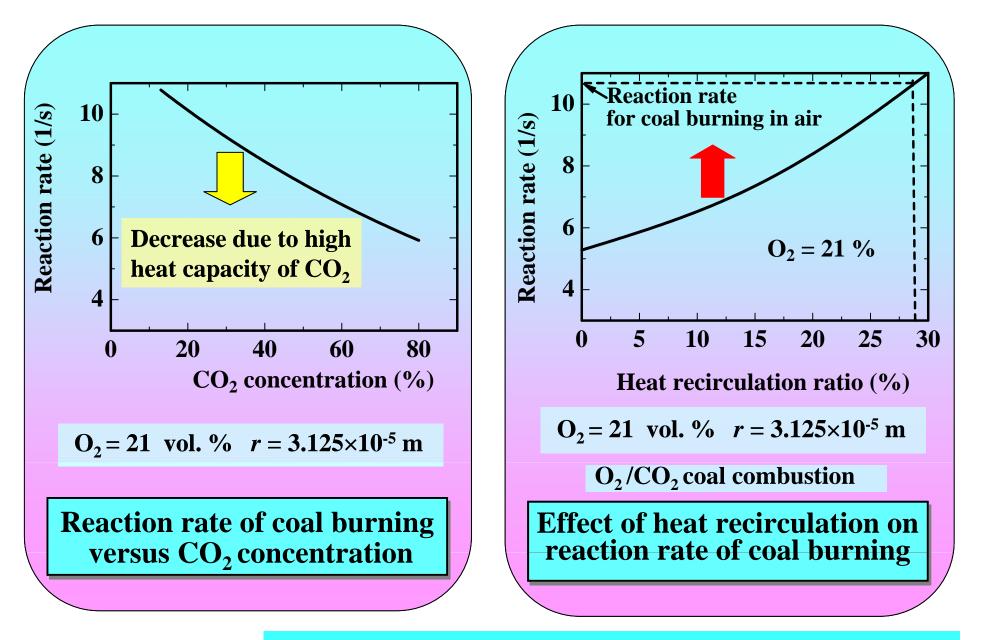
local CR and local RR were experimentally identified.

<<u>Okazaki, Ando, ENERGY, 1997</u>> 15

School of Engineering



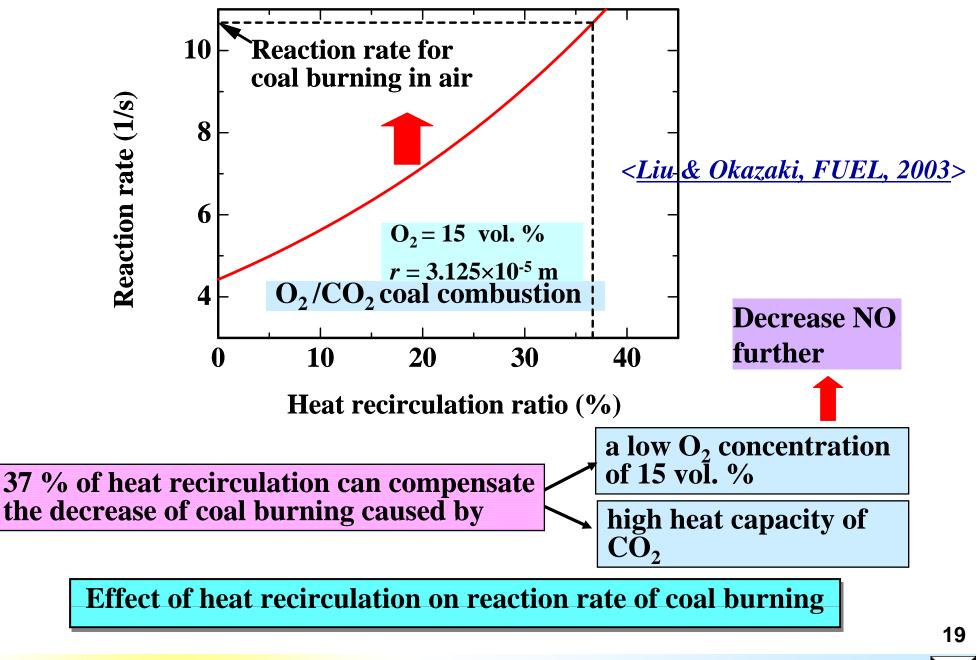
Tokyo Institute of Technology


 $\mathbf{\nabla}$

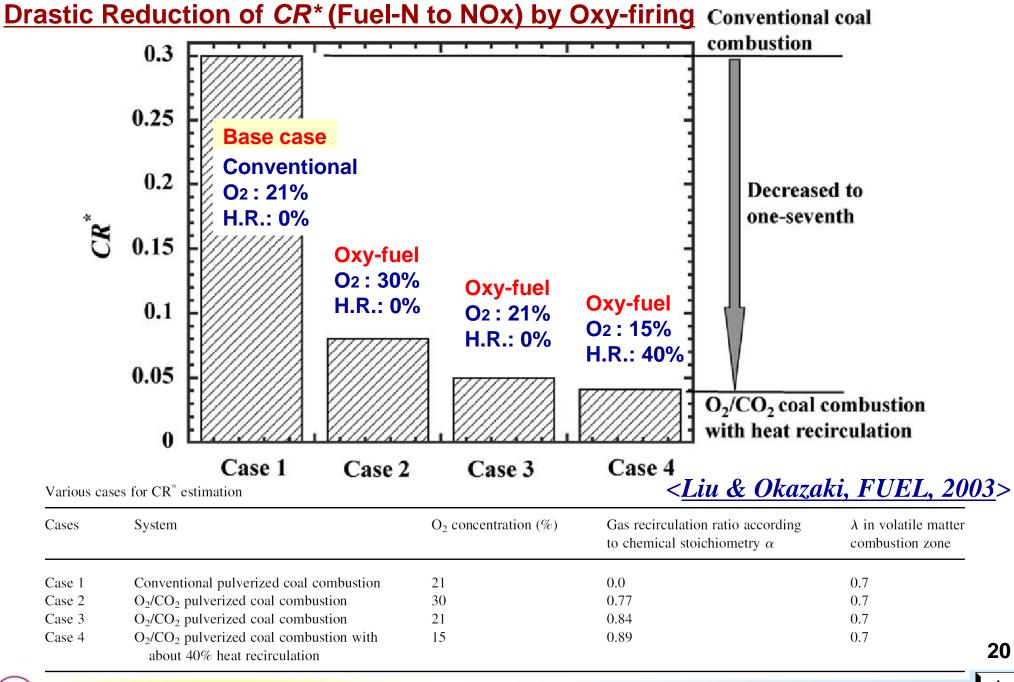
Further NOx Reduction by Heat Recirculation

Tokyo Institute of Technology

 \mathbf{x}

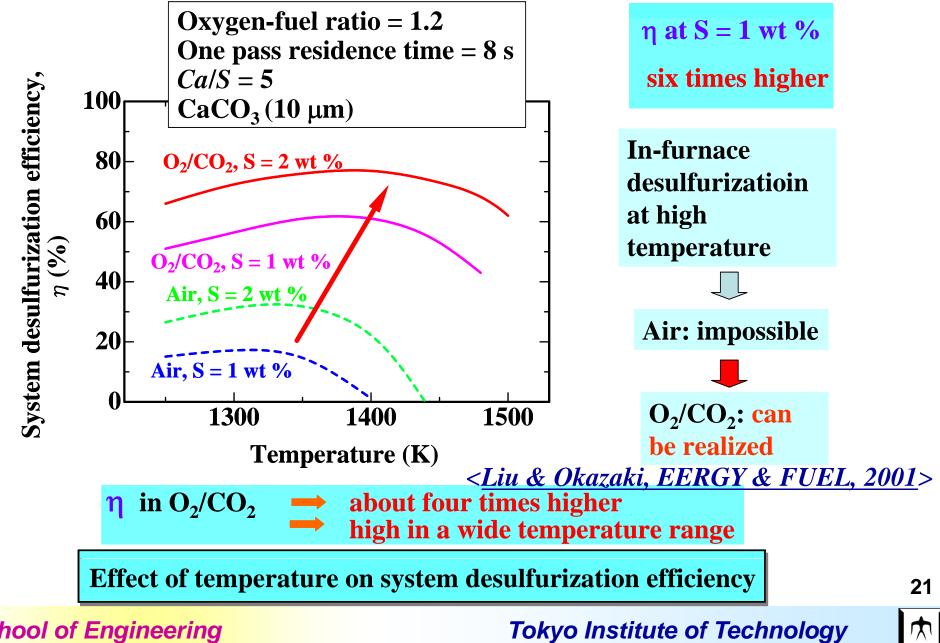


Heat recirculation ratio = (heat recycled)/(heating value of coal)



 $\mathbf{\nabla}$

School of Engineering


 $\mathbf{\nabla}$

Tokyo Institute of Technology

 $\overline{\mathcal{M}}$

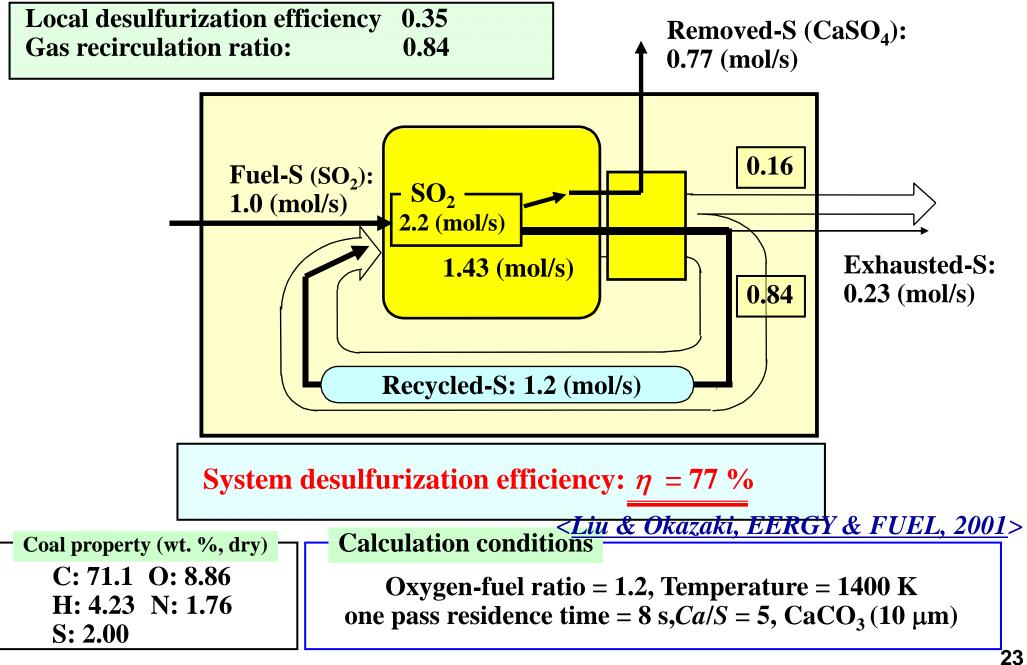
Drastic Enhancement of In-furnace Desulfurization Efficiency

School of Engineering

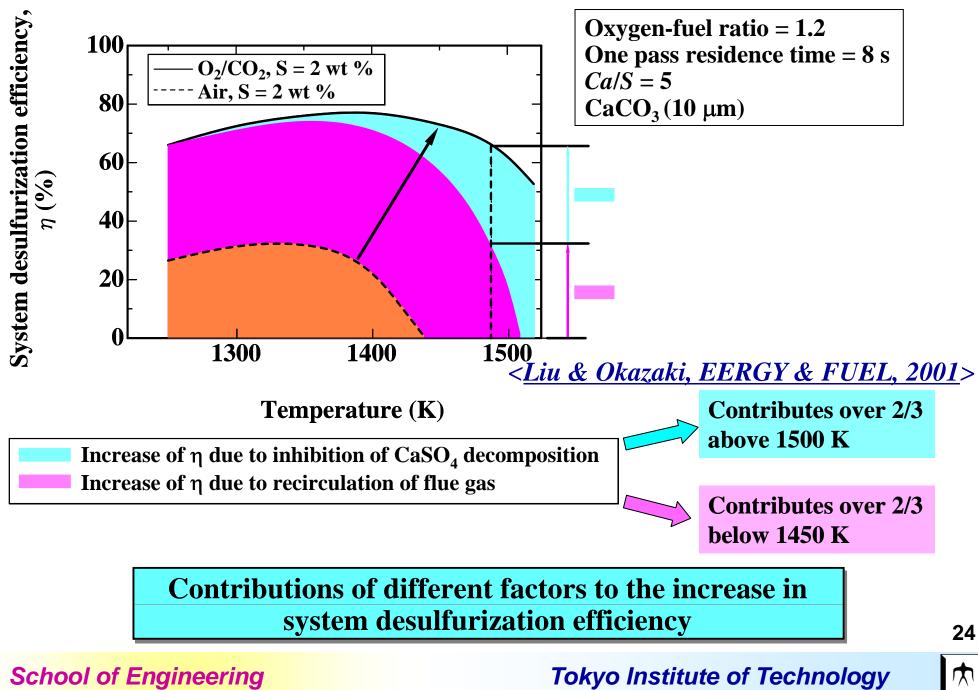
Mechanism of In-furnace Desulfurization

What is in-furnace desulfurization?

A very economical method of SO₂ removal through sorbent (CaCO₃) injection into the furnace

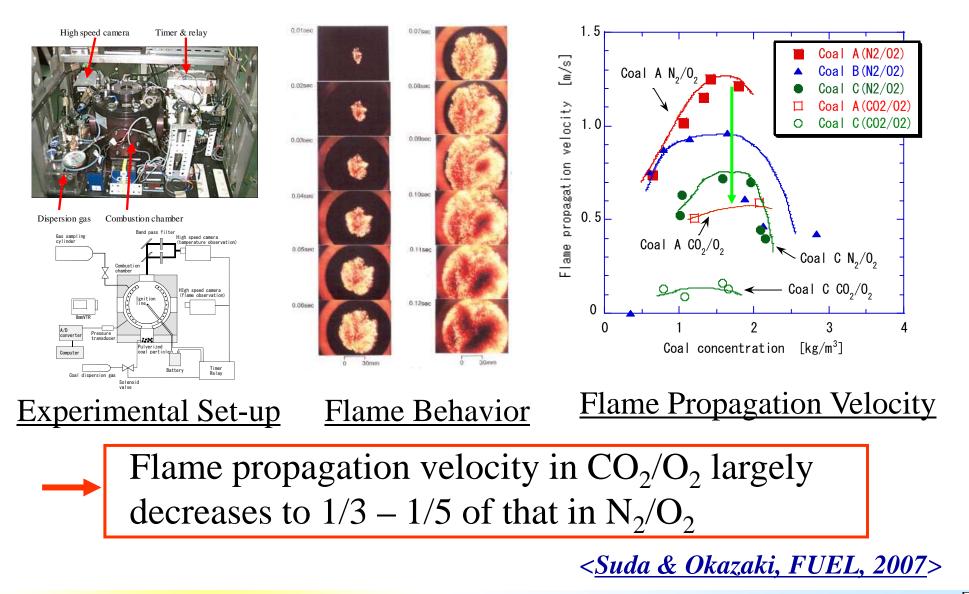

SO₂ SO₂ Coal Caal CaaO CaaO <<u>Liu & Okazaki, EERGY & FUEL, 2001</u>>

Desulturization reaction: $CaCO_3 \rightarrow CaO + CO_2$ $CaO + SO_2 + 1/2O_2 \rightarrow CaSO_4$


CaSO₄ decomposition: CaSO₄ \rightarrow CaO + SO₂ + 1/2O₂

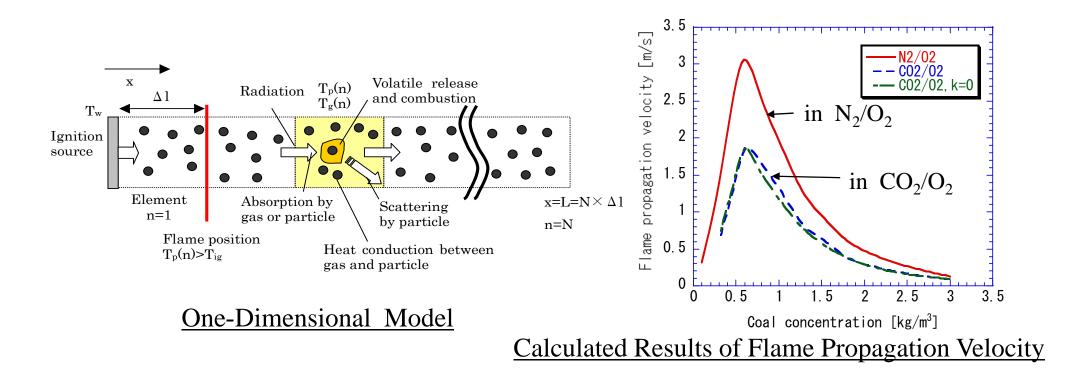
<u>The cause of decrease in desulfurization</u> <u>efficiency at high temperature</u>

22



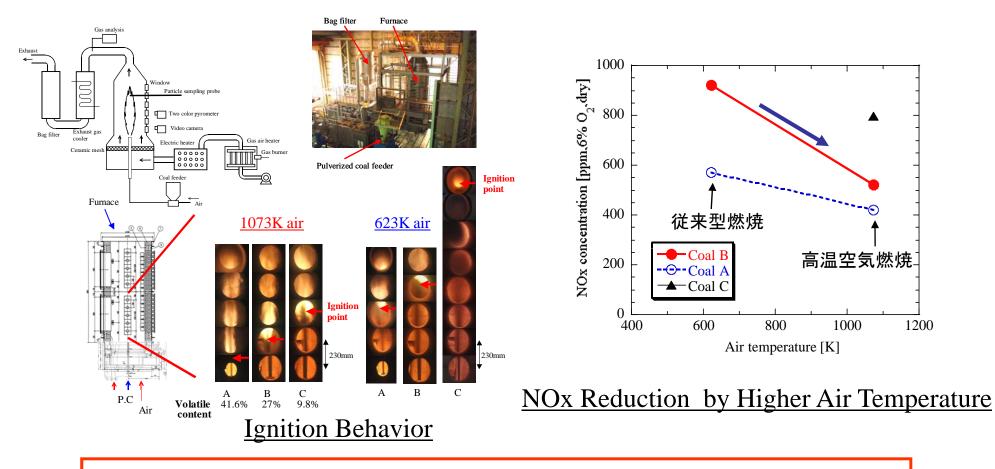
 \mathbf{x}

 $\mathbf{\nabla}$


Flame Propagation Velocity in High CO₂ Concentration

School of Engineering

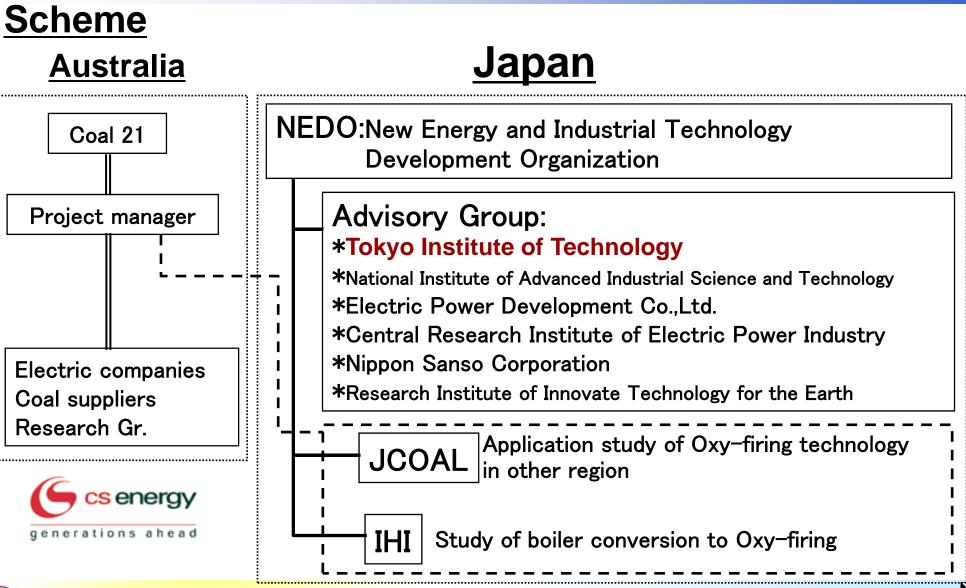
One-Dimensional Flame Propagation Model


Large decrease of flame propagation velocity is mainly due to large heat capacity and small thermal diffusivity in CO_2/O_2

<<u>Suda & Okazaki, FUEL, 2007</u>>

School of Engineering

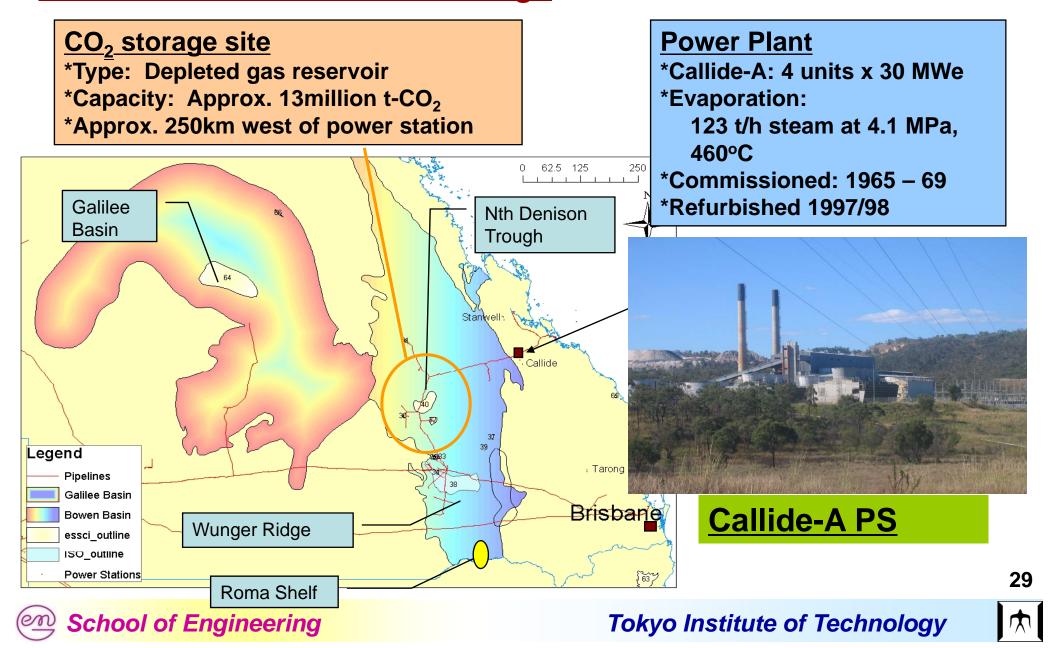
Flame Stabilization and Further Low-NOx by High Temperature Air Combustion


Flame stabilization by high temperature air combustion

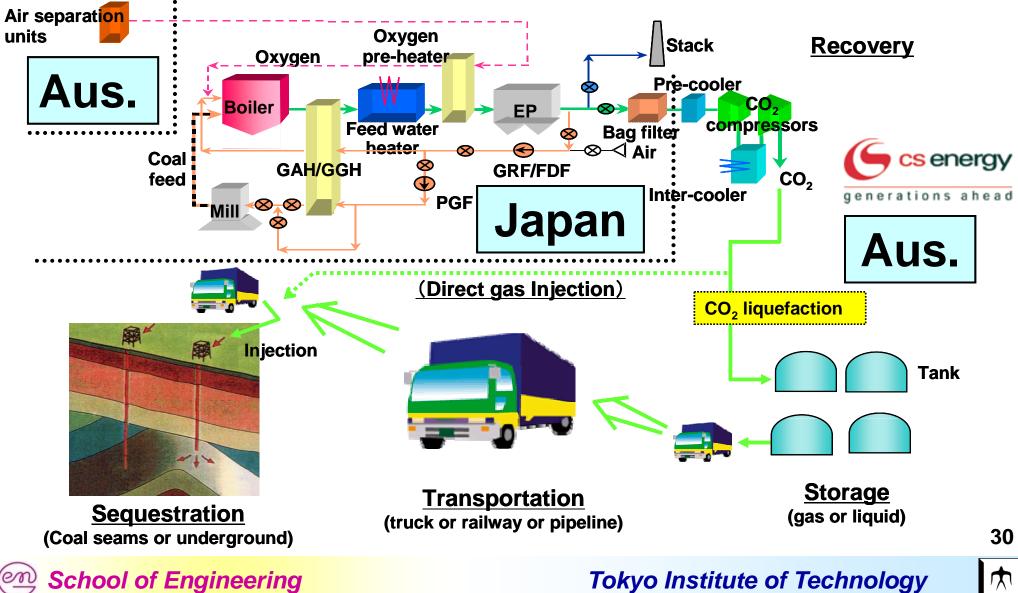
Further low-NOx by stronger reducing condition near a burner

Mathebric School of Engineering

Australia/Japan Oxy-firing Project

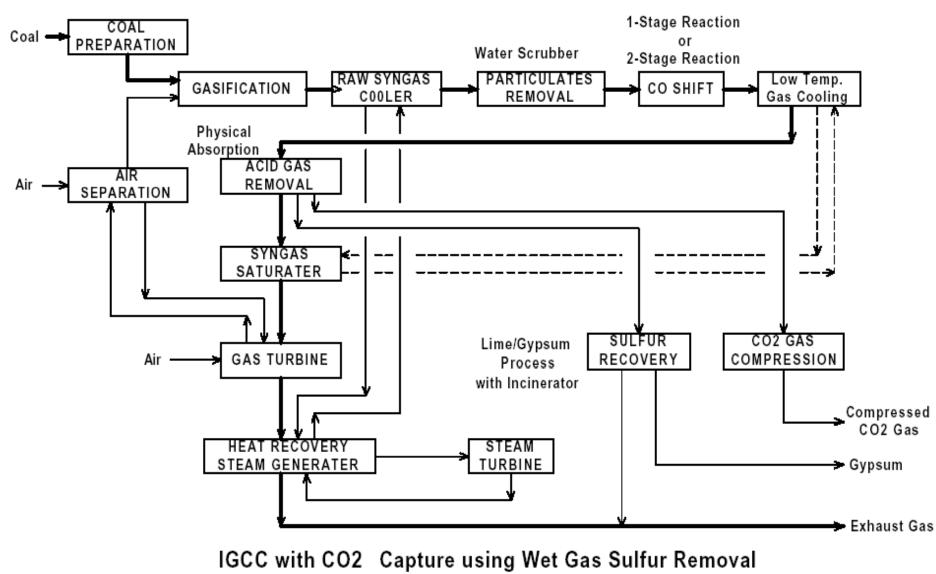

M School of Engineering

Tokyo Institute of Technology


28

<u>Australia/Japan Oxy-firing Project</u> <u>Site of Power Station and Storage</u>

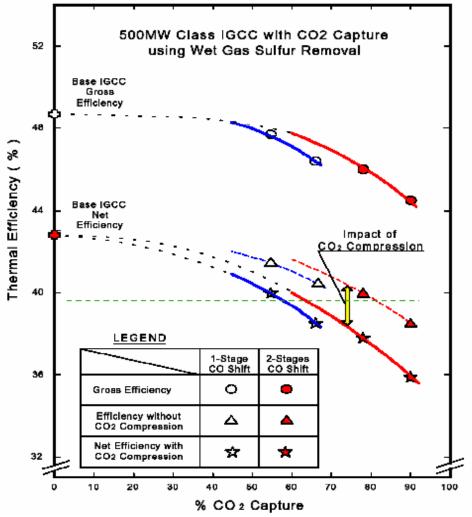
Australia/Japan Oxy-firing Project apan Coal Energy Cente



Net Energy Efficiency of Oxy-fired Coal Combustion

	Conventional combustion		
	Without CO ₂ recovery	MEA*	O_2/CO_2
CO ₂ recovery rate	-	90 %	90 %
Gross capacity	1000 MW	840 MW	1000 MW
Net capacity	946 MW	672 MW	720 MW
Gross efficiency	41.4 %	34.7 %	42.9 %
Net efficiency	39.1 %	27.8 %	30.9 %
O ₂ production / CO ₂ liquefaction	-	-	147 / 108 MW
CO_2 adsorption / CO_2 liquefaction	-	38 / 72 MW	-
Other utilities	54 MW	58 MW	25 MW

•MEA: Monoethanolamine, a typical absorbent used for CO₂ recovery in conventional coal combustion


Compensation of the decrease of net efficiency by combining active CO₂ recovery with IGCC

School of Engineering

 $\mathbf{\nabla}$

IGCC with Active CO2 Recovery

<<u>Amaike, A-J TEC, 1999</u>>

Net efficiency of IGCC with active CO₂ recovery

Integrated Coal Gasification Combined Cycle

IGCC (Integrated Coal Gasification Combined Cycle)

Clean Coal Power R&D Co., Ltd.
Air blown, entrained-flow gasifier
250MW demonstration, 2007-2009
High efficiency (20% CO₂ reduction)

- **EAGLE** Project, J-Power (EPDC)
- Oxygen blown, entrained-flow gasifier
- 150t/d pilot test, 2001-2009
- •High efficiency (30% CO₂ reduction)
- ●CO₂ capture test, 2007-

Coal Energy Application for Gas, Liquid & Electricity

Pilot plant at Wakamatsu Res. Inst., JPower

34

 $\overline{\mathbf{M}}$

Tokyo Institute of Technology

Bird eye's view of the demonstration plant

IGFC

IGFC (Integrated Coal Gasification Fuel Cell Combined Cycle) EAGLE (Coal Energy Application for Gas, Liquid & Electricity)

Tokyo Institute of Technology

 \mathbf{T}

Schedule of the EAGLE Project (STEP-2)

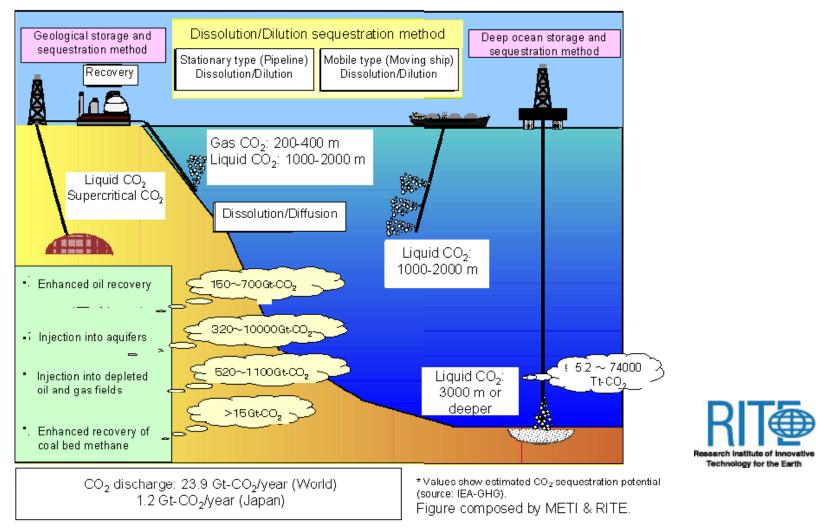
(FY)

	2007	2008	2009
CO2 Capture	Design		Test
	Со		
Coal flexibility test	Test		Test
	Remodeling Gasifier into high thermostability		
Survey of trace	Test		Test
elements behavior			



36

 \mathbf{T}



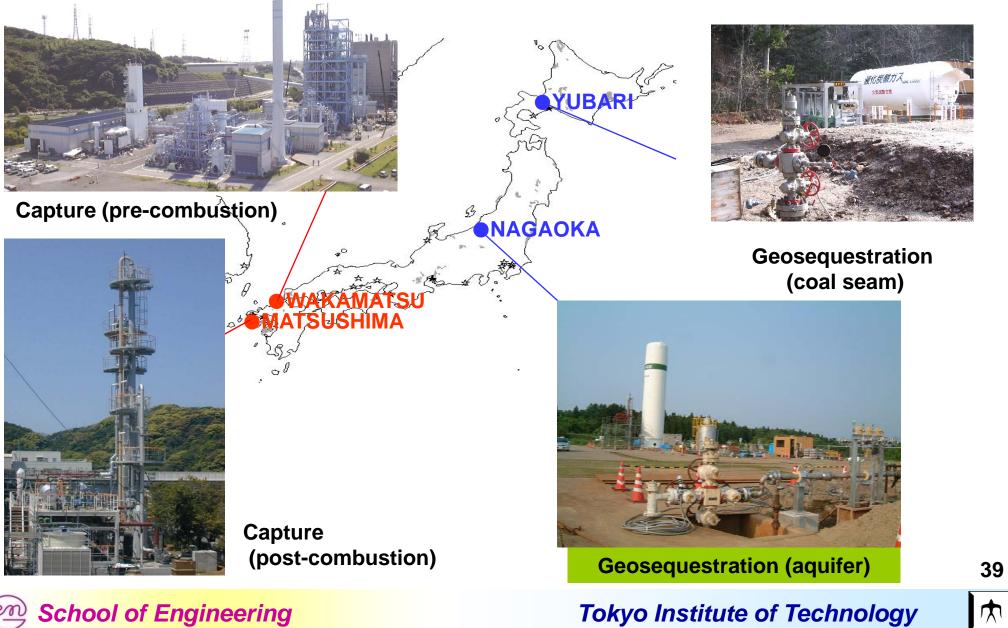
CO2 Capturing Test (without storage)

 \mathbf{x}

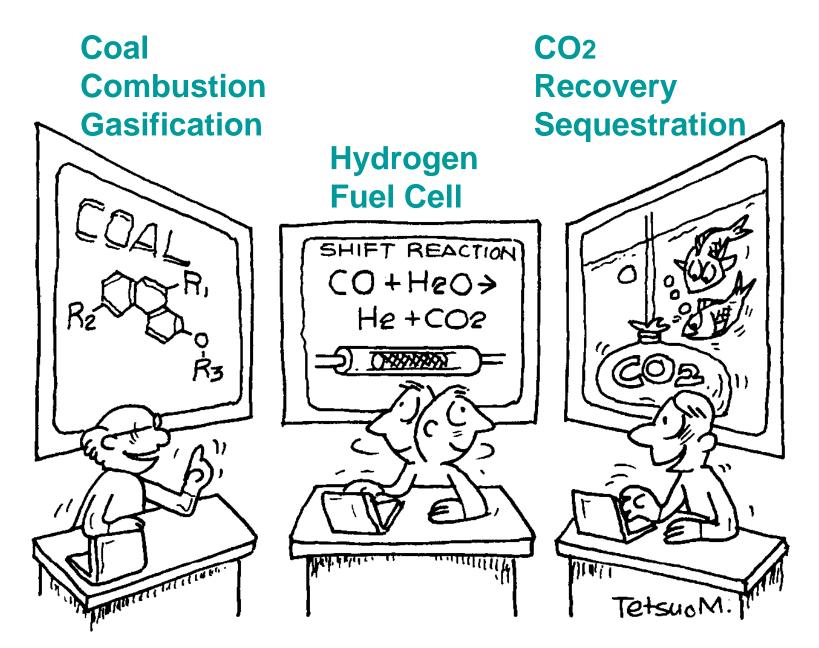
CO2 Sequestration Methodology

Sequestration technologies for a vast amount of CO₂

School of Engineering


Tokyo Institute of Technology

38


 $\overline{\mathbf{M}}$

CCS field test sites in Japan

Source: NEDO Home page, RITE Home page, JCOAL Home page

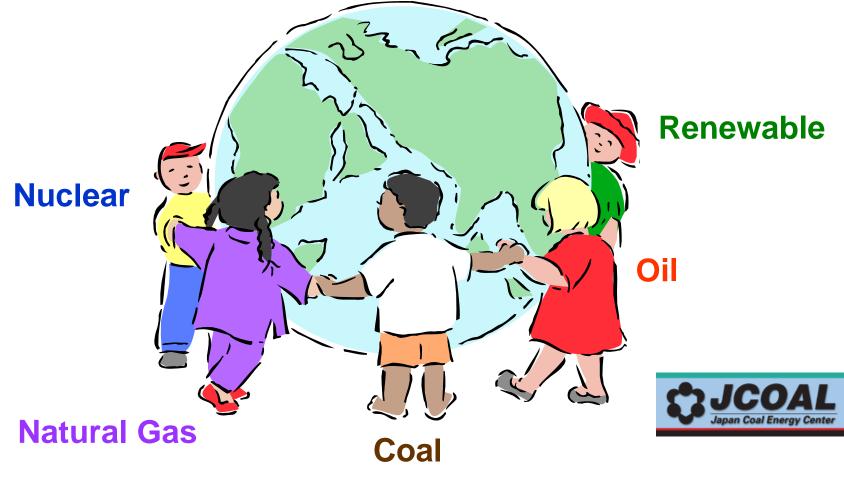
39

More and more collaborations among researchers of different field !

40

School of Engineering

Tokyo Institute of Technology


Concluding Remarks

- **1. Oxy-coal combustion is promising option** for easy and efficient CO₂ recovery by just applying existing technologies. 2. Conversion ratio from Fuel-N to NOx can be automatically reduced to 1/4 - 1/6. (Heat recirculation can significantly enhance this effect.) 3. Flame propagation velocity decreases to about 1/3 – 1/5. 4. Decrease of net efficiency in Oxy-firing
 - can be recovered by combining active CO2 recovery with IGCC or IGFC.

41

 $\overline{\mathcal{M}}$

We must enhance the value of coal by promoting the Clean Coal Technologies for our future.

Thank you for your attention !

School of Engineering

Tokyo Institute of Technology

 $\mathbf{\nabla}$

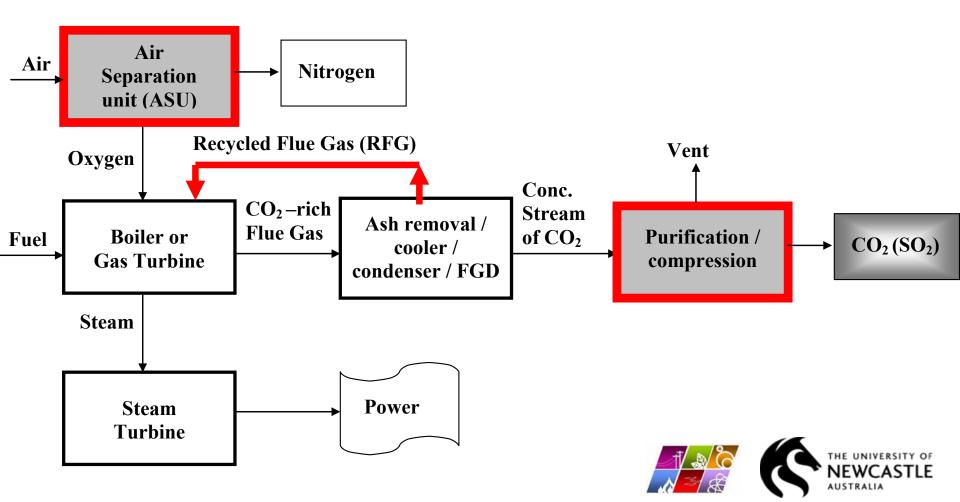
Performance of PF boilers Retrofitted with Oxy-coal Combustion:

Understanding Burnout, Coal Reactivity, Burner Operation and Furnace Heat Transfer

Terry F Wall

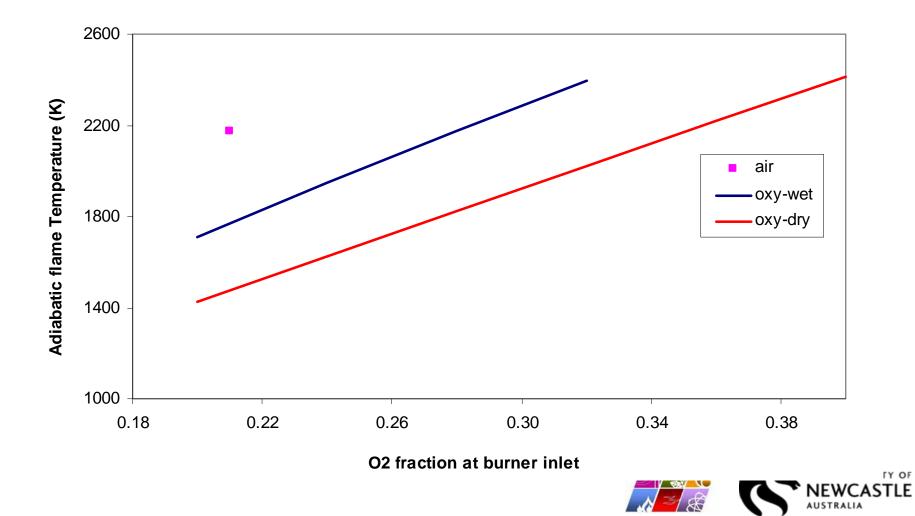
Priority Research Centre for Energy & CRC for Coal in Sustainable Development (CCSD), Chemical Engineering, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia

> IEAGHG International Oxy-Combustion Network Yokohama, Japan, March 5th/6th, 2008


Compares air and oxy-fuel furnace performance

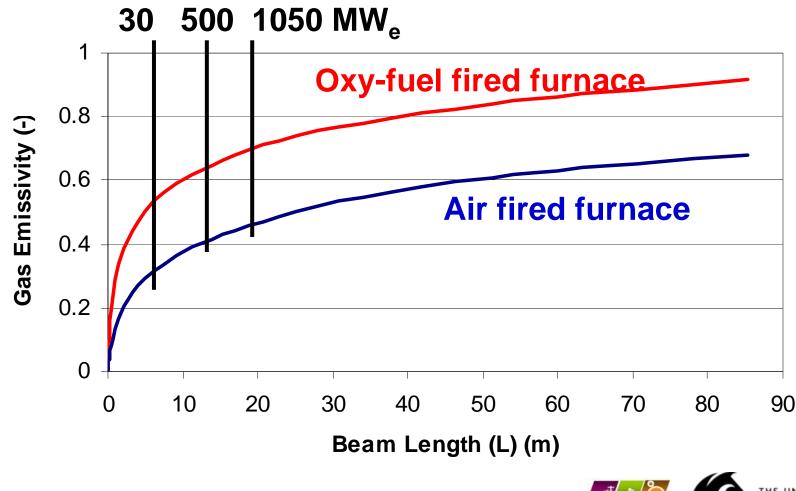
Retrofit of an existing air-fired boiler while maintaining heat transfer, considering

- •Conditions for matched heat transfer
- •Changed burner flows, with flame and heat transfer impacts
- •Coal reactivity and burnout impacts



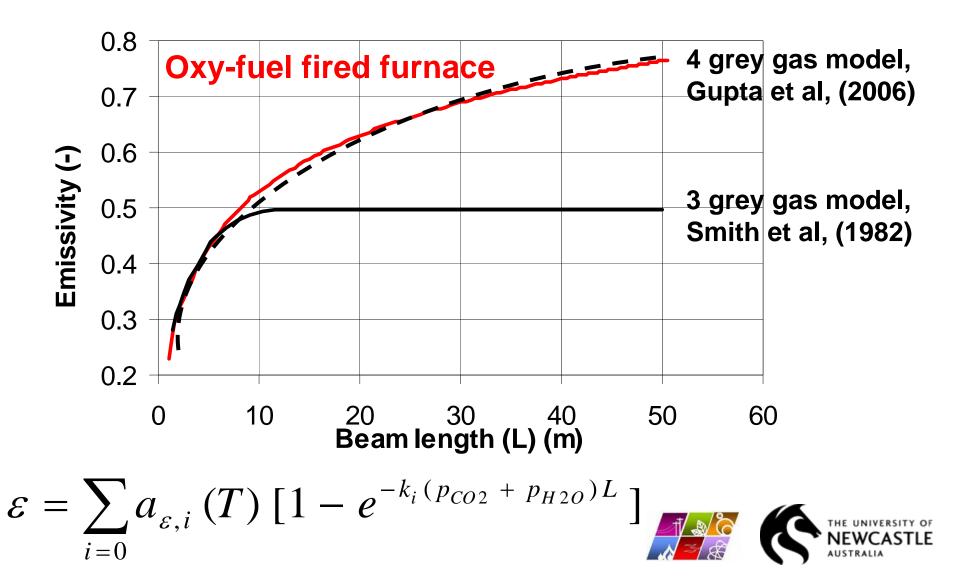
Heat transfer

AFT

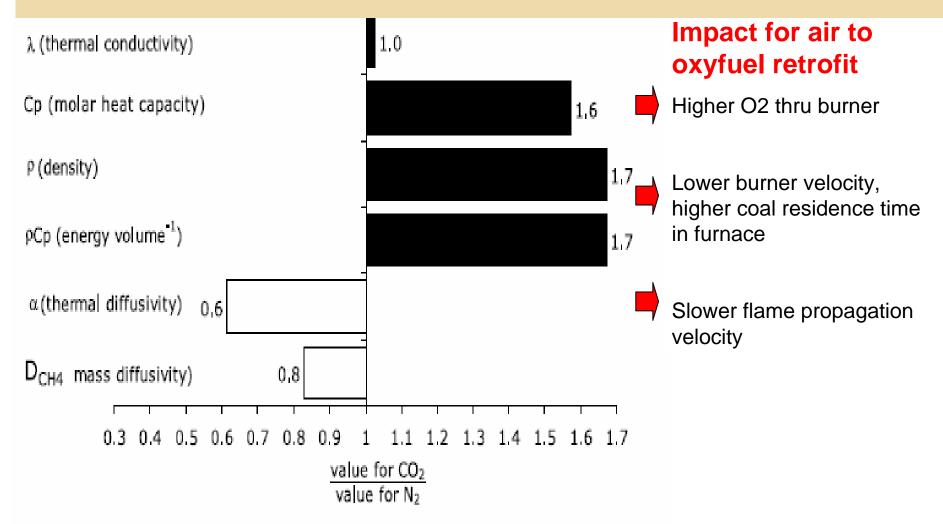


Oxy-fuel: differences of combustion in O₂/CO₂ compared to air firing

- •To attain a similar AFT the O_2 proportion of the gases through the burner is ~ 30%
- •The high proportions of CO_2 and H_2O in the furnace gases result in higher gas emissivities
- •The volume of gases flowing through the furnace is reduced
- •The volume of flue gas (after recycling) is reduced by about 80%.
- Recycle gases have higher concentrations in the furnace

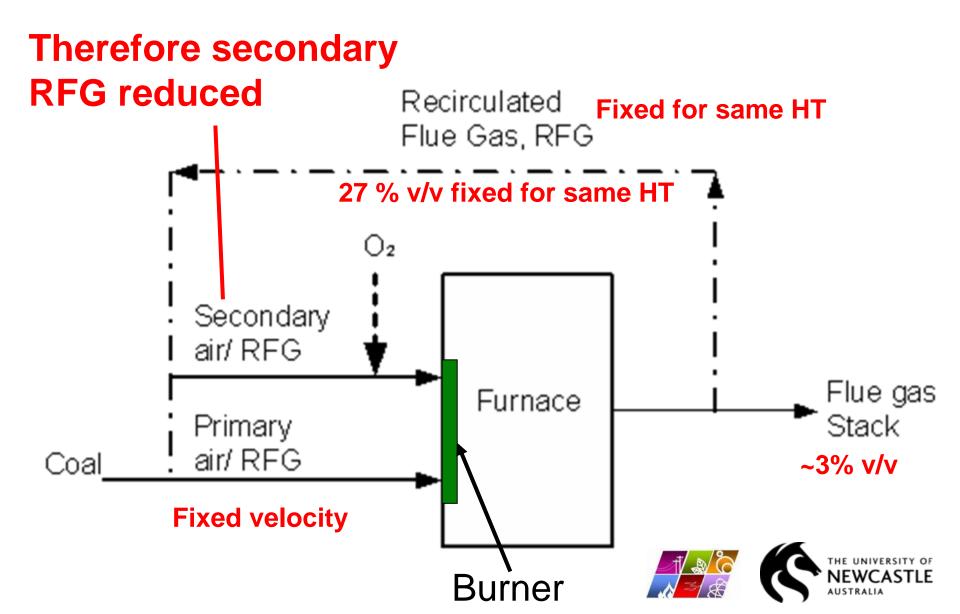


Gas property differences 1: Emissivity Triatomic gas (H₂O+CO₂) emissivity ~ beam length comparisons



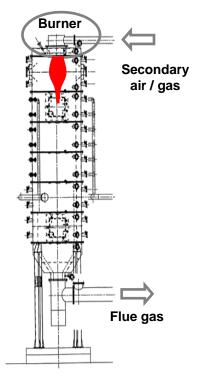
CFD radiative transfer inputs

Gas property differences 2: Heat capacity etc

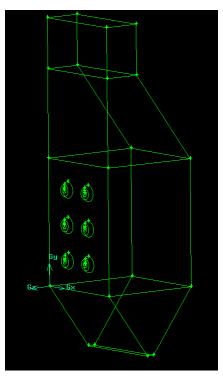


Gas property ratios for CO₂ and N₂ at 1200 K

Properties from Shaddix, 2006



Burner flow comparisons for a retrofit


Furnaces considered

Pilot scale- 1MWt

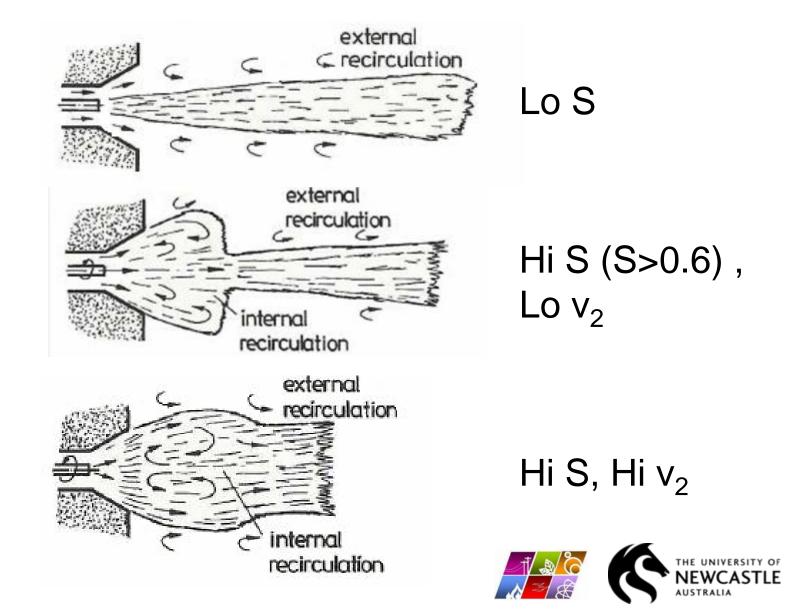
Furnace output:	1.2 MWt
<u>Furnace size :</u>	ID – 1.3 m & L – 7 m
<u>Burner :</u>	1 Swirl burner (sec) & Small burner Quarl
<u>Tests:</u>	Air & Oxy-firing

Utility scale-30 MWe

1 MWt test conditions

Parameter		Full load		Partial load	
		Air case	Oxy case	Air case	Oxy case
Coal flow rate	kg/hr	120	120	72	72
Primary velocity	m/s	20	23	17	21
Secondary velocity	m/s	35	21	18	12
Secondary swirl number	-	0.2	0.2	0.2	0.2
Primary momentum flux	kg/s.m²/s²	35.7	54.1	20.9	36.8
Secondary momentum flux	kg/s.m ² /s ²	270.2	74.1	38.2	16.4
Momentum flux ratio (Pri/Sec)	-	0.13	0.73	0.55	2.25

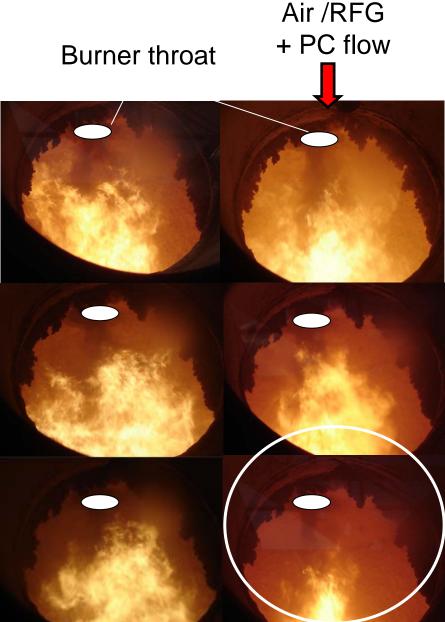
Preheated air/RFG: primary 350 - 400K and secondary 450 - 550 K, Wall 1200 K



IFRF Flame types from swirl burners

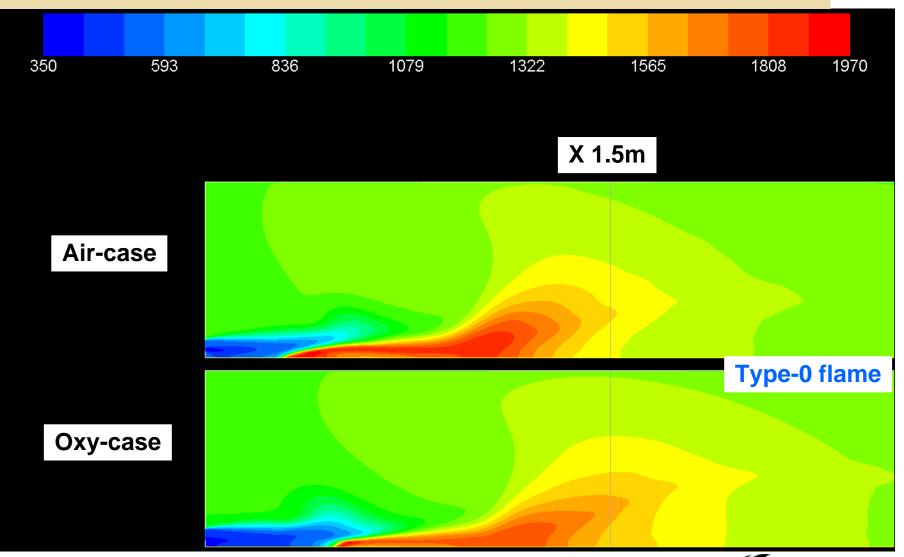
Type-0

Type-1

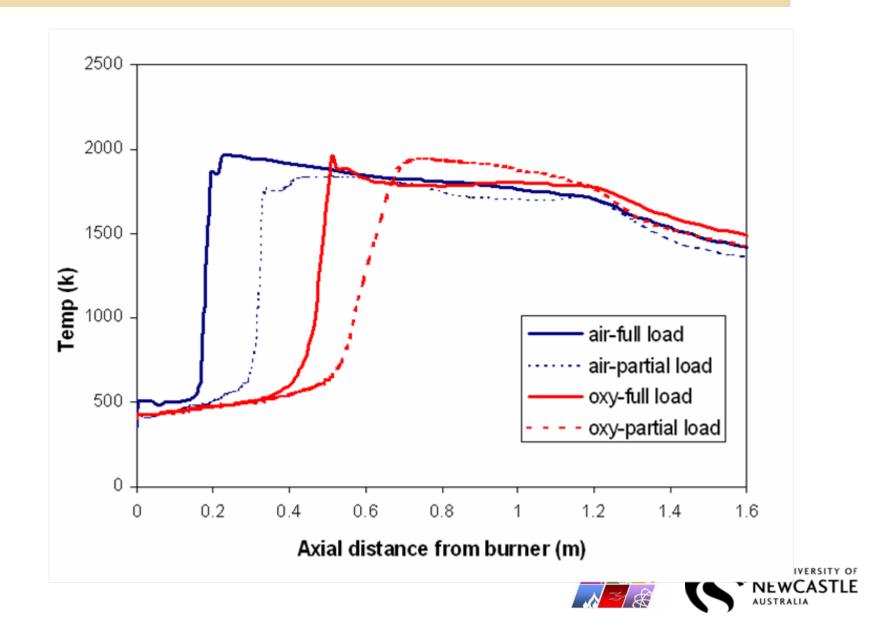

Type-2

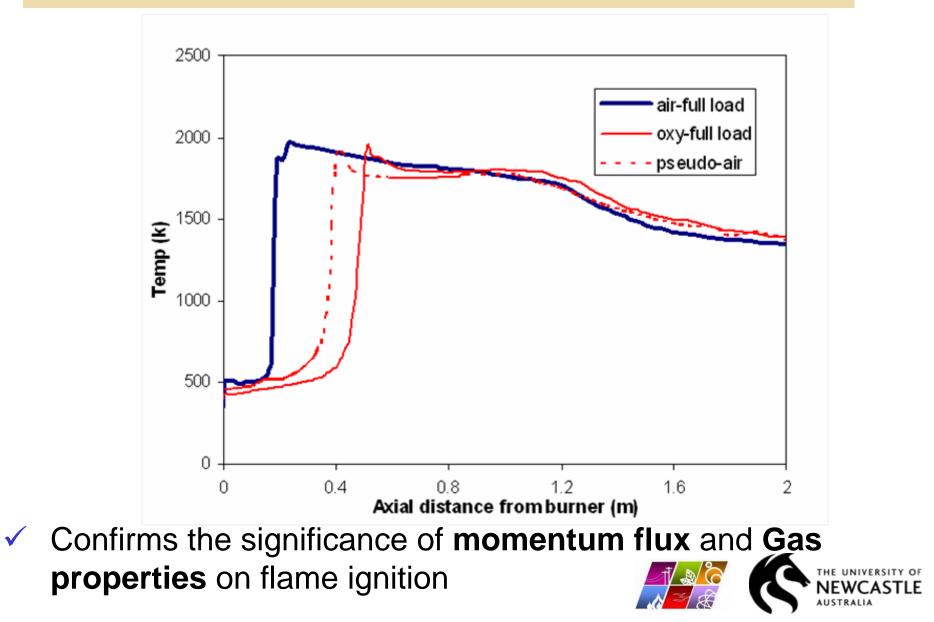
1 MWt: Flame shape & ignition delay

- All Type-0 flames 0.8MWt
- Difficult to distinguish between combustion modes _{0.64MWt}
- Ignition delay in partial load – oxy case

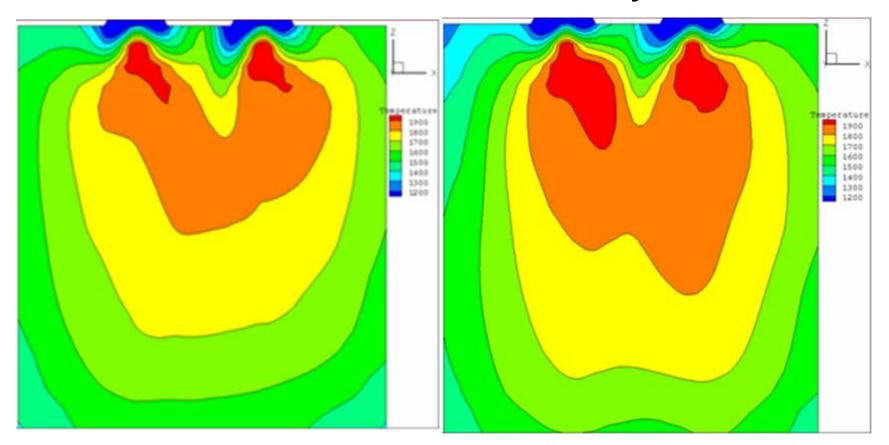

0.48MWt

Oxy mode r of INE WCAS I'LE AUSTRALIA

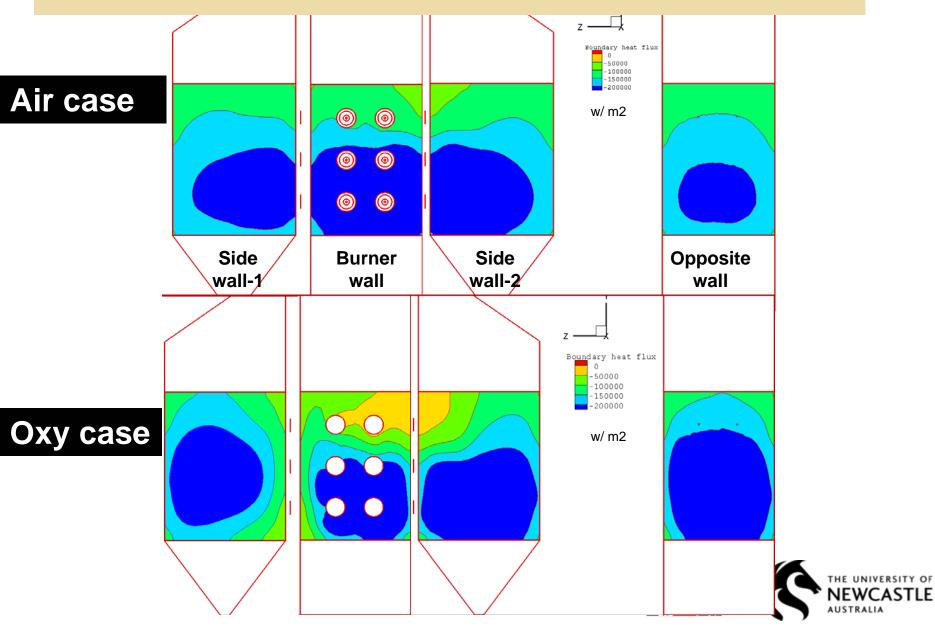

1 MWt – Temperature contours at full load



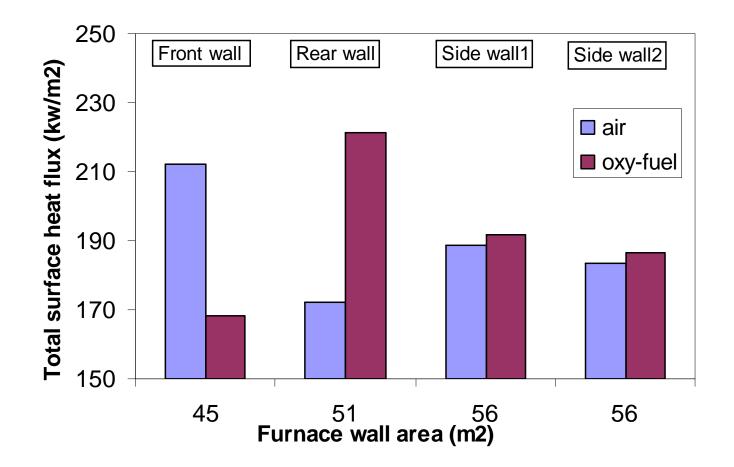
Sensitivity analysis – full & partial load


Effect of momentum flux

30 MWe Burner plane – Temperature contours

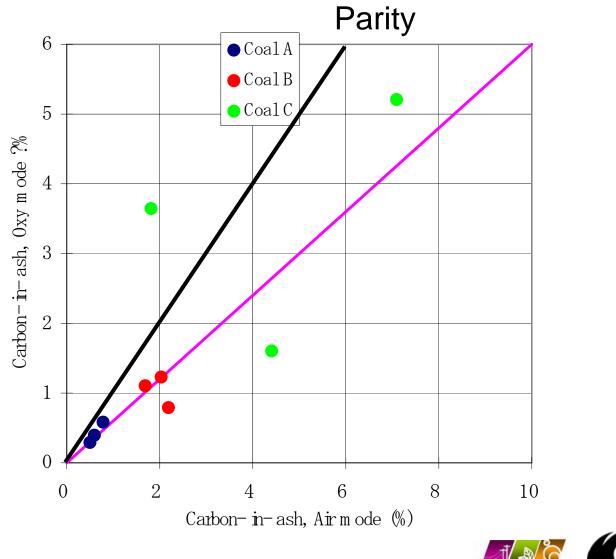

Air case

Oxy case



30 MWe Heat flux contours

30 MWe – heat transfer results

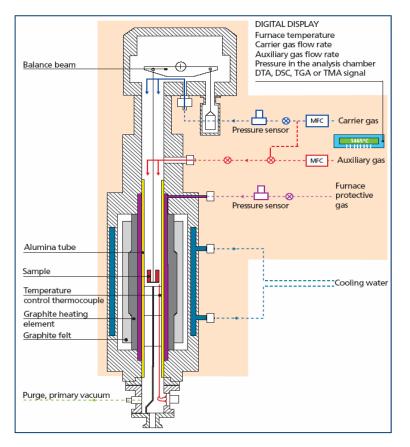


Coal burnout and reactivity

1 MWt Combustibility comparison

Illustrative differences in air and oxyfuel which influence burnout

For matched furnace heat transfer:


Oxyfuel has longer furnace residence time, ~20%

Oxyfuel has lower temperatures, ~ 50 oC

In oxyfuel, coal experiences an environment with higher O2

Experimental techniques

TGA - Low temperature reactivity measurements

DTF – High temperature reactivity measurements

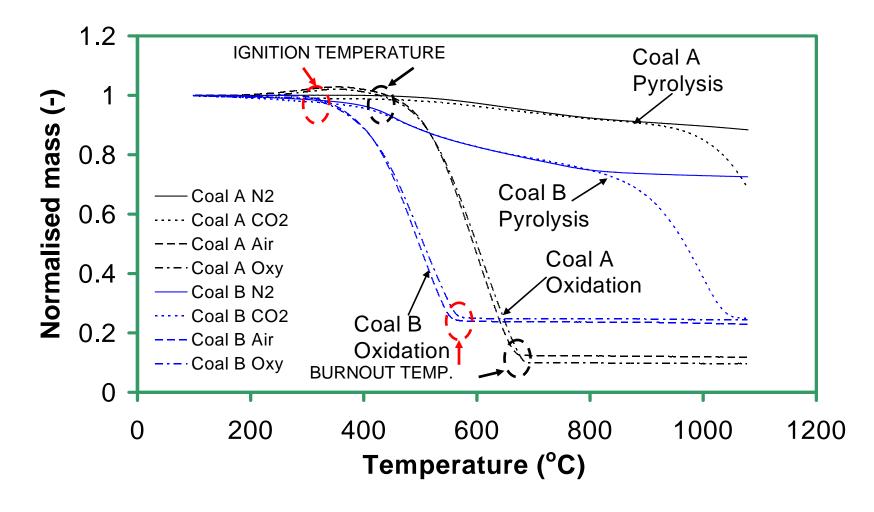
Coal properties

Size range	Australian	Australian		
+63-90 μm	Semi- Anthracite	Bituminous		
	(Coal A)	(Coal B)		
Proximate Analysis wt.% (air dried basis)				
Air-dried moisture	1.7	8.0		
Ash	9.8	19.9		
Volatile Matter	8.7	25.6		
Fixed Carbon	79.8	46.5		
Ultimate Analysis wt.% (daf basis)				
Carbon	91.4	79.1		
Hydrogen	3.77	4.51		
Nitrogen	1.88	1.16		
Sulphur	0.76	0.24		
Oxygen	2.2	15.0		

Experimental conditions

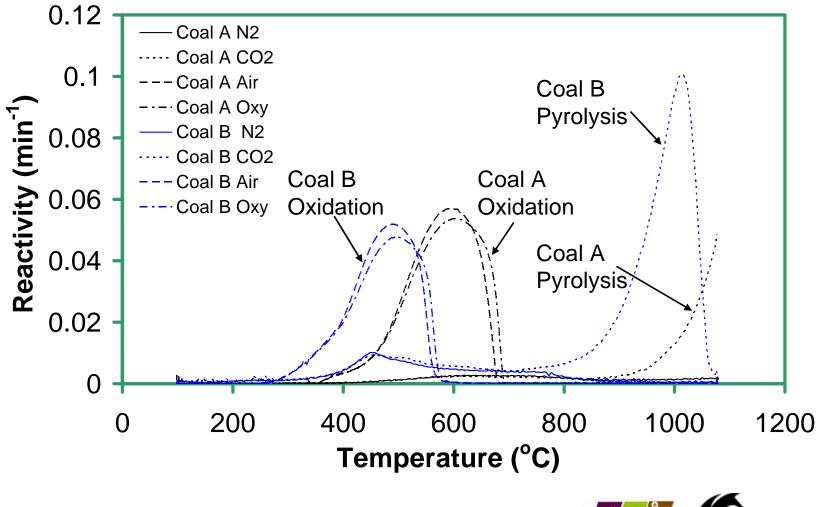
GAS ATMOSPHERES

Pyrolysis – 100% N_2 and 100% CO_2 Combustion -Air – 21% O_2 v/v basis in N_2 Oxy – 21% O_2 v/v basis in CO_2

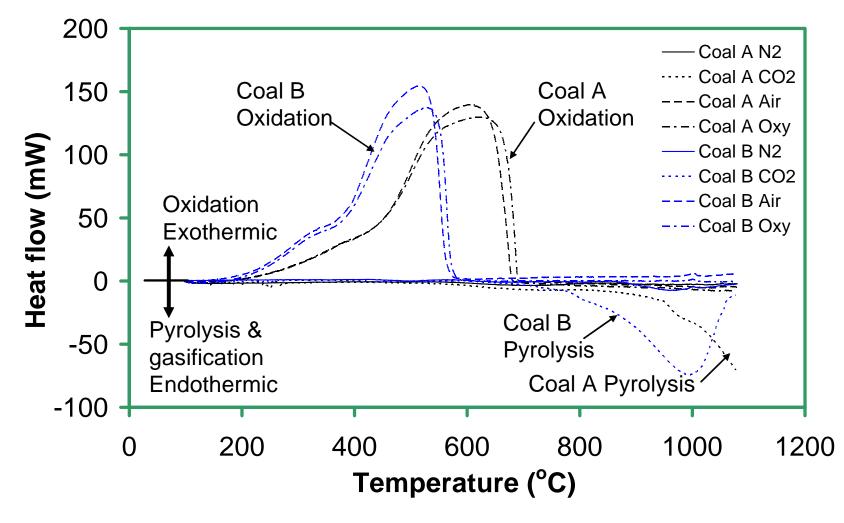

EXPERIMENTAL CONDITIONS

TGA		DTF
Parameter	Condition	Param
Sample mass (coal)	10 mg	Coal fe
Temperature range	30 to 1100 °C	Total g
(non-isothermal)		Gas te
Heating rate	10 °C /min	Oxyge
Gas flow rate		N ₂ /CO
	70 mL/min	_

Parameter	Condition
Coal feed rate	4 to 5 g/h
Total gas flow rate	5.2 L/min
Gas temperature	1400 °C
Oxygen concentration in N_2/CO_2	3 to 30 % v/v basis



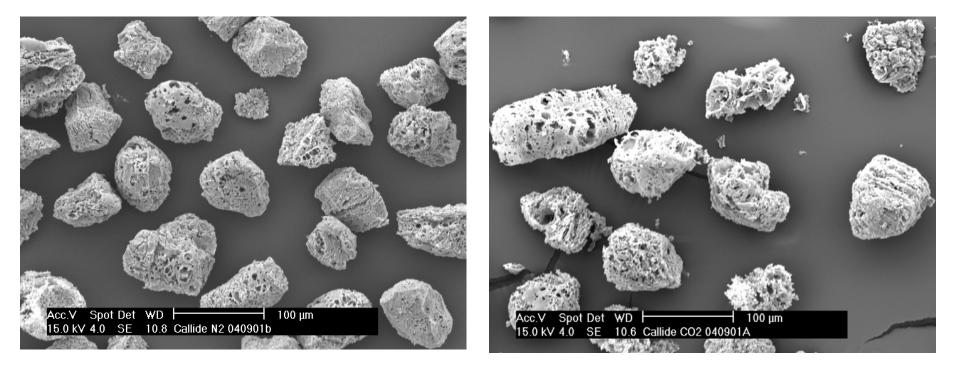
Ignition & burnout temperatures of Coal A & Coal B in TGA



Pyrolysis and oxidation reactivities of Coal A & Coal B in TGA

Heat flow during pyrolysis & oxidation of Coal A & Coal B in TGA

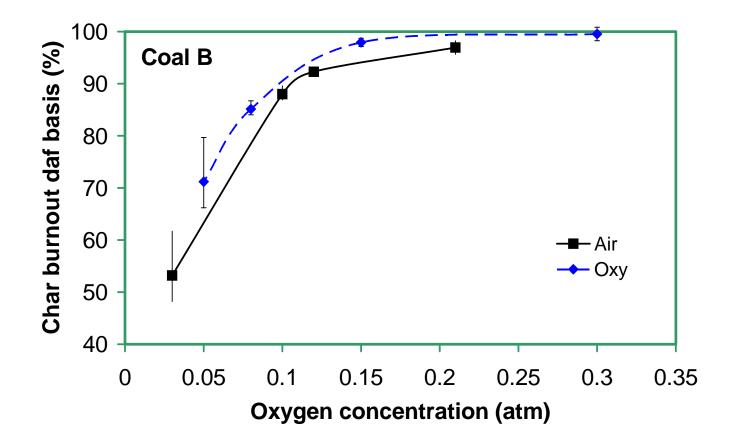
Volatile yields at 1400 oC


	Coal B	Coal C	Coal D
V* (N ₂)	36.7	30.9	53.5
Q factor (N ₂)	1.52	1.43	1.76
V* (CO ₂)	43.3	32.2	66.2
Q factor (CO ₂)	1.79	1.49	2.18

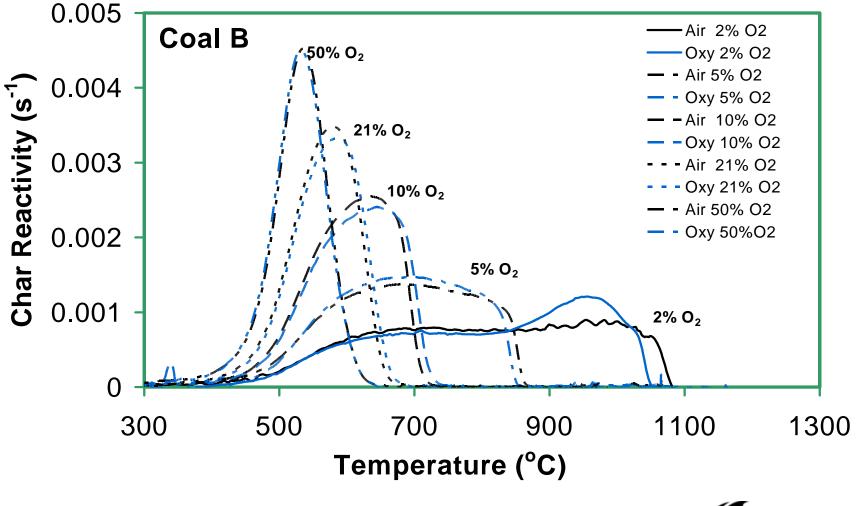
V* - Volatile yield at 1400 °C

Q factor – Ratio of V* and volatile yield obtained by proximate analysis

SEM pictures of N₂ & CO₂ chars formed in DTF at 1400 °C using Coal B

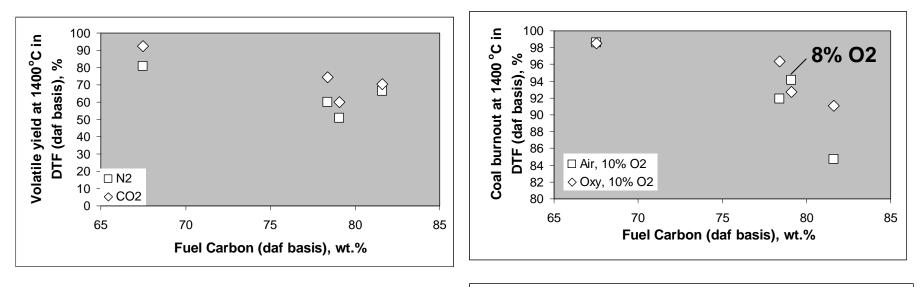


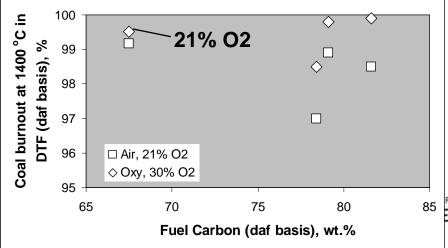
100% CO₂


100% N₂

Char burnout in DTF taking V*(N₂) to estimate char yield

DTF-char reactivity in TGA





Summary of reactivity data for 63-9) micron size cuts of four coals from DTF experiments at 1400 °C

Volatile yield in N2

Coal Burnout

Closing comments on impacts and effects in retrofits

Burner aerodynamics are changed for the air burners used in a retrofit

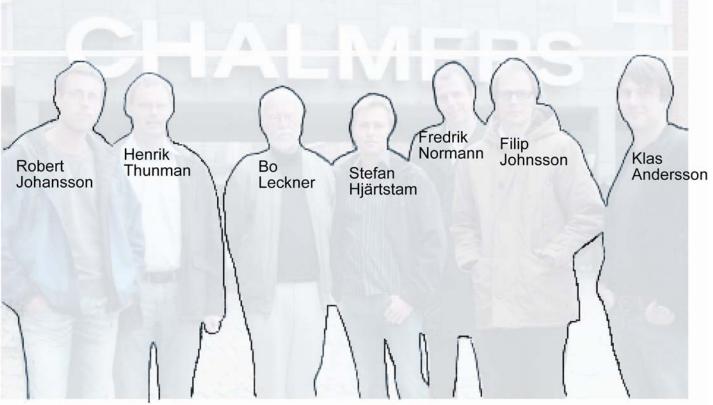
Heat transfer and aerodynamics are interrelated

Oxyfuel radiative transfer cfd prediction models have been developed

... and are now extending to a 400 MWe furnace

Improved burnout is expected and measured in retrofitted oxyfuel boilers, with mechanisms which can improve and worsen burnout

... and reactivity - as volatile yield and coal burnout - in oxyfuel conditions is greater than in air


Evaluation of gas radiation modeling in oxy-fired furnaces

Robert Johansson

Department of Energy and Environment Chalmers University of Technology

CHALMERS

The oxy-fuel group at Chalmers

Missing on the picture: Daniel Fleig Daniel Kühnemuth

• Collaboration with Vattenfall, FLUENT and IVD (Uni-Stuttgart), Alstom and DOOSAN Babcock etc.

Oxy-fuel research at Chalmers

Primary objective: Obtain knowledge of need for scaling of the process

Focus areas

Combustion chemistry: nitrogen, sulphur Heat transfer Fluid mechanics

Propane and lignite fired tests: Identify and characterize differences between oxy-fuel and air combustion conditions

Modeling: - More detailed modeling of gas radiation, NOx chemistry and sulphur chemistry in connection to the experiments - CFD-studies

Outline

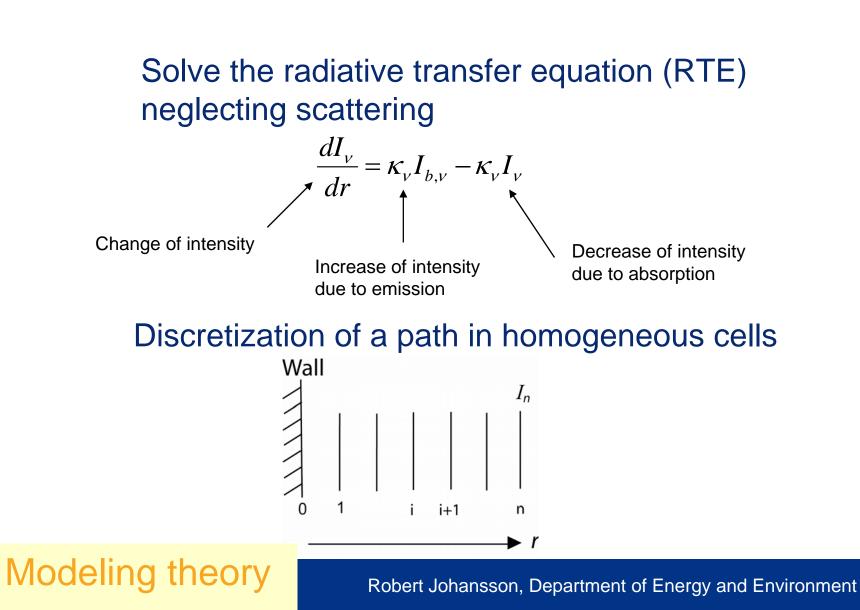
- Introduction
- Modeling theory
- •Experiments
- Results
- Conclusions

Background

Radiation heat transfer is of major importance in design of furnaces

Changed combustion conditions will affect the gas radiative heat transfer •Longer pressure path lengths •Different ratio of H₂O/CO₂

Introduction

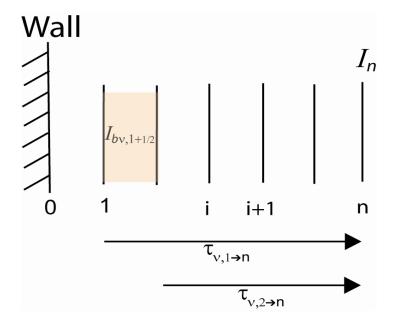

Purpose of the modeling work

Evaluate radiation models for conditions relevant to oxy-fired furnaces

Recommend models for CFD-calculations

Provide a tool that can be of help for evaluation of intensity measurements

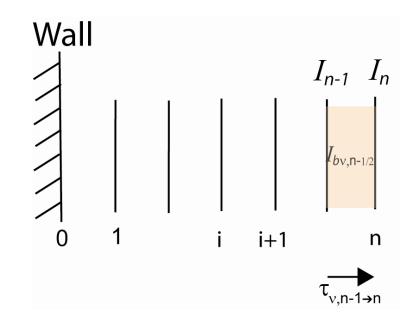
Introduction



CHALMERS

Correlated formulation

formal solution physically correct

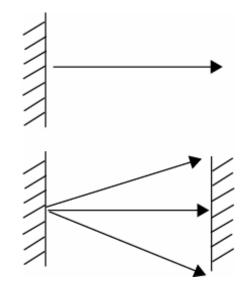

$$I_{\nu,n} = I_{\nu,0}\tau_{\nu,0\to n} + \sum_{i} I_{b\nu,i+1/2} \left(\tau_{\nu,i+1\to n} - \tau_{\nu,i\to n}\right)$$

Non-correlated formulation

requires less calculations the most commonly used approach in CFD

$$I_{\nu,n} = I_{\nu,n-1} \tau_{\nu,n-1 \to n} + I_{b\nu,n-1/2} (1 - \tau_{\nu,n-1 \to n})$$

Modeling theory


Tested models

	Model	Nr. of RTEs	Ranges of parameter validity		
Transmissivity models Correlated formulation	SNBM Malkmus Soufiani and Taine, 1997	367	Cover conditions of interest		
	SNBM Goody Leckner, 1972	686	Cover conditions of interest		
	EWBM Edwards, 1976	21	Cover conditions of interest		
Absorption coefficient models Non-correlated formulation	SLW Denison and Webb, 1993	Optional, 121 are used in this work (10 for each species)	Cover conditions of interest		
	WSGG Smith et al.1982	4	$\begin{array}{c} 600 < T < 2400 \\ 0.001 < PL < 10 \\ P_{H20} / P_{C02} = 1 \text{ or } 2 \\ 500 < T < 2500 \\ 0.001 < PL < 40 \\ P_{H20} / P_{C02} = 0.125 \text{ or } 1 \end{array}$		
	WSGG Optimized this work	3 or 4			

Modeling theory

Theoretical cases

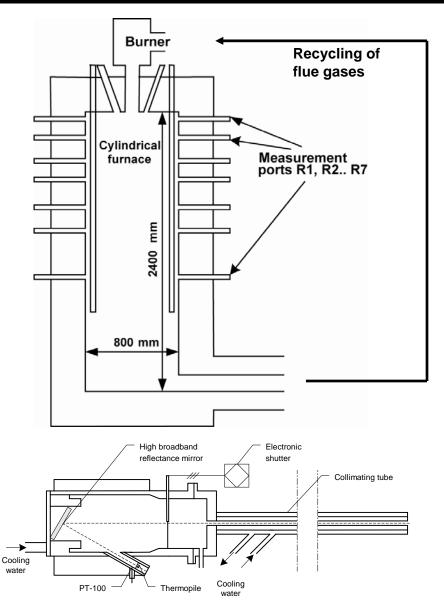
uniform and non-uniform paths radiative source term (infinite plates) wall fluxes (infinite plates)

Comparison with experiments

Modeling theory

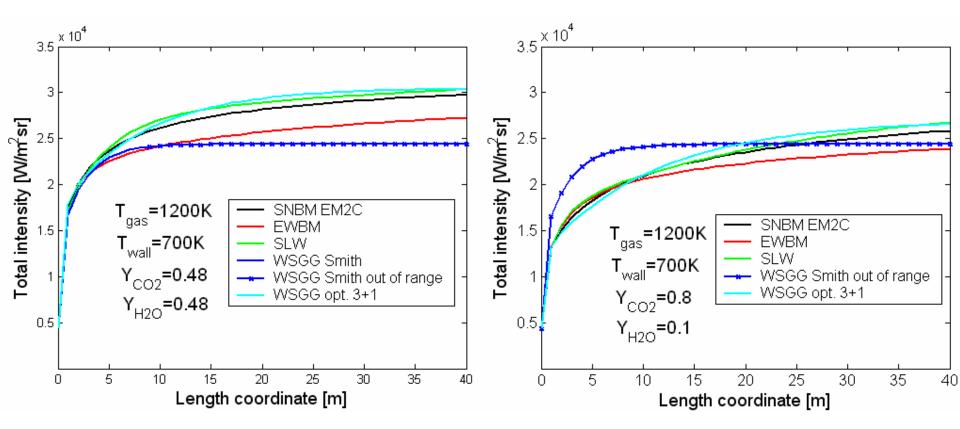
Experimental cases

Fuel	Test case	O₂ [vol.%, dry]		CO₂ [vol.%, dry]		Fuel input [kW]	S.R. (λ)	
		In	Out	In	Out	[]	(,,)	
Propane	Air	21	3.0	-	12	80	1.15	7
	OF 21	21	3.0	77	94	80	1.15	
	OF 27	27	3.8	71	94	80	1.15	
Lignite	Air	21	3.1	-	17	76	1.18	北
	OF 25	25	3.7	72	94	76	1.18	
	OF 27	27	3.9	71	94	76	1.18	
	OF 29	29	4.2	69	94	76	1.18	


Experiments

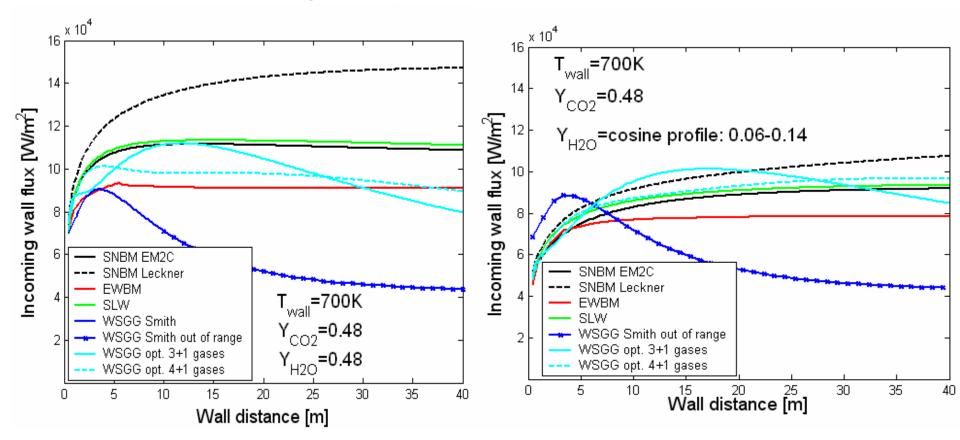
Measurements

Intensity, temperature and gas concentrations measured along the cross section of several ports.


Intensity measurements Narrow angle radiometer

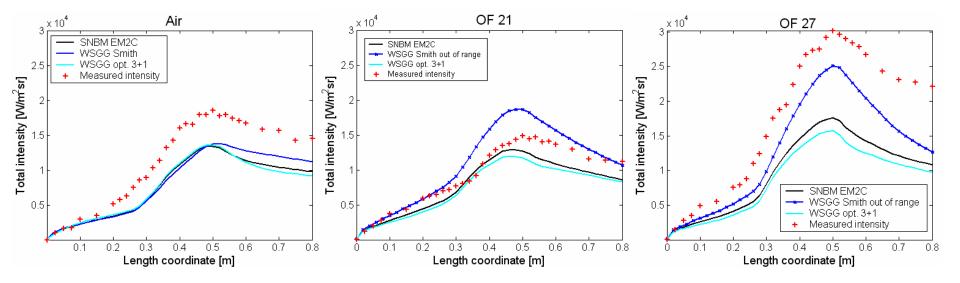
Cold black background

Experiments


Evaluation of models: uniform paths

Results

Evaluation of models: wall fluxes (infinite plates)

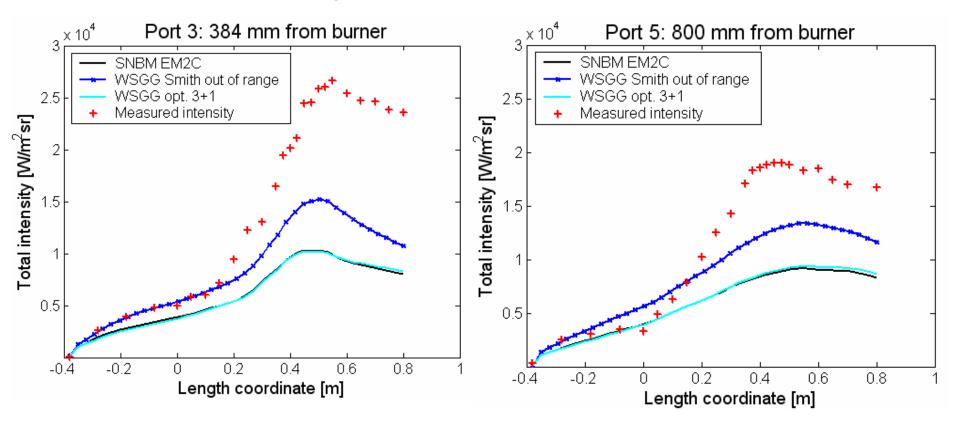

Temperature given by a cosine profile: 1000-1800K

Results

Comparison with experiments

Propane flame Port 3: 384mm from burner

Results


Comparison with experiments

Results

Comparison with experiments

Lignite flame, OF25

Results

Conclusions

- The existing parameters of the WSGG model are intended for air fired conditions and often yield significant errors for conditions relevant for oxy-fired furnaces.
- The new WSGG parameters give results within 20% of the reference model.
- The WSGG model is suitable for CFD-calculations in terms of accuracy and computational cost.
- Conditions with significant amounts of soot and particles requires less accuracy of the gas radiation modeling.
- Modeling has confirmed the differences in soot concentration observed in the propane flames.

Thank you for your attention!

Stabilising Swirl Pulverised Coal Flames under Oxyfuel Conditions

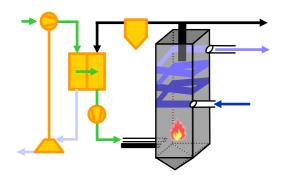
D. Toporov, M. Förster, R. Kneer

Institute of Heat and Mass Transfer, RWTH Aachen University, Germany

3rd Workshop

IEAGHG International Oxy-Combustion Network

Yokohama, Japan – 5th and 6th March, 2008



Overview

This talk presents computational analysis and experimental results of swirl flame stability under oxycoal conditions

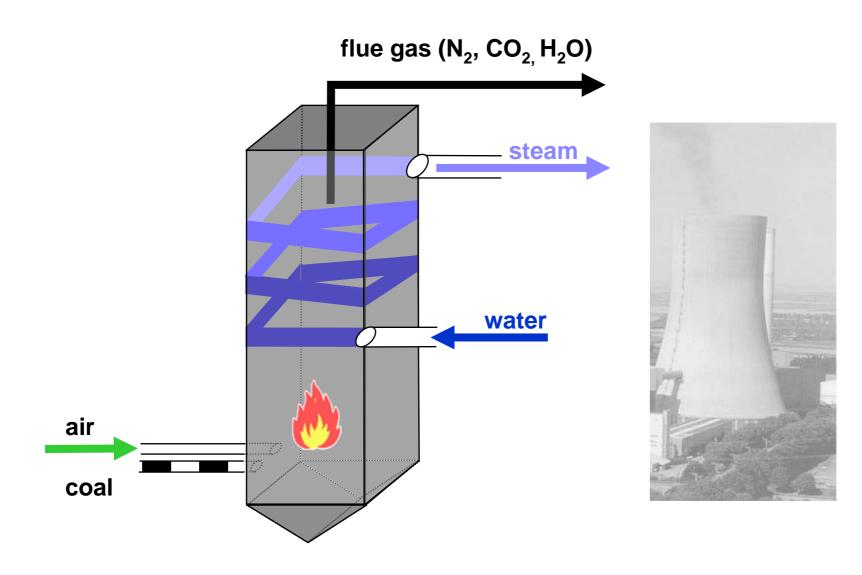
OXYCOAL-AC Project

Experimental Set-Up

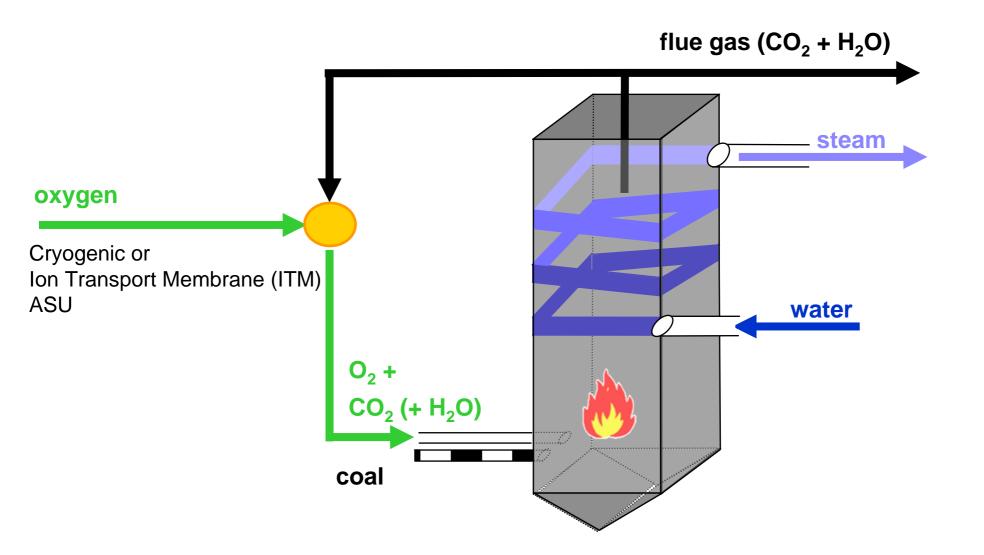
Oxycoal Burner Design & Computational Predictions

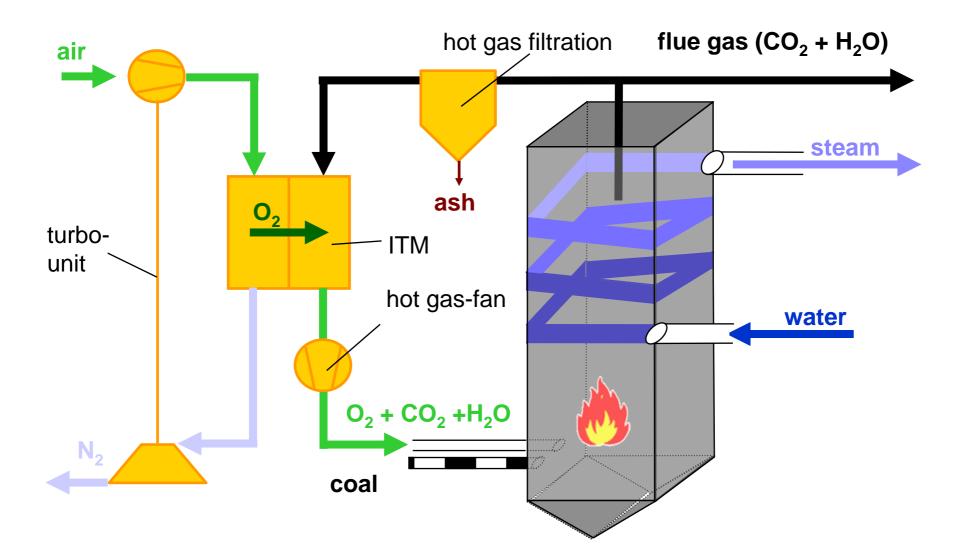
Experimental Results

Conventional Power Plant



Block K, 1012MW_{el}, net efficiency over 43 %, lignite coal, RWE Power, Niederaussem, Germany


Conventional Steam Generator


Oxyfuel Process

OXYCOAL - AC Process

Cooperative Research Project OXYCOAL-AC

- Goal: Development of a Zero-CO₂-Emission Coal Combustion Process for Power Generation
- Topics: Coal Combustion in CO₂/O₂-Atmosphere High Temperature Membrane for Oxygen Supply

Funded by:

Partners at **RWTHAACHEN**

Institute of Heat and Mass Transfer

Institute of Automatic Control

Institute for Materials Application in Mech. Eng.

Dept. of Chemical Engineering

Institute of Jet Propulsion and Turbomachinery

Institute of Combustion Technology

Why ITM?

- Cheaper alternative to cryogenic-ASU due to:
 - reduced auxiliary power required

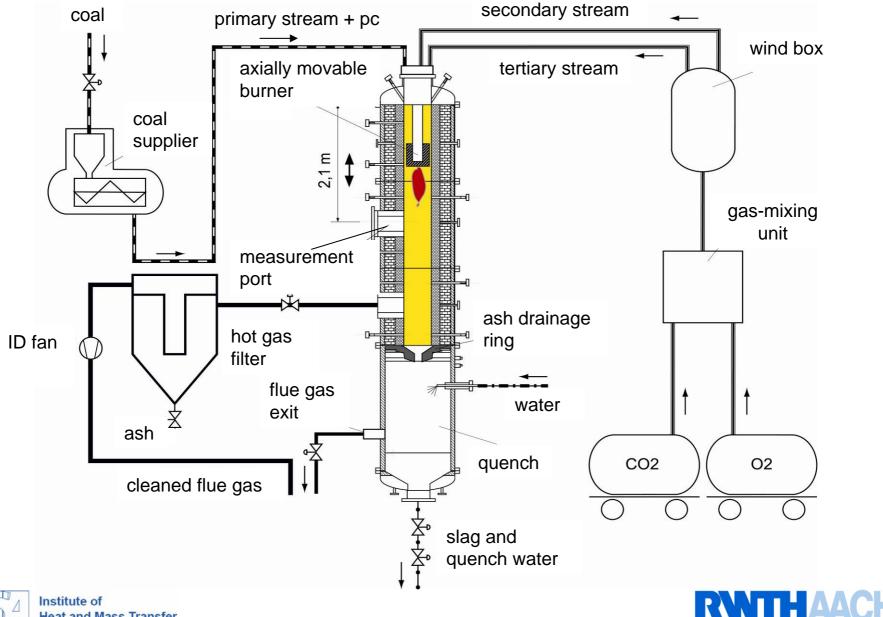
Challenges: □ ITM ← Combustion

- a reduction of the membrane surface area becomes possible by achieving good combustion performance at:
 - near stoichiometric conditions
 - low O₂-concentrations in the CO₂/O₂ mixture

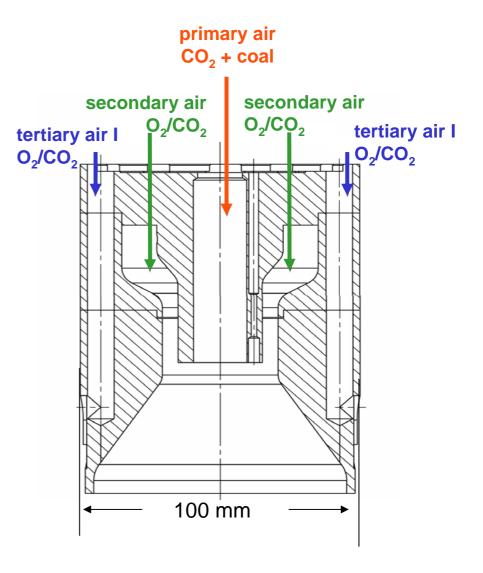
- To obtain stable and controlled oxycoal combustion at low O_2 -concentrations in the CO_2/O_2 mixture by identification of
 - the underlying mechanisms
 - the stability limits of an oxycoal swirl flame

- thermal conductivity, k
- molar heat capacity, C_{p}
- density, ρ
- thermal diffusivity,
- molecular weight, M

α


- ~ 9 % higher
- ~ 67 % higher
- ~ 57 % higher
- ~ 35 % lower
- ~ 57 % higher
- radiative properties differ significantly

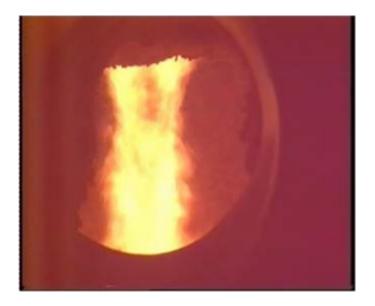
WSA OXYCOAL Test Facility



Burner Development

Base:

- Swirling pulverized coal burner for air operation (burner A)
- Fuel: Rhenish lignite (pre-dried)
 - water: 8.4 %
 - ash: 4.1 %
 - VM: 46.6 %
 - FC: 40.9 %
 - HV: 22173 kJ/kg
- Wall conditions 1200 K
- Inlet temperature
 - PA and SA 330 K
 - TA II 900 K
- Lambda 1.3



Operation of Burner A: AIR and OXYCOAL Mode (80 kW)

AIR Operation:

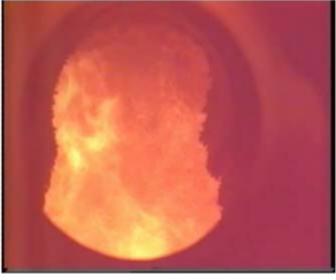
- primary: coal + air;
- secondary: air;
- tertiary: air

OXYCOAL Operation:

- primary:
- secondary:
- coal + 19% O₂; CO₂ 21% O₂; CO₂ 21% O₂; CO₂

- tertiary:

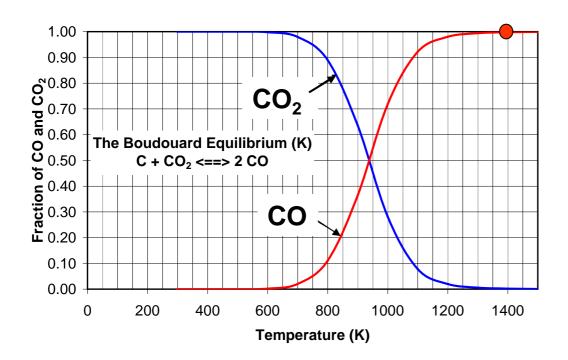
unstable combustion

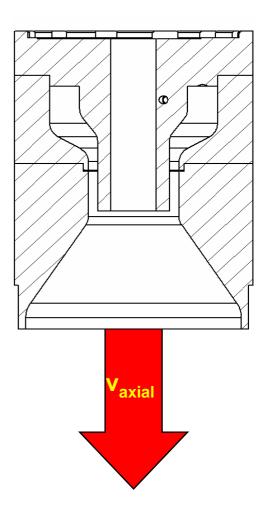

stable flame

Institute of Heat and Mass Transfer

OXYCOAL Tests with Increased O₂ - Levels

- In order to stabilise the flame at the burner quarl, the thermal load (respectively the velocities at the burner) was decreased to 40 kW
 Results:
 - A stable flame was obtained at the following conditions only:
 - transporting fluid: air $CO_2 + 19 \% O_2$ combusting fluid: $CO_2 + 27 \% O_2$ $CO_2 + 34 \% O_2$
 - Lower O₂ concentrations in the combusting fluid led to pulsating flame and unstable combustion





pulsating flame ($O_2 \sim 30 \%$ vol)

Boudouard Equilibrium

- Endothermic reaction (173 kJ/kmol)
- $CO_2 + C_s \rightarrow 2 CO$
 - \rightarrow Volume doubling (local oscillations)

Consequences with Respect to Burner Design

Phenomena when replacing N_2 by CO_2 :

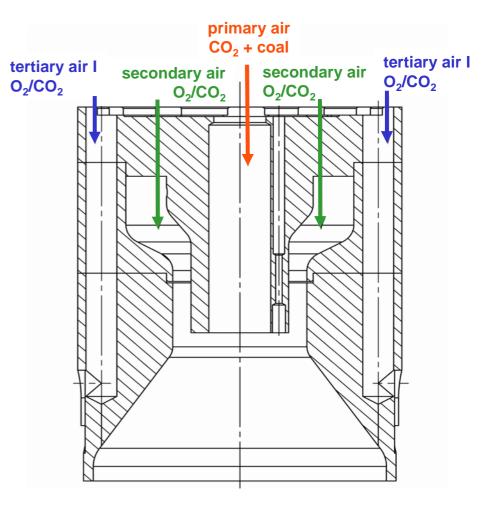
- Increased specific heat capacity: $c_{p,molar}$ (CO₂) > $c_{p,molar}$ (N₂); by ~ 70 %
- CO-production due to Boudouard reaction:
 - volume doubling leads to local flame oscillations
 - endothermic reaction limits the particle temperature rise

Counter-measures:

- Achieving constant velocities at the burner
 - by stabilising the CO-production
- Compensation for higher molar c_p and for the Boudouard reaction
 - by increasing the heat supply to the burner quarl

Solution:

Increased internal recirculation of hot combustion products

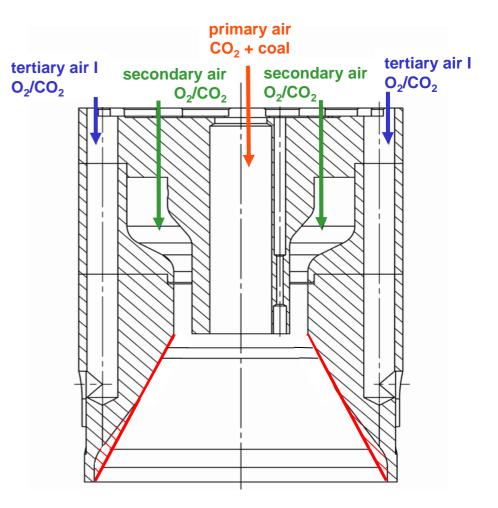


From burner A to burner Oxy-1

Approach:

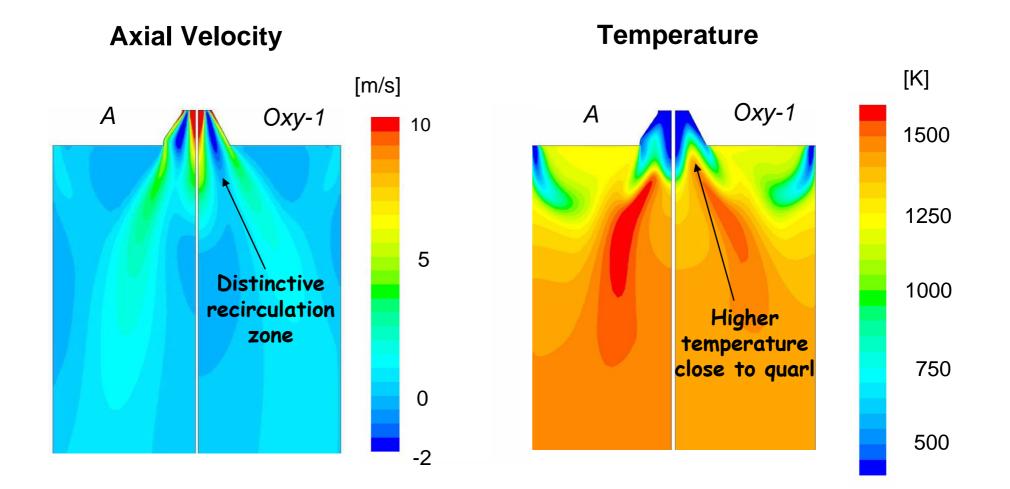
- CFD based burner design
 - change of the quarl of burner *A* by removing the parallel ending quarl:
 - increasing the recirculation within the quarl
 - two heterogeneous reactions have to be considered:

 $\rightarrow C_s + 1/2 O_2 \rightarrow CO$ $\rightarrow C_s + CO_2 \rightarrow 2 CO$

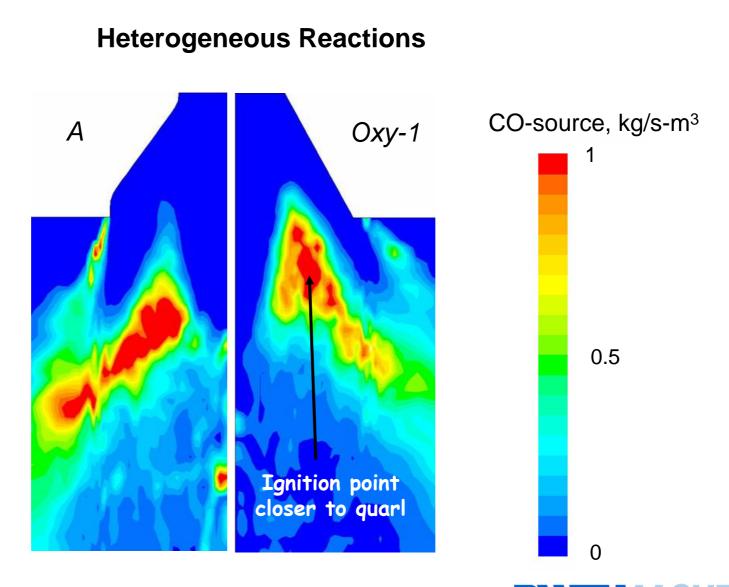


From burner A to burner Oxy-1

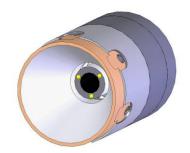
Approach:


- CFD based burner design
 - change of the quarl of burner *A* by removing the parallel ending quarl:
 - increasing the recirculation within the quarl
 - two heterogeneous reactions have to be considered:

 $\rightarrow C_s + 1/2 O_2 \rightarrow CO$ $\rightarrow C_s + CO_2 \rightarrow 2 CO$

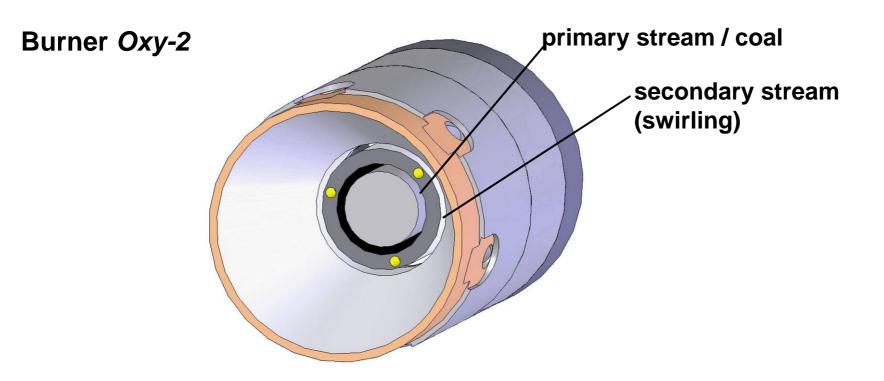


CFD-Simulation: Comparison – Burner A vs. Burner Oxy-1



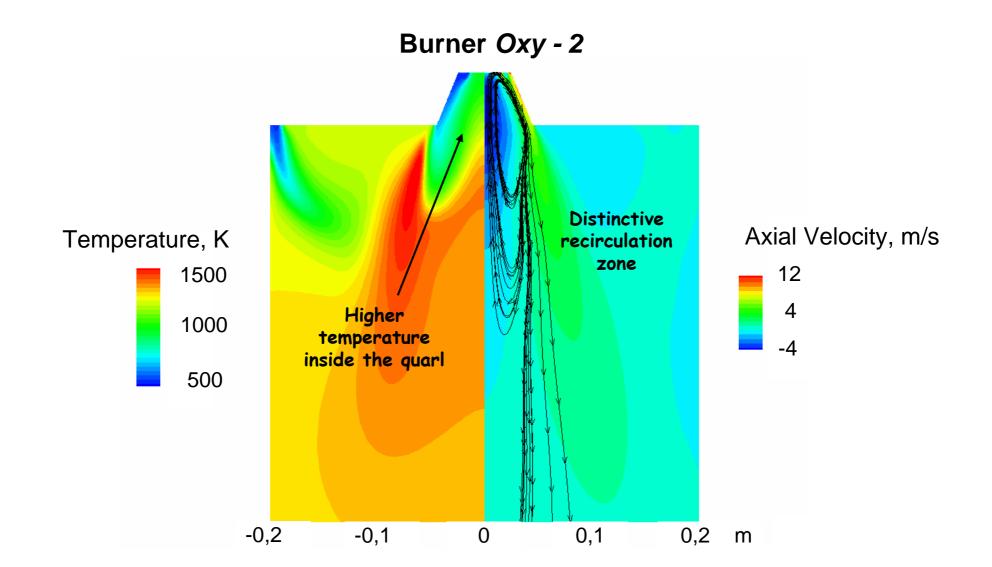
Flame of Burner Oxy-1

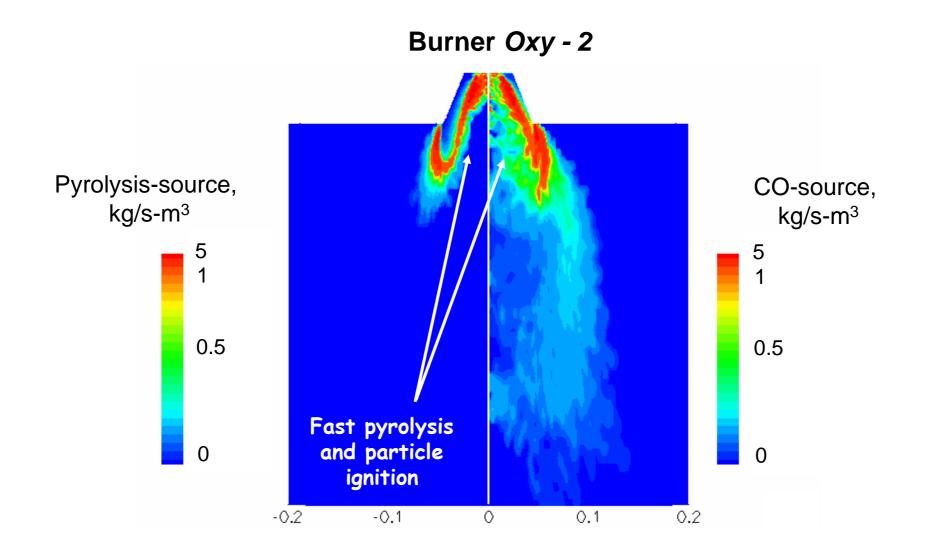
stable flame at ~ 23% O_2

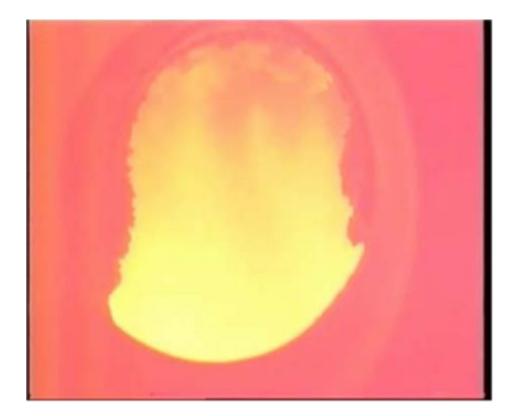


RNTHAACH

Further Development of the OXYCOAL - Burner


- Experimentally validated CFD simulations \rightarrow new burner geometry:
 - annular entrance for primary stream and coal (SAO type)
 - increase of internal recirculation yields stable OXYCOAL flame even at O₂ - concentrations around 18 Vol.-% (16 % seems feasible).


CFD-Simulation: Temperature & Aerodynamics


CFD-Simulation: Volatiles Release and Char Combustion

Flame of Burner Oxy-2

stable flame at ~ 21% $O_2!$

Flames of Burner Oxy-2

CO₂ ~ 82% O₂ ~ 18%

Flames of Burner *Oxy-2*

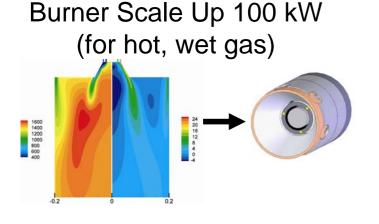
Comparison of Air and OXYCOAL Flames

Air flame

OXYCOAL flame

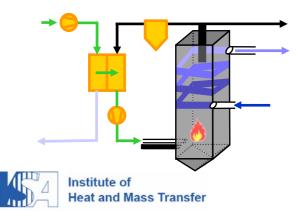
CO₂ ~ 79% O₂ ~ 21%

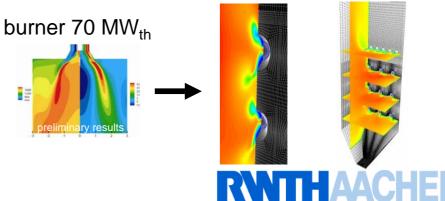
Conclusions


- A stable oxycoal flame with < 18% vol. O_2 -concentrations in the CO_2/O_2 mixture was obtained!
 - Development of strong internal recirculation of hot products → an increase of the heat supply to the burner quarl:
 - stable CO-production
 - compensation for:
 - higher heat capacity
 - Boudouard endothermic reaction
- This achievement opens the possibilities to:
 - an efficient use of ITMs in an OXYCOAL process;
 - a design of industrial burners able to operate in both: air and oxycoal conditions
- Patent pending DE 102007021799.6.

Work in Progress

Building-Up of the Complete OXYCOAL Process at RWTH-Aachen


Implementation of hot gas filtration


Implementation of membrane module

Realisation of flue gas recirculation

CFD based design of full scale oxycoal burner & furnace - 1210MW_{th}

Acknowledgments

Industrial Partners:

RWE Power AG

E.ON Energie AG

SIEMENS Siemens AG

Institute for Materials **Application in Mechanical** Engineering

Institute of Automatic Control

Department of Chemical Eng.

Partners inside RWTH:

Transfer

Institute of Heat and Mass

WS-Wärmeprozesstechnik GmbH

Bundesministerium

für Wirtschaft

und Technologie

Funding by:

Institute of Heat and Mass Transfer

Institute of Jet Propulsion and **Turbo-machinery**

Institute of Combustion Technology

Ministerium für Innovation, Wissenschaft, Forschung und Technologie des Landes Nordrhein-Westfalen

Thank you !

ありがとう

(arigatou gozaimashita)

MODEL VALIDATION STUDIES FOR PULVERIZED COAL JET IGNITION IN O_2/CO_2 ENVIRONMENTS.

Jingwei Zhang, Eric G. Eddings, Jost O.L. Wendt, Philip J. Smith University of Utah

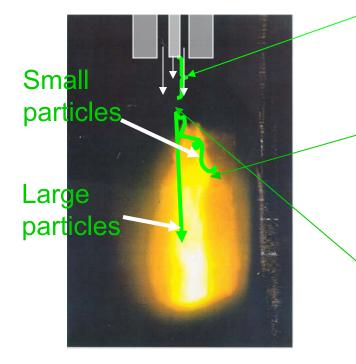
Presented at 3rd IEA GHG International Oxy-Combustion Network Workshop, Yokohama, Japan March 5-6, 2008.

Motivation for this study

- Enabling technology for retrofit in new, efficient, but initially planned as air-fired units that were proven for air firing.
- Short term applications where oxy-coal process still resembles a current boiler configuration.
- Main motivation for this study is to provide data to allow validation of a coal jet ignition submodel.
- Sub-model to be used in simulations for extrapolation from air fired to oxy-combustion
 Conditions

Retrofit issues: need for *validated* submodels to <u>extrapolate</u> from air to O_2

- Heat transfer sub-model
 - Radiant zone
 - Convection zone
- - Chemistry
 - Burner aerodynamics and heat transfer
- Char burnout sub-model
- Ash partitioning sub-model
 - Deposition
 - Trace metals
- Combustion by-products
 - NO_x, SO_x, Hg
- Integrated furnace model
 - Calculation of heat transfer, species, temperature profiles in all furnace zones as function of recycle ratio. For heat transfer see *Payne, Chen, Wolsky,* and Richter Combust. Sci. Technol, 67,1,1989


Scope of this research

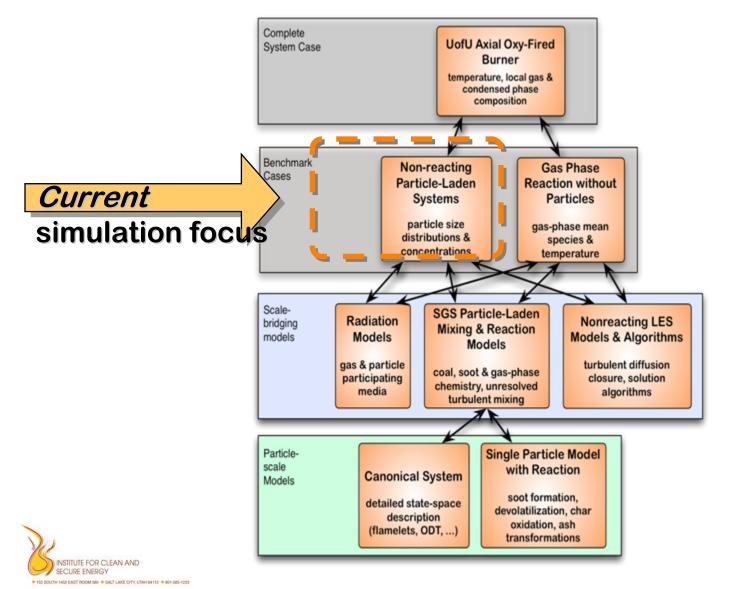
- Experimental data for validation of model simulations to be used for extrapolation to oxy-coal combustion conditions.
- Focus on turbulent coal jet ignition
 - Effects of P_{O2} in
 - Primary fuel jet
 - Secondary oxidant flow
 - Type 0 axial turbulent diffusion flames
 - Systematic experimentation and controlled conditions
 - Controlled wall temperatures
 - Independent control of velocities and moments through introduction of sleeves.
- Companion program on simulation

 Development of LES particle flow model to capture previously observed physical phenomena related to particle/eddy interactions..

OF UTAH

Coal jet ignition sub-model

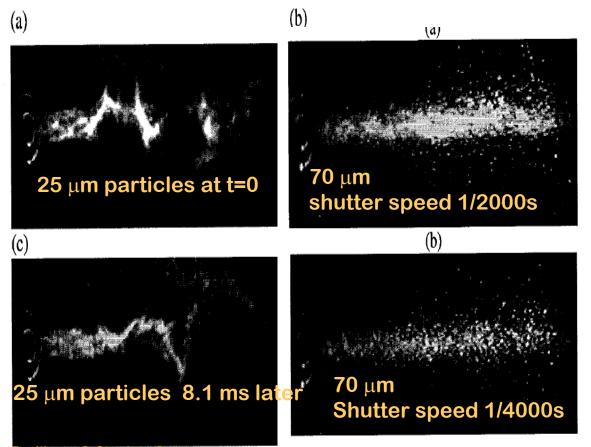
•Standoff ignition distance depends on primary jet velocities, and P_{O2} , which becomes an independent variable under oxy-coal combustion


•Sub-model should capture observations that smaller particles preferentially migrate to jet edge. *Sinclair Curtis (2003)*. Implications on effects of secondary P_{02} , also an independent variable.

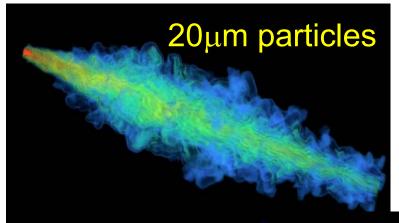
Pyrolysis behavior. (Naredi and Pisupati, 2007, Penn State University)
Particle ignition. (Shaddix and Molina, 2005, 2006, Sandia Labs) Influence of gas properties which vary heat transfer to coal particle.

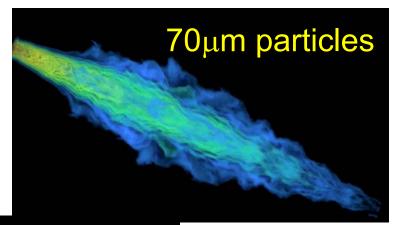
UNIVERSITY

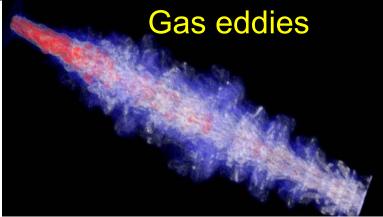
OF UTAH


Simulation: validation hierarchy

Experimental data: particle laden axial jet – LDV, cold flow.


(Budilarto and Sinclair-Curtis, 2003, Purdue U)




Budilarto & Sinclair-Curtis

Smaller particles migrate to outside of jet, and follow eddies. Important for particle ignition. Must be captured by simulatority

Simulation approach # 2: Large Eddy Simulation (LES): particle size effects

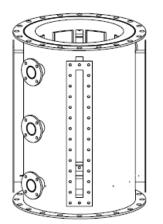
Result: LES simulation captures particle/eddy interactions and particle segregation effects.

Experimental work (in progress)

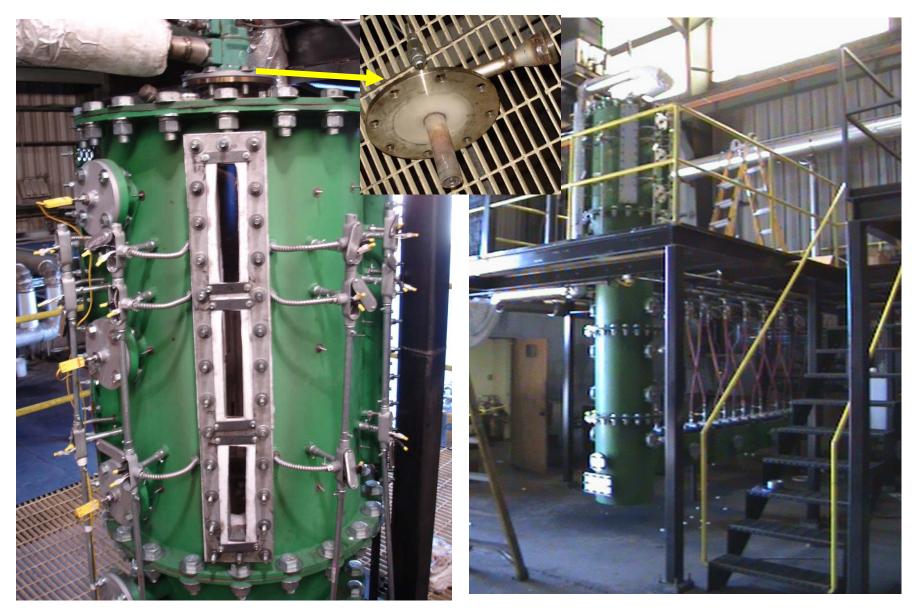
- Determine, in a systematic manner, how burner operating parameters and oxygen partial pressure influence flame attachment/detachment and coal ignition.
- Systematic investigation of near-burner aerodynamics and ignition zone for *Type 0* axial diffusion flames (no swirl)
- Use a mixture of O₂/CO₂ to replace either or both primary and secondary air
- Produce data on flame detachment and flame length for simulation validation studies

Design and construction of UU Oxy-Fuel Combustor (OFC).


- Up to 100 kW, down-fired, oxy-coal combustion furnace.
- O₂ and CO₂ supply and delivery infrastructure donated by Praxair C.
- Wall temperature controlled through electrically heated walls.
- Quartz windows for optical access to permit flame detachment/attachment studies and future optical diagnostics.
- Simulate the environments experienced by pulverized coal jet flames in boilers.
- Systematic control of burner momentum and velocity variables, and wall temperatures.

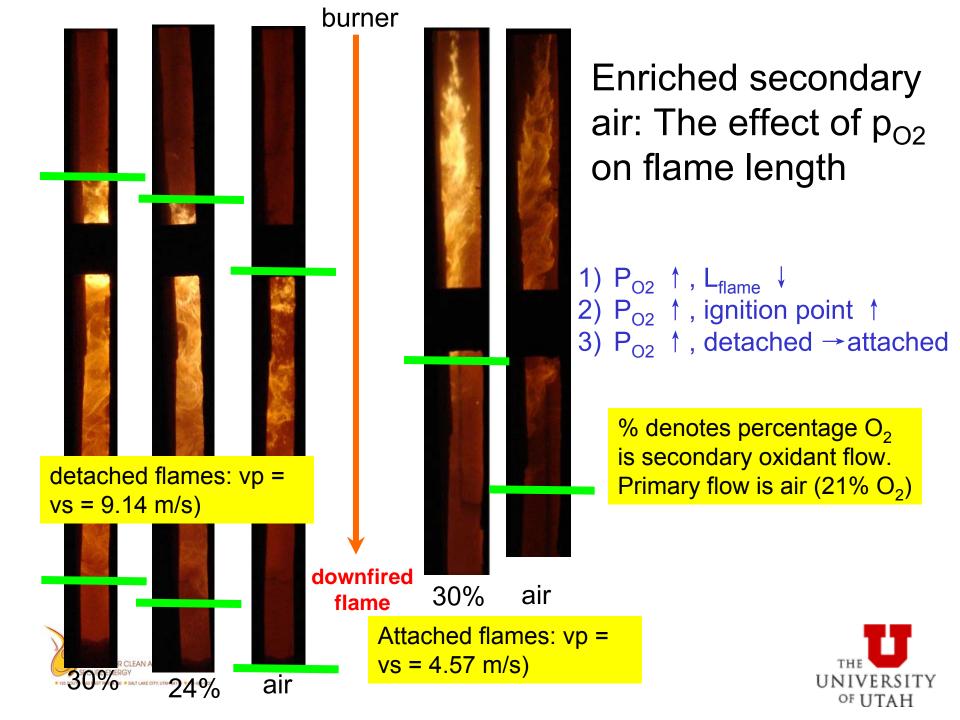


Design details


- Top section: 0.610 m I.D., 0.914 m O.D., 1.219 in height; 2600 Fiberboard (δ = 76 mm)
- 24 \times 840 W flanged ceramic plate heaters with k thermocouples controlling or monitoring the temperature
- 3 layers of insulation in radiant zone and 2 layers insulation in convection zone
- 8 heater exchangers to cool down flue gas
- A preheater (640K)

Preliminary data on "Oxy Enhanced" pc combustion- report of work in progress

- Praxair O₂, CO₂ tanks and delivery train under construction
- Primary air: pulverized coal + air
- Secondary air: air + O₂, O₂ concentrations vary 21% - 30%
- Current data
 - Flame length = $f(P_{O2} \text{ in sec. air})$
 - Temperature profiles and NO, CO, and O₂ flue gas concentrations versus air+coal combustion
 - O₂ enrichment in secondary air can attach flame and lower NO_x (not new).



Photographic records of flame lengths

- SR = $1.15 = 0.15_{\text{pri. air}} + 1.00_{\text{sec. air}}$
- Coal feeding rate = 1.95 kg/hr
- T_{walls} = 1361 K
- T_{preheater} = 589 K
- Primary air: 9.14 m/s
- Utah Bituminous Coal
- Only change P_{O2} in secondary air

Future work

- Solve current experimental challenges
 - Diminish coal feeding rate fluctuations
 - Shorten flame so that it can be viewed in its entirety through existing quartz window
 - Quantify photographic measurement techniques for flame shape and length
- Effects of systematic variations of
 - p_{O2} in secondary flow vs flame length
 - primary air velocity
 - p_{O2} in primary air

STITUTE FOR CLEAN AND

CUTH 1452 EAST BOOM 380 . SALT LAKE CITY LITAH 64112 . 801-585-1231

- secondary air velocity
- Effect of wall temperatures
- Effect of preheating temperatures
- Use $CO_2 + O_2$ to replace air + O_2
- Effects of coal composition
- Model validation with simulation group.

Acknowledgments

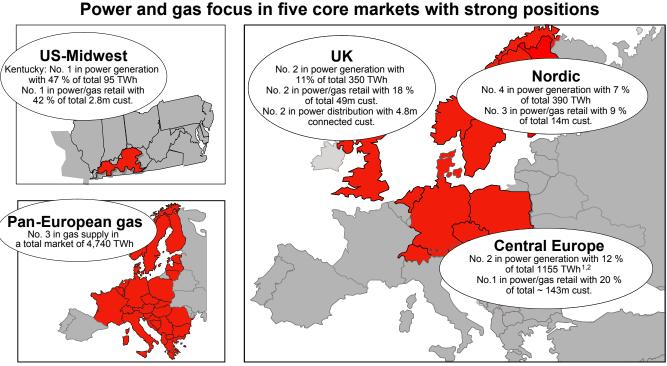
- US Department of Energy (DOE) funding through Utah Clean Coal Center (UC³)
- Praxair for (soon to be available) O₂ and CO₂ supply
- University of Utah
- Ryan Okerlund, Brian Nelson, David Wagner, Dallin Call

E.ON UK's Pilot Scale Oxyfuel Combustion Experiences: Development, Testing and Modelling

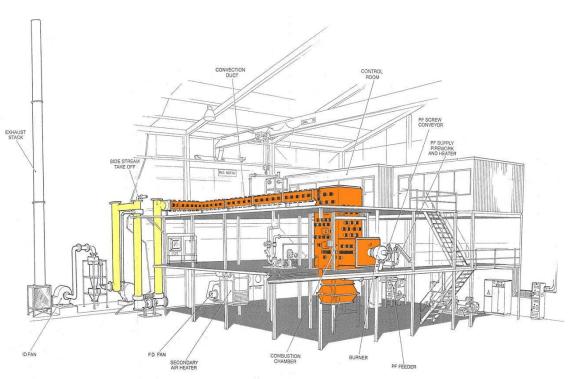
Ben Goh, E.ON UK

3rd Workshop of the IEA GHG Oxy-Combustion Network 5th and 6th March 2008, Yokohama

Overview


- E.ON and E.ON Engineering
- The 1 MW_{th} Combustion Test Facility
- "ASSOCOGS" (RFCS)
- Conversion of the CTF and operating range
- "OxyCoal-UK" (BERR)
- Results
 - Operation, combustion and heat transfer, emissions, ash behaviour, corrosion, modelling
- Conclusions and plans for the future

Group Structure


E.ON overview

Europe's largest investor-owned energy service provider with more than €56bn in sales and operating profit of €7.4bn

E.ON UK's 1 MW_{th} Combustion Test Facility (CTF)

- Commissioned 1993
- Located in UK
- Time-temperature scaled
- Fuel flexible
 - Coal, biomass, oil,
 - Orimulsion, gas, others
- Full combustion staging
 - Overfire air
 - Reburn
 - Flue gas recycle
- Highly instrumented and controllable
- Other capabilities added

CTF operating parameters

Thermal input	$1 \text{ MW}_{\text{th}} (0.8 - 1.2 \text{ MW}_{\text{th}})$		
Furnace	Horizontally fired, refractory lined, water		
	cooled, balanced draft		
Dimensions	1m x 1m x 3m		
Burner	Scaled MBEL Mk III Low-NO _X		
Windbox temp.	300 to 330°C		
Primary air temp.	80°C (70 to 90°C)		
Tertiary : secondary	3.5:1 (1:1 to 7:1)		
Overfire air	15% (0 to 25%)		
Flue gas cleanup	High efficiency cyclone		

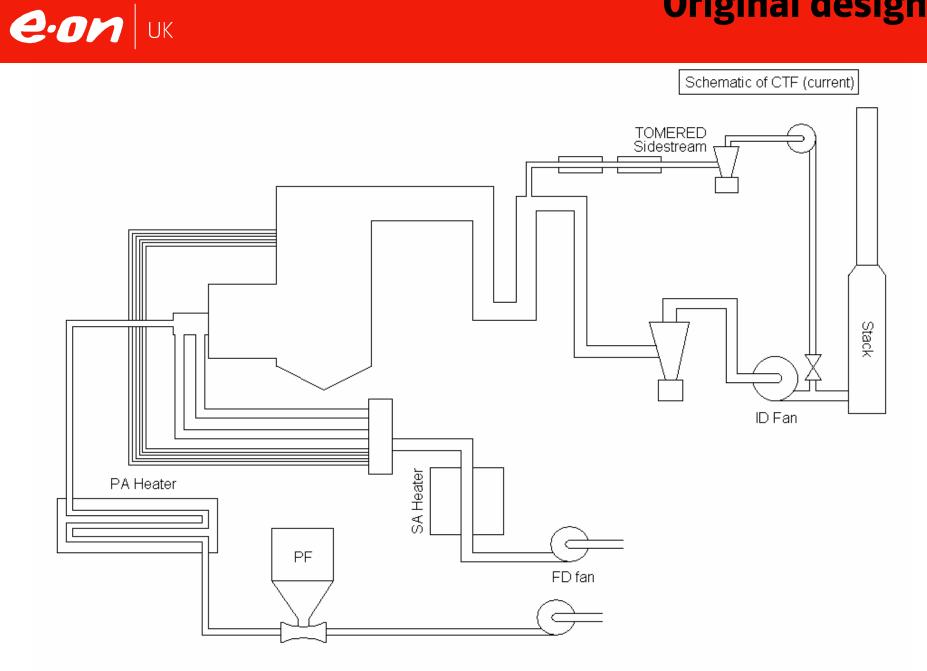
RFCS Project RFS-PR-02003 : "ASSOCOGS"

"<u>Assessment of Options for CO₂ Capture and Geological Sequestration"</u>

E.ON UK

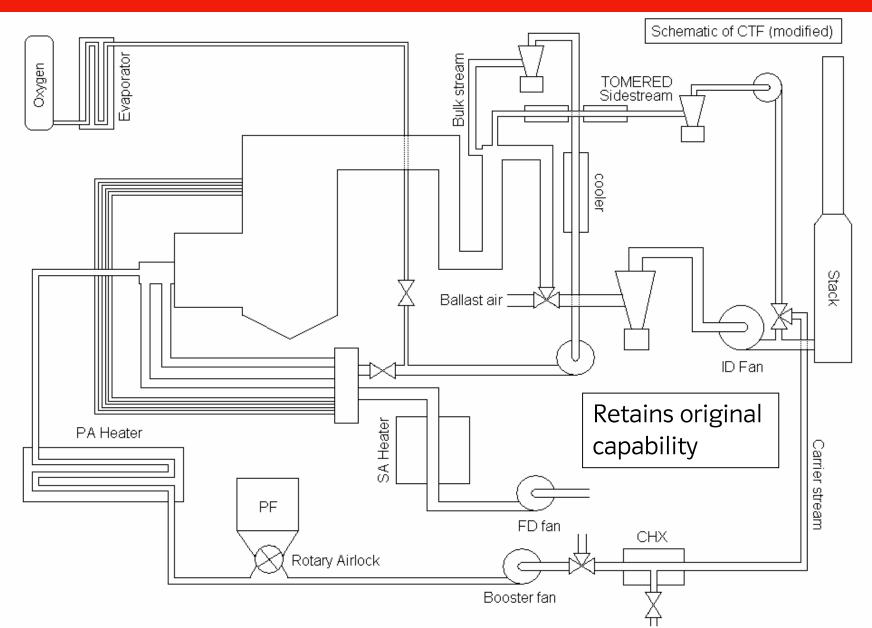
- Start date (duration) January 2004 (3 years)
- Project co-ordinator
- Partners

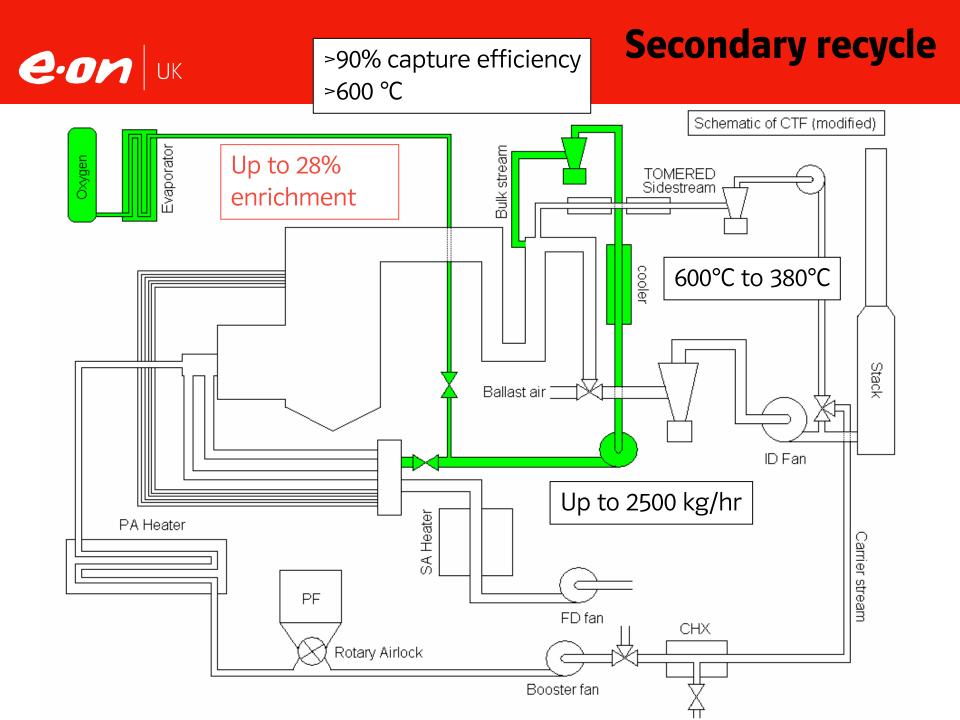
Aristotle University of Thessaloniki Centre For Research and Technology Hellas CERECO IMCG International University of Nottingham IVD Stuttgart

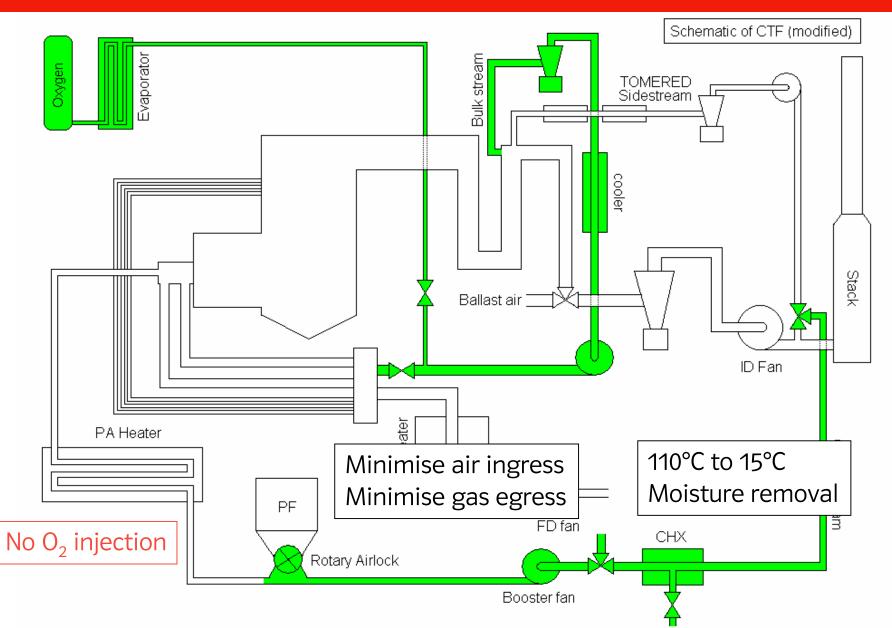

RFCS Project RFS-PR-02003 : "ASSOCOGS"

"<u>Assessment of Options for CO₂ Capture and Geological Sequestration"</u>

WP2 Oxyfuel combustion


- Review design of CTF for oxyfuel combustion
- Develop revised operational procedures
- Prepare detailed redesign
- Construct and commission CTF
- Refine operational procedures
- Perform parametric testing
- Review findings and implications


Original design



Primary recycle

Oxyfuel operating parameters

Secondary O ₂ enrichment	21 to 28% (v/v, wet)
Primary O ₂ enrichment	None (except O ₂ in exhaust)
Overall enrichment	Up to 24% (v/v, wet)
Primary recycle rate	320 kg/hr (300 to 350 kg/hr)
Recycle ratio	75 to 85%
Burner stoichiometry	0.7 to 1.2

Limitations:

- No O₂ enrichment in primary recycle
- Relatively low enrichment limit in secondary recycle => overall
- No additional flue gas cleanup

e.on

Issues - design and operation

Safety

- Gas compositions
- Materials flammability, explosion risk
- CO₂/CO detection
- Flame detection
- Interlocks

Operation

- Switchover
- Feedback
- Burner trips and blackouts

Process

- Coal feeding
- Heat extraction
- Particulate removal
- Materials high temperature, O₂ purity
- Air ingress
- Moisture removal

Control and Instrumentation

- Mass flow via density
- O₂ concentration

Development timetable

2004	2005	2006	2007	2008		
RFCS ASSOCOGS project						
CTF re-design						
	-					
Construction and commissioning						
BERR OxyCoal-UK project						

BERR Technology Programme Project 404 : OxyCoal-UK (Phase I)

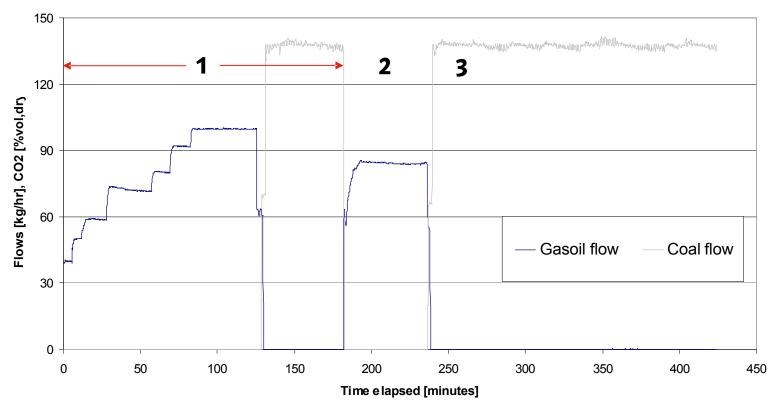
- Start date (duration) January 2007 (2 yrs)
- Project co-ordinator
 Doosan Babcock Energy
 - E.ON UK, RWE npower, Air Products, Imperial College London, University of Nottingham, BP
 - Scottish and Southern Energy, Scottish Power, Drax Power, EDF Energy, DONG Energy

Sponsors

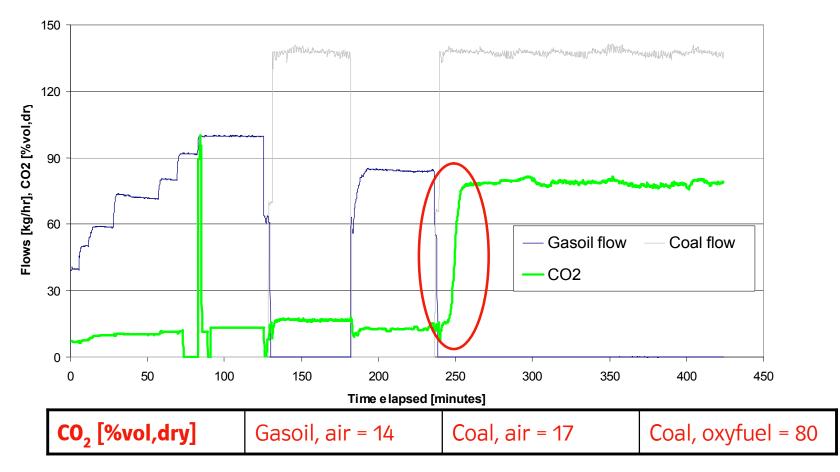
Partners

BERR Technology Programme Project 404 : OxyCoal-UK (Phase I)

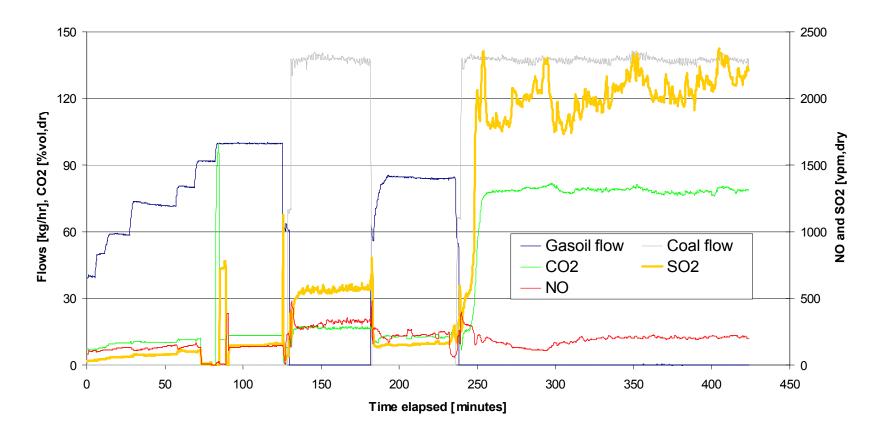
WP2 Furnace Design and Operation


- Objective: To determine the impact of oxyfuel firing on combustion, slagging, fouling and high temperature corrosion
 - WP 2.1: 1 MW_{th} Pilot-Scale Tests
 - WP 2.2: Ash Characterisation
 - WP 2.3: Corrosion Tests

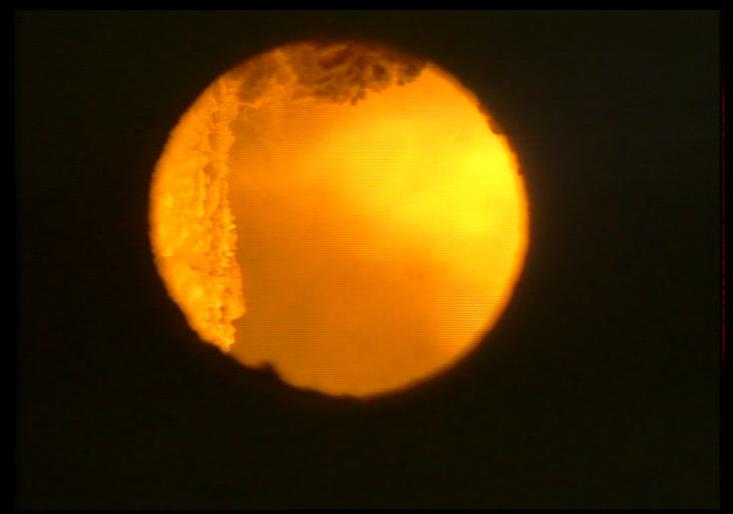
Results


Startup and changeover (1)

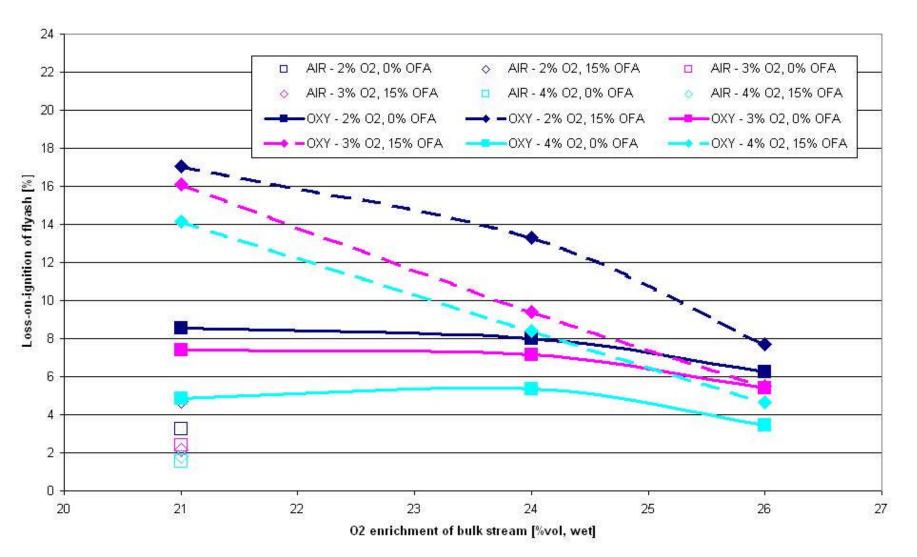
- 1. Warm up on gasoil, then switchover to coal for air baseline test
- 2. Revert to gasoil during switchover of carrier stream
- 3. Revert to coal for full switchover (bulk)


Startup and changeover (2)

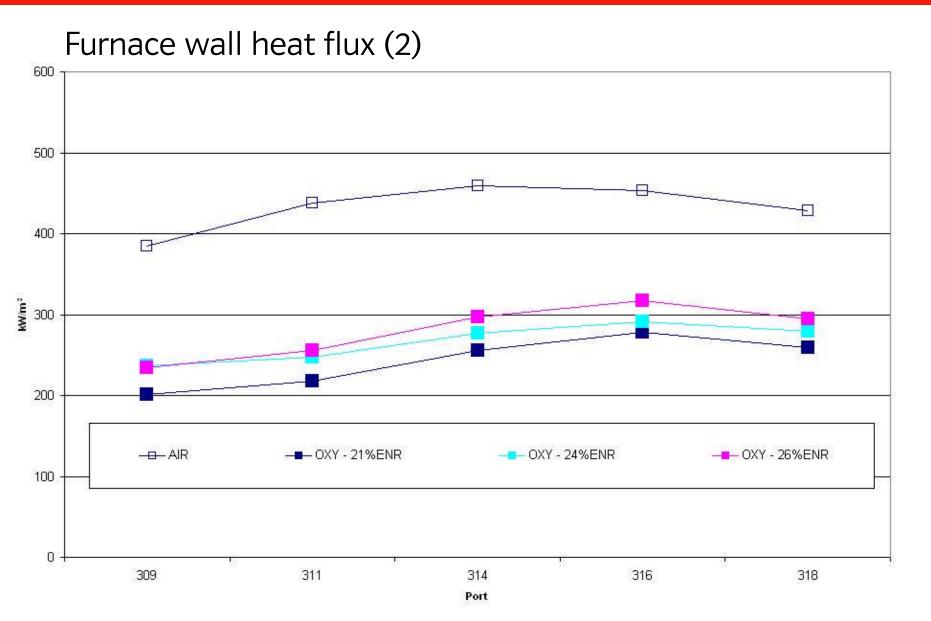
Changeover and CO_2 concentration response time <10 minutes

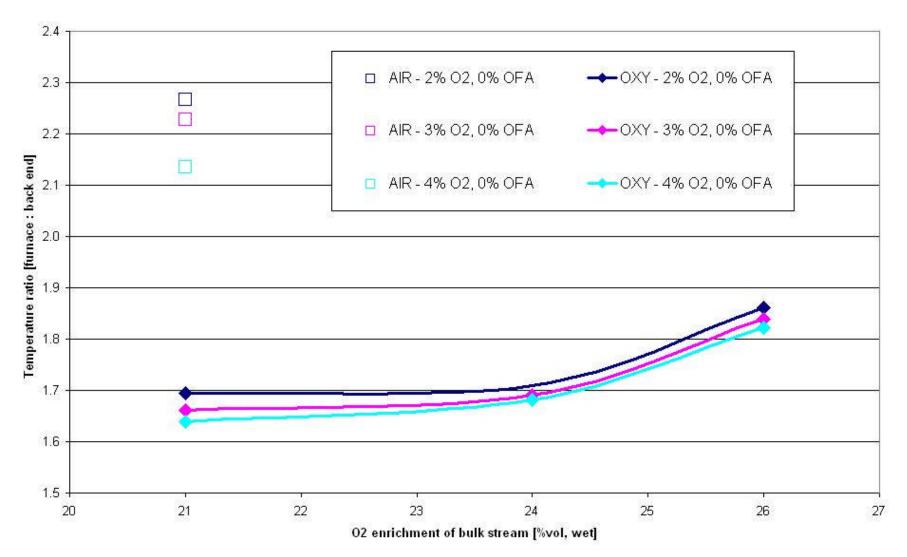

Startup and changeover (3)

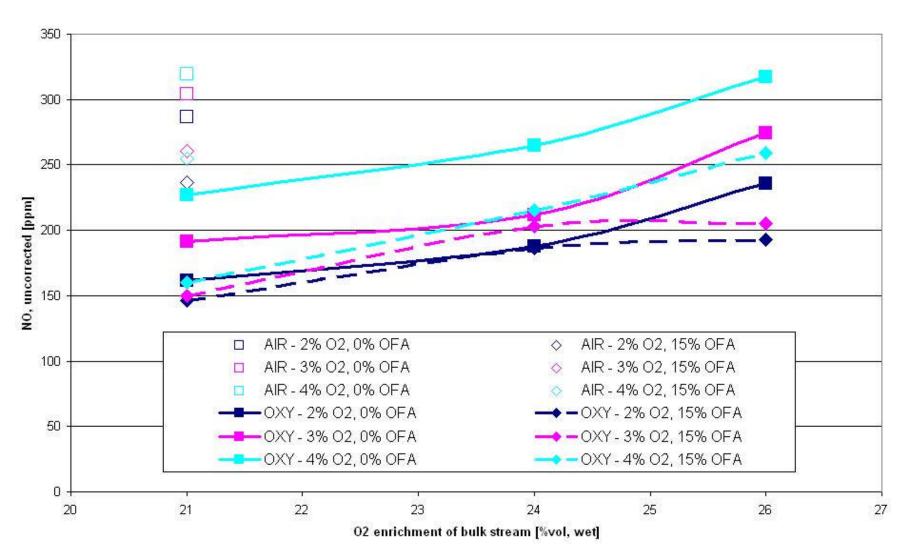
Still image of flame (air)



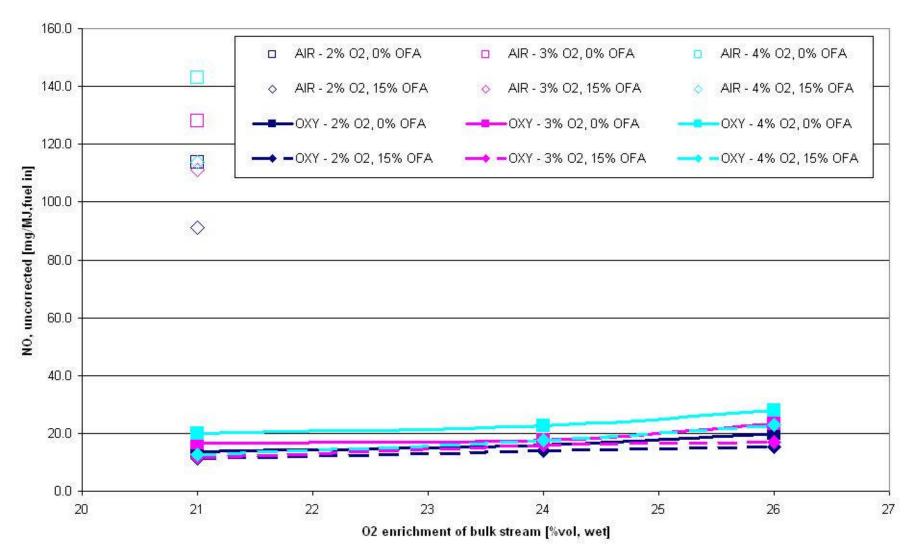
Still image of flame (oxyfuel)


Burnout

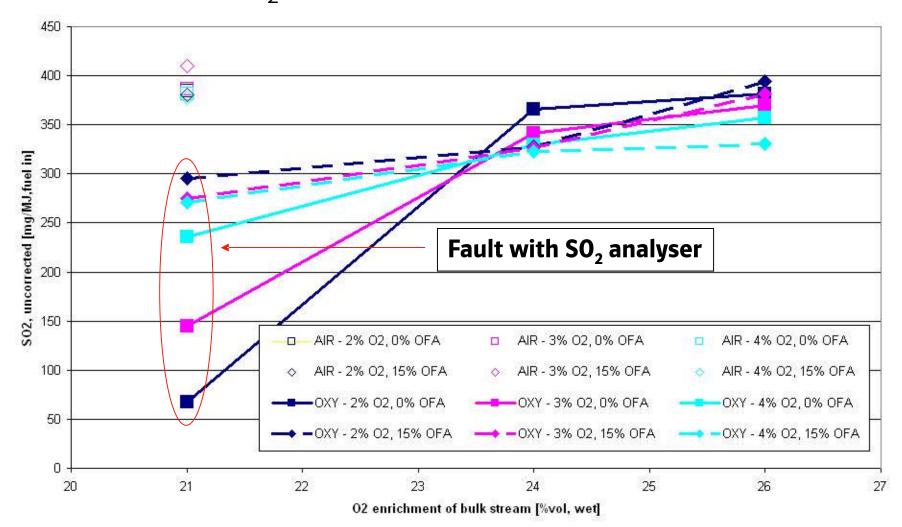

Furnace wall heat flux (1) 600 500 400 . ₩ 300 200 -B-AIR - 2%02, 0% OFA -B-AIR - 3%02, 0%0FA -B- AIR - 4%02, 0%0FA AIR - 4%02, 15%0FA 100 ---- OXY - 21%ENR, 2%O2, 0%OFA ---- OXY - 21%ENR, 3%O2, 0%OFA OXY - 21%ENR, 4%O2, 15%OFA 0 309 311 314 316 318 Port



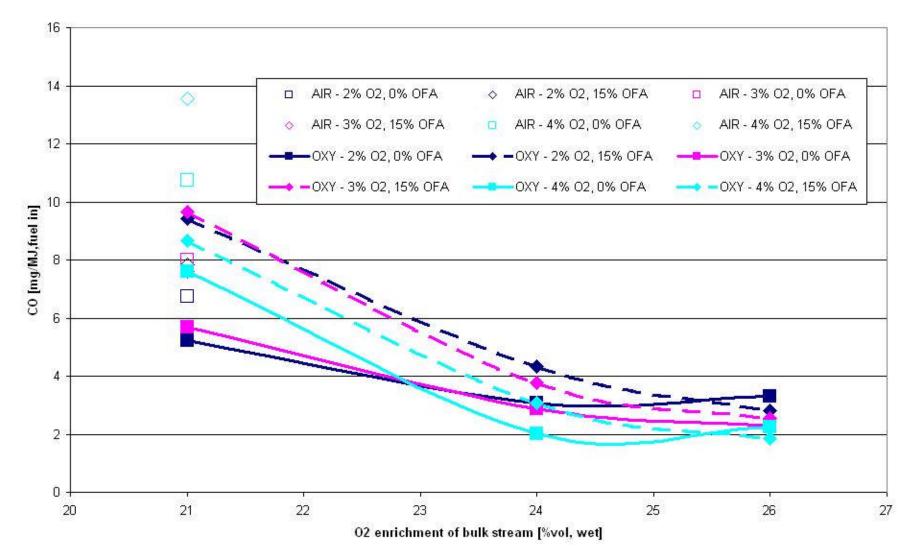
Heat distribution



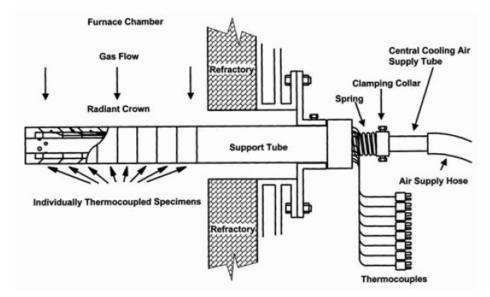
Emissions - NO (1)



Emissions – NO (2)



Emissions – SO_2


Emissions - CO

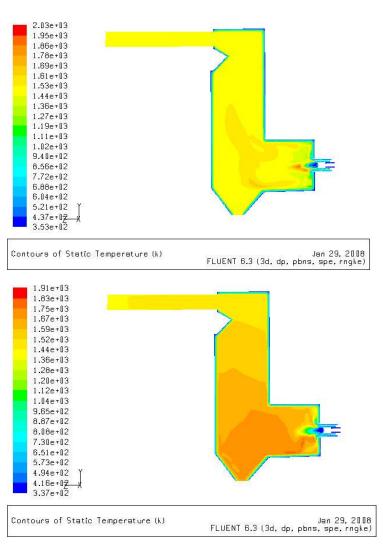
Corrosion

- 50 hour test method developed in collaboration with EPRI in 1990's
- Can be reliably extrapolated to predict full scale impacts
- Samples currently being analysed

- <u>Test materials</u>
 - Furnace wall samples HR3C, T91, IN671, 15Mo3, T23 (400 to 525°C)
 - Superheater/reheater samples T22, TP347HFG, HR3C, T91, E1250, (San25), (IN740) (450 to 650°C)

Ash behaviour

 Deposition samples collected and analysed by ICL, principally by CCSEM and XRD, to determine chemical composition and degree of sintering to investigate the impact of oxyfuel combustion on coal ash transformation and deposition



- Flyash samples also sent to NETL for analysis
- Results:
 - Early indications (lower levels of mineral transformation) are that temperature effects dominate

Modelling

- Burner and furnace being modelled by University of Leeds
- Work in early stages incorporating ongoing research in combustion fundamentals
- Validation during next test period

Conclusions and plans for the future

- 1 MW_{th} facility fully commissioned and capable of testing emissions, thermal environment, burnout, deposition and corrosion.
- Stable flame established without burner O₂ addition but poorly attached will further examine performance with O₂ enrichment to establish overall optimum.
- Some reduction in NO_x concentrations dramatic reduction in NO_x flux.
- Deposit significantly more 'sticky', but no apparent change to bulk chemistry impact of fouling propensity or changed T profile?
- Further work planned on impacts of fuel quality, enrichment, and combustion staging on deposition, corrosion and emissions.
- Based on experience gained so far, planning to increase enrichment capability.

Acknowledgements

- European Commission (Research Fund for Coal and Steel)
- UK Department for Business, Enterprise and Regulatory Reform
- Colleagues within E.ON
- Partners within ASSOCOGS and OxyCoal-UK projects
- NETL
- University of Leeds

Thank you for your attention! Any questions?

Ben GohE.ON EngineeringTechnology CentreRatcliffe-on-SoarNottinghamNG11 0EEUnited KingdomE:ben.goh@eon-engineering-uk.com

T: +44 (0) 2476 192720

Fundamental Studies and Pilot-Scale Evaluation of Oxycoal Firing in Circulating Fluidized Bed Boilers

<u>Eric G. Eddings¹</u>, Astrid Sanchez^{1,2}, Fanor Mondragon², Adel Sarofim¹

¹Dept. of Chemical Engineering, University of Utah, Salt Lake City, Utah, USA

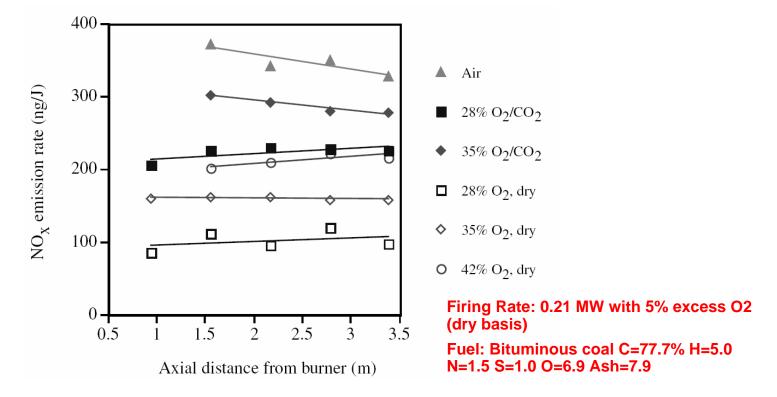
²Dept. of Chemistry, University of Antioquia, Medellin, Colombia

Oxy-Coal Combustion at the University of Utah

- University of Utah has several key programs in this area
 - UofU Faculty involved: Eddings, Eyring, Sarofim, Smith, Wendt, Whitty
 - Utah Clean Coal Progam (U.S. DOE)
 - Oxy-Coal Firing of Pulverized Coal (Wendt/Eddings)
 Presentation in parallel session this morning
 - Oxy-Coal Firing in Circulating Fluidized Beds (Eddings/Sarofim)
 - Chemical Looping Combustion of Coal (Eyring/Whitty/Sarofim)
 - Simulations of Oxy-Firing of Pulverized Coal (Smith)
 - Praxair, Inc.
 - Development of Coal Combustor for Oxygen Transport Membrane (OTM) Technology - w/DOE (Eddings/Sarofim)
 - Pilot-Scale Oxy-Coal Combustion Studies (Eddings/Wendt)
 - DOE/ASC
 - Simulations of Oxy-Coal Fired Boilers (Smith)
 - Additional new programs pending

Oxy-coal Test Facilities

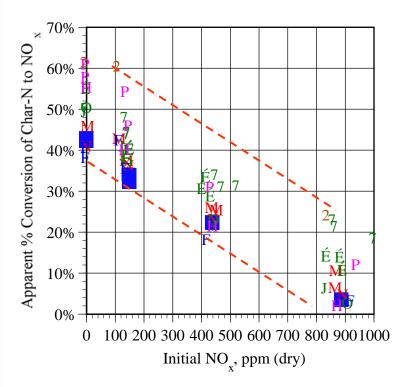
300 kW Circulating Fluid Bed



75 kW PC-Fired

Motivation for Fundamental Studies

- Reduced NOx emission rates under oxyfiring conditions
- Differences in NOx emission rate at same O₂ level but different diluent source
- Previous UofU studies on effects of NO, O₂ concentration on Char N conversion



Croiset & Thambimuthu, Fuel 80 (2001) 2117-2121

Institute For Clean & Secure Energy

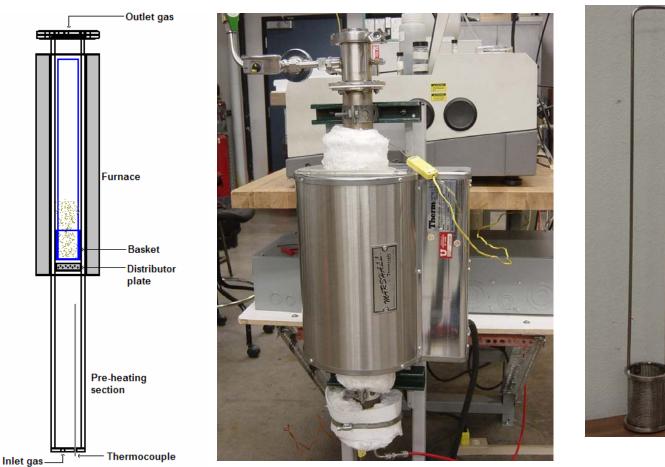
Influence of Initial NO on Char N Conversion

Pitt (25,26,29 sept)-1.0 wt%N Pitt (19,24 oct)-1.06 wt%N Ν Pitt (27,28,29 sept)-1.14 wt%N Μ Ill (14,19,20,21 sept)-1.13 wt%N J 0 Ill (16 oct)-1.13 wt%N É Ill (22 sept)-1.28 wt%N Ill (18 sept)-1.61 wt%N 7 Utah (13 sept)-1.14 wt%N F K.R. (26 oct)-0.46 wt%N Η Ρ K.R. (31 oct, 1 nov)-0.51 wt%N Black Thunder-0.48 wt%N 2

Data of Spinti (1997) taken in 25 kW down-fired combustor at University of Utah indicates strong effect of local NO on char N conversion.

Background

- Research Program has two primary objectives:
 - obtain fundamental rate and fuel nitrogen conversion information for oxycoal-fired circulating fluidized bed (CFB) boilers
 - Need for understanding of effect of gas phase composition on fuel NOx formation under oxycoal firing conditions
 - obtain model validation and process characterization data from pilot-scale operation of an oxycoal-fired CFB
- Funding provided by
 - U.S. DOE Utah Clean Coal Program
 - Praxair, Inc.



Fundamental CFB Efforts

- Goal:
 - to identify key mechanisms for NOx formation in oxy-coal combustion systems, and evaluate the interaction between surface N complexes and CO₂ and O₂
- Tasks
 - Design/construct single-particle fluid-bed reactor
 - Perform experiments with coal, coal chars and model chars
 - Gas analysis using FTIR
 - Solids analysis using FTIR, XPS
 - Model char preparation
 - Pure nitrogen-bearing organic compound (polyacrylonitrile)
 - Create chars under different conditions
 - Characterize initial form of N in char via FTIR, XPS
 - Ab initio calculations
 - Investigate surface N behavior under oxy-firing conditions

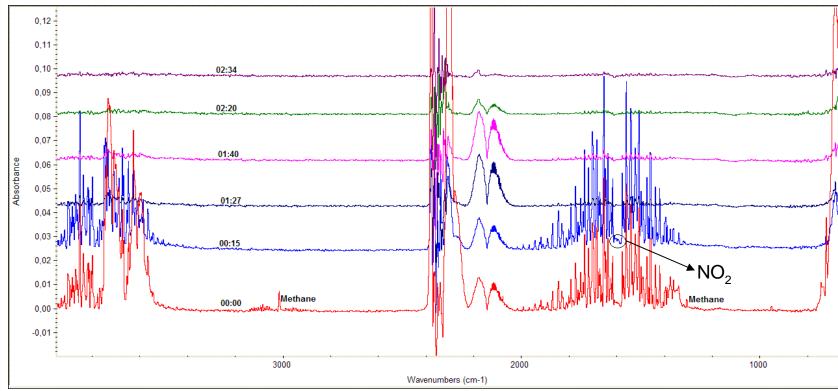
Single Particle Reactor

- Fuel particle larger than bed material; bed material moves freely through basket
- Basket used to remove fuel particle at different times during transient experiment for subsequent characterization (FTIR, XPS)
- Gas composition analyzed on-line by FTIR

Institute For Clean & Secure Energy

Institute For Clean & Secure Energy

Preliminary Results



Institute For Clean & Secure Energy

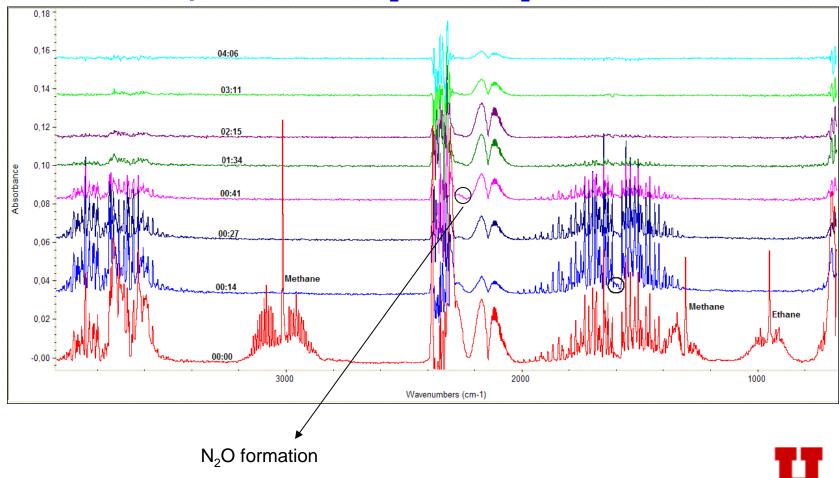
Single Particle – Louisiana Lignite

FTIR Spectra at Various Reaction Times

Oxidizer Composition: 50% O₂ - 50% CO₂

Very small amount of NO₂

FOR CLEAN


ENERGY

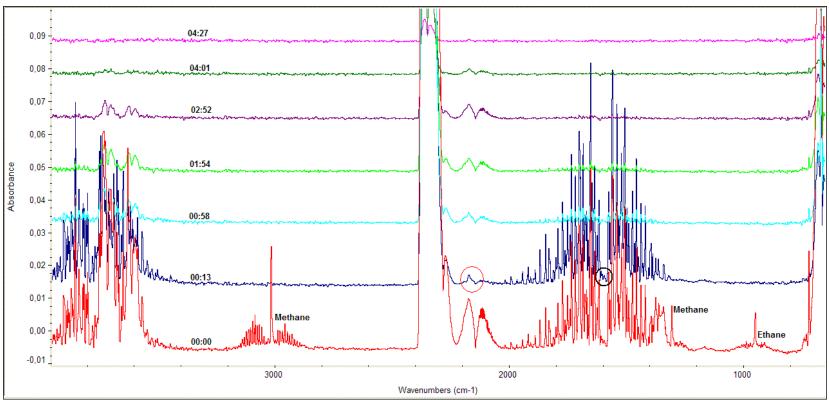
& SECURE E

Single Particle – Louisiana Lignite

FTIR Spectra at Various Reaction Times

Oxidizer Composition: 25% O₂ - 75% CO₂

UNIV


OF UTAH

Single Particle – Louisiana Lignite

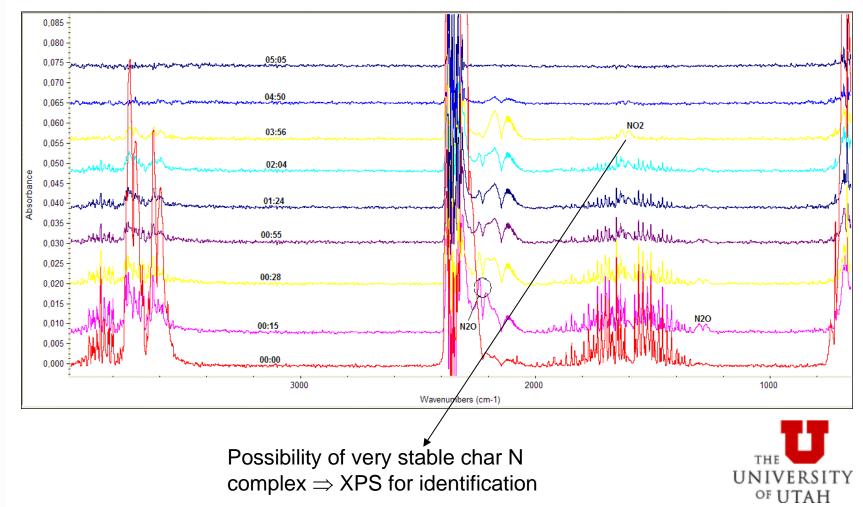
FTIR Spectra at Various Reaction Times

Oxidizer: Air

Evolution of some species appears to be somewhat reduced in combustion with air

Institute For Clean & Secure Energy

FOR CLEAN

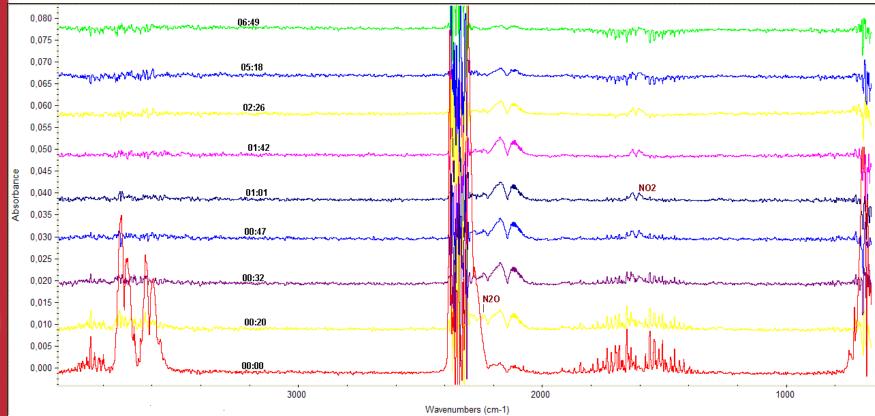

ENERGY

INSTITUTE I & Secure E

Single Particle - Char (PAN-6)

FTIR Spectra at Various Reaction Times

Oxidizer Composition: 50% O₂ - 50% CO₂



Single Particle - Char (PAN-6)

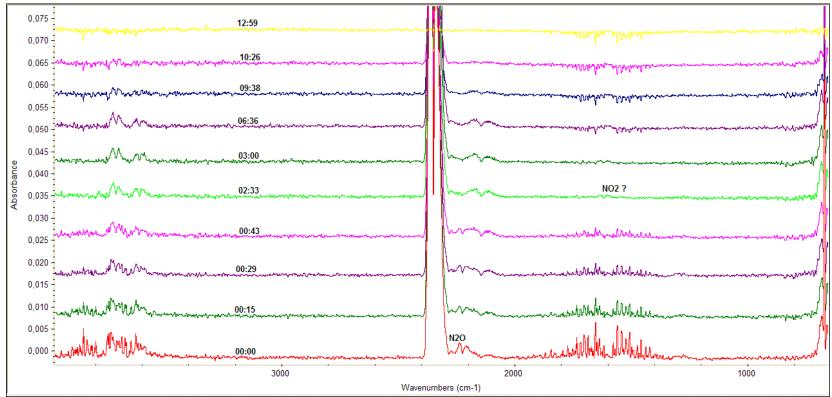
FTIR Spectra at Various Reaction Times

Oxidizer Composition: 25% O₂ - 75% CO₂

CLEAN

FOR

Secure F


<u>G</u>

ENER(

Single Particle - Char (PAN-6)

FTIR Spectra at Various Reaction Times

Oxidizer: Air

Low evolution of NO_2 and N_2O .

Summary of Preliminary Experimental Results

- Preliminary results show important differences in the FTIR spectra of gas phase
 - Over time as particle burns out
 - Between air and different O₂, CO₂ concentrations
- Next steps
 - Complete characterization/identification of gasphase FTIR spectra
 - Run matrix with different O_2 concentrations and either CO_2 or N_2 to identify impact of CO_2
 - Coals and model char
 - Analyze gas phase FTIR spectra
 - Analysis of solids (FTIR, XPS) for N functionalities at different times during reaction

Institute For Clean & Secure Energy

Preliminary Computational Results

Computational Methodology

Package: Char model:

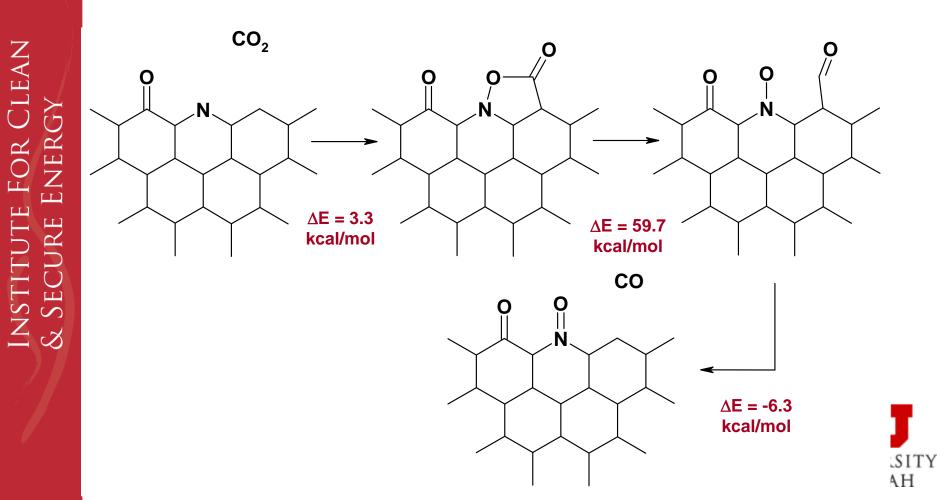
Theory level:

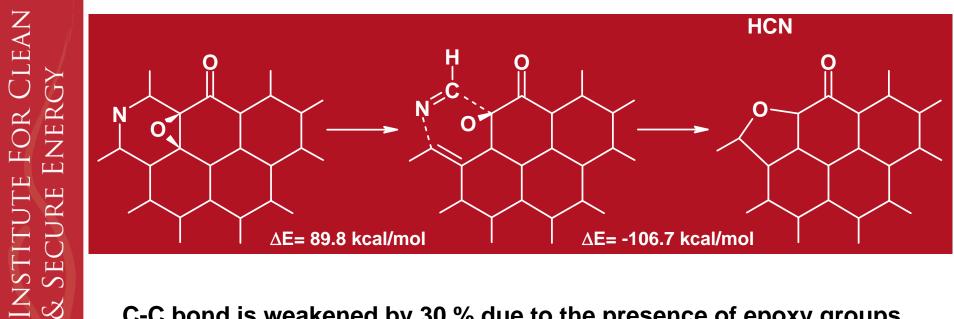
Basis set:

Gaussian 03

Five condensed rings saturated with hydrogen

DFT


Density Functional Theory 6311-G(d,p)


CO₂-N_{char} Interactions

 $CO_2 + C(N) + C^* \rightarrow C(NO) + C(CO) \rightarrow CO + C^* + N(O)$

Precursor Formation: HCN

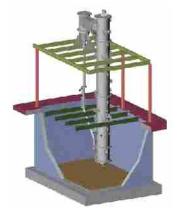
C-C bond is weakened by 30 % due to the presence of epoxy groups

High oxygen concentration \Rightarrow Facilitate formation of precursors

- It is important to consider the interaction between recycled CO₂ and char N complexes, since this can modify the mechanism for char N conversion
- It is possible that decomposition of char N complexes will be facilitated by oxycombustion systems due to formation of high amounts of surface oxygen complexes that promote char decomposition.
 - Can facilitate lower overall NOx emissions due to reduction in char N levels entering burnout zone in staged combustion (based on previous UofU data)

Institute For Clean & Secure Energy

Pilot-Scale Oxycoal Circulating Fluidized Bed (CFB) Experiments



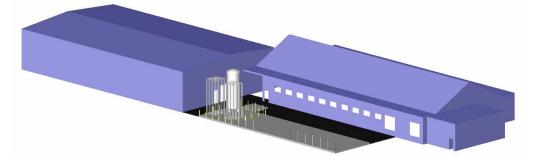
Pilot-Scale (300 kW) Experiments

– Specific Tasks:

- Modification of existing CFB facility for oxy-coal firing
- Development of particle concentration measurement capability
- Experiments
 - Detailed measurements will be made for use in model validation of DOE MFIX model for CFB's
 - Specific oxycoal experiments under Praxair support to investigate various operating parameters

Status of Pilot-Scale Efforts

- Currently making modifications to pilot unit for oxyfiring with coal
 - Redesign of distributor plate/materials
 - Oxygen lines plumbing, safety, control systems
 - FGR system, baghouse
- Anticipated completion April 2008
- Curently evaluating several methodologies for mapping particle concentration
 - Acoustic methods
 - Capacitance methods



Addressing the Oxygen Supply

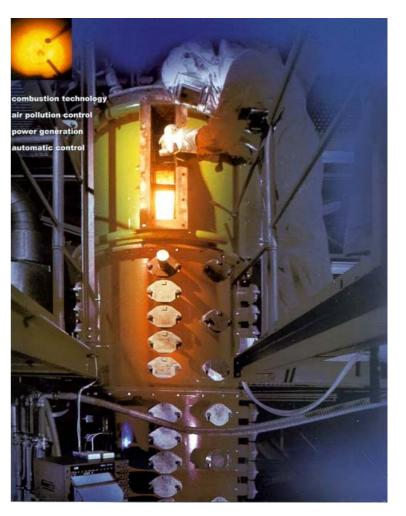
- Need to provide O₂ supply for
 - oxy-coal combustion programs
 - coal gasification programs
- Praxair supplying the tank, delivery system and O₂ for oxycoal studies
 - Capabilities
 - 6000 gallon storage
 - Max. delivery: 150 SCFM O₂
 - Status
 - Storage site (pad) currently under construction
 - Anticipate completion of tank installation by end of Mar. 2008

INSTITUTE FOR CLEAN & SECURE ENERGY

Preliminary fundamental results indicate need for further investigation on

Concluding Comments

- interactions between Char N and CO₂
- effect of O_2 level on N species release
- Pilot-scale experimentation to commence late Spring of 2008
 - Optimization of oxycoal firing in CFB
 - Model validation data
 - Development/adaptation of novel techniques for particle concentration measurement


Institut für Verfahrenstechnik und Dampfkesselwesen Institute of Process Engineering and Power Plant Technology Prof. Dr. techn. G. Scheffknecht

Impact of Combustion Conditions on Emission Formation (SO₂, NO_X) and fly ash

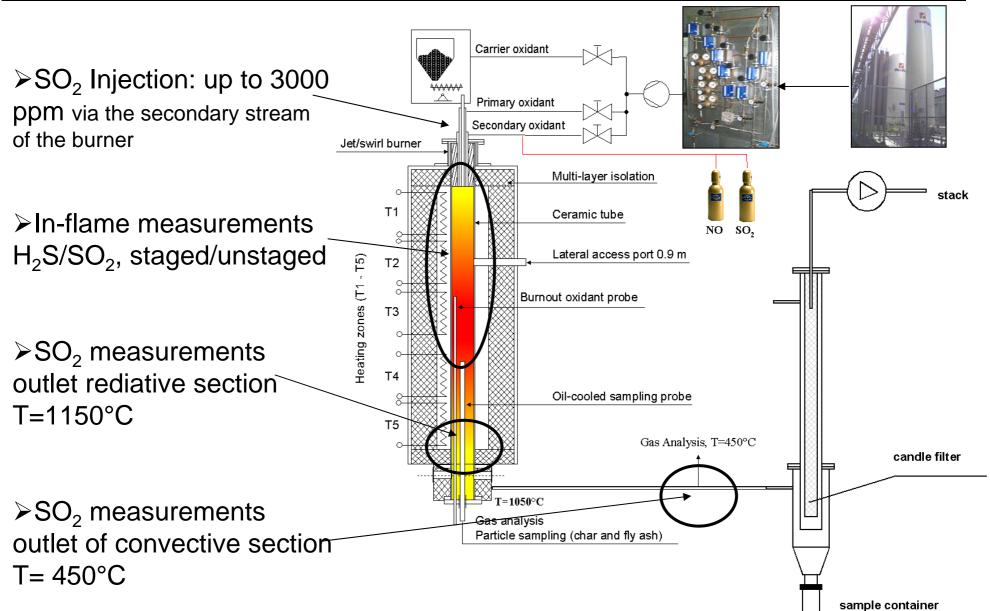
Patrick Mönckert, Bhupesh Dhungel, René Kull Jörg Maier

Maier@ivd.uni-stuttgart.de

Topics of Presentation, R&D Topics at IVD

- Fuel characterization (electrical heated pf reactors)
 - Combustion
 - Rank of coal (bituminous, lignite...)
 - Emission formation, ricirculation (NO_X, SO₂, H₂S, CO...
 - Char burnout and fly ash formation
 - Pyrolysis under CO₂ and N₂ atmosphere
 - Volatile release and char formation/reactivity
- Technical scale combustion tests (0.5MW_{th})
 - Combustion and emission behavior, slagging, fouling, corrosion, SO_{3,} acid dew point
 - Component development and test (burner...)
 - Plant handling and operation, safty requirements
- Model development and combustion simulation (AIOLOS)

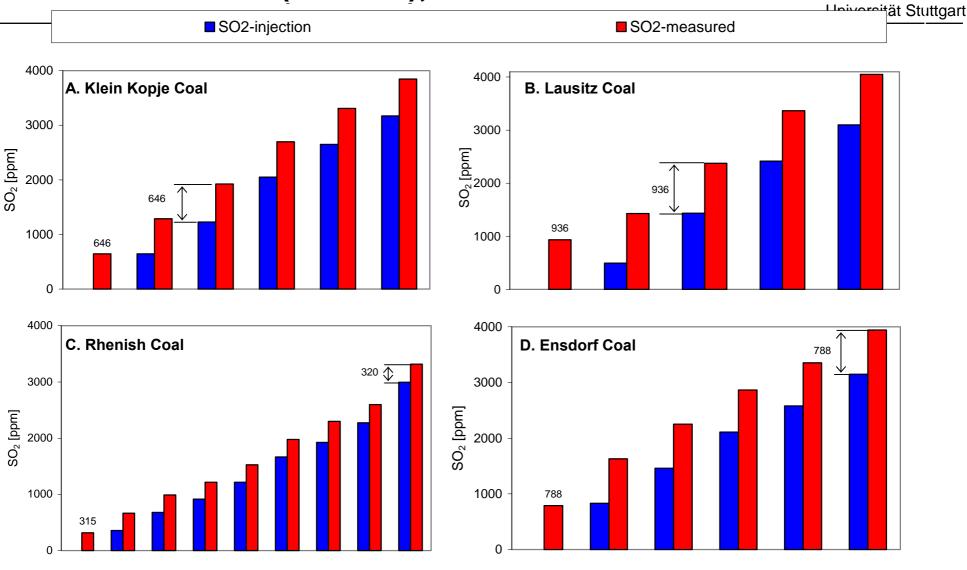
Parameter Study on Emission Formation (SO_2, H_2S) electrically heated reactor (20kW)



Coals	LHV [%,ar]	Moist. [%,ar]	Ash [%, wf]	Vol. [%, waf]	Cfix [%, waf]	C [%, waf]	H [%, waf]	N [%, waf]	S [%, waf]	O [by diff]	Ca in ash [%]	Ca/S [mol. Ratio]
Klein Kopje	24932	3.60	19.29	27.76	72.24	83.93	4.50	1.67	0.72	9.18	5.8	2.98
Lausitz	21412	10.20	5.46	57.36	42.64	66.78	5.26	0.65	0.85 (0.36)	26.5	17.0	3.17
Rhenish	20965	11.50	4.07	54.18	45.82	67.96	7.68	0.73	<0.3	23.6	26.3	3.96
Ensdorf	30955	2.42	7.47	37.21	61.90	74.85	5.05	1.59	0.83	17.7	7.55	1.03

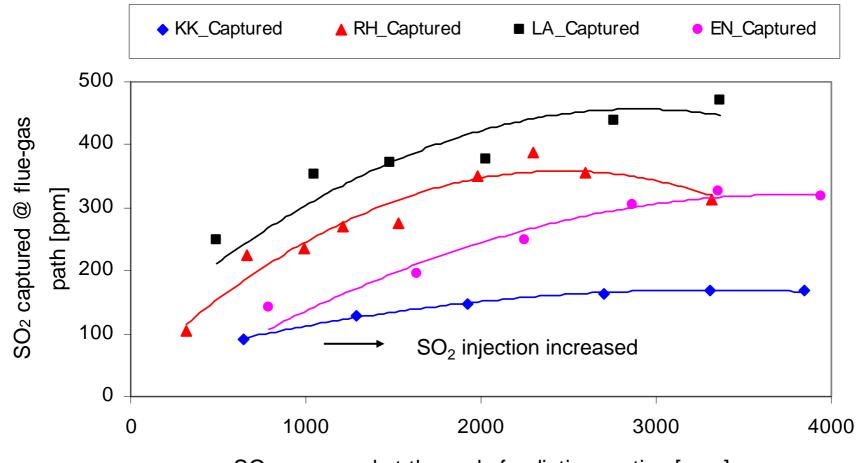
	Klein Kopje Coal	Lausitz Coal	Rhenish Coal	Ensdorf Coal
D ₁₀ [µm]	4.83	7.46	10.83	5.79
D ₅₀ [µm]	28.05	47.91	93.07	23.66
D ₉₀ [µm]	72.68	142.54	264.65	92.25

Set-up and description of 20 kW once through furnace Universität Stuttgart



Test Results:

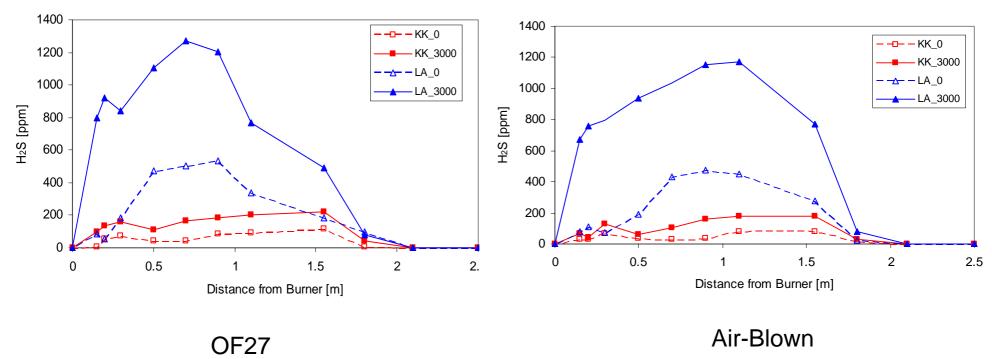
- SO₂ emission at the outlet of the rediative section (1150°C) by SO₂ injection up to 3000ppm
- SO₂ captured along the convective section (1150°C down to 450°C) by SO₂ injection up to 3000ppm


Impact of SO₂ injection at the outlet of the radiative section (1150°C), OF27

>Negligible reduction of recycled SO₂ in the high temperature, radiative section of the furnace.

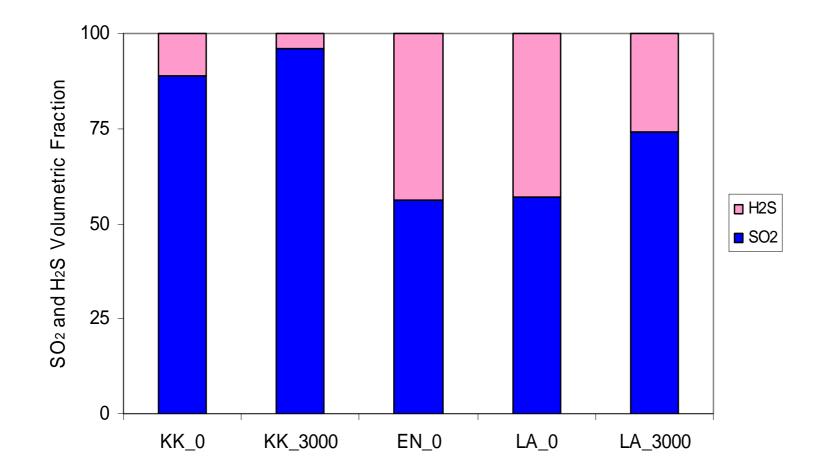
SO₂ captured along the convective part (down to 450°C) by different inlet concentrations

SO₂ measured at the end of radiative section [ppm]


Oxy-fuel 27 % O_2

In-flame measurements of staged flames with focus on SO_2 and H_2S with and without injection of 3000ppm SO_2

H_2S formation: Impact of SO₂ accumulation (λ_1 =0.75)



Higher SO₂ concentrations (3000ppm) in the furnace results in at least 2 times more H_2S formation in the sub-stoichiometric region \rightarrow H_2S induced corrosion.

Impact of coal property on H_2S formation (λ_1 =0.75, T_1 ~3 Sec)

Volumetric percentage of H_2S and SO_2 in the substoichmetric furnace section, Oxyfuel 27 % O_2

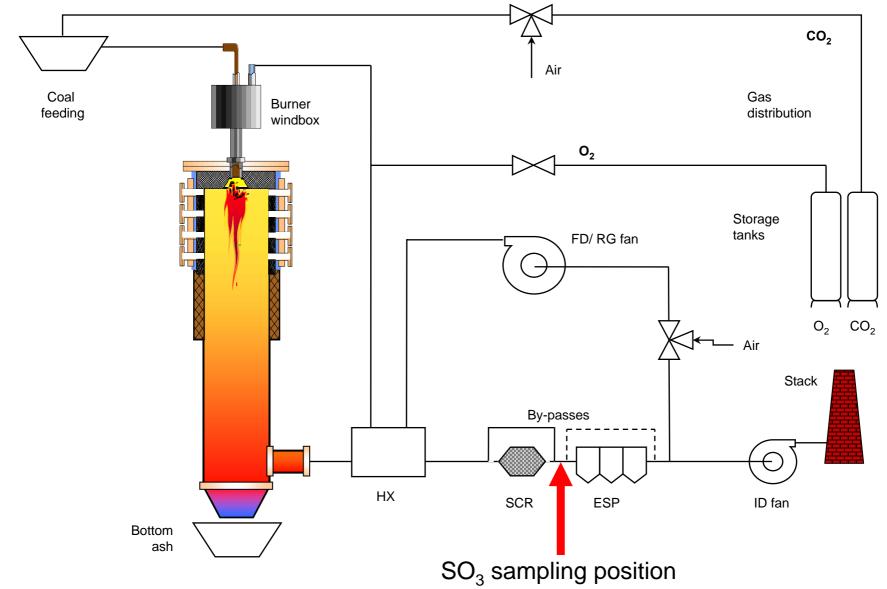
Results of Parameter Study (SO₂/H₂S)

> H₂S concentrations in the furnace can significant increased under oxyfuel conditions,

> Volumetric percentage of H_2S in the furnace decreases by higher SO_2 input concentrations

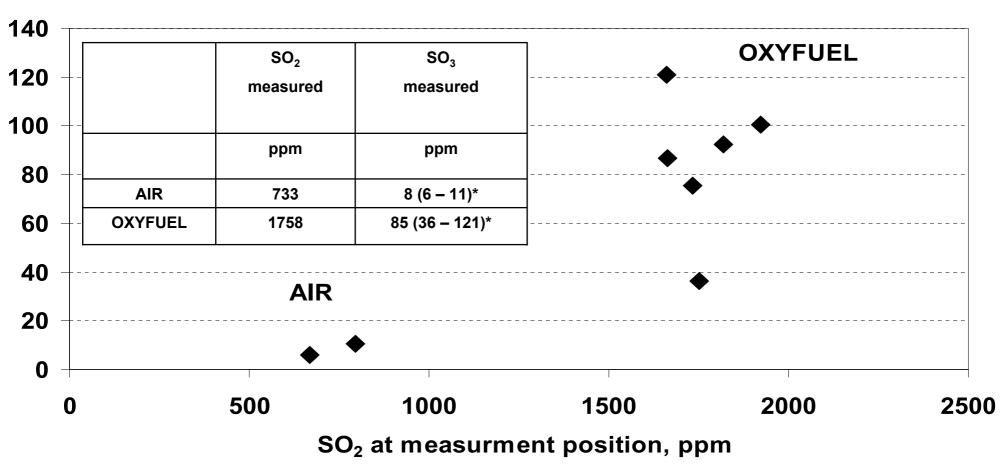
> H_2S formation seems to be influenced by volatile content of the coal and may other parameters: mineral composition etc.

> conversion of Sulphur to SO_2 close to 100% at the outlet of the rediative section for the investigated coals and atmospheres


> calcium rich coals show a clear tendency to capture additional Sulphur with increasing SO₂ concentration (Oxyfuel conditions), this correlates with increasing SO₃ concentrations of the fly ash

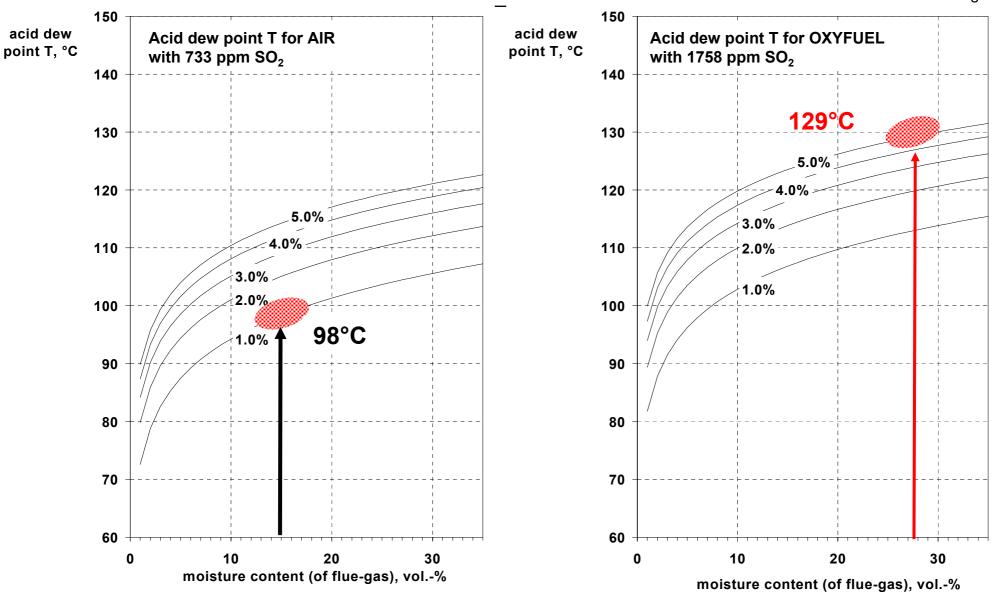
SO_3 measurements and acid dew point calculations in the flue gas duct of a 500kW facility

Oxyfuel facility (0.5 MWth) – SO₃ sampling



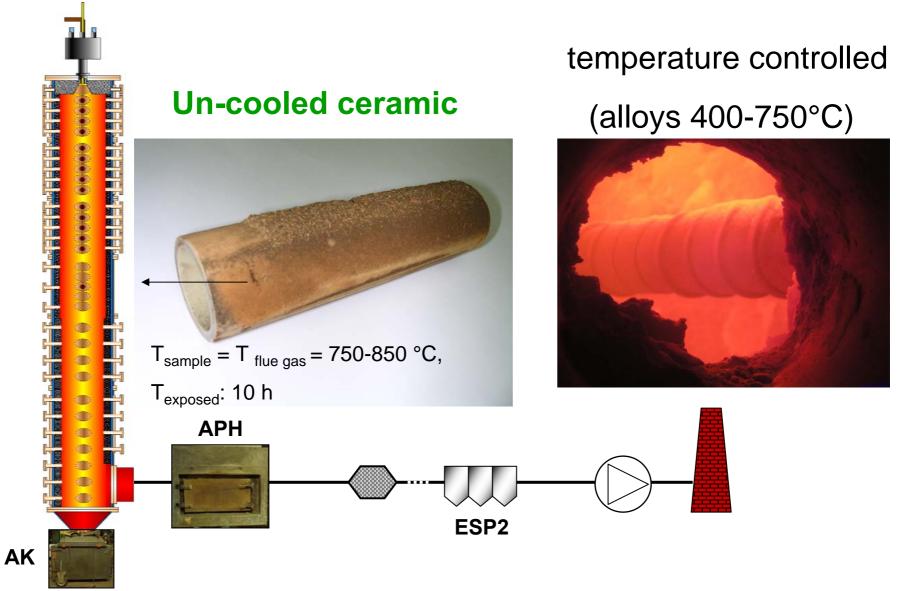
Measured SO₃ concentrations for Lausitz coal at AIR and OXYFUEL combustion conditions

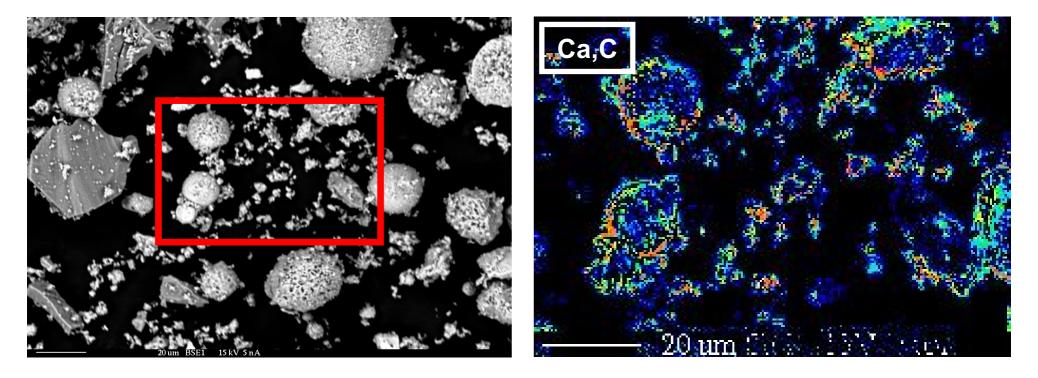
SO₃ measured,


ppm

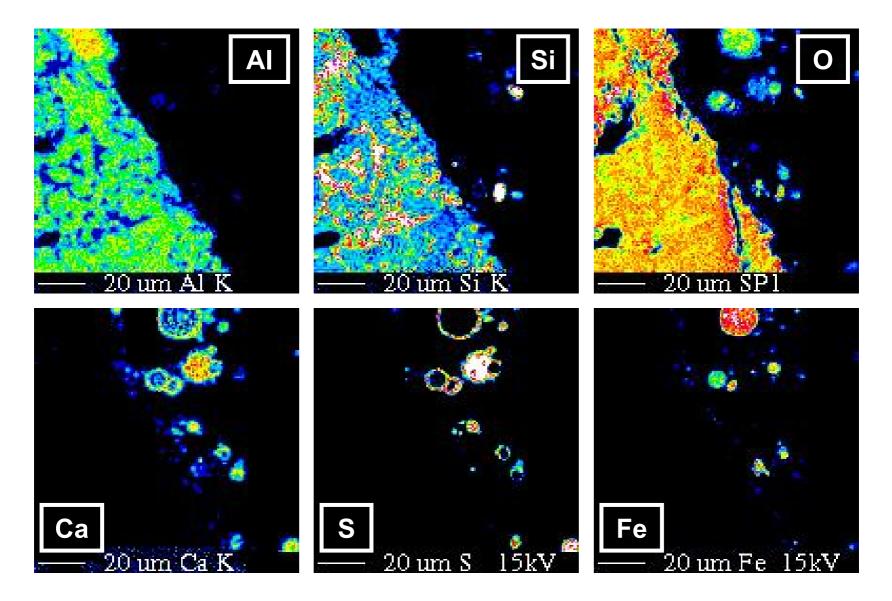
* ... min. / max. value measured

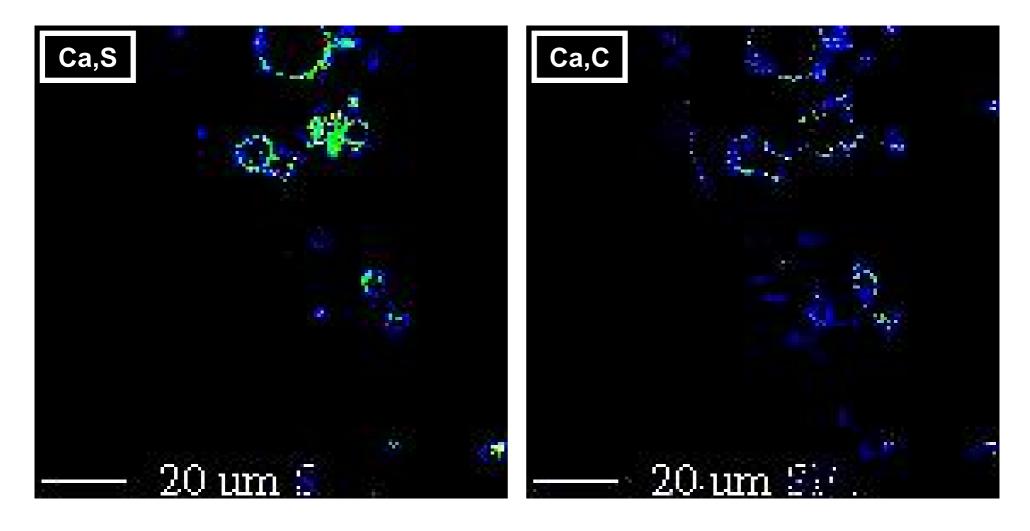
Acid dew point T correlated with conversion rate of $SO_2 \rightarrow SO_3$





Desposits under oxyfuel conditions




SEM-WDS/EDS-MAP: AI, Si, O and Ca, S, Fe

SEM-MAP: Ca,S / Ca,C

Results of the 500kW facility- SO₃ and Deposits

- Clear tendencies that under Oxyfuel conditions the SO₃ concentration is increasing and also the acid dew point temperature
- Impact of Oxyfuel conditions on SO₂/SO₃ conversion rate needs further clarification
- Further measurements of SO₃ and acid dew point temperatures are required to minimize uncertainties (measurement device, measurement procedure, operational issues of plant etc.
- Indications that beside sulfatization carbonization on the particle surface of deposits occurs under Oxyfuel conditions
- Impact of carbonization on fouling and corrosion in the convective section of the boiler needs further testing

Ongoing/Future R&D Topics at IVD

- Experimental Oxyfuel combustion topics:
 - Rank of coal (bituminous, lignite...)
 - Slagging, Fouling, (impact of higher SO₂, H₂S, CO₂, HCl etc.
 - Corrosion high-low temperature (Deposits, HCl, SO₂, SO₃, H₂O...
 - Fly ash quality (EN 450 ...)
 - Component development and test (burner, ...)
 - Emissions (Hg, fine dust etc)
 - Flue gas cleaning (SCR, Additives...)
- Oxy-fuel: PF/CFB,
- Post combustion capture: Carbonate Looping (connected CFB/FB starts operation April 2008)
- Lime Enhanced Gasification: Hydrogen rich Syngas

SO₂/ SO₃ sampling and analysis procedure according to VDI (draft) guideline

Process by Waste Heat Recovery Considering the Effects of Flue Gas Treatment

Efficiency Increase of the Oxyfuel

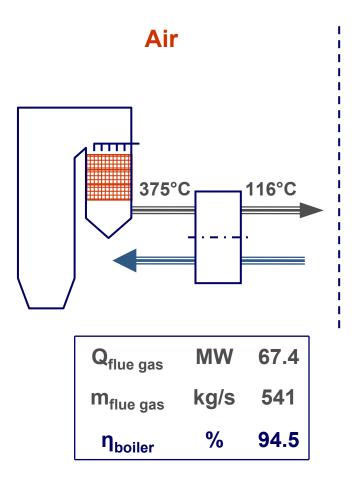
Institute of Energy Systems

Prof A Kather C Hermsdorf M Klostermann K Mieske

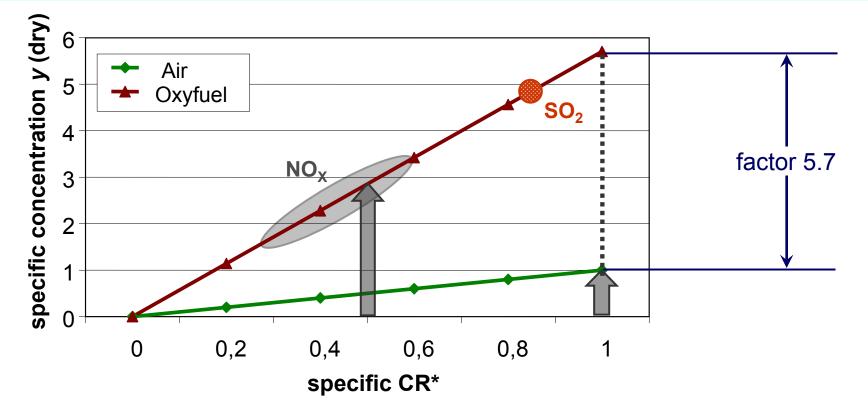


Mathias Klostermann

IEAGHG International Oxy-Combustion Network - 3rd Workshop, 5th and 6th March 2008, Yokohama Japan


Current Research Projects at TUHH

Boiler efficiency / stack loss

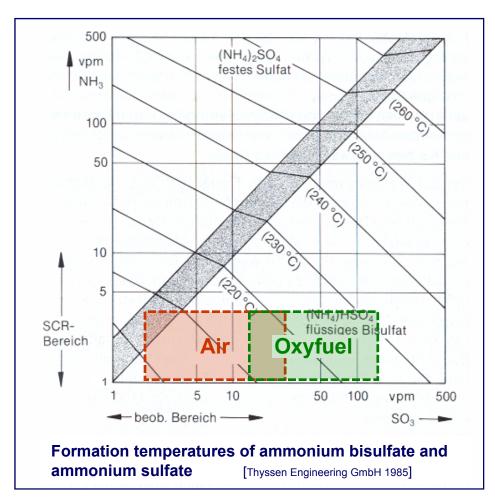

• Significant increase of the boiler efficiency (approx. 4 %-pts) results in an overall efficiency increase potential of approx. 1.4 %-pts.

⇒ What is the potential under realistic boundary conditions?

Flue gas composition

Causes:

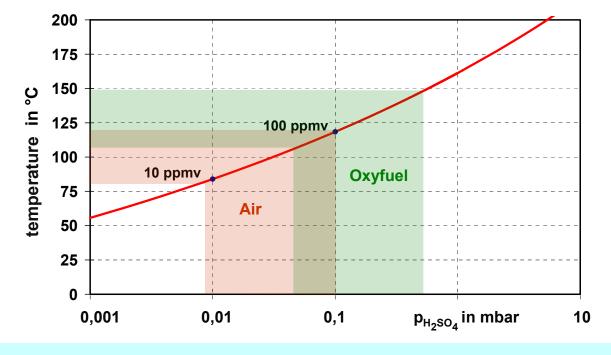
- lower specific flue gas mass flow
- increase of flue gas density
- higher water content in flue gas
- significant inhibition of NO_x formation
- SO₂ conversion rate (CR) similar to air case



High-dust SCR

NO_x

- ▶ approx. 1200 mg/m³ @stp dry
 - Reduction prior to CO₂-condensation seems to be necessary
- High-dust SCR is a state-of-the-art technology
 - ▶ approx. 90 % NO_x conversion
 - → NH₃ slip approx. 1.5 ppm_v
 - → partial conversion of SO₂ ⇒ SO₃
 - formation of sticky and corrosive ammonium bisulfate, risk of scaling on downstream heat exchangers



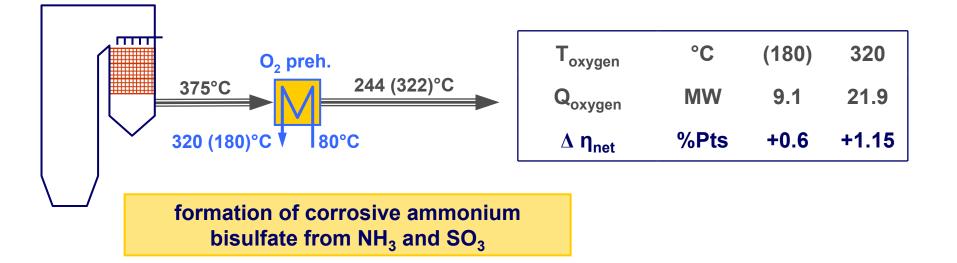
SO_x

- SO_3 fraction of SO_x between 1 and 5 %
- SO₃ formation promoted by higher concentrations of oxygen and water
- higher concentration due to missing nitrogen

⇒ +20....40 K higher acid dew point temperature of the flue gas

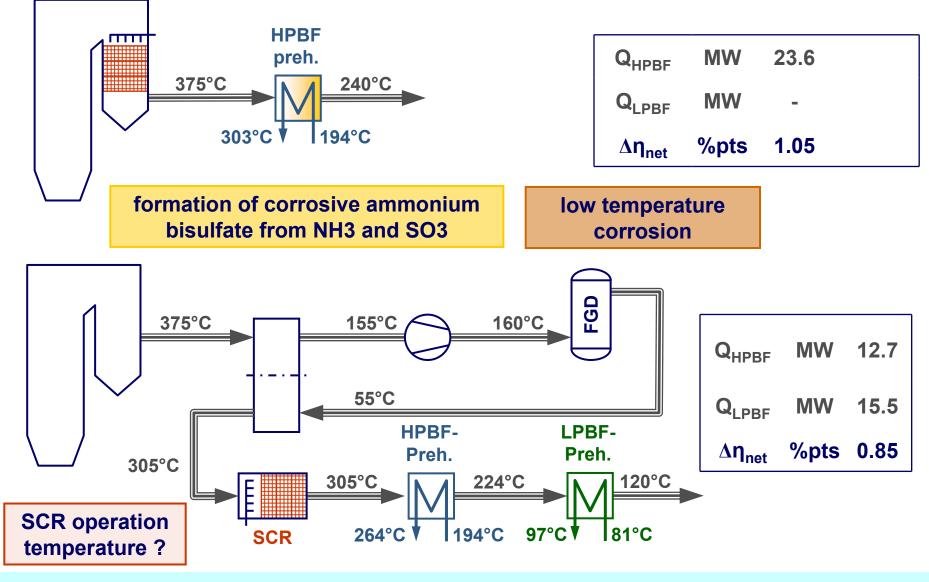
vapour pressure curve of sulphuric acid

Heat sinks



- Oxygen preheating (with a tubular heat exchanger)
 - + maximum efficiency increase, identical in function as air preheating
 - high technical requirements of oxygen handling at elevated temperatures
 - low heat transfer coefficient (gas-gas) ⇒ large heating surface
- Boiler feed water preheating
 - + simple waste heat recovery process (similar to an economizer)
 - + low risks in case of damage
 - lower efficiency increase (compared with oxygen preheating) particularly for low pressure condensate preheating
 - complexity of controlling the bypass
- Additional power cycle (e.g. ORC)
 - + less complex design
 - + direct coupling with power turbines
 - lower efficiency increase compared with oxygen preheating

Oxygen preheating



- maximum efficiency increase
- Risk of damage as well as firmly bonded deposits at the oxygen preheater in the presence of an upstream high-dust SCR !

Boiler feed water preheating

- Waste heat recovery from oxyfuel flue gas increases the overall net-efficiency significantly.
- Operation of a high dust SCR could cause problems with scaling and corrosion by ammonium bisulfate.
- Higher concentrations of SO_x increase the acid dew point temperature of the flue gas.
 - higher risk of corrosion in case of low flue gas and water temperatures
- Boiler feed water heating is the most promising option.
 - high efficiency increase
 - Iimited risk of corrosion

Thank you for your attention!

Oxy-fuel Coal-Fired Combustion Power Plant System Integration

Presented by:

Horst Hack Foster Wheeler North America, USA

> Minish Shah Praxair Inc., USA

March 5-6, 2008 The 3rd International Oxy-Combustion Network Meeting

CO2 Reduction Strategy

Short and medium term approach

- Increase of efficiency provides emission cuts and has a direct impact on the use of natural resources, generation of waste matter and economics.
- Co-firing of solid fossil fuels with CO₂ neutral fuels in highly fuel-flexible
 CFB boilers in repowering and greenfield applications

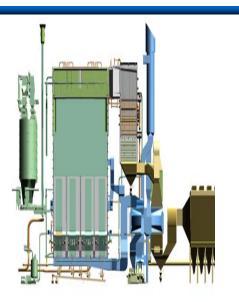
GHG emission trading systems, emission caps and taxes are expected to lead into demand for solutions to near Zero Emission Power (ZEP) production of fossil fuels

- Retrofits - ZEP ready new plants - greenfield ZEP plants

Long-term approach - Technologies offering potential

- Post-combustion capture
- Pre-combustion capture (IGCC with CO₂ separation)
- Oxy-fuel combustion <u>Comparison of the output of the output</u>

Praxair – Foster Wheeler Alliance


Alliance to pursue certain projects that will incorporate clean coal technologies and integrated oxy-coal combustion systems into coal-fired electric generating plants to facilitate capture and sequestration of carbon dioxide (CO2).

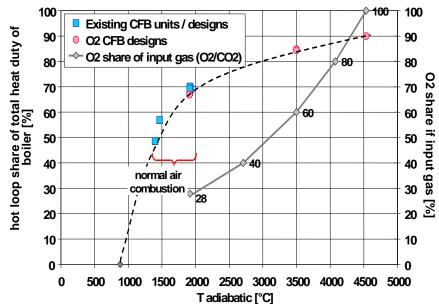
Validate scale-up of oxy-fuel technology

Improve integration of boiler with ASU and CCS systems

Oxy-Fuel Technology Main Advantages

- The established PC/CFB advantages exist also in oxy-combustion.
- Multi-fuel capability in CFB (coal, petroleum coke, lignites etc.)
- Emission control technology, e.g. SO_x and NO_x reduction (performed better in oxy-mode)
- Dual-firing capability: Design PC/CFB boiler for both air-firing and oxy-fuel-firing.

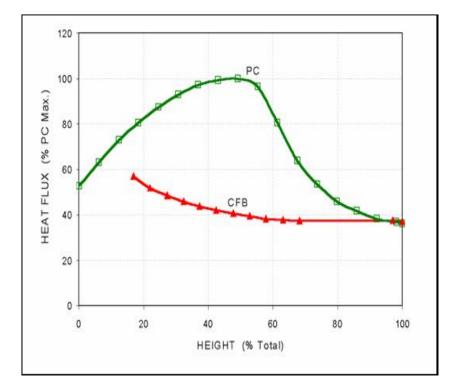
Oxy-fuel is considered technically viable. Accurate design and performance prediction are challenging \rightarrow Current/Future Work:


- Experiments in bench scale and pilot test facilities
- Development and validation of design models
- Long-term demonstration runs

Oxy-Fuel Technology Challenges

Oxy-fuel gas property increase in:

- gas density
- gas mass flow rate at the same Ug
- gas moisture
- gas thermal capacity, Cp
- energy requirement for Fg*Cp*dT
- energy carryover to HRA
- heat transfer coefficient



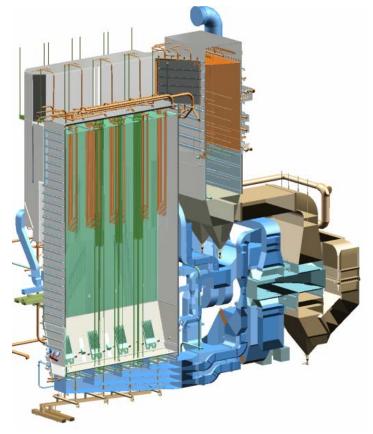
- Generated heat per volume is substantially higher than in combustion with air, as O2 concentrations increase
- Adiabatic combustion temperature rises
- Changes in hydrodynamics
- Materials in the high CO₂ and H₂O gas atmosphere
- Emissions prediction

Oxy-Fuel Technology Furnace Heat Flux Control

- Balancing of temperature levels by fluegas recycling and firing rate
- Additional balancing of temperature levels by fluidized bed solid mixing in CFB
- FW CFB/INTREX and PC heat surface options available for higher energy absorption

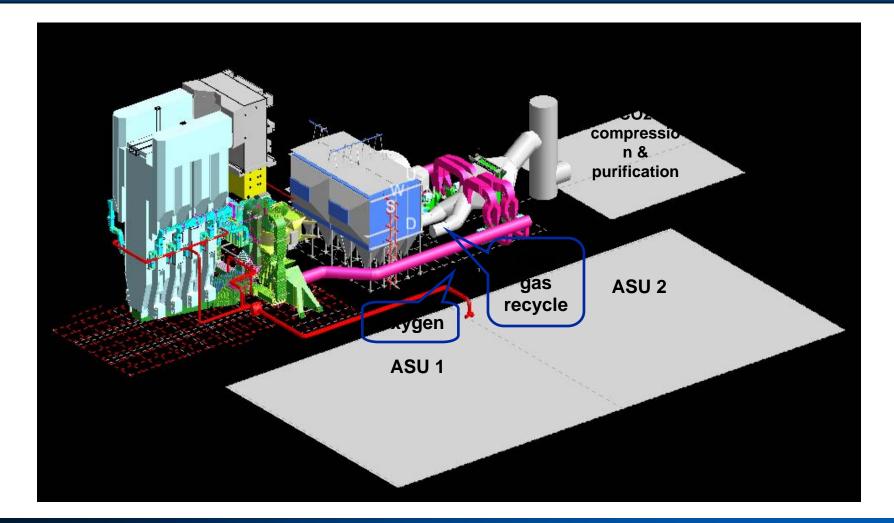
PRAXAIR

Oxy-Fuel Retrofit Study

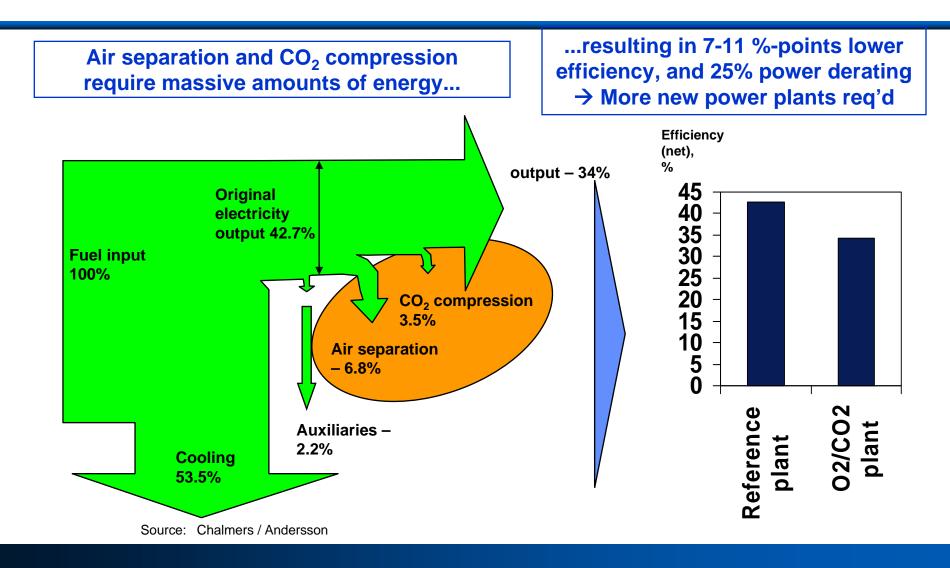

460 MWe Coal-Fired SC OTU CFB Boiler

Air-fired CFB reference plant:

- Coal-fired FW SC OTU CFB boiler being constructed in Poland, 460 $MW_{e,\ gross},\ 439$ $MW_{e,\ net},\ \eta_{e,\ net}$ >43%


Conversion to oxy-fuel firing studied with different design tools

- Aspen Plus[®] for process system integration
- FW boiler performance design and calculation programs for mass and energy balances, size and heat surfaces etc



Oxy-CFB Boiler Retrofit Study Layout

Penalty from Oxy-Fuel

PRAXAIR

Potential Solutions in terms of \$/tCO2, \$/kW

Maximize component efficiency

- Advanced ST
- Advanced ASU configuration: 3-columns (wait for breakthrough technology)
- Advanced CPU configuration and with use of liquid CO2 pump if applicable

Maximize CO2 capture

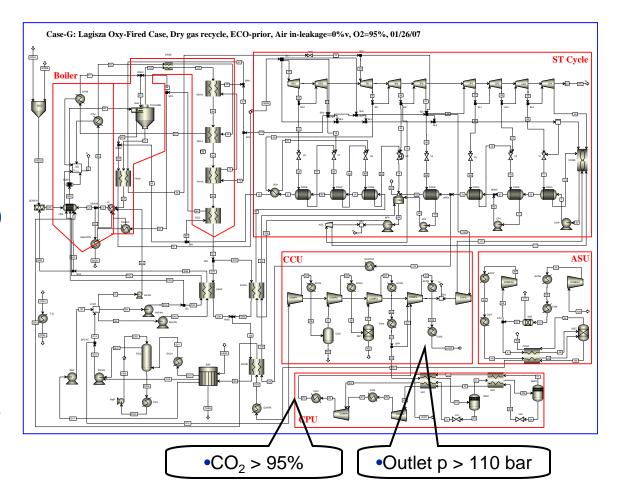
- Enhance CO2 recovery by reducing inert gases
- Integration with vent gas recycling and purification

Increase power generation

- Fire-more to get more power (due to increased HTC and LMTD)
- Reduce aux power, and with use of more efficient steam driven compressors

Heat integration

- Recover and integrate low-grade heat for power and efficiency
- Dual-firing boiler for better availability



Process Model

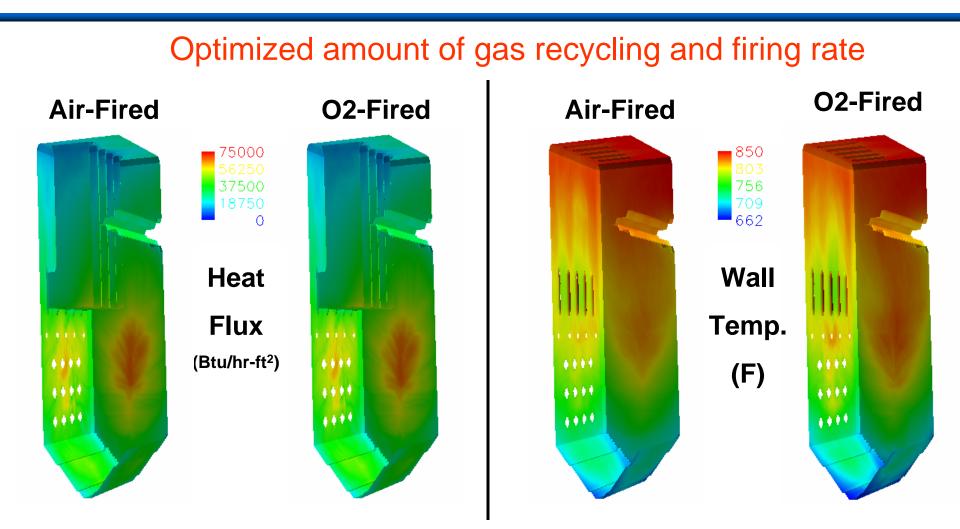
for challenges of integration and optimization

Parameters Studied:

- Dual-firing boiler
- Fire-more concept
- Hot/cold (w/d) recycle
- O₂ purity (95 or 99.4%v)
- Air ingress (0 or 3%)
- Heat recovery priority (gases or boiler water)
- CO₂ purification on/off
- Compressors driven by extracted steam

Dual (Air/Oxy)-Firing Boiler

Dual-firing for both peak power and CO2 removal


- Air-Firing Mode: max power output for peak power in summer, daytime and weekdays
- Oxy-Firing Mode: low power demand in winter, weekends and overnight
- Potential for Oxy-ready boiler to be supplied before CO2 capture required

Dual-firing for better availability

 Power plant can fired in air-mode with 100% load in case of ASU, CPU, or pipeline trips

Dual-Firing PC 3D Modeling

Firing-More Concept

At the same gas velocity and temperature, the furnace heat transfer coefficient increases in oxy-fuel mode due to flue gas physical properties

Firing-more to release more heat generates more steam using the same boiler, as a result of enhanced heat transfer coefficient, without increase of furnace temperature

Fire-more to maintain furnace gas velocity and heat flux

Extract extra steam from steam turbine to drive CO2 compressors to reduce auxiliary power load

Firing-More Benefits

Reduces auxiliary power, increase net power

- Net power reduction: 25% to 10%
- Specific power penalty reduction: 333 to 126 kWh/tCO2

Allows operation in both air-mode and oxy-mode

Increases CO2 removal

- CO2 removal: 75 to 106 kg/s

Reduces cost per kW and COE

- Small increase in CAPEX and OPEX of ASU, CCU, Cooling, and solids handling
- Same boiler and auxiliaries

ASU Opportunities & Challenges

Reduce ASU power by 10% Lower ASU capital by 20%

Heat integration

Optimum O₂ purity

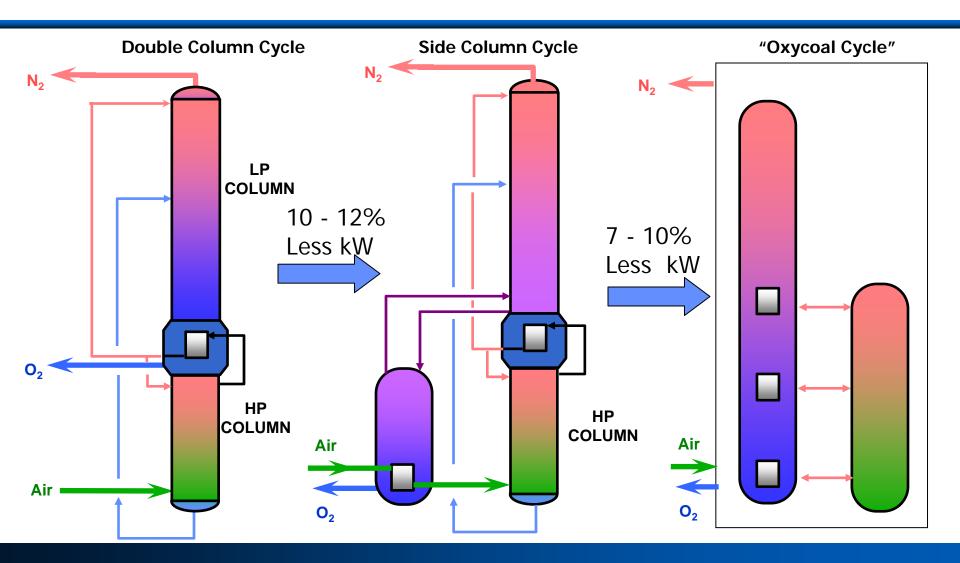
Match power plant operation

ASU Power Reduction

Increase thermal integration in distillation system

– Reduces air compression requirements

Reduce ΔPs


- Compressor intercoolers
- Prepurifier
- Distillation columns

Reduce ΔTs

- Primary heat exchanger for air cooling
- Cryogenic reboiler-condensers

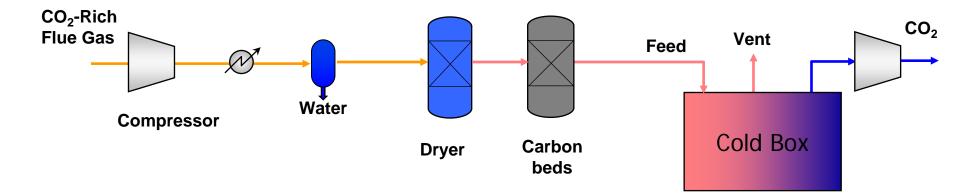
Advancing Distillation Process

CO₂ Processing Unit (CPU) Opportunities & Challenges

Meet emissions & CO₂ purity regulations

Integration of compression and purification

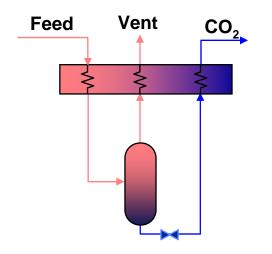
Impact of air ingress

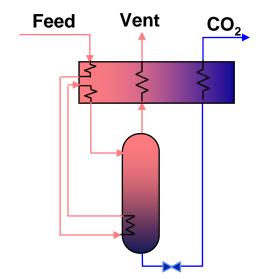

Condensate treatment and disposal

CPU Schematics

Compression account for a majority of costs

- CO₂ purity specification will dictate compression
- Cold box process optimization to minimize parasitic power


CO₂ Purification in Cold Box


Min. 95% CO₂

One or two stage flash

99.9% CO₂

Distillation column needed

Conclusions

When major cuts of CO₂ emissions are required, CCS by oxy-fuel combustion appears technically feasible and cost competitive.

PC and CFB technologies provide flexibility for the design and operation under oxy-combustion conditions.

Experiments carried out so far have indicated good performance. More tests (emissions, heat transfer, materials, fouling...) are needed for further development and validation of design tools & solutions.

Technology demonstrations in fairly large scale and of extended periods are a necessary step when proceeding toward fully commercial size plants.

3rd IEAGHG International Oxy-Combustion Workshop Yokohama, Japan, March 5-6, 2008

CETC

3rd Generation Oxy-Fuel Combustion Systems

CLEAN ENERGY TECHNOLOGIES

Kourosh E. Zanganeh, Carlos Salvador, Milenka Mitrovic, and Ahmed Shafeen

Zero-Emission Technologies Group

CANMET Energy Technology Centre – Ottawa

CANMET ENERGY TECHNOLOGY CENTRE

CO₂ Strategy Options for Power Sector

Efficiency Increase

1. Parameter higher temperature & new materials (e.g. nickel alloys, ceramics)

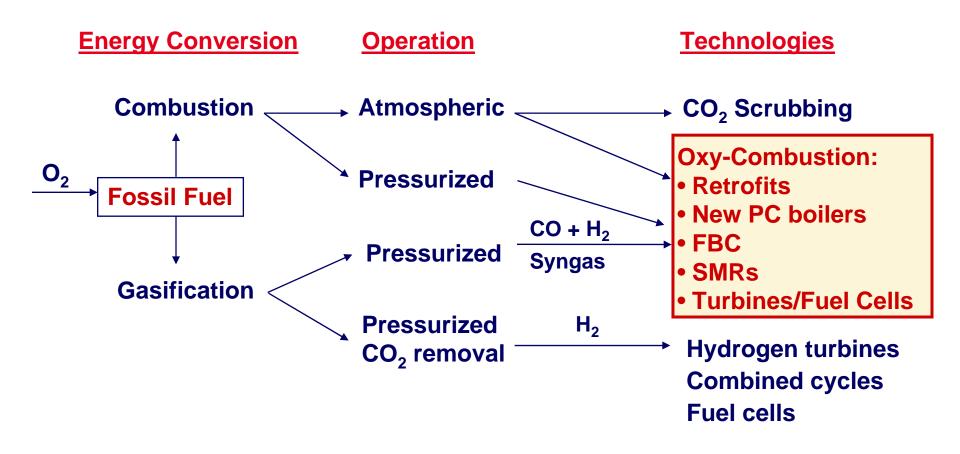
2. Technology improved machinery (e.g. turbine blades)

3. Process

new combined cycles (e.g. IGCC, PFBC, PPCC, EFCC) CO₂ Capture and Storage


1. Process

- pre-combustion capture
- post-combustion capture
- oxy-fuel combustion


2. Storage of CO₂

- aquifer
- oil-fields
- gas-fields
- coal-fields

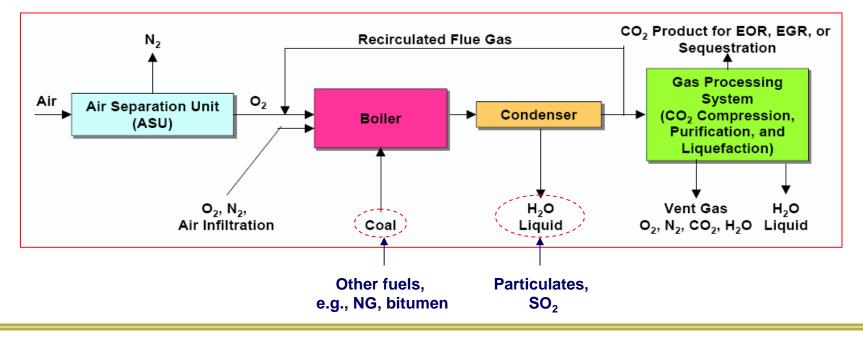
Oxy-Fuel Combustion Technology Pathways

Oxy-fuel Technology Generic Opportunities

- Produces a highly concentrated stream of CO₂, ready for capture and storage
- Offers excellent opportunities for integrated emissions control through reduced flue gas flow
- Can Eliminate the need for downstream NO_x Control
- With pure O₂ combustion, the unit size/volume may be reduced to 1/5th of air-fired combustion

Oxy-fuel Technology Generic Needs

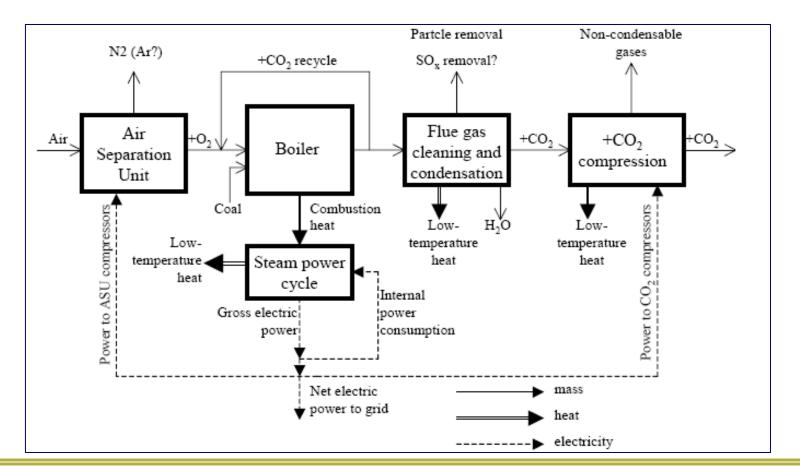
- Increased knowledge on fundamentals of combustion behavior and emissions formation/reduction
- Development of new component design and layout (boiler, burner, fuel feeding system, flue gas cleaning and recirculation devices...)
- Optimization of flue gas treatment and CO₂ processing to balance:
 - Environmental issues
 - Investment cost
 - Operational issues
- CO₂ product requirements (including effect on transport and storage system and risk and environmental aspects)
- CO₂ recovery and energy cost reduction
- O₂ production and energy cost reduction for air separation unit



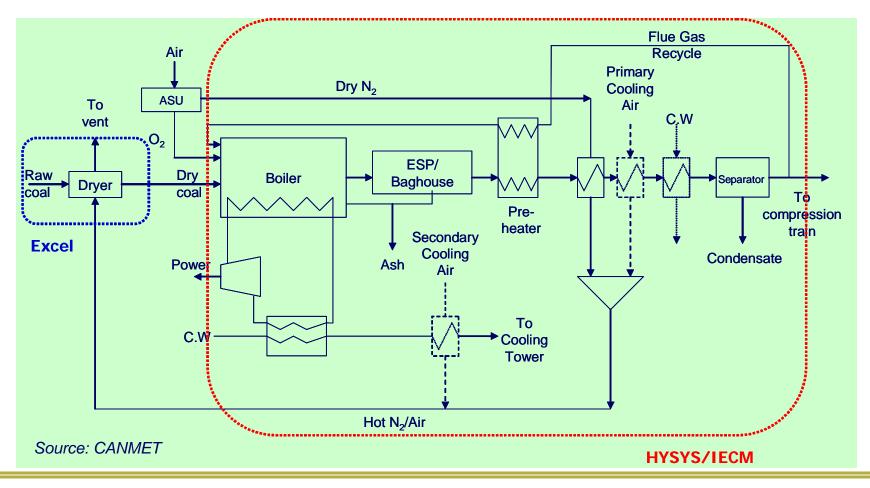
1st Generation Oxy-fuel Combustion Systems

- No reduction in unit size/volume compared to air-fired combustion (up to flue gas recycle point)
- No efficient integration and optimization of the process
- No recovery of low temperature heat

- Need to design the whole plant as a gastight system and for flue gas recycle to transport coal from the mills
 - CO₂ and hot gas leakage out versus air leakage in
 - Need for gas-tight mills and pre-treatment of the primary recycle flow

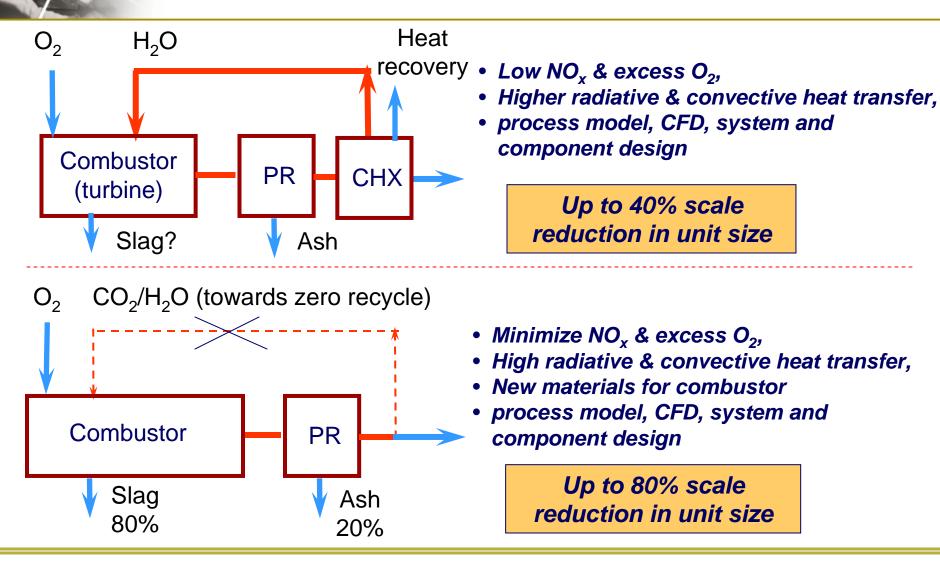


2nd Generation Oxy-Combustion Systems


Energy efficient integration and optimization of the process, recovery of low temperature heat

2nd Generation Oxy-Combustion Systems (*cont...*)

Integrated oxy-coal combustion with coal drying concept


Need for New Concepts and Technologies

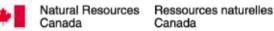
- Design for plant life
 - Current and future needs (CO₂ market, etc.)
 - Flexibility in design to adapt
 - Environmental regulations (near zero emissions for fossil fuels)
 - Low-value fuels and co-firing (bitumen, petcoke, biomass, etc)
- Advancements in technology, e.g.,
 - Ion transport membrane for O₂ production
 - CO₂ membrane for separation
 - High temperature materials (boiler tubes, etc)
- Moving away from Rankin cycle (lower efficiency)
 - 3rd generation of oxy-fuel combustion systems
 - Advanced turbines and power cycles
 - Pressurized with direct CO₂ capture

3rd Generation Oxy-Fuel Systems

CANMET Program Background

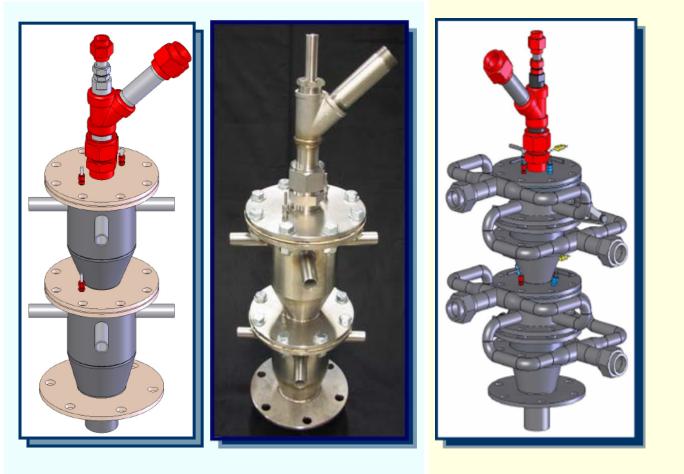
Zero Emission Oxy-Fuel Combustion Technologies for Clean Fossil Fuels:

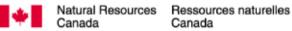
- The program started at CANMET in Mid 2004 and has already led to several new concepts and novel prototype designs
- The primary focus of the program is the development of the new generation of near-zero emission oxy-fuel combustion technologies with higher efficiency and significantly lower capital and operating costs.
- The scope covers three distinct, novel and advanced R&D technology areas:
 - Hydroxy-fuel (or oxy-steam) combustion technology;
 - Pure oxygen slagging combustion technology; and,
 - CO₂ capture and compression technology.


Hydroxy-Fuel Technology Development

Overall Objectives:

- Investigate the feasibility of hydroxy-fuel combustion for the 3rd generation oxyfuel systems
- Realize the reduction in size and capital cost of equipment
- Use water or steam, preferably with no FGR, to moderate the flame temperature
- Achieve high concentration of CO₂ (on dry basis) in the exit flue gas stream



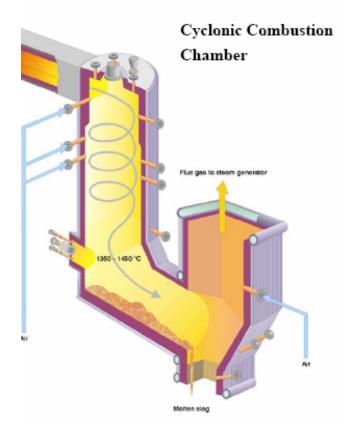

Hydroxy-Fuel Burner Prototypes

1st Generation: Fixed-Angle Swirl Generator 2nd Generation: Variable-Angle Swirl Generator

Hydroxy-Fuel Burner Prototypes (cont.)

- Design Features:
 - Fuels:
 - Natural gas
 - Oil, Emulsion
 - Pulverized coal and coal slurry
 - Operational modes
 - O₂/steam
 - O₂/RFG & O₂/CO₂
 - Air & oxygen enriched air
 - O₂/steam/RFG
 - O₂/steam/CO₂
 - Variable secondary & tertiary stream mass flow rates
 - Variable secondary & tertiary steam oxygen concentration
 - Independent secondary & tertiary stream swirl

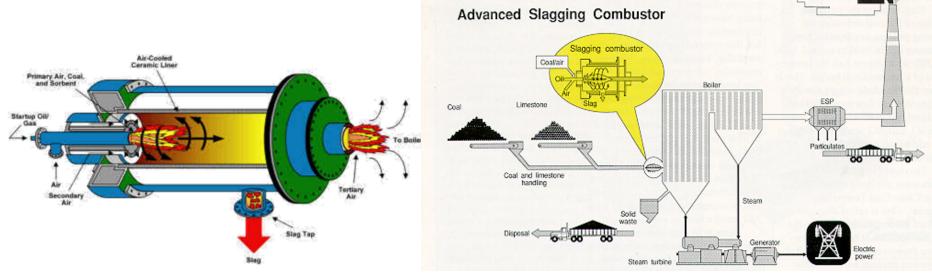
4th Generation: Variable Swirl Block Generator



Pure O₂ Slagging Combustor Technology Development

Overall Objectives:

- Investigate the feasibility of pure oxycoal combustion in slagging mode for the 3rd generation oxy-fuel systems
- Realize the reduction in size and capital cost of equipment
- Demonstrate the technology at pilotscale
- Investigate the scale up options



Background Technology

- Slagging combustor Features
 - Burn coal (e.g., high-ash) or co-firing with other opportunity fuels
 - Typical design includes
 - Fuel and primary stream are introduced either axially or tangentially
 - Secondary stream is introduced tangentially
 - Centrifugal forces propel the ash to the wall to form slag
 - Molten slag is drained by gravity
 - 75-85% of ash is removed

Design Challenges

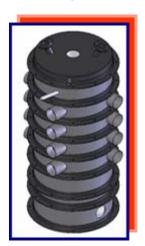
- Highly innovative and compact design
- High-temperature and corrosive environment
- Cooling system design and integration
- Slag removal
- Model slag formation, flow, and impact on performance
- Integration issues
- Process control and monitoring

CETC CANMET ENERGY TECHNOLOGY CENTRE

Prototype Design

- Five prototype designs have been completed
- Operating modes:
 - Pure O₂ combustion
 - Enriched air combustion
 - O_2/CO_2
 - O₂/RFG

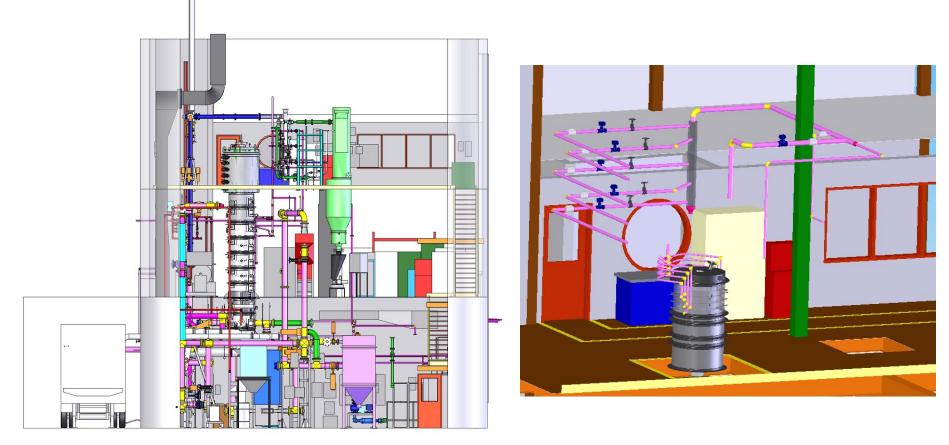
Prototype 1

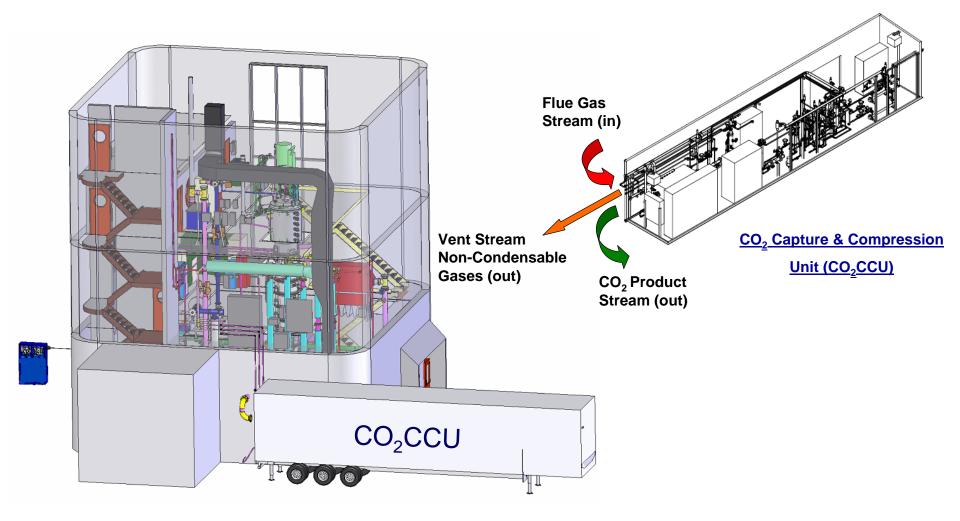

Prototype 2

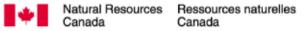
Prototype 3

B Prototype 4

Prototype 5

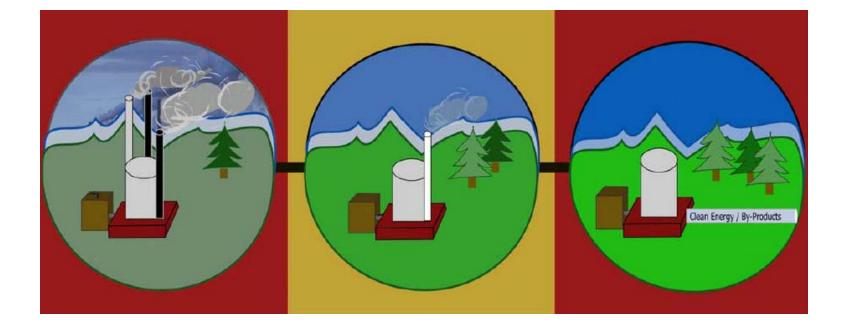



Integration with Vertical Combustor Research Facility (VCRF)



Integrated CO₂ Capture and Compression Unit

Canada


Acknowledgement

Much of the knowledge gained in oxy-fuel combustion technology enabling this presentation came from pioneering research and development undertaken in this area for more than a decade at CANMET Energy Technology Centre in Ottawa.

Funding for this program provided by the Program of Energy Research and Development (PERD), a federal, interdepartmental program operated by Natural Resources Canada, and the CANMET CO_2 R&D Consortium.

Thank You


O₂/RFG Combustion

OXY-COMBUSTION: RESEARCH, DEVELOPMENT AND SYSTEMS ANALYSIS

Timothy Fout

3rd Workshop of the IEAGHG International Oxy-Combustion Network Yokohama, Japan March 5, 2008

National Energy Technology Laboratory

Outline for Presentation

- NETL Overview
- Background
- Carbon Sequestration Program
- Oxy-combustion Research
- Systems Analysis

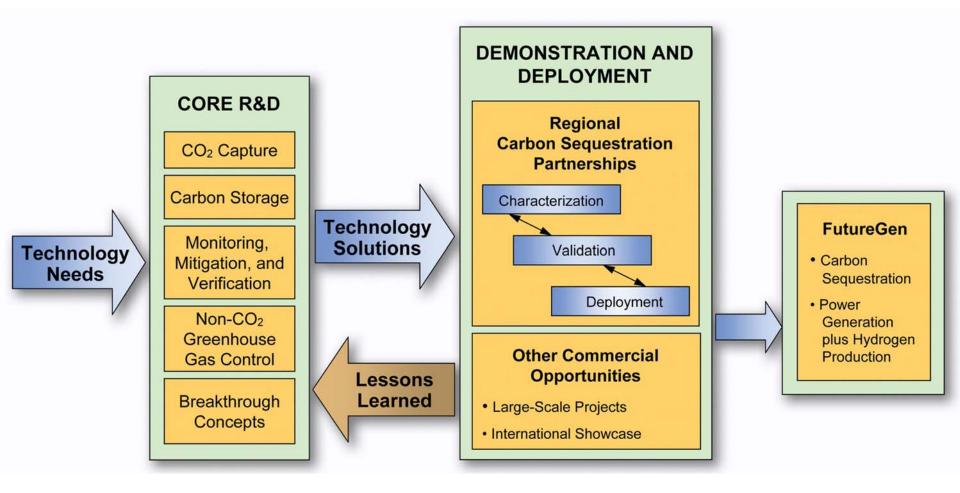
National Energy Technology Laboratory

- Only DOE national lab dedicated to fossil energy – Fossil fuels provide 85% of U.S. energy supply
- One lab, five locations, one management structure
- 1,100 Federal and support-contractor employees
- Research spans fundamental science to technology demonstrations

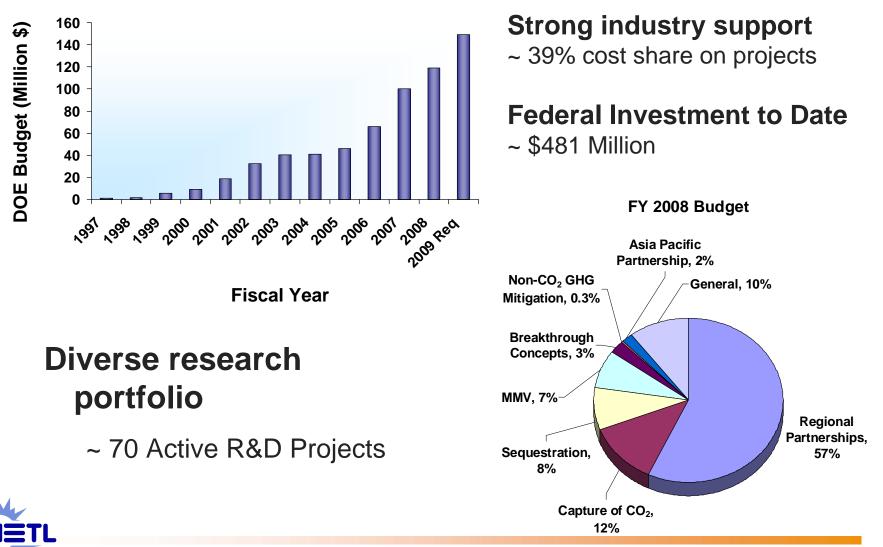
Pennsylvania

Oregon

West Virginia


Alaska

Oklahoma

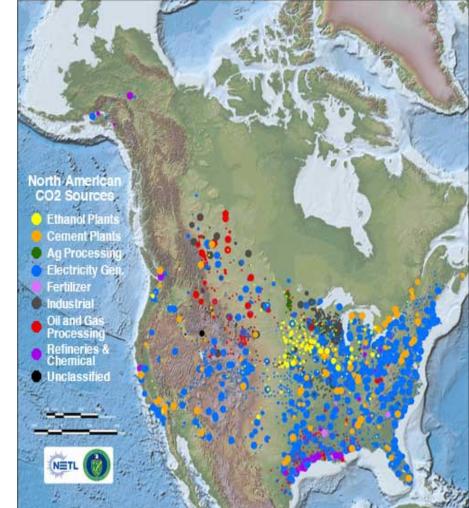


Carbon Sequestration Program Structure

Sequestration Program Statistics FY2008

Regional Carbon Sequestration Partnerships "Developing the Infrastructure for Wide Scale Deployment"

Characterization Phase

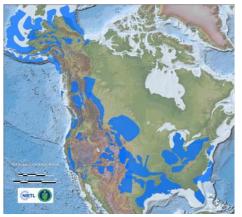

- 24 months (2003-2005)
- 7 Partnerships (40 states)
- ~\$15M DOE funds

Validation Phase

- 4 years (2005 2009)
- Field validation tests
 - 25 Geologic
 - 11 Terrestrial
- ~\$110M DOE funds

Deployment Phase

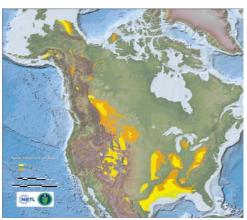
- 10 years (2008-2017)
- Several large volume injection tests


National Atlas Highlights

CO₂ Sources (Giga Tons)


	CO ₂ Emission	Number of Facilities
CO ₂ Sources	3.81	4,365

North American CO₂ Storage Potential (Giga Tons)


Sink Type	Low	High
Saline Formations	969	3,223
Unmineable Coal Seams	70	97
Oil and Gas Fields	82	83

Saline Formations

Unmineable Coal Seams

Oil and Gas Fields

Available for download at http://www.netl.doe.gov/publications/carbon_seq/refshelf.html

Innovations to Existing Plants Focuses on CO₂ Capture

- FY08 Congressional Budget
 - -~\$36M US
 - -\$15 \$20 M US for CO₂ Capture and Compression

• FY09 Presidential Budget Request

- -\$40 M US for CO₂ Capture and Compression, and Water Utilization
- Focus on Technologies for Existing Pulverized Coal-fired Power Plants

09/2007

FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT

U. S. Department of Energy

National Energy Technology Laboratory

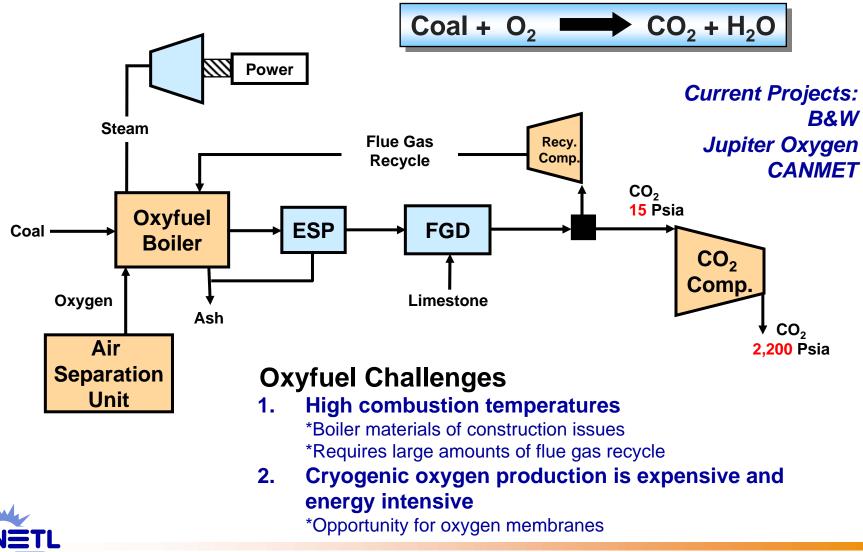
Carbon Dioxide Capture And Separation Technology Development For Application To Existing Pulverized Coal-Fired Power Plants Funding Opportunity Number: DE-PS26-08NT00134 Announcement Type: <u>AMENDMENT 02</u> CFDA Number: 81.089 Fossil Energy Research and Development

Issue Date of Amendment 01:February 15, 2008Letter of Intent Due Date:Not ApplicablePre-Application Due Date:Not ApplicableApplication Due Date:April 10, 2008 at 8:00:00 PM Eastern
Time

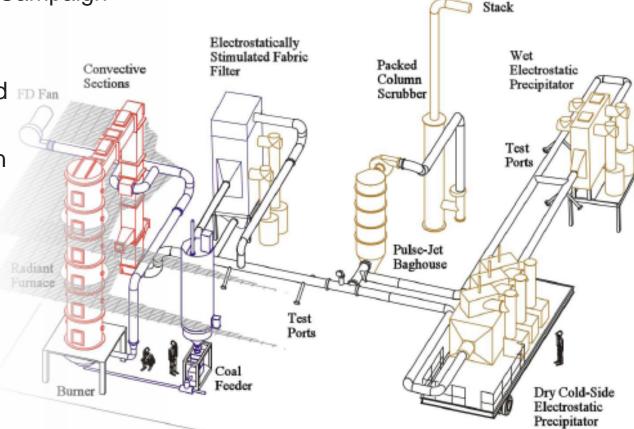
Technology Pathways Separation & Capture of CO₂

Issue

Demonstrated technology is costly


Pathways

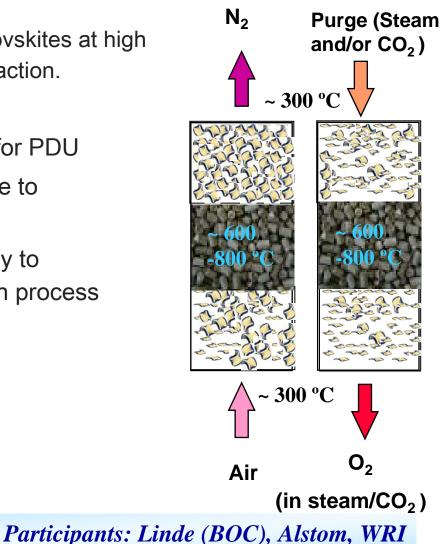
- Post-combustion capture
- Pre-combustion capture
- Oxycombustion
 - Chemical looping



Pulverized Coal Oxycombustion

Oxygen-Fired CO₂ Recycle for Application to Direct CO₂ Capture from Coal-Fired Power Plants

- Retrofit existing combustion facility for oxy-combustion
 - Design and Install Recycle Loop
 - Parametric Testing Campaign
- Status (1/2008):
 - Added partners
 Doosan Babcock and FD Fan
 Southern Company
 - Recycle Loop Design Completed
 - Oxy-combustion
 Burner Completed
 - Baseline CFD completed


Participants: Southern Research Institute, Maxon, DTE Energy, The BOC Group, Doosan Babcock, Southern Company, REI

Ceramic Autothermal Recovery

- Process Features
 - Uses oxygen "storage" property of perovskites at high temperatures. Highly selective O₂ extraction.
- Project Status (12/31/2007)
 - Determined acceptable sulfur levels for PDU
 - Determining effects of sulfur exposure to perovskites (short and long term)
 - Systems analysis and economic study to determine effects of sulfur removal on process economics

Perovskite Samples

Oxygen Transport Membranes (OTM) Steam Reactive Purge Fuel Carbon Flue dioxide Gas Water Air Heat OTM Water Heat recovery combustor **Project Status (12/31/07):**

- Conducting Systems analysis of Coal-based Concepts
- Investigating Freeze-casting of porous supports
- Constructed High Pressure Reactor

NETL/Office of Research and Development Oxy-Combustion Activities

Exchange

Heat E

Filter -

Coolina

Water

Pump

(5)

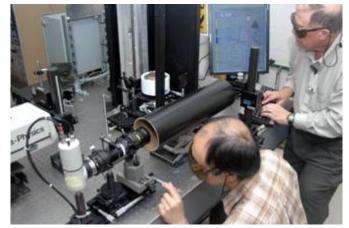
Heat Exchanger

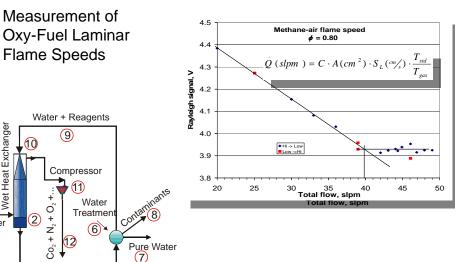
Cyclone

Coal

Flue Gas

Recirculation

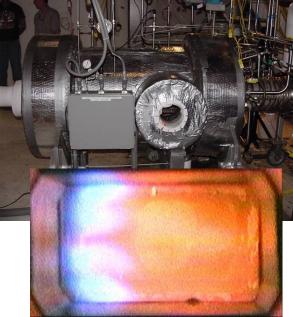

Oxygen

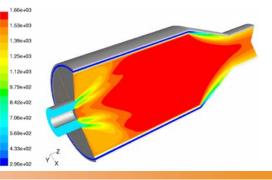

Ga

PC Coal and Turbine **Power Cycles**

Overall objective: development of improved and validated modeling tools for oxy-combustion systems

 Approach combines modeling, lab tests, and field work





NETL/Office of Research and Development Oxy-Combustion Activities – cont'd

- Obtain fundamental combustion data and radiative properties of oxy-flames
 - Laminar flame speeds
 - Radiative properties/heat transfer in high steam environments and validation data sets
- Systems-level modeling
 - test, demonstration and full scales Develop improved modeling/ simulation tools
- Develop and validate CFD models for oxy-fired PC combustion
- Assess materials performance in oxycombustion environments
- Develop approaches to capture CO₂ from oxy-fuel combustion products

Reheat Combustor Demonstration – NETL/NASA/CES

Study Matrix

Case	CO ₂ Capture	Steam psig/°F/°F	Oxidant	NOx Control	CO ₂ Purity	Storage
1	None	3500/1110/1150ª	Air	0.07 lb/10⁶Btu - Low NOx Burners - Over-fired Air - SCR	N/A	
2	None	4000/1350/1400 ^b			N/A	
3	Econamine	3500/1110/1150			~100%	
4	Econamine	4000/1350/1400			~100%	
5	ASU Oxyfuel 3500		95 mol% O ₂	0.07 lb/10⁶Btu - Low NOx Burners - Over-fired Air - <u>Flue Gas Recycle</u>	Spec. A	B Saline
5A		3500/1110/1150 9	99 mol% O ₂		Spec. B	
5B			95 mol% O ₂		Spec. B*	
5C			95 mol% O ₂		Spec. C	
6	Cryogenic ASU Oxyfuel	Ultrasupercritical	95 mol% O ₂		Spec. A	
6A		4000/1350/1400			Spec. C	
7	Membrane	Supercritical	~100 mol%		Spec. B	
7A	ASU Oxyfuel	3500/1110/1150	0 ₂		Spec C	

^aSteam conditions for the supercritical (SC) power plant cases (available now) ^bSteam conditions for the ultra-supercritical (USC) power plant cases (2015-2020) ASU: Air Separation Unit SCR: Selective Catalytic Reduction

CO₂ Purity

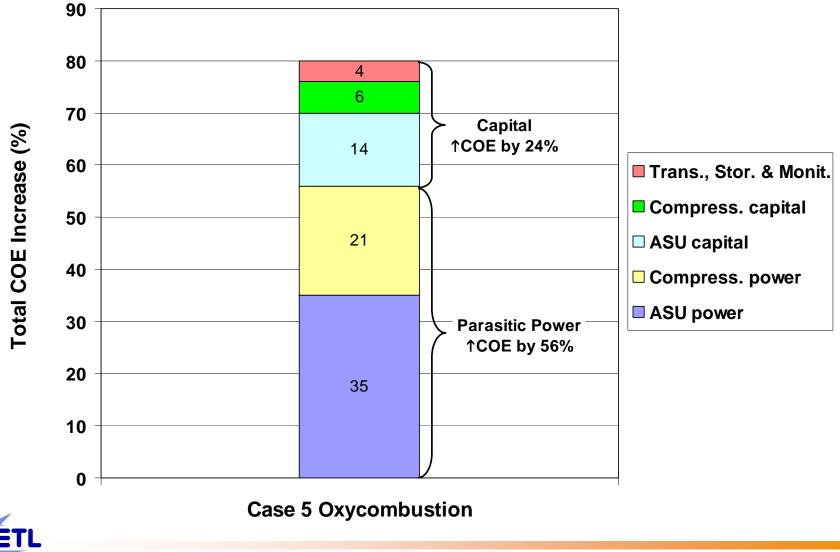
<u>Specification A</u>: Raw flue gas product using 95 mol% oxygen → Saline Formation <u>Specification B</u>: Raw flue gas product using 99 mol% oxygen → Saline Formation <u>Specification C</u>: Raw flue gas product using 95 mol% oxygen and treated to meet EOR Spec.

	EOR	Saline Formation
Pressure (psia)	2200	2200
CO ₂	>95 vol%	not limited ¹
Water	dehydration ² (0.015 vol%)	dehydration ² (0.015 vol%)
N ₂	<4 vol%	not limited ¹
0 ₂	<40 ppmv	<100 ppmv
Ar	< 10 ppmv	not limited
NH ₃	<10 ppmv	not limited
СО	< 10 ppmv	not limited
Hydrocarbons	<5 vol%	<5 vol%
H ₂ S	<1.3 vol%	<1.3 vol%
CH ₄	<0.8 vol%	<0.8 vol%
H ₂	uncertain	uncertain
SO ₂	<40 ppmv	<3 vol%
NOx	uncertain	uncertain

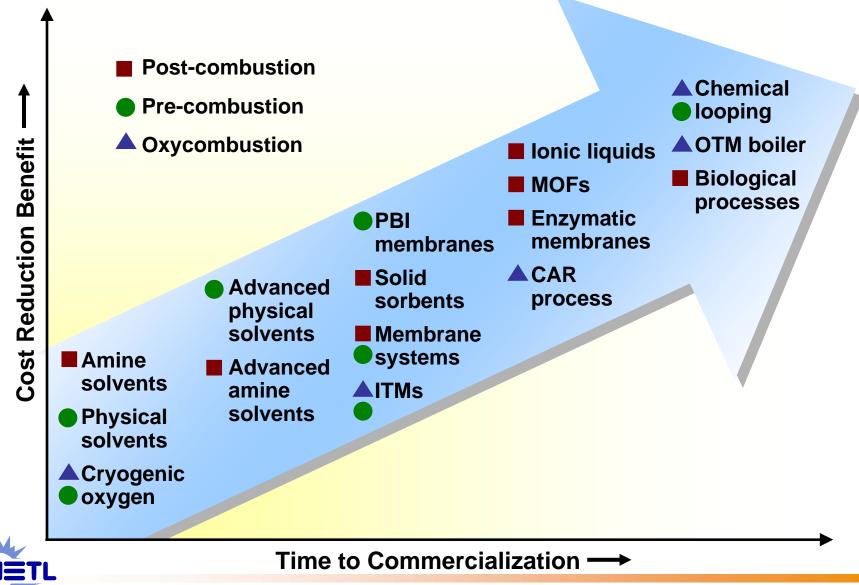
1: These are not limited, but their impacts on compression power and equipment cost need to be considered.

2: Dehydration process, such as a glycol absorber, is required.

Supercritical Oxyfuel Combustion Key Points


Coing from 95% to 99% O $_2$ purity results in:

- Less than 0.5% increase in ASU auxiliary load (130.5 MW to 131 MW)
- A 9% increase in ASU capital cost (\$509/kWe to \$555/kWe)
- A 4 Megawatt <u>decrease</u> in CO₂ compression and purification auxiliary power (78.5 to 74.5 MW) → Results in a slightly higher net power plant efficiency.


Bottom Line: The CO_2 compression and purification auxiliary power savings—due to the use of a higher purity oxidant—is offset by a 9% increase in ASU capital cost resulting in a <u>negligible</u> advantage in going from 95 to 99% oxygen purity.

Oxyfuel COE Increase Distribution

Innovation Advances

T. Fout, March. 2008

For Additional Information

Sean Plasynski Pre-combustion 1- 412-386-4867 Sean.Plasynski@netl.doe.gov Thomas Feeley Post -, Oxycombustion 1 - 412-386-6134 Thomas. Feeley@netl.doe.gov

Timothy Fout 1 - 304-285-1341 Timothy.Fout@netl.doe.gov

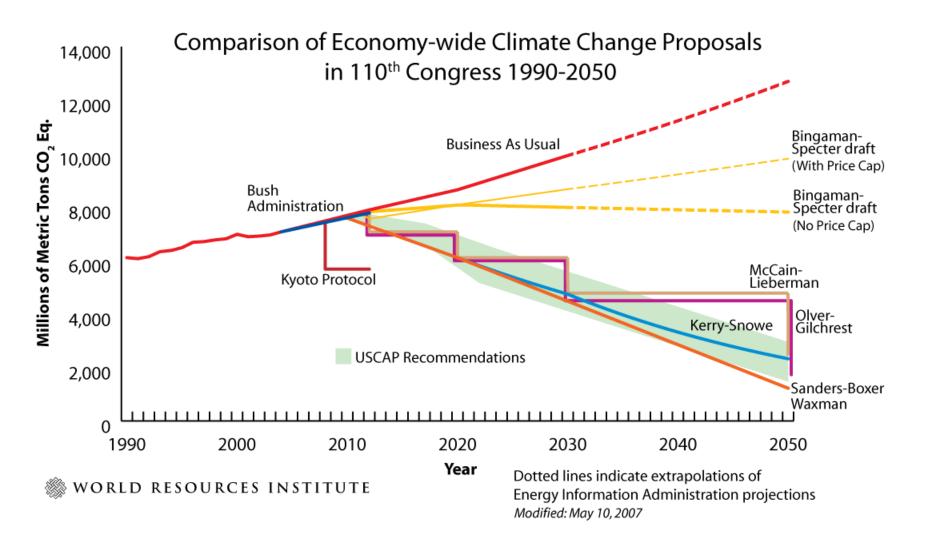
Jared Ciferno Systems Analysis 1 - 412-386-4881 Jared.Ciferno@netl.doe.gov

Thomas Ochs In-house Research 1 - 541-990-5443

Thomas.Ochs@netl.doe.gov

Understanding the Potential Environmental Impacts of Oxyfuel Combustion

C.W. Lee and C. Andrew Miller


Office of Research and Development National Risk Management Research Laboratory, Air Pollution Prevention and Control Division

Legislative and Regulatory Context

- Recent Supreme Court Decision
 - -EPA has statutory authority to regulate GHG emissions
 - EPA must make a "reasoned decision" based on analysis of potential endangerment from GHGs
- Several bills proposed in current Congress
- Energy Independence and Security Act (2007)
 - Calls for R&D of new and advanced technologies for the separation of oxygen from air
 - Authorized (not allocated) \$200,000,000/yr for capture research, development & demonstration

Environmental Issues of Concern

- EPA is responsible for addressing environmental issues and impacts, including:
 - -CO₂ emissions and effects
 - -Impacts of geological sequestration
 - -Other environmental impacts
 - SO_2 , NO_x , Hg, other pollutants
 - Solid and liquid effluents
 - Application of carbon capture and sequestration to non-utility sectors

Key EPA Questions

- Currently many more questions than answers
- Ability to be applied as retrofit technology
- Applicability to other sectors
- Parasitic power requirements
- Scalability
- CO₂ transport and storage requirements
- Fate of effluents

Oxy-fuel Combustion as Retrofit Technology

- Enormous investment in current fossil-fuel power generation system
- Ability to retrofit existing plants may provide an attractive alternative to requiring new plants to be built
- Need to understand capital and operating costs, retrofit time, operational issues, emission characteristics and potential environmental impacts (to air, water, soil)
- What differences (if any) exist between retrofit and new installations?

Applicability to Non-Utility Sectors

Can oxy-fuel combustion be used in other sectors (e.g. cement industry)?

-As retrofit, or as new installation only?

- What are costs, operating issues, and emissions associated with these applications?
- How do they differ from current technologies?

Operability and Technology Scalability

- Need to understand parastic power to estimate potential changes in demand and supply of electricity, and therefore potential changes in emissions
 - Need to understand how to evaluate fuel requirements and mass of potential effluent streams per unit of net electric power
- What is the range of plant sizes for which oxy-fuel combustion is practical?
- How well does oxy-fuel combustion adapt to different operating conditions, such as changes in coal type?

CO₂ Transport and Storage Requirements

- Post-combustion CO₂ separation and compression will result in different CO₂ stream composition than oxyfuel combustion
 - –Does this make a difference to transport and storage?
 - -Current transport assumes very high purity CO₂
 - Existing specifications for CO₂ properties based on corrosion potential of pipelines
 - -Significant changes to CO₂ stream purity may result in need for more expensive pipeline material
 - –Need to understand impacts of CO₂ composition on reservoir

U.S. CO₂ Pipeline Quality Specifications

Component	Limit		Comments
CO ₂	95%	Min	MMP* Concern
Oxygen	10 ppm	Max	Corrosion
Temperature	120 deg F	Max	Materials
Glycol	0.3 gal/MMcf	Max	Operations
H ₂ S	10 – 200 ppm	Max	Safety
Water	30 lbs/MMcf	Max	Corrosion
Hydrocarbons	5%	Max	MMP Concern
Nitrogen	4%	Max	MMP Concern

*Minimum miscibility pressure

Efforts at EPA – Current and Potential

- Currently evaluating existing literature on oxy-fuel combustion, demonstrations of CO₂ transport and sequestration
- EPA has flexible pilot-scale facilities for conducting tests of oxy-fuel combustion with natural gas, fuel oil, and coal
- Also have extensive experience in combustion exhaust chemistry analyses, including trace elements such as Hg

Technical Challenges

- Flue gas recirculation
 - -Can SO₂ and PM be removed to a high enough degree to avoid excessive fan corrosion?
- Trace element content
 - –What are the implications for presence of CI, Hg?
- Verification of CO₂ and impurity behavior at supercritical conditions
 - -Conventional measurement methods not applicable in current configuration

Potential Goals of EPA Research

- Evaluation of gaseous, solid, and liquid effluent streams
 - -To what degree do these differ from current effluents?
 - -Do the differences have environmental implications (either positive or negative)?
- Understanding operational issues, including startup, shutdown, and transient operation, that may have environmental impacts

3rd Workshop IEAGHG Oxy-Combustion Network, Yokohama, March 2008

HIGH TEMPERATURE REDUCTION OF NITROGEN OXIDES

Fredrik Normann

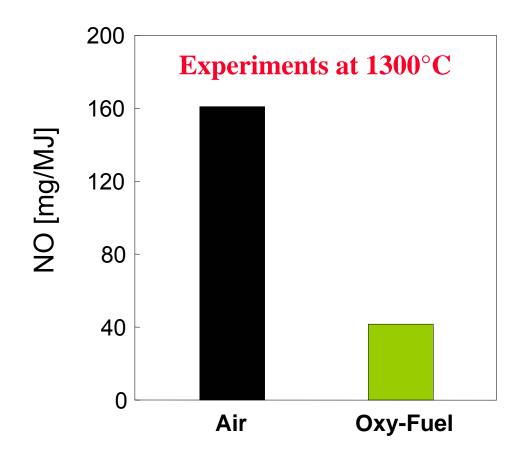
Chalmers University of Technology

Chalmers Oxy-Fuel Research

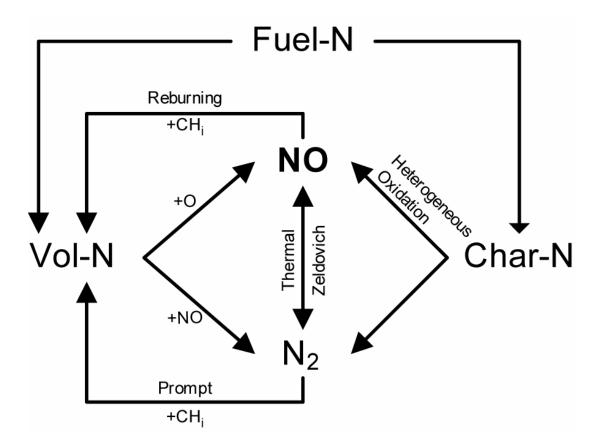
Purpose: Obtain knowledge for commercial oxy-fuel boilers

Progress of work:

- Build a 100 kW test unit
- Operation with propane
- Operation with lignite


Content of work:

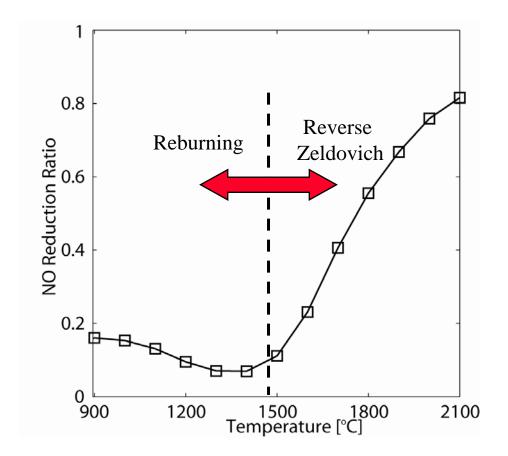
- Heat transfer
- Emissions


Present presentation: High temperature reduction of NO_x

NO Emission

Nitrogen Chemistry

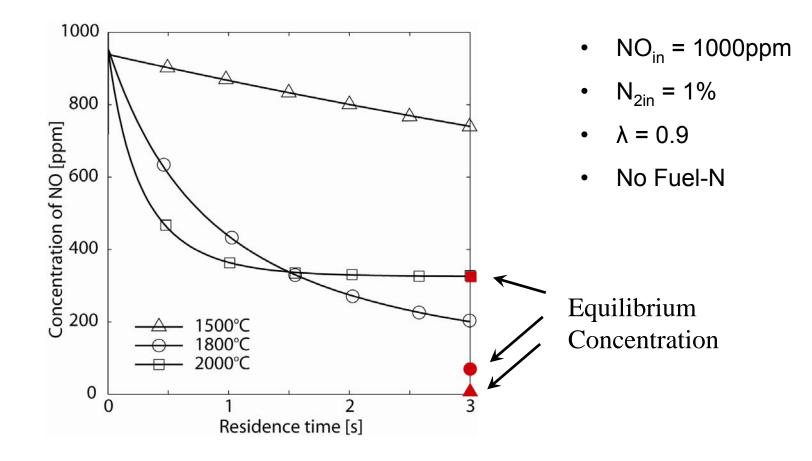
Nitrogen Chemistry


Method

- Detailed gas phase reaction mechanism
- Isothermal plug flow reactor
- Methane flame
- HCN and NH₃ as Fuel-N

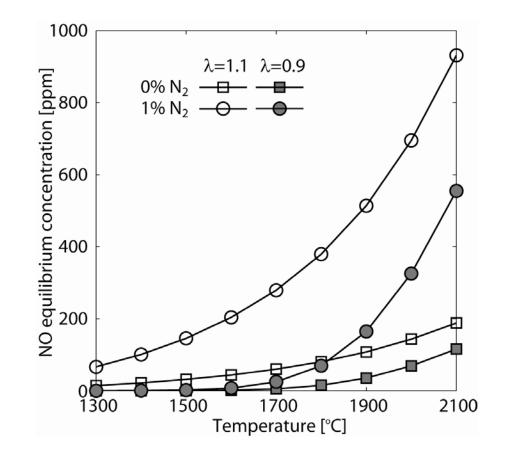
NO Reduction

- NO_{in} = 1000ppm
- N_{2in} = 0%
- t = 1 s
- λ = 0.9
- No Fuel-N

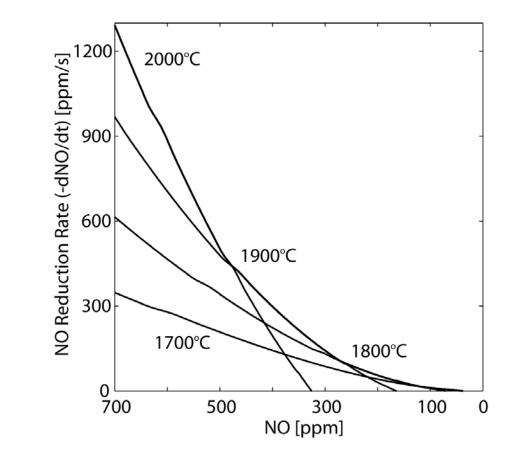

Aim

Investigate possibilities for high-temperature reduction of NO_x:

- The influence of combustion parameters and their limits
- The implementation for an oxy-fuel combustion boiler


Residence Time

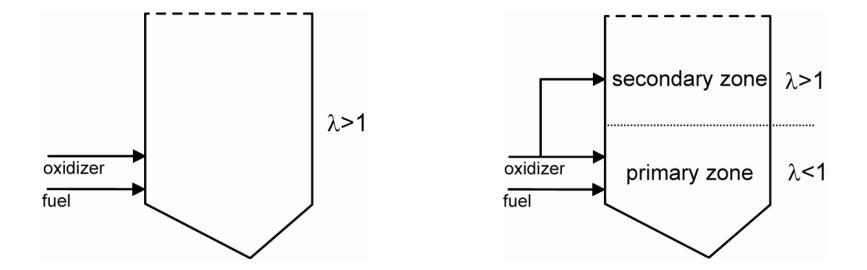
Gas Phase Reduction Limits


- NO_{in} = 1000ppm
- No Fuel-N

Temperature Optimization

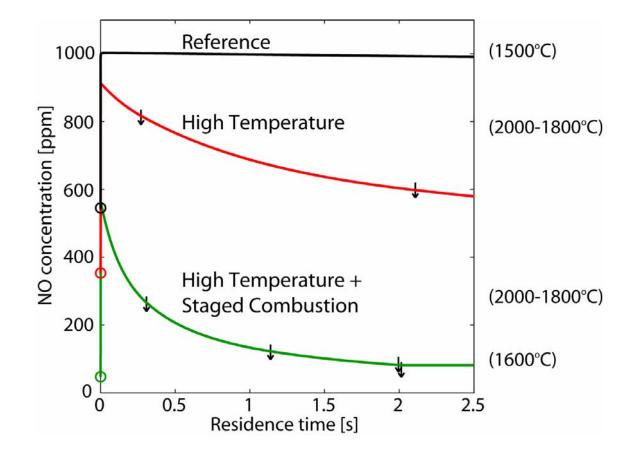
- NO_{in} = 1000ppm
- N_{2in} = 1%
- λ = 0.9
- No Fuel-N

Design considerations


- Low concentrations of N₂ and O₂
- High temperature
- Long residence time

Firing Strategies

Staged Combustion –


Low concentration of O_2 in the combustion zone

Firing Strategies

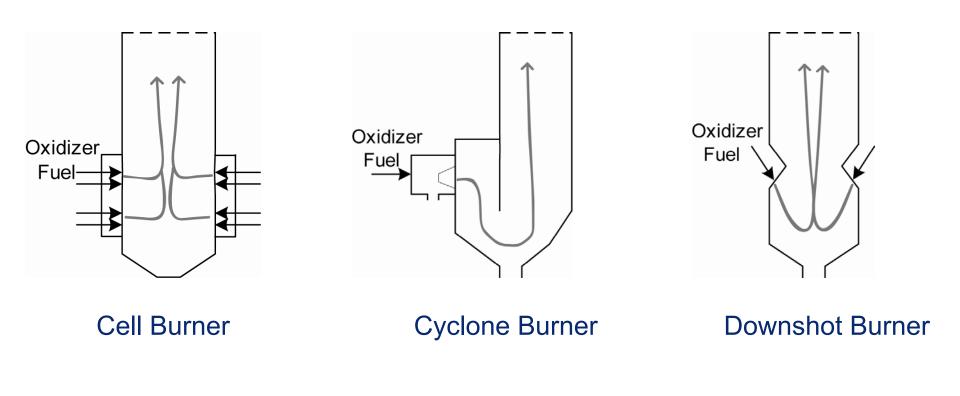
- Fuel-N
- True Recycle

High-Temperature Combustion

Oxygen-enriched combustion –

- Higher combustion temperature
- Lower mass flow through the furnace

High-Temperature Combustion


Other Combustion Issues -

- Unburned Carbon
- Ash Melting/ Slagging
- Heat Transfer
- Corrosion

High-Temperature Combustion Systems

Rapid mixing burners –

Conclusions

- Limited by Equilibrium and Reaction Rate
 - Low air ingress and High oxygen purity
 - Sub-stoichiometric combustion zone
 - High but decreasing temperature
 - Long residence time
- Available Techniques
 - High-temperature combustion systems
 - WBB

Understanding the Effects of O₂ and CO₂ on NOx Formation during Oxy-Coal Combustion

Christopher Shaddix

Combustion Research Facility Sandia National Laboratories Livermore, CA 94550

and

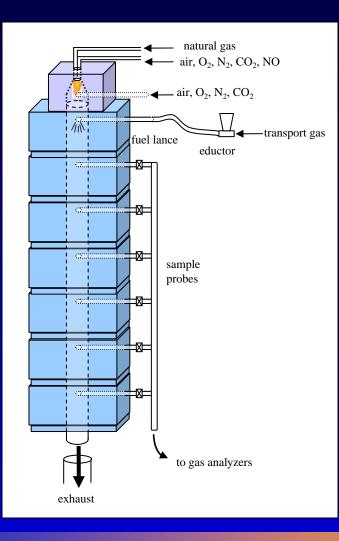
Alejandro Molina

Escuela de Procesos y Energía Facultad de Minas Universidad Nacional de Colombia Medellín, Colombia

3rd IEA Greenhouse Gas Workshop on Oxy-Fuel Combustion Yokohama, Japan March 4-6, 2008

Sandia National Laboratories

Overview of Oxy-Coal NOx Research


- Many burner studies on char burnout (LOI) and NO_x and SO₂ emissions during oxy-coal combustion
- Most studies find significantly lower NOx emissions during oxy-coal combustion (~ 3X reduction)
 - \checkmark Negligible thermal NOx production (no N₂ in oxidizer)
 - ✓ Reburn of recycled NOx in coal flame
 - ✓ Reburn of recycled NOx on coal char
- So far, few systematic studies to understand relative contributions of these effects or to determine direct effects from different O₂ and CO₂ concentrations
 - ✓ Okazaki and Ando, 1997, a notable exception

Goal of Present Study

Determine effect of gas environment on NOx formation from combustion of coal and coal char when burned as *dispersed*, *low concentration* particles (burn as isolated particles)

- \checkmark vary O₂ concentration (with little O₂ consumption)
- \checkmark vary background bulk gas (N₂ or CO₂)
- ✓ vary background NO (affecting NO reburn)
- ✓ control temperature

Experimental Setup: Multifuel Combustor

• 1 atm

- 150 mm dia, 4.2 m long SiC reaction tube with 7 independently controlled heater sections (up to 1350 °C)
- operates on air or specified mixtures of O₂ with N₂ or CO₂
- natural gas burner to preheat gases
- coal or char particles introduced at top of reactor
- Horiba CEM and micro-GC analysis of stable gases

Pulverized Coal and Char Properties

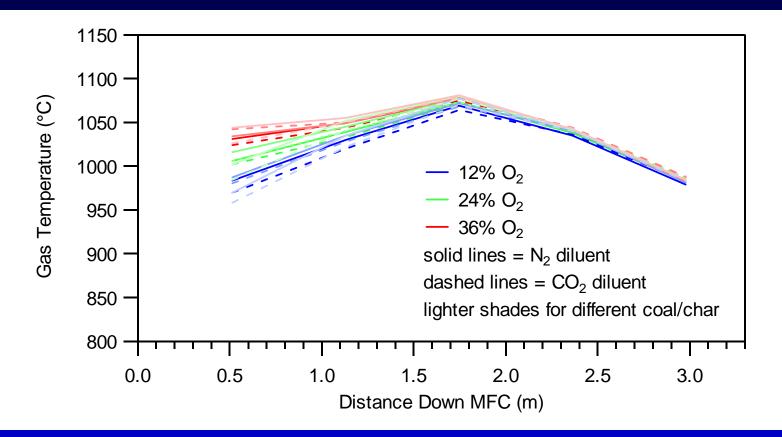
		Char				
	Pittsburgh Bailey		Black Thund	Pittsburgh Bailey		
Proximate	wt%, as rec'd	wt% dry	wt%, as rec'd	wt% dry	wt%, as rec'd	wt% dry
moisture	1.4		10.8		1.1	
ash 6.9 volatiles 35.4		7.0	5.0	5.6	19.4 3.3	19.6 3.3
		35.9	40.4	45.3		
fixed C	xed C 56.3 57.1		43.8	49.1	76.2 77.0	
Ultimate	wt% dry	wt% DAF	wt% dry	wt% DAF	wt% dry	wt% DAF
С	77.2	82.9	60.9	64.1	76.9	95.4
Н	5.2	5.6	5.2	5.5	0.7	0.9
O (by diff.)	7.2	7.7	27.6	29.1	0.2	0.2
Ν	1.5	1.6	0.9	0.9	1.3	1.6
S	2.0	2.2	0.4	0.5	1.2	1.5

Pitt coal char was produced at 1500 K in MFC

MFC Gas Compositions Investigated

Nominal Condition	Initial Concentration (vol-%)				Final Concentration (vol-%)				
	O ₂	N ₂	CO ₂	H ₂ O	O ₂	N ₂	CO ₂	H ₂ O	
12% O_2 in N_2	12.6	75.9	3.9	7.6	10.7	75.7	5.4	8.2	
24% O_2 in N_2	25.0	63.5	3.9	7.6	21.2	63.2	6.9	8.7	
36% O_2 in N_2	37.6	50.9	3.9	7.6	31.9	50.5	8.3	9.3	
12% O_2 in CO_2	13.3	1.1	73.9	11.7	11.3	2.3	74.3	12.1	
24% O_2 in CO_2	26.0	1.1	61.2	11.7	22.2	1.2	63.8	12.8	
36% O_2 in CO_2	38.7	1.1	48.6	11.7	32.9	1.1	52.6	13.4	

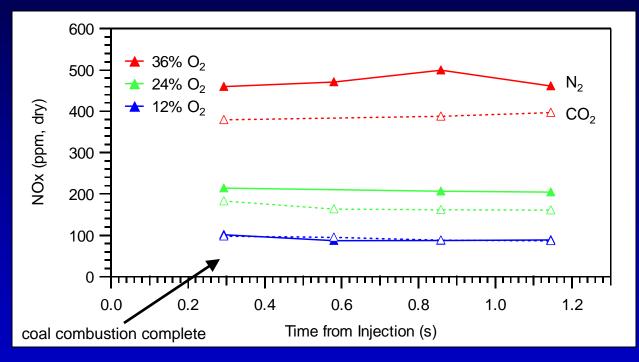
• Equivalence Ratio maintained at 0.15 for all experiments


 ✓ low solids loading, little O₂ consumption (reactor as entrained flow reactor)

- Two levels of background NO investigated
 - ✓ 30 ppm for 'low reburn'
 - ✓ 530 ppm for 'high reburn'

Sandia National Laboratories

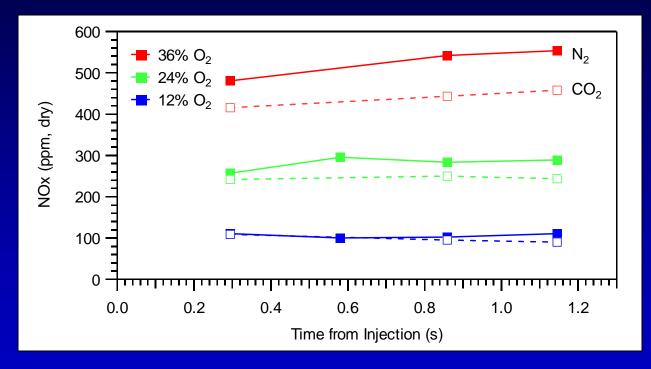
Gas Temperature Profiles (Type K thermocouples)



Nominal reactor temperature of 1050 °C for all experiments

NOx Measurements: low reburn

Pittsburgh coal


- NOx production favored at higher O₂ levels, especially in N₂ diluent
 - ✓ higher volatile flame temperature
 - ✓ higher char combustion temperature
 - ✓ CO₂ effect may reflect thermal NOx and/or lower combustion T

Sandia National Laboratories

NOx Measurements: low reburn

Black Thunder coal

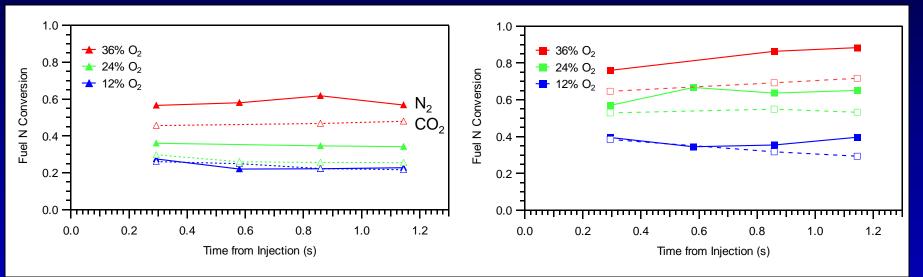
Same trends as for Pittsburgh coal, with slightly higher NOx production

Normalization of NOx data

 To compare NOx production for different fuels and fuel injection rates, need to convert measured NOx to "Fuel Nitrogen Conversion"

- i.e., fraction of N in fuel that is converted to NOx

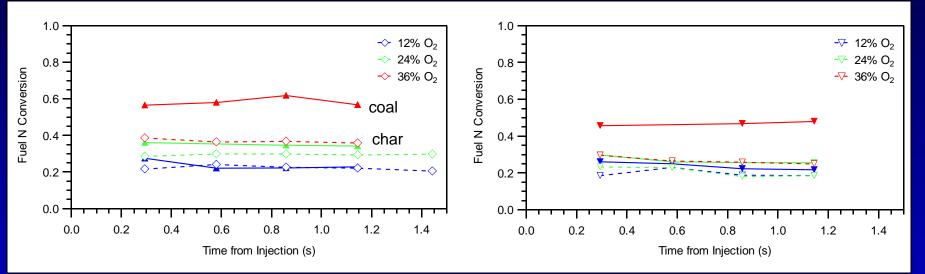
$$Conversion = \frac{\left[NOx\right] \cdot \dot{V}(P/RT)}{Y_{N, fuel} \cdot \dot{M}_{fuel} / MW_{N}}$$


- Has literal meaning for CO₂ diluent with low background NO
- Broader interpretation must be considered for cases of N₂ diluent and/or substantial background NO (other sources and sinks of NO)

Fuel N Conversion: low reburn

Pittsburgh coal

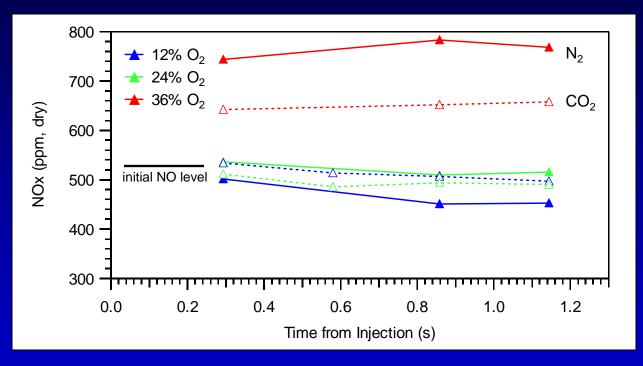
Black Thunder coal



- Trends with O₂ still apparent, but differences reduced in relative magnitude
- Black Thunder has substantially higher fuel-N conversion to NOx
 - ✓ higher volatile content
 - ✓ higher char combustion temperature
 - ✓ lower fuel-N content

Fuel N Conversion: low reburn

Pittsburgh coal vs. char in N₂

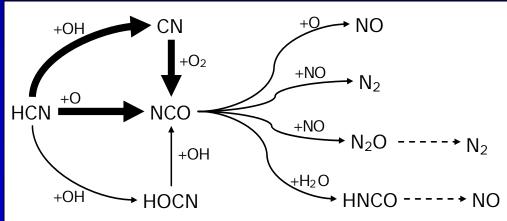

Pittsburgh coal vs. char in CO₂

- Volatile-N preferentially produces NOx at elevated oxygen levels
 - ✓ higher volatile flame temperature
- Char-N produces more NOx at elevated oxygen levels (esp. in N₂)
 - \checkmark higher char comb. temperature with more O₂, N₂

NOx Measurements: high reburn

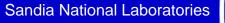
Pittsburgh coal

Overall slight net NOx reduction at 12% and 24% O₂ (i.e. negative fuel-N conversion) and much lower net NOx production at 36% O₂ (N conversion of 0.30 in N₂ and 0.14 in CO₂, compared to 0.60 and 0.45 for low background NO)


✓ demonstrates importance of NOx reburn

Sandia National Laboratories

Effect of Char Combustion Temperature and Background NO on Char-N Conversion


- Recently completed joint experimental/modeling project provides convincing evidence for dominant route of N release from pc char as CN compound (here modeled as HCN) (manuscript submitted to Comb. Flame)
- HCN is oxidized to NCO
- NCO is either oxidized to NO (favored at high temps), or reacts with NO to from N₂ (favored at low temps and for high background NO levels)

Conclusions

- Elevated O₂ levels and presence of CO₂ bath gas affect NOx formation during oxy-coal combustion
- Black Thunder subbit coal shows substantially higher fuel-N conversion than Pittsburgh hvbit coal under all conditions
- Both volatile-N and char-N show stronger conversion to NOx with increasing O₂
- Char-N shows stronger conversion in presence of N₂ bath gas
- High background NO experiments show importance of NOx reburn reactions
- Reacting particle/chemical kinetic modeling of experiments is being performed to improve understanding of governing mechanisms

Acknowledgments

 Research sponsored by U.S. DOE Fossil Energy Power Systems Advanced Research program, managed by Dr. Robert Romanosky, National Energy Technology Laboratory

End of Presentation

Questions?

Evaluation of CO2 Capturing-Repowring System Based on Oxy-Fuel Combustion for Utilizing Low Pressure Steam

Pyong Sik Pak*, Young Duk Lee** and Kook Young Ahn**

* Osaka University ** Korea Institute of Machinery and Materials

Table of Contents

- 1. Introduction
- 2. Outline of Proposed CO₂ Capturing-Repowring System
- 3. Fundamental Characteristics of the Proposed System
 - 3.1 Premises
 - 3.2 Estimated Fundamental Characteristics
- 4. Estimation of Economics and CO2-Reduction Characteristics
- 4.1 Premises
- 4.2 Evaluation Results
 - (1) Reference system
 - (2) Proposed system
 - (3) Discussion
- 5. Conclusion

1. Introduction

Advantages of CO2-capturing power generation system based on <u>oxy-fuel</u> combustion:

- Application to coal fuel is easy.
- 100% capturing of generated CO2 is possible.
- No thermal NOx is generated, etc.

Disadvantages considered so far:

- Energy efficiency will be significantly deteriorated.
- Economics will be also greatly deteriorated.

Objective of the study:

To show the following characteristics for a proposed CO2 capturingrepowering system, where low-pressure steam is utilized.

- Efficiency degradation is negligible.
- CO2-capturing is a technology having a substantially superior costeffectiveness.

2. Outline of Proposed CO2 Capturing-Repowring System

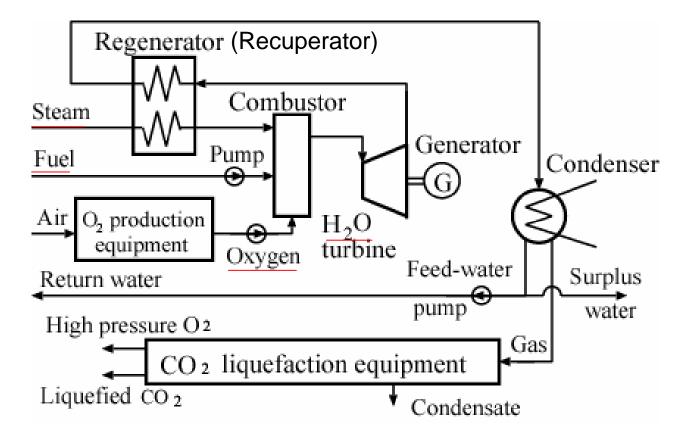


Fig.1 Schematic structure of the proposed CO2 capturing-repowering system based on oxy-fuel combustion (<u>Proposed system</u>).

3. Fundamental Characteristics of the Proposed System

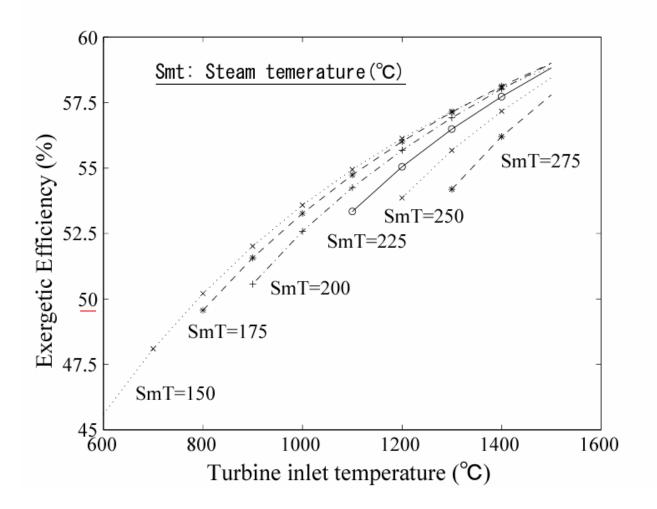


Fig.2 Estimated fundamental characteristics of the proposed system.

The definition of exergetic efficiency:

```
exergetic efficiency = exergy of the net generated electric power /
( exergy of steam + exergy of
input fuel ) (1)
where
the net generated electric power = generated power
- oxygen production and compression power
- compression power of captured CO2
to the atmospheric pressure
- miscellaneous power (2)
```

The power required for liquefaction of the captured CO2 is discussed in the following chapter.

4. Estimation of Economics and CO2-Reduction Characteristics

4.1 Premises

- The low-pressure steam from a steam turbine system of an advanced combined-cycle power plant (CCPS) was assumed to be utilized.
- <u>Economic evaluation</u> was assumed to be performed based on unit cost of power (yen/kWh), annual gross profit (yen/year), and depreciation year of the capital.
- <u>CO2-reduction effect</u> was assumed to be determined by comparing CO2 amount emitted from the power plant with efficiency of 50% (LHV base) whose electric energy output is same as the proposed system.

In evaluating the characteristics, a <u>steam turbine system</u>, that uses the same low-pressure steam, has been hypothetically introduced and its characteristics are also evaluated, so that both the obtained results are easily compared each other.

The hypothetical steam turbine system is referred to as the <u>reference</u> <u>system</u> in the following.

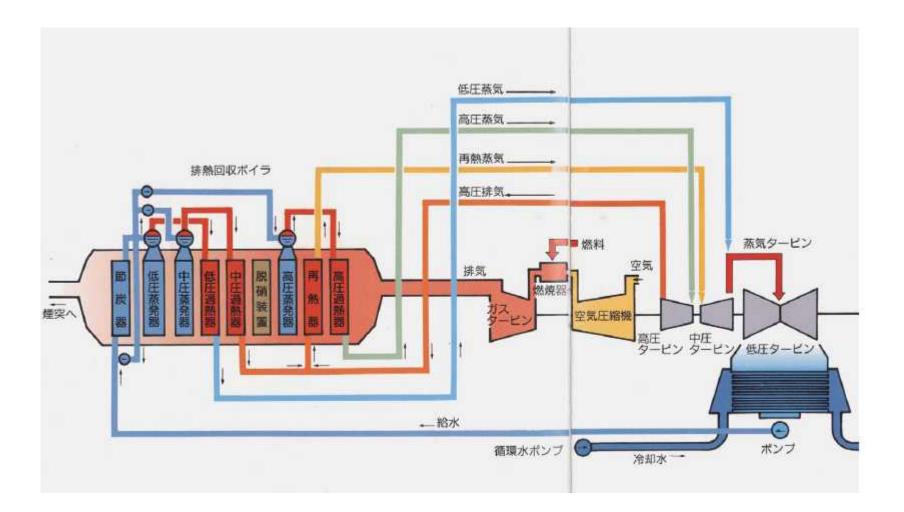
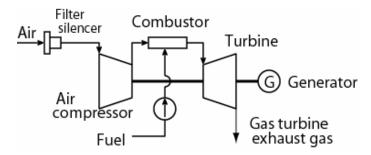
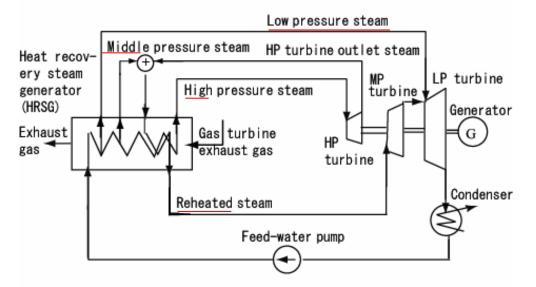




Fig. 3 Schematic structure of the combined-cycle power plant (CCPS) adopted as an conventional thermal power plant

(Kawagoe #3&4 power plants of Chubu Electric Power Co., Japan)

(a) Gas turbine power generation system consisting topping-cycle

(b) Steam turbine power generation system consisting bottoming-cycle

Fig. 3 Schematic structure of the combined-cycle power plant (CCPS) adopted as an conventional thermal power plant

Table 1Major exogenous variables and parameters
used for estimating systems' characteristics.

Item	Combined system	Proposed system
Gas turbine		
Power output	200 MW	1.00
Inlet temperature	$1250 \deg C$	100 De
Turbine inlet pressure	1.47 MPa	
Fuel	CH_4	1.11.
Steam turbine		
Pressure of high, middle	9.41, 2.26 and 0.25 MPa	
and low pressure steam	$(96, 23 \text{ and } 2.5 \text{ kg/cm}^2)$	200
Pressure of reheated steam	$2.26 \text{ MPa} (23 \text{ kg/cm}^2)$	-
Condenser outlet pressure	$4.90 \text{ kPa} (0.05 \text{ kg/cm}^2)$	
Dryness of turbine outlet steam	higher than 90%	
H ₂ O turbine		
Turbine inlet temperature	1.1	$1250 \deg C$
Condenser outlet temperature		$32.55 \deg C$
Condenser outlet pressure	-	9.81 kPa

(a) Exogenous variables

Table 1Major exogenous variables and parameters
used for estimating systems' characteristics (Continued).

Item	CCPS	Proposed system
Adiabatic efficiency:		
Air compressor	89 %	
Gas turbine	93~%	-
Steam turbine	90 %	
H_2O turbine	81	90 %
CO_2 compressor	3 	80 %
Heat recovery steam generator (HRSG):		
Terminal temperature difference	$60 \deg C$	-
Pinch point temperature difference	$15 \deg C$	3
Regenerator:	APRIL 2	
Temperature efficiency		80%
Heating and heated side pressure loss rate	877	5%
Generator efficiency	99 %	99 %
Miscellaneous power consumption rate	3 %	3 %
Unit oxygen production power	=	237.9 kWh/t-O_2
Oxygen excess rate	82	1.01

(b) Exogenous parameters

Table 2Values assumed for economic evaluation.

Unit cost of power generation facility	50×10^3 yen/kW
Unit cost of oxygen production facility	82×10^6 yen/t-O ₂ /h
Unit cost of CO ₂ liquefaction facility	310×10^6 yen/t-C/h
Life time of the facilities	15 y
Rate of facility maintenance cost	5 %/y
Rate of capital	5 %/y
Unit cost of fuel	0.4 yen/MJ
Steam cost	0.444 yen/MJ
System operation rate	<u>66.667</u> %
Man-power cost	80×10^6 yen/y
<u>Average power selling cost</u>	12 yen/kWh

4.2 Evaluation Results

Table 3	Estimated	power	generation	characteristics	of the CCPS.
---------	-----------	-------	------------	-----------------	--------------

Item	Estimated value
Gas turbine	
Generator power output	200 MW
Turbine outlet gas temperature and flow rate	598 deg C, 1649 t/l
Steam turbine	111
Temperature and flow rate of high pressure steam	$538 \deg C, 195 t/h$
High pressure turbine outlet steam temperature	$332 \ \deg C$
Temperature and flow rate of middle pressure steam	302 deg C, 32.0 t/h
Temperature and flow rate of reheated steam	$538 \deg C, 227 t/h$
Temperature and flow rate of HRSG outlet LP^* steam	231 deg C, 30.3 t/ł
Temperature and flow rate of mixed LP steam	$246 \deg C, 258 t/h$
Pressure of LP steam	0.245 MPa
Generated power	96.0 MW
(High, middle and LP turbine)	$(20.9, 36.4, \underline{38.8})$
LP turbine net generated power	37.6 MW
Combined system total	
Fuel consumption	$1789~{ m GJ/h}$
Generator and net generated power	296, 278 MW
Net power generation efficiency (Enthalpy-base)	56.0 %
Exergetic efficiency	56.3 %

Table 4Estimated power generation characteristics of the proposed systemwhen turbine inlet temperature is 1250 deg C.

Item	Estimated value		
Utilized steam:			
Temperature	$246 \deg C$		
Pressure	$0.245 \mathrm{MPa}$		
Flow rate	258 t/h		
Fuel consumption	$608~{ m GJ/h}$		
Generated power	$145~\mathrm{MW}$	cf 38.8	(3.7 times)
Fuel-base efficiency (Enthalpy-base)	85.6 %		
Oxygen production and compression power	13.1 MW		
CO ₂ liquefaction power	3.98 MW		
Inhouse power total	$28.5 \ \mathrm{MW}$		
Inhouse power rate	<u>19.7</u> %		
Net generated power	$116 \ \mathrm{MW}$	cf 37.6	(3.1 times)
Net generated power increase rate	209 %		
Amount of captured CO ₂	$33.3 \text{ t-CO}_2/\text{h}$		
Exergetic efficiency	55.0 %	-1.25%	down
Exergetic efficiency (after CO ₂ liquefaction)	53.2~%		
Repowring efficiency	48.9~%		
Repowring efficiency (after CO ₂ liquefaction)	$46.5 \ \%$		

Table 5 Estimated results of economics and CO2-reduction effects.

(a) Steam turbine power generation system (Reference system)

Item	Estimated value	-
Generated power	38.8 MW	-
Net generated power	37.6 MW	
Steam-base power generation efficiency	20.0~%	(Enthalpy-base)
Exergetic efficiency	77.0 %	
Depreciation cost	0.187×10^9 yen	-
Maintenance cost	97.0×10^6 yen	
Steam cost	1.98×10^9 yen	
Annual power generation cost	2.35×10^9 yen	
Unit cost of power	10.7 yen/kWh	
Annual power selling income	2.63×10^9 yen	
Annual gross profit	0.288×10^9 yen	
Depreciation year	4.69 year	
Amount of CO ₂ reduction	$86.6 \text{ kt-CO}_2/\text{y}$	

Table 5 Estimated results of economics and CO2-reduction effects Continued).

(b) Proposed system

Item	Estimated value
Cost of oxygen production facility	4.02×10^9 yen
Cost of CO ₂ liquefaction equipment	2.82×10^9 yen
Total facility cost	14.1×10^9 yen
Cost rate of oxygen production facility	28.5 %
Cost rate of CO ₂ liquefaction equipment	20.1~%
Depreciation cost	1.36×10^9 yen
Maintenance cost	703×10^6 yen
Steam cost	$1.98 \times 10^{9} { m yen}$
Fuel cost	$1.42 \times 10^9 \text{ yen}$
Annual power generation cost	$5.54 \times 10^9 \text{ yen}$
Unit cost of power	8.17 yen/kWh
Annual power selling income	$8.14 imes 10^9$ yen
Annual gross profit	2.60×10^9 yen
Depreciation year	4.01 year
Amount of CO ₂ reduction	$268 \text{ kt-CO}_2/\text{y}$
Amount of net CO ₂ reduction	181 kt- CO_2/y
Profit of CO ₂ reduction	12.8×10^3 yen/t-CO ₂

Item	Proposed	Reference	
	system	system	
Depreciation cost (10^9 yen)	1.36	0.187	(7.3 times)
Maintenance cost (10^6 yen)	703	97.0	
Steam cost (10^9 yen)	1.98	1.98	
Fuel cost (10^9 yen)	1.42	0	
Annual power generation cost ($10^9~{\rm yen}$)	5.54	2.35	(2.4 times)
Unit cost of power (yen/kWh)	8.17	10.7	
Annual power selling income (10^9 yen)	8.14	2.63	
Annual gross profit (10^9 yen)	2.60	0.288	(9.0 times)
Depreciation year (year)	4.01	4.69	
Amount of CO_2 reduction (kt- CO_2/y)	268	86.6	(3.1 times)
Amount of net CO_2 reduction (kt- CO_2/y)	181	17	
Profit of CO_2 reduction (10^3 yen/t- CO_2)	12.8	_	

Table 6 Comparison of estimated characteristics of the proposed and reference systems.

5. Conclusion

The thermodynamic characteristics and economics of the proposed CO2 capturing-repowring system, that utilizes low-pressure steam, were evaluated.

From a case study performed, the following characteristics have been obtained:

- It is possible to generate 2.09 times larger electric power with the exergetic efficiency of 55.0 %, even if all the generated CO2 is captured.
- The estimated exergetic efficiency degradation is only 1.25% compared with that of the original high-efficiency advanced combined cycle power plant.
- The economics of the proposed system have been estimated to be excellent compared with the reference system (conventional steam turbine power plant).
- The net CO2 reduction effect has been estimated to be 181 kt-CO2/y, and is greater than 2.09 times larger than that of the reference system.
- Reducing CO2 emission brings about an <u>economical merit</u>, not the cost, and it has been estimated to be 12,800 yen per captured 1 ton of CO2.

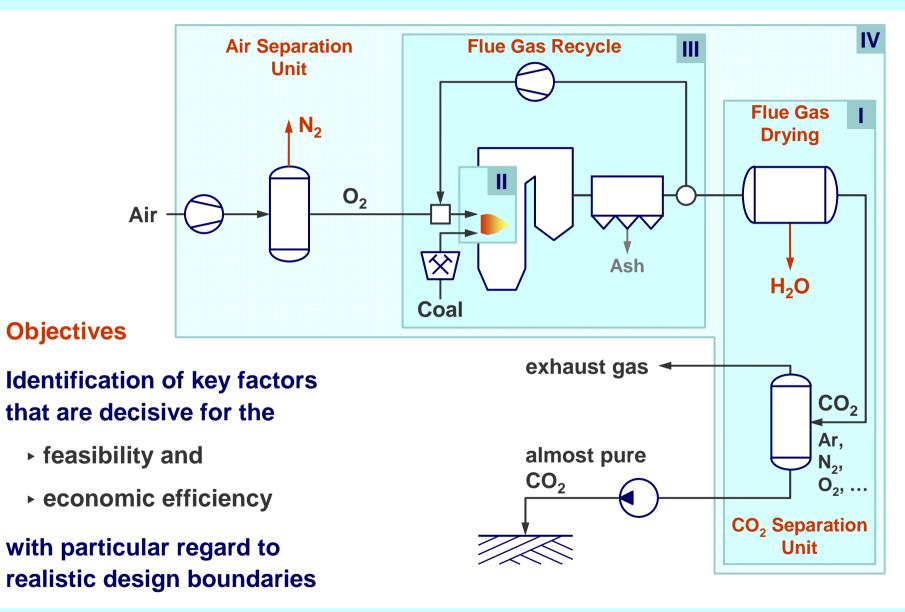
Reference

- 1) IEA Greenhouse Gas R&D Program: http://www.ieagreen.org.uk/
- 2) http://www.co2captureandstorage.info/networks/Oxyfuel2ndMeeting.htm
- Carbon Dioxide Reduction & Sequestration R&D Center (CDRS): Proceedings of 1st International Symposium on Carbon Dioxide Reduction & Sequestration, Soul, Korea, January 17-19, 2005
- 4) P. S. Pak, Y. Suzuki and T. Kosugi: Evaluation of Characteristics and Economics of a CO2-Capturing H2O Turbine Power Generation System Utilizing Waste Heat from a Garbage Incineration Plant, International Journal of Global Energy Issues, Vol.11, Nos.1-4, pp.211-217, 1998.12
- 5) Pyong Sik Pak: Evaluation of CO2-Capturing Power Generation Systems Utilizing Waste Heat from Ironworks, ISIJ (The Iron and Steel Institute of Japan) International, Vol.42, No.6, pp.663/669, 2002
- 6) Pyong Sik Pak Comprehensive Evaluation of a CO2-Capturing NOx-Free repowering System with Utilization of Middle-Pressure Steam in a Thermal Power Plant, Electrical Engineering in Japan, Vol.148, No.4, pp.34-40, September 2004
- 7) Pyong Sik Pak: Evaluation of Exergetic Characteristics of CO2-Capturing H2O Turbine Power Generation Systems Based on Oxygen Combustion Method, Energy and Resources, Vol.25, No4. pp.272/2782, 2004.7
- Pyong Sik Pak: Characteristics of CO2-Capturing Systems Based on Oxy-Fuel Combustion and Exergetic Flow Analyses for Improving Efficiency, Journal of the Gas Turbine Society of Japan, Vol.34, No.5, pp.356/362, 2006.9
- T. Kosugi and P. S. Pak: Object-oriented simulation system for evaluating characteristics of various CO2-capturing thermal power generation systems, JSST International Conference on Modeling, Control and Computation in Simulation, pp.294/299, Tokyo, Japan (Oct. 2000).

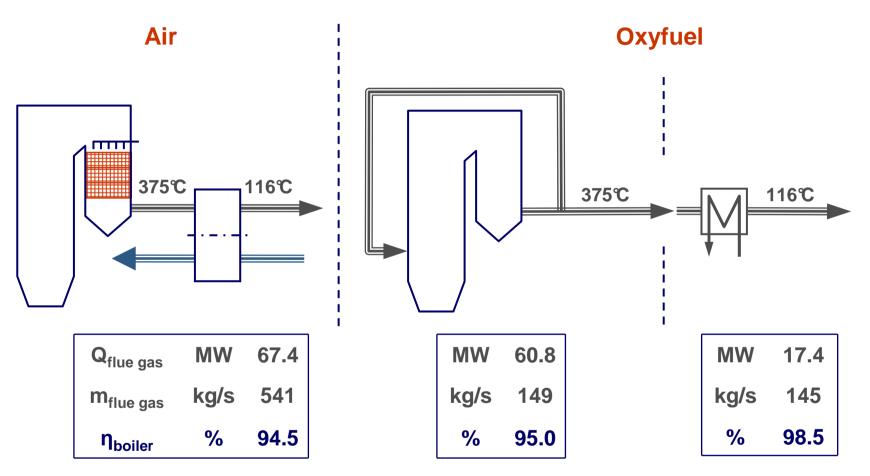
Efficiency Increase of the Oxyfuel Process by Waste Heat Recovery Considering the Effects of Flue Gas Treatment

Mathias Klostermann

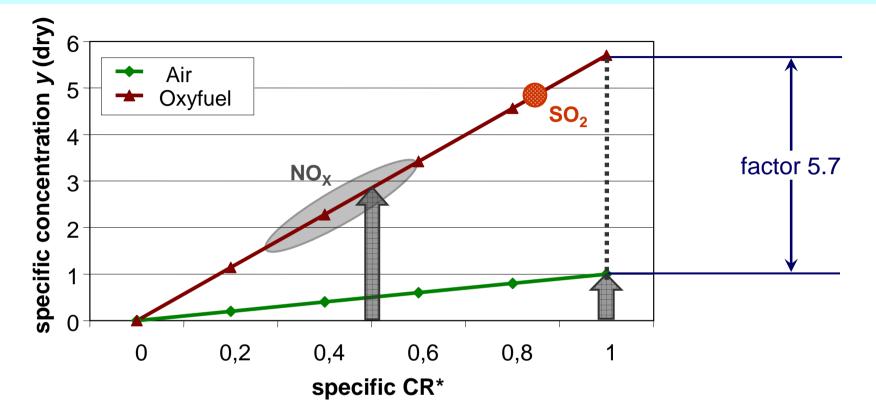
Institute of Energy Systems


Prof A Kather C Hermsdorf M Klostermann K Mieske

IEAGHG International Oxy-Combustion Network - 3rd Workshop, 5th and 6th March 2008, Yokohama Japan


Current Research Projects at TUHH

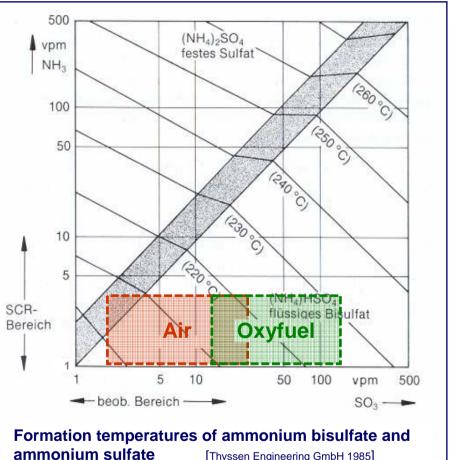
Boiler efficiency / stack loss



• Significant increase of the boiler efficiency (approx. 4 %-pts) results in an overall efficiency increase potential of approx. 1.4 %-pts.

⇒ What is the potential under realistic boundary conditions?

Flue gas composition


Causes:

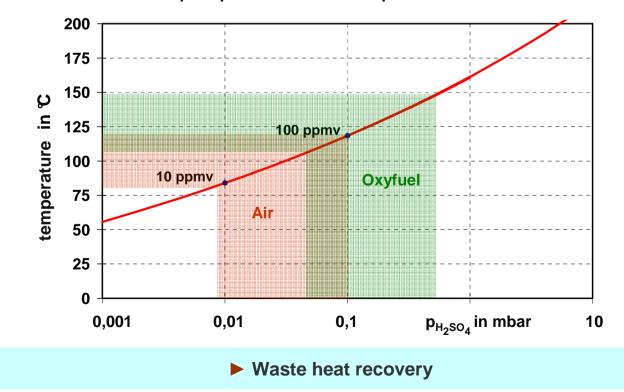
- lower specific flue gas mass flow
- increase of flue gas density
- higher water content in flue gas
- significant inhibition of NO_x formation
- SO₂ conversion rate (CR) similar to air case

High-dust SCR

NO_x

- ▶ approx. 1200 mg/m³ @ stp dry
 - ➡ Reduction prior to CO₂-condensation seems to be necessary
- ► High-dust SCR is a state-of-the-art technology
 - ▶ approx. 90 % NO_x conversion
 - \rightarrow NH₃ slip approx. 1.5 ppm_v
 - \Rightarrow partial conversion of SO₂ \Rightarrow SO₃
 - formation of sticky and corrosive ammonium bisulfate, risk of scaling on downstream heat exchangers

[Thyssen Engineering GmbH 1985]



Low temperature corrosion

$\mathbf{SO}_{\mathbf{x}}$

- SO_3 fraction of SO_x between 1 and 5 %
- SO₃ formation promoted by higher concentrations of oxygen and water
- higher concentration due to missing nitrogen
 - ⇒ +20....40 K higher acid dew point temperature of the flue gas

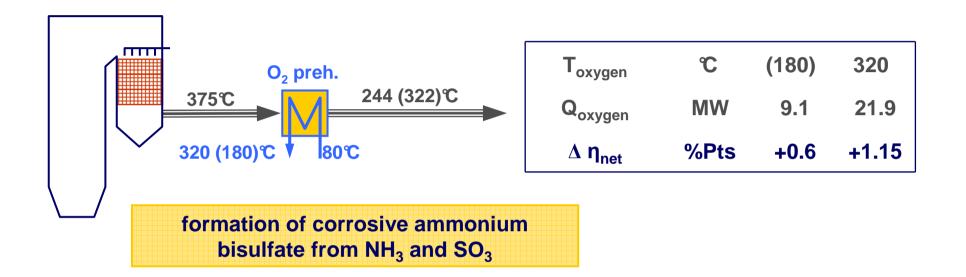
vapour pressure curve of sulphuric acid

Heat sinks

• **Oxygen preheating** (with a tubular heat exchanger)

- + maximum efficiency increase, identical in function as air preheating
- high technical requirements of oxygen handling at elevated temperatures
- low heat transfer coefficient (gas-gas) ⇒ large heating surface

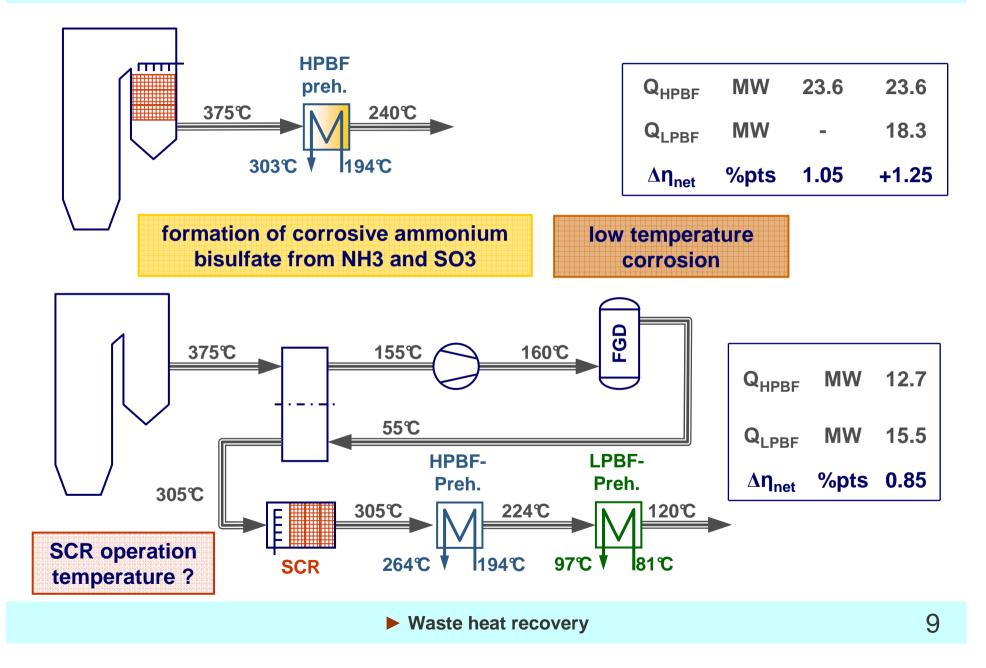
Boiler feed water preheating


- + simple waste heat recovery process (similar to an economizer)
- + low risks in case of damage
- lower efficiency increase (compared with oxygen preheating) particularly for low pressure condensate preheating
- complexity of controlling the bypass

• Additional power cycle (e.g. ORC)

- + less complex design
- + direct coupling with power turbines
- lower efficiency increase compared with oxygen preheating

Oxygen preheating



- maximum efficiency increase
- Risk of damage as well as firmly bonded deposits at the oxygen preheater in the presence of an upstream high-dust SCR !

Boiler feed water preheating

- Waste heat recovery from oxyfuel flue gas increases the overall net-efficiency significantly.
- Operation of a high dust SCR could cause problems with scaling and corrosion by ammonium bisulfate.
- Higher concentrations of SO_x increase the acid dew point temperature of the flue gas.
 - higher risk of corrosion in case of low flue gas and water temperatures
- Boiler feed water heating is the most promising option.
 - high efficiency increase
 - Imited risk of corrosion

Thank you

for your attention!

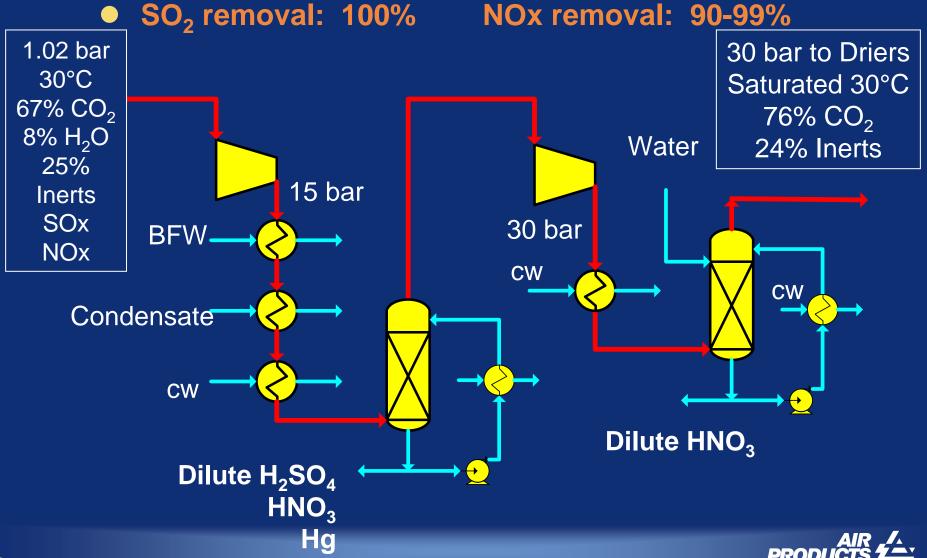
3rd Workshop

IEAGHG International Oxy-Combustion Network Yokohama, Japan

5th and 6th March 2008

Purification of Oxyfuel-Derived CO₂

Vince White Air Products PLC, UK 5th March 2008



Purification of Oxyfuel-Derived CO₂: Outline

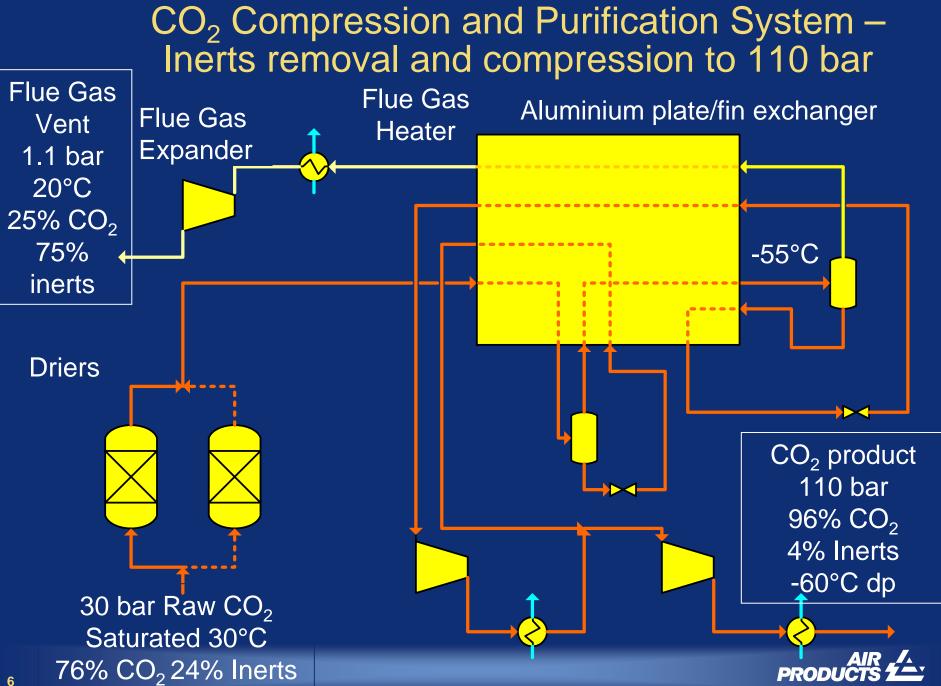
- Compression to 30 bar with integrated SOx/NOx/Hg removal
- Integrated purification and compression
 - Low purity, bulk inerts removal
 - High purity, Oxygen removal
 - Membrane for high CO₂ recovery
- BERR 404 Project: Oxyfuel Fundamentals
- Development plan

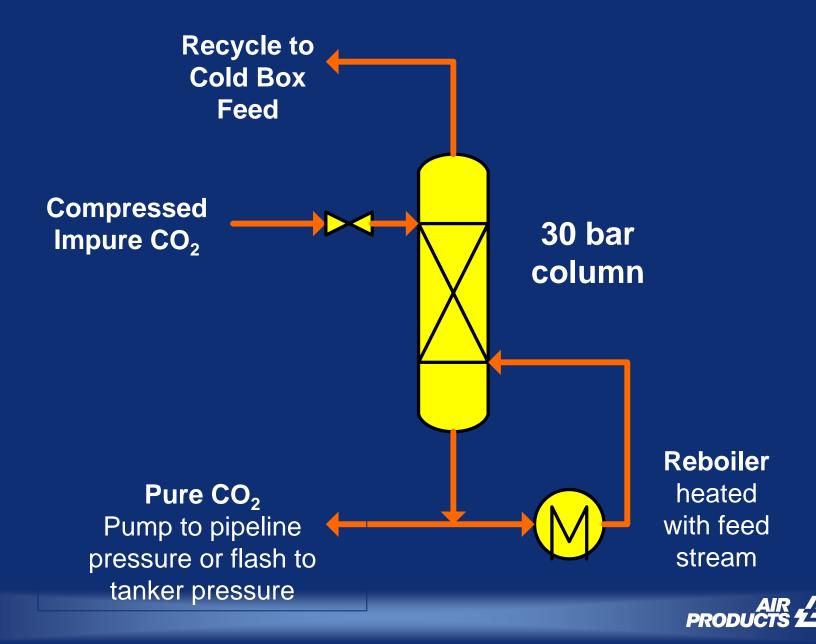
Air Products' CO₂ Compression and Purification System: Removal of SO₂, NOx and Hg

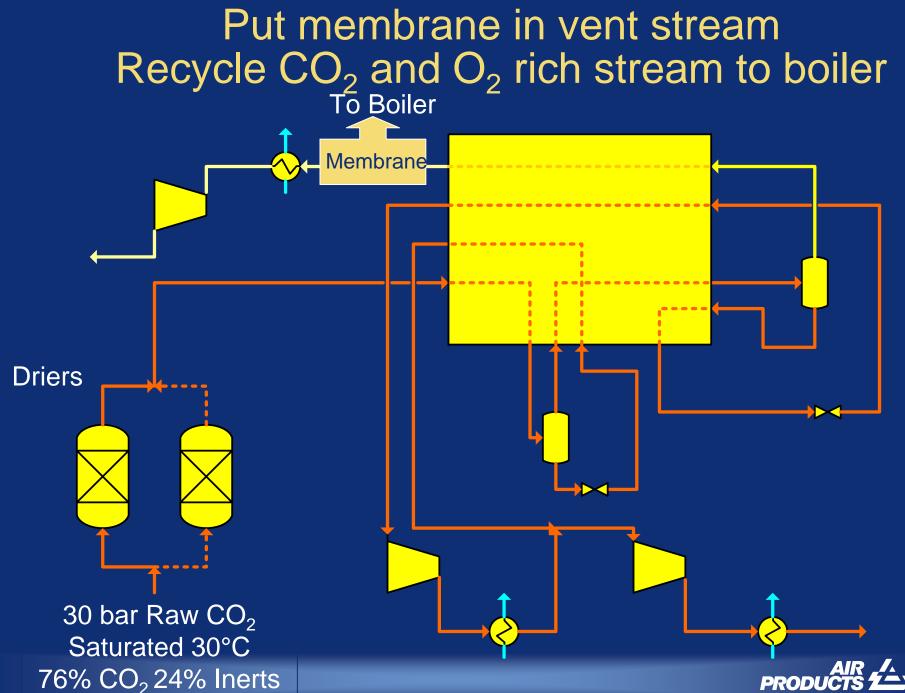
NOx SO₂ Reactions in the CO₂ Compression System

- We realised that SO₂, NOx and Hg can be removed in the CO₂ compression process, in the presence of water and oxygen.
- SO₂ is converted to Sulphuric Acid, NO₂ converted to Nitric Acid:

	NO + ½ O ₂	=	NO ₂	(1)	Slow
—	2 NO ₂	=	$N_2 \overline{O}_4$	(2)	Fast
	$2 NO_{2} + H_{2}O$	=	$HNO_2 + HNO_3$	(3)	Slow
	3 HNO ₂	=	$HNO_3 + 2 NO + H_2O$	(4)	Fast
	$NO_2 + \overline{S}O_2$	=	$NO + SO_3$	(5)	Fast
-	$SO_3 + H_2O$	=	H ₂ SO ₄	(6)	Fast


- Rate increases with Pressure to the 3rd power
 - only feasible at elevated pressure
- No Nitric Acid is formed until all the SO₂ is converted
- Pressure, reactor design and residence times, are important.


SOx/NOx Removal – Key Features


- Adiabatic compression to 15 bar:
 - No interstage water removal
 - All Water and SOx removed at one place
- NO acts as a catalyst
 - NO is oxidised to NO₂ and then NO₂ oxidises SO₂ to SO₃: The Lead Chamber Process
- Hg will also be removed, reacting with the nitric acid that is formed
- FGD and DeNOx systems are not required for emissions or CO₂ purity
 - SOx/NOx removed in compression system
 - Low NOx burners are not required for oxyfuel combustion

Oxygen removal to ppm O_2 in CO_2

CO₂ Purity and Recovery

- -55°C is as cold as we can make the phase separation
- Impure CO₂ purity depends on pressure: higher pressure gives lower purity CO₂
 - $\overline{}$ At 30 bar and -55°C, CO₂ purity is 95%
- CO₂ recovery depends on pressure: lower pressure gives lower CO₂ recovery
 - At 30 bar and -55°C, CO_2 recovery is 90%
- CO₂ recovery depends on feed composition
 - Increases from zero at 25mol% to 90% at 75mol%
- Oxygen can be removed to produce EOR-grade CO₂
- No penalty if CO₂ is required as a liquid
- Vent stream is clean, at pressure and rich in CO_2 (~25%) and O_2 (~20%)
 - Polymeric membrane unit selective for CO₂ and O₂ in vent stream will recycle CO₂ and O₂ rich permeate stream to boiler.
 - CO₂ Capture increase to >97%
 - ASŪ size/power reduced ~5%

OxyCoal-UK : Phase 1 – Project Participants

DOOSA

Lead Company Doosan Babcock Energy Limited

Industrial Participants

Air Products plc

BP

AIR /AIR /AIR PRODUCTS

E.ON UK Limited RWE **e.01** UK

Doosan Babcock Energy

University Participants Imperial College London University of Nottingham

Imperial College London

Sponsors / Sponsor Participants

Scottish and Southern Energy Scottish Power EdF Energy Drax Power Limited Dong Energy Generation A/S

Government Support Department of Business, Enterprise and Regulatory Reform Scottish and Southern Energy energy made better

ScottishPower

energy wholesale

DONG energy

BERR

Department for Business Enterprise & Regulatory Reform

OXYCOAL-UK : Phase 1 : BERR 404 Oxyfuel Fundamentals

- WP1: Combustion Fundamentals
- WP2: Furnace Design & Operation
- WP3: Flue Gas Clean-up / Purification
- WP4: Generic Process Issues

Work Package 3: Objectives

- Confirmation of CO₂, O₂, H₂O, SO₂, NOx reaction/purification chemistry over range of T & P
- Provision of data to enable development of reliable kinetic model
- Validation on side stream of pilot test rig and check of Hg removal

Work Package 3: People

- Imperial College:
 - Sandro Macchietto Prof of Process Systems Engineering, Dept of Chemical Engineering
 - Alex Sturt
 - David Chadwick Prof of Applied Catalysis, Dept of Chemical Engineering
 - Laura Torrente Murciano
 - Peter Lindstedt Prof of Thermofluids, Dept of Mechanical Engineering
 Roger Robinson
- Doosan Babcock:
 - Clive McGhie Test Rig Manager

Methodology

- Theoretical study of CO₂, O₂, H₂O, SO₂, NOx reaction/separation mechanism
- Model-based optimal design of experiments for kinetics identification
- Experimental study using simulated feed compositions over range of T & P and residence time
- Laboratory-scale rig consisting of stirred vessel with gas and liquid chemical analysis
- Development and validation of kinetic model
- Installation of small scale apparatus at pilot plant site and testing with realistic flue gas
- Adjustment of design & operating conditions

Completed so far...

- Completed literature review on nitrogen oxides reactions.
- Completed literature review on sulphur dioxide reactions.
- Identified three kinetic models of increasing complexity as basis candidates for further study.
- Constructed stirred autoclave system (Buchi) for initial measurements.
- Reviewed analytics for initial experiments with the batch reactor.
- Initiated design of loop reactor system.

Next Steps...

- Modelling
 - Start develop reaction software models
 - Theoretical predictions from first principles
 - Review data and possible mechanisms for inclusion of Hg

• Experimental

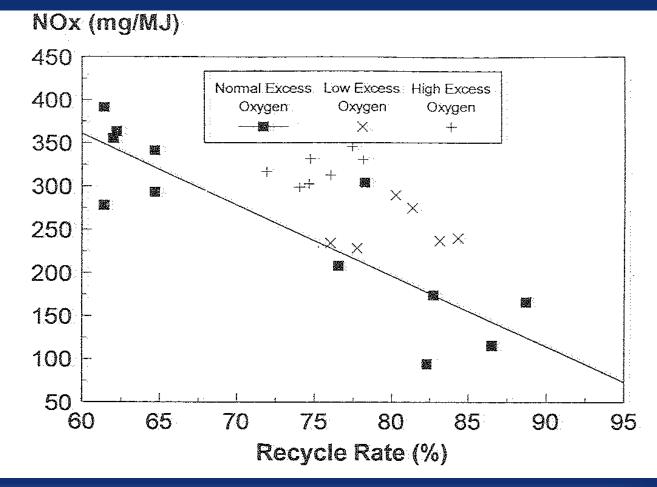
- Commission batch reactor
- Conduct initial experiments with CO₂ at simulated levels of SO₃ and NOx removal
- Complete design of loop reactor
- Conduct experiments on NRTF flue gas

Doosan Babcock NO_x Reduction Test Facility (NRTF)

Heat Input: 160kW

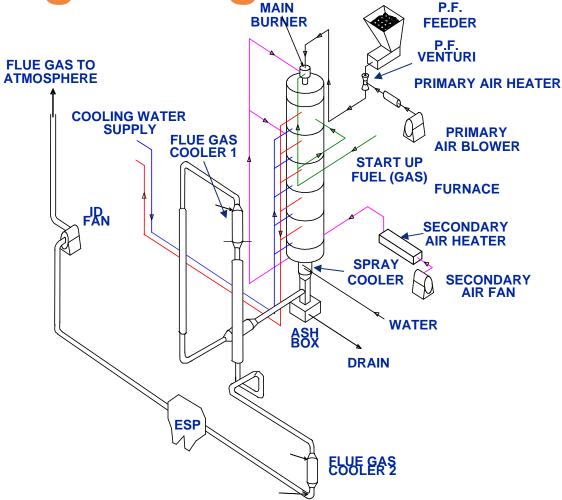
In-Furnace (Primary) NOx Reduction Technologies

- Air Staging, Overfire Air (OFA) injection
- Gas and Coal Reburn
- Post-Combustion (Secondary) NOx Reduction Technologies
 - Selective Non-Catalytic Reduction (SNCR)
 - Selective Catalytic Reduction (SCR)
- Electro Static Precipitator (ESP)
- Oxyfuel experiments carried out early 90's with Air Products/Babcock Energy

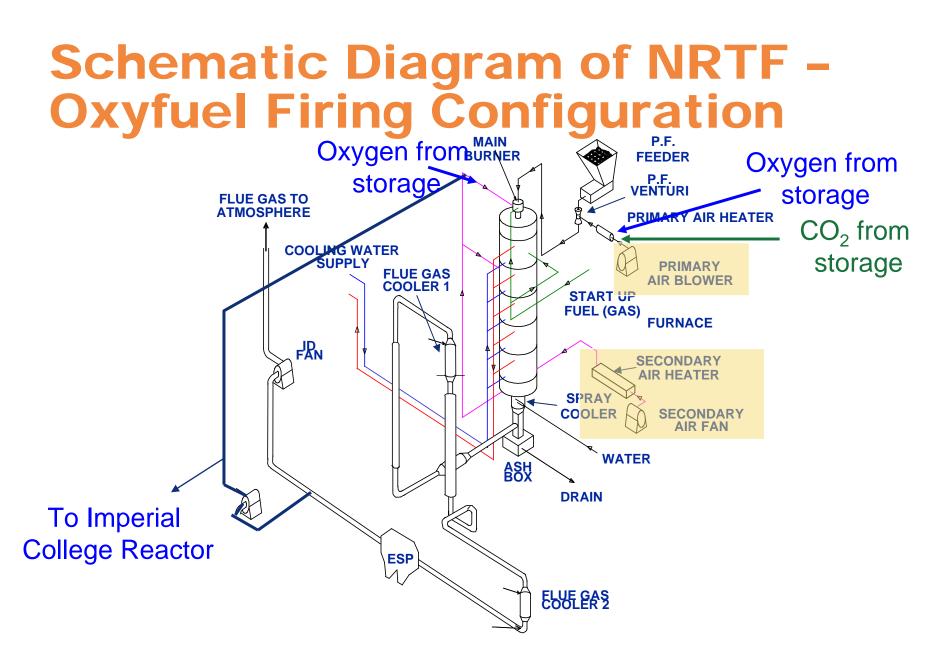

PULVERISED COAL COMBUSTION SYSTEM FOR CO₂ CAPTURE

BABCOCK ENERGY LIMITED AIR PRODUCTS PLC UNIVERSITY OF ULSTER UNIVERSITY OF NAPLES

OCTOBER 1995


Commission of the European Communities Directorate General XII for Science, Research and Development

JOULE II Programme Clean Coal Technology R&D Contract No. JOU2-CT92-0062



Schematic Diagram of NRTF – Air Firing Configuration

DOOSAN Doosan Babcock Energy

DOOSAN Doosan Babcock Energy

Oxyfuel Installation

Flue Gas Recycle Fan

> Flue Gas Recycle

> > Oxygen Injection Into Secondary

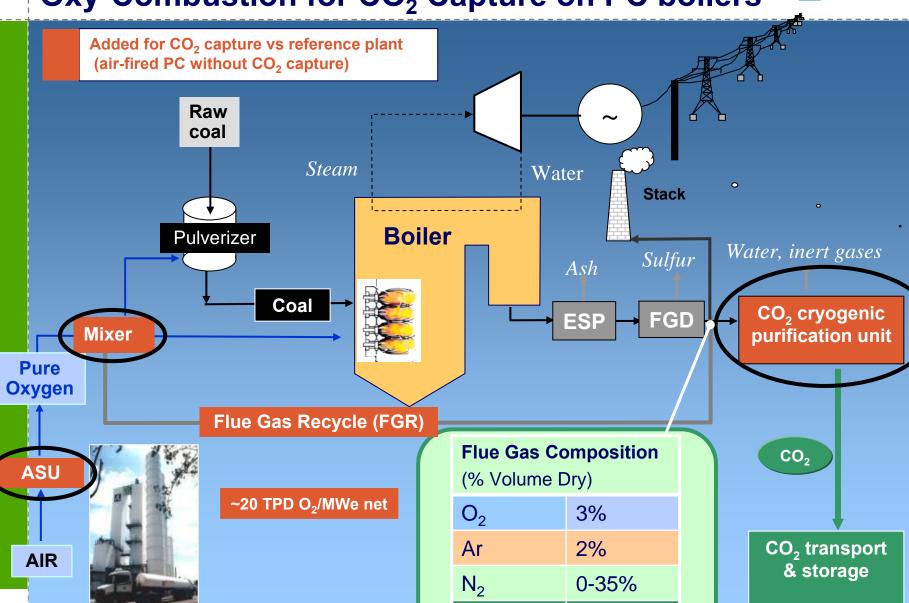
UXYGEN

Plan for Development of Air Products' Oxyfuel CO₂ Purification and Compression System

- Step 1: Lab results from Imperial College
- Step 2: Testing with real flue gas from Doosan Babcock's NRTF
 - Commission in March, run experiments April to June
- Step 3: Update model of process
- Step 4: 1 MW equivalent pilot plant in 2009
- Step 5: 300 MW demonstration plant?

Thank you

tell me more www.airproducts.com



ASU and CO2 CPU for Oxy-Combustion

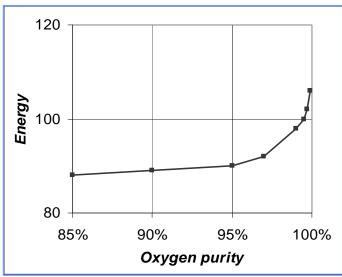
Jean-Pierre TRANIER, Nicolas PERRIN, Arthur DARDE IEAGHG international Oxy-Combustion Network – March 5th, 2008

Oxy-Combustion for CO₂ Capture on PC boilers

 CO_2

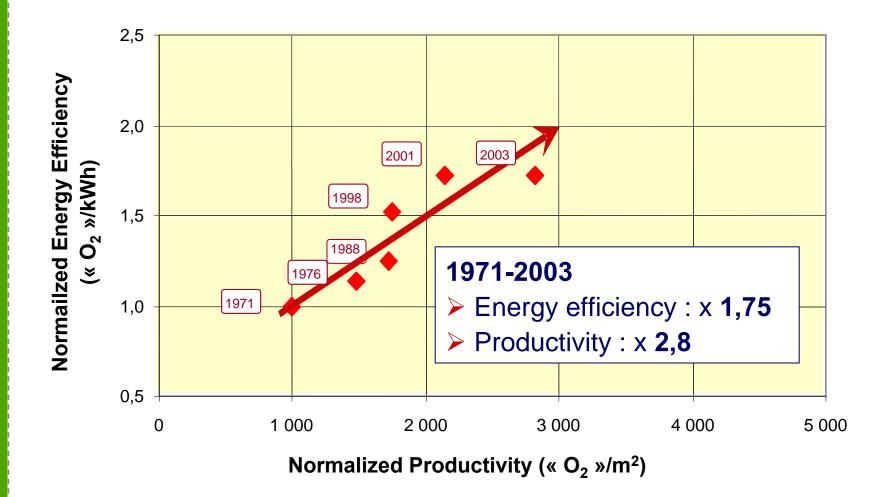
60-95%

PROPRIETARY IEAGHG International Oxy-Combustion Network 05-03-2008

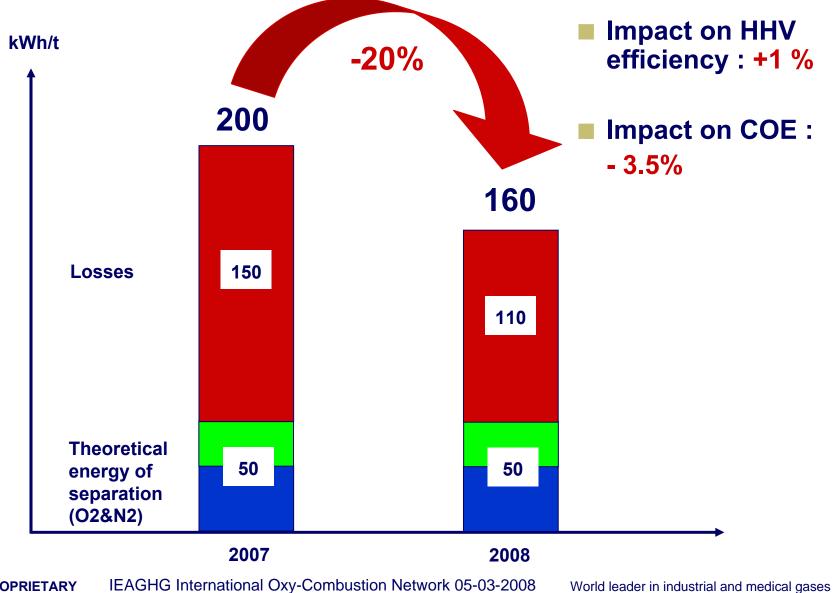

AIR LIQUIDE

Air Separation Unit : background

- The **only** available technology for oxygen production in large quantities is **cryogenic** separation today
- Air Liquide offers cryogenic ASUs where a single train can produce 5000 metric tons per day of oxygen with no duplication of equipment;
 - In a multiple trains configuration, our largest reference is totaling **40000 t/d**
- Optimum oxygen purity for oxycombustion is in the 85-98% range
- Cryogenic production of oxygen has been used for more than **100 years** but it is **still** improving



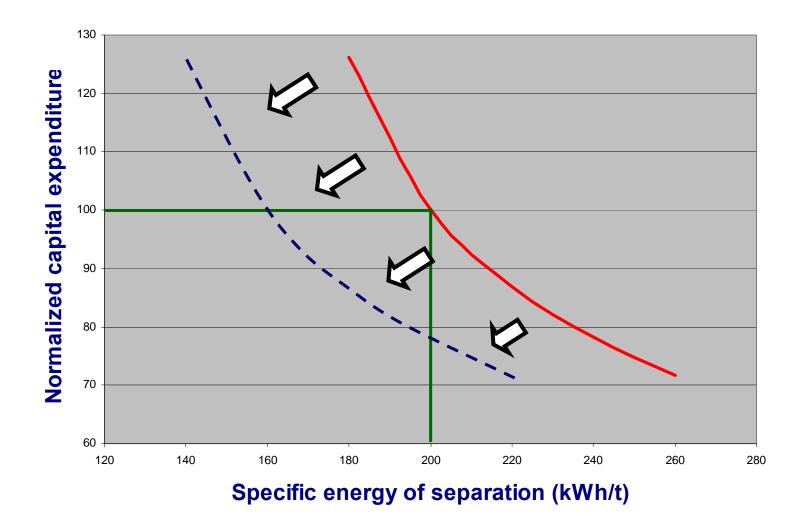
30 years of continuous Cryogenic ASU



improvements

Specific energy of separation in kWh

per ton of oxygen



PROPRIETARY

World leader in industrial and medical gases

AIR LIQUIDE

Key parameter in the optimization of an ASU : trade-off between CAPEX and OPEX

PROPRIETARY IEAGHG International Oxy-Combustion Network 05-03-2008 World leader in industrial and medical gases

AIR LIQUIDE

Heat integration

Transfer of heat from the ASU compressor(s) to the steam cycle (this option can also be applied to the CO2 compressor) can significantly reduce the losses associated to compression (and separation)

This transfer can be direct (feed water preheating) or indirect (oxygen preheating, coal drying, any fluid of the cycle)

For air and flue gas/CO2 compression, several configurations are possible :

- "Isothermal" compression with intercoolers after each stage
- "Adiabatic" compression with cooling only after final stage
- Intermediate configuration with intercoolers after 2 or 3 stages of compression

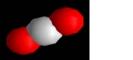
These optimizations needs to be carefully studied in order to optimize CAPEX and OPEX for the overall oxycombustion cycle

CO2 CPU : background

- Over 50 years of experience in CO2 purification and liquefaction
- 67 plants worldwide
- Markets : food, beverages, welding...

- Key parameters for the right design of the unit :
 - Impurities in flue gas (PM, SOx, NOx, Hg, N2...)
 - CO2 product specification
 - Targeted CO2 recovery
 - Trade-off CAPEX vs OPEX

- 1. Confirm feasibility
- 2. Improve performance in term of CO2 recovery, specific energy and CO2 purity

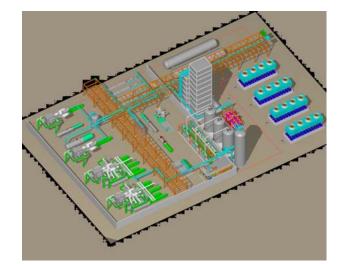


Confirm feasibility : simulations

and laboratory tests

Thermodynamic :

- Molecular simulations
- Simulation of the solubility of N2O4 in liquid CO2 using the extension of the model of Scatchard-Hildebrand proposed by Myers-Prauznitz
- Experimental measurements (sponsored by ANK (state))
 - Binary mixtures : CO2-SO2, CO2-NO2/N2O4, CO2-NO, CO2-Ar, SO2-NO2
 - Ternary mixtures : CO2-SO2-O2, H2O-CO2-Ar, H2O-CO2-SO2, CO2-Ar-O2
- Equation of state selection and calibration
- Flue gas scrubbing with various reagents
- H2O removal with acid-resistant adsorbents in a CO2 matrix with SOx and/or NOx
 - Hg removal with various adsorbents in a CO2 matrix with SOx and/or NOx

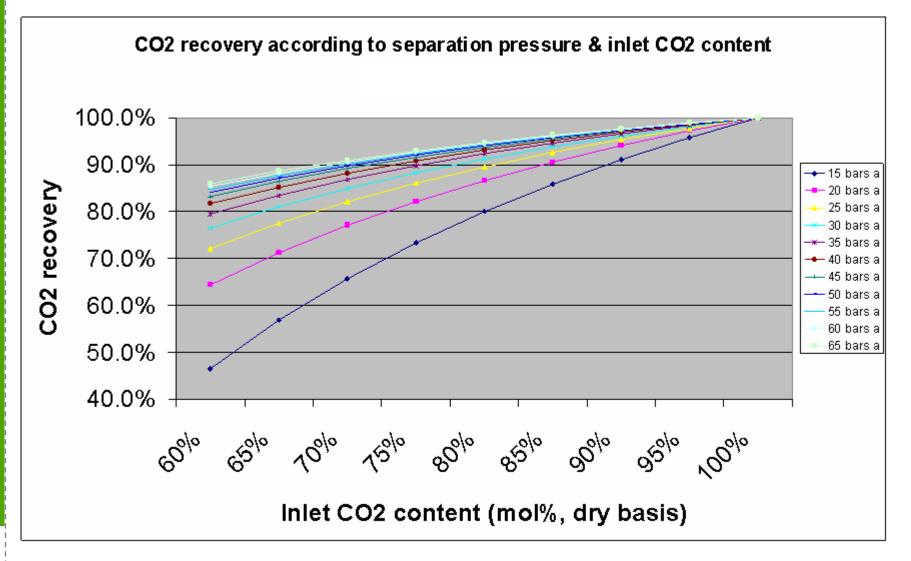


Basic Engineering Study performed for Saskpower :

- Heat & Mass Balances, Process Flow Diagrams, PIDs, piping layout and material take-off, equipment specifications and RFQs have been developed
- Technologies of all pieces of equipment identified and validated

Risk assessment study performed

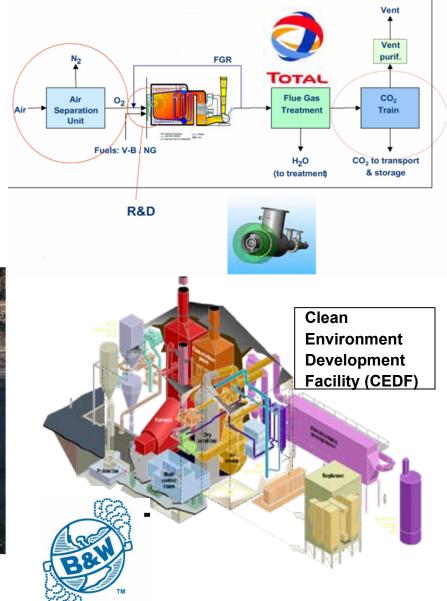
Extensive studies on process cycles have been performed and major improvements have been found compared to published studies


Two options :

- non cryogenic : water removal only
- Cryogenic purification : CO2 specification is not anymore an issue

Cryogenic purification of flue gas decreases specific energy because CO2 can be condensed at a lower pressure and therefore be pumped instead of compressed Performance : CO2 recovery versus

CO2 content in flue gas (dry basis)



Pilot plants

- 30 MWth CEDF : 1st worldwide full oxy demo at this scale with B&W (USA)
- ASU & CO2 CPU for Callide Oxyfuel Project (Australia)
- Oxy-burners and CO2 purification for Total in Lacq (France)

ALLIDE OXYFUEL PROJECT

Air Separation Unit : improvement in performance is available now

CO2 CPU : feasibility is confirmed but design will remain conservative until pilot plants are started ; significant improvements in performance are achievable for cryogenic unit

Integration of ASU and CO2 CPU in the overall oxycombustion plant are key to achieve high efficiency and low capital expenditure

THANK YOU FOR YOUR ATTENTION

Contacts:

jean-pierre.tranier@airliquide.com nicolas.perrin@airliquide.com

arthur.darde@airliquide.com

Specific energy of separation : definition

- Power required to produce 1 metric ton of pure oxygen contained in a gaseous oxygen stream at a given oxygen purity at atmospheric pressure (101325 Pa) under ISO conditions (15°C, RH 60%)
- Driver efficiency (EM, ST, GT) not taken into account : power at shaft
- Heat of regeneration of driers (steam, natural gas or electrical) not included
- Power consumption of cooling system (CW pumps, fans,...) not included
- Specific energy of production = Specific energy of separation + specific energy of compression
- Specific energy of compression ≈ 0.1xQ(Nm3/h)xlog₁₀(P_{GOX}/P_{ATM})
 - ✓ 1 t/h of GOX ≈ 1000 / 1.427637 ≈ 700 Nm3/h
 - For 1.4 bar abs : 10 kWh/t of pure O2

Consideration for Removal of non-CO₂ components from CO₂ Rich Flue Gas of Oxy-Fuel Combustion

IEA Oxyfuel Workshop Yokohama March 4, 2008 Marie Anheden*, Stina Rydberg** and Jinying Yan* *Vattenfall Research & Development AB **Vattenfall Power Consultant AB

Outline of presentation

- Background
 - Sources of non-CO₂ components
 - Basis for evaluating the impact
- Technology options to meet different CO₂ specifications
 - Scenario descriptions
 - Technology
 - Cost implications
- Continued work

Where do the non-CO₂ components in the CO₂ come from?

The sources of non-CO2 components in the CO_2 stream are:

1. Fuel

- H₂O, CO, SO_x, NO_x, H₂S, HCI, HF, H₂S, H₂, CH₄, heavy metals, hydrocarbons, particulates
- 2. Air or oxidant used for combustion of the fuel

– O₂, N₂, Ar

- 3. In-leakage of air into the CO₂ capture system when it is operating at sub-atmospheric conditions
 - O₂, N₂, Ar
- 4. The CO₂ capture or CO₂ clean-up process
 - NH₃, solvents

The components and concentrations are in turn dependent on which capture process is used, and the selected CO₂ clean-up processes

Capture technology options

- CO₂ quality is mainly an issue for oxyfuel and pre-combustion technology
- Postcombustion produces a relatively clean CO₂, 99%+
- In oxyfuel the CO₂ quality is a strong design parameter
 - Inert components from O₂ and air inleakage (oxidising conditions)
 - SO_x , NO_x removal level
 - Trace elements
 - Corrosive elements
- In precombustion the process selection and design requirements strongly inflences the quality
 - Reducing components H₂S, CO, H₂
 - hydrocarbons

Impact of non-CO₂ components

- The CO₂ quality has implications in all the steps of the chain: Capture, Transportation and Storage
- The limiting factors will be different in each part
- It is a challenging task to actually defining these limitations

Proposed position: CO₂ quality

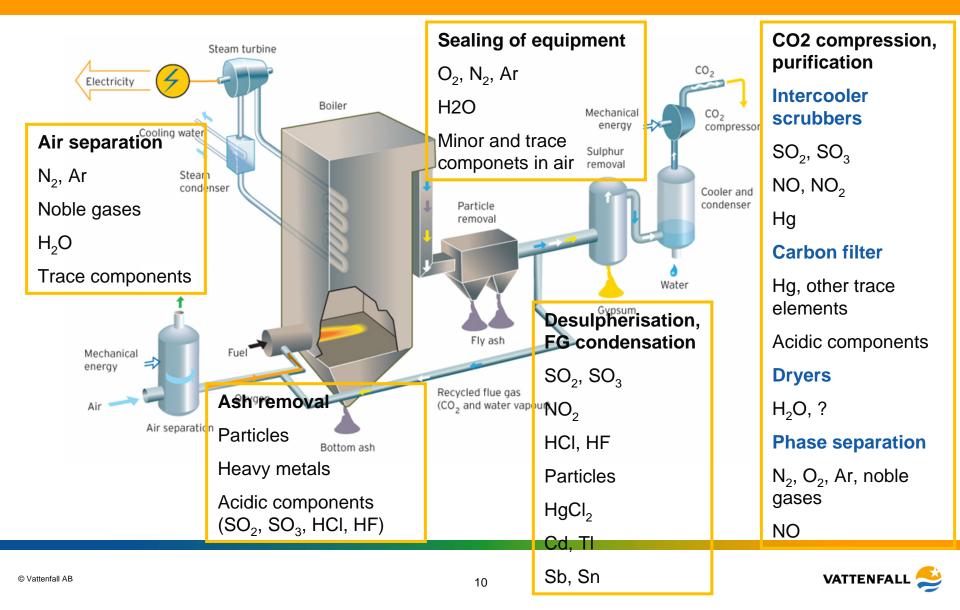
- Limits on CO₂ quality should not be general but focus on identified harmful components and be based on a limit value that can be motivated
- CO₂ of high purity can at least in theory be produced, however this has as a consequence
 - Increased energy consumption for the purification process. More fuel has to be used to produce the same amount of electricity
 - Increased investment and operational costs. The cost of CCS will increase
 - Decreased CO₂ recovery. CO₂ may be lost as a consequence of the clean-up process
- It is important to recognise that the technology for CO₂ capture and cleanup has not yet been demonstrated in practice in a power plant application
 - more real life operational experience is required
 - Specifically, the cryogenic clean-up step required to remove noncondensable gases (mainly Ar, O₂, N₂) in the oxyfuel technology is not tested

Evaluating the concentration levels, strategy for assessment –CCS chain

- The allowable levels of non-CO₂ components in CO₂ to be stored has been evaluated based on the following aspects
- 1. Measures to avoid operational problems during CO2 processing
- 2. Measures to avoid operational problems during CO₂ transport
- 3. Measures to avoid operational problems during CO₂ injection
- 4. Storage integrity (requires site specific investigations)
- 5. Environmental aspects over the lifetime of the full capture transport and storage chain
- 6. Health and safety aspects of the full chain
- 7. Legal aspects
- 8. Economic considerations

In general it has been found that the limit values based on occupational exposure limit values used to assess the dangers in case of leakage to air puts the most severe restriction and is easiest to quantify

Oxyfuel technology development CO₂ quality scenario study



Oxyfuel technology development

- What has been done?
 - In cooperation with external suppliers we have studied the FGD, FGC, WESP and CO₂ purification and compression for different Oxyfuel scenarios
- Why?
 - To fill gaps in the knowledge concerning the cleaning and preparation of flue gases from Oxyfuel combustion
- Scenarios were defined with basis in different fuels and different CO₂ transport and storage options (=different CO₂ product quality)

Oxyfuel combustion, main removal options

Scenario definition – Scenario 1

- Large scale (~1000 MWe, gross) Lignite fired condensing power plant
- Pipeline transport
- Aquifer storage
 - CO₂ product pressure 110 bar, temperature 50 DegC
- Modest CO₂ quality requirements
 - $CO_2 > 96 vol\%$
 - H₂O < 500 ppm
 - SO₂ < 200 mg/Nm3
 - $O_2 < 4$ vol% (total inerts)

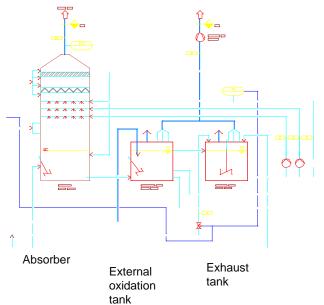
Scenario definition – Scenario 2

- Large scale (~ 650 MWe, gross) Bituminous coal fired condensing power plant
- Pipeline transport
- On-shore storage
 - Low O₂ content
 - CO_2 product pressure P = 110 bar
 - CO_2 product temperature T = 50 DegC
- High CO₂ quality demands
 - $CO_2 > 96 \text{ vol}\%$
 - H₂O < 50 ppm
 - $O_2 < 100 \text{ ppm}$
 - SO₂ < 50 mg/Nm³

Scenario definition – Scenario 3

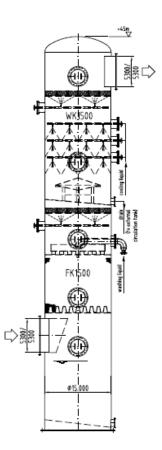
- Large scale (~ 620 MWe, gross) Bituminous coal fired power plant
- Ship transport
- Off-shore storage (EOR?)
 - CO_2 product pressure P = 7 bar
 - CO_2 product temperature T = -50 DegC
- Very high CO₂ quality demands
 - $CO_2 > 96 vol\%$
 - $H_2O < 5 \text{ ppm}$
 - $O_2 < 100 \text{ ppm}$
 - $SO_2 < 5 mg/Nm^3$
 - $NO_x < 5ppmv$

Scenario CO₂ quality specifications


	Modest CO ₂ quality	High CO ₂ quality	Very high CO ₂ quality
CO ₂	>96 vol%	>96 vol%	>96 vol%
H ₂ O	<500 ppm	<50 ppm	<5 ppm
SO ₂	<200 mg/Nm ³	<50 mg/Nm ³	< 5 mg/Nm ³
0 ₂	Total inerts < 4 vol%*	<100 ppm	<100 ppm
NO _x	-	-	<5 ppm

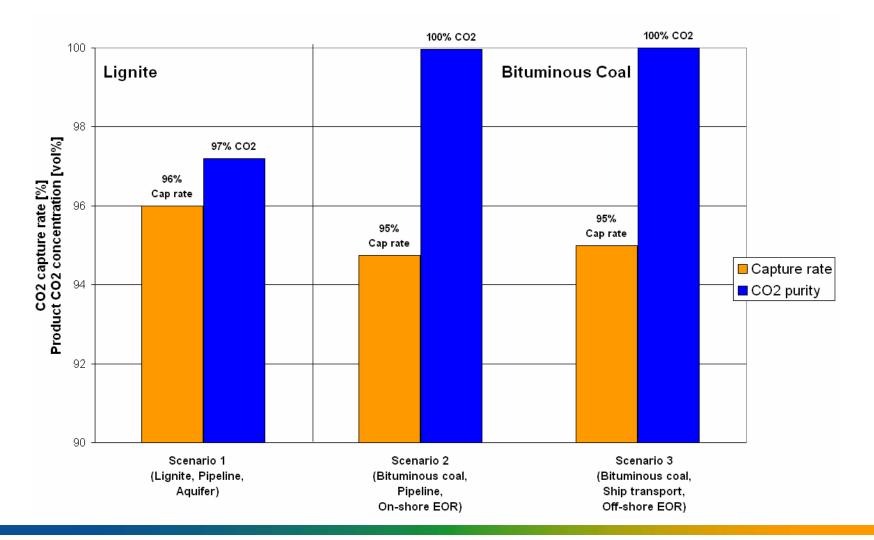
* No individual restriction on O_2 content

Flue gas clean-up l

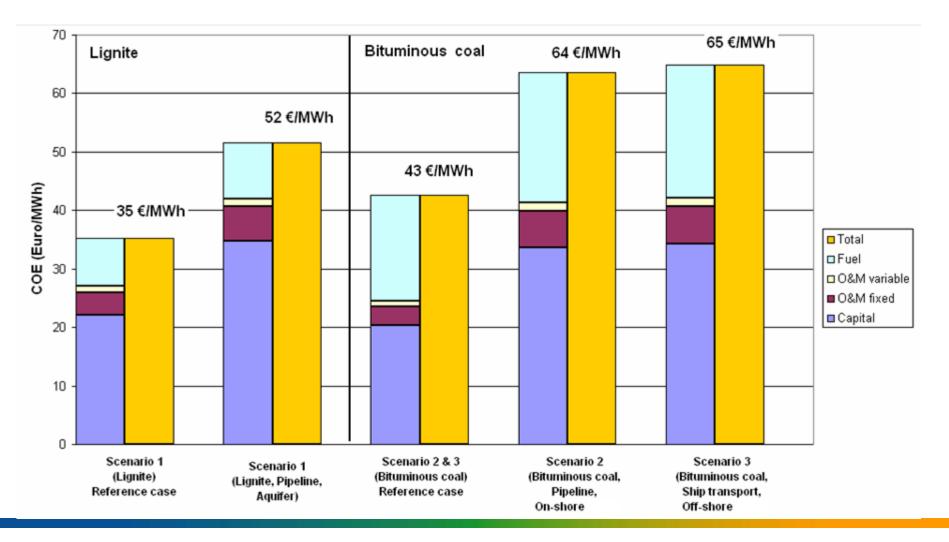

- ESP Electrostatic Precipitator
 - Scenario 1 hot + cold ESP
 - Scenario 2-3 cold ESP
- FGD Flue Gas Desulphurisation
 - open tower wet scrubber, limestone slurry
 - High demand of SO₂ removal (up to 99.9%), high L/G ratio
 - pH
 - Also removes HF/HCl, SO₃, fly ash, heavy metals...
 - To avoid air ingress, the oxidation tank is separated from the absorber

Flue gas clean-up II

- FGC Flue gas condenser
 - Cooling, drying and cleaning
 - Designed as a direct condenser in two stages
 - Packed bed scrubber with possibility to dosing of NaOH to remove acidic components (SO₂)
 - Open spray tower
 - Cooling to 25C
 - Demister
- WESP
 - Possibility to remove aerosol and SO₃
 - Not included in scenario 1-3

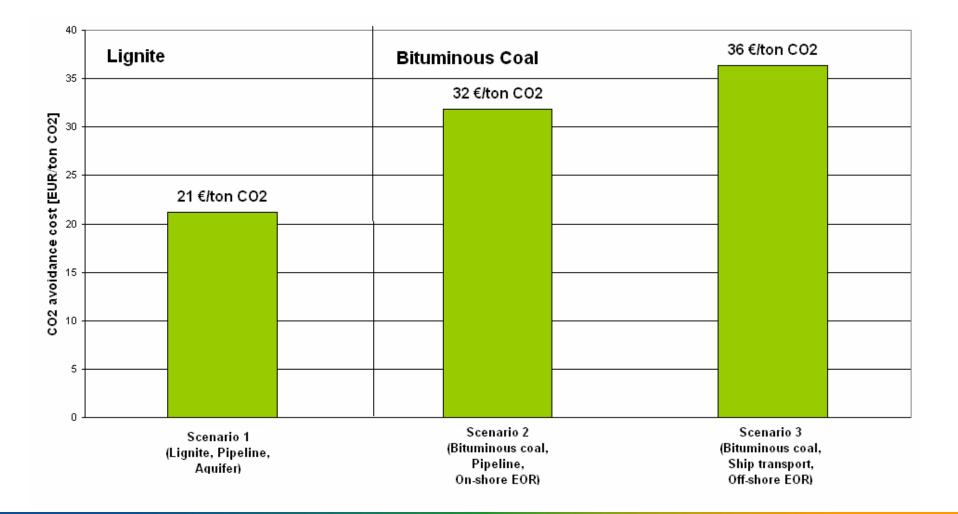

CO₂ compression, purification

- Compression
- Cooling to remove water and reduce compression power requirements
- Inerts removal
 - Reducing air in-leakage increases CO₂ capture rate
- Possibility of SO_x and NO_x, Hg removal (ref. Air Products)
 - converted and removed as dilute acid streams
- O₂ removal, CO₂ recovery
 - Membrane on vent stream to separate O₂ and CO₂ and bring back to boiler


Results – CO₂ Capture rate and product CO₂ concentration

Results – COE

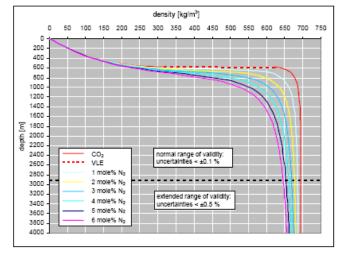
Results – COE II


- Prerequisites:
 - Real interest rate 8%
 - Depreciation time 25 years
 - 7 500 full load hours / year
 - Fuel price: 4 €/MWh for lignite

8,3 €/MWh for bituminous coal

- Results:
 - Capital costs dominate
 - Higher fuel cost than reference case, due to lower efficiency
 - Fixed O&M costs (personnel, maintenance, insurance etc) increase, due to more equipment
 - Larger, relative COE-increase for Scenarios 2 & 3

Results - Avoidance cost


Conclusions

- The technology to reach very high purity is available
 - Verification in Oxyfuel environment however required
- Identified possibility of SO_x and NO_x removal in the CO₂ compression part
 - Verification required
- Ship transport CO₂ quality possible at reasonable cost
- Weaker connection between CO₂ product purity and cost than expected (<5% of COE)
- Demand for extremely low O₂-concentration in the product is possible to meet
 - complexity and cost of the CO₂ compression process increases
 - capture rate decreases
 - Verification required
- Increased confidence in performance and costs for the flue gas treatment

Continued work (under planning)

- Validation of flue gas cleaning equipment in oxyfuel environment in the Schwarze Pumpe pilot
- Effect of inert components (N₂, Ar, O₂, ...) on volume efficiency and economics of transport and storage compared to cost of removal
 - CO₂ volume calculation for realistic CO₂ composition scenarios for oxyfuel with different clean-up and processing levels (scenarios based on previous work)
 - Impact on total transport and storage volume for relevant transport and storage scenarios (different T and p)
 - Economic assessment
- SO₂/SO₃ conversion
- Corrosion testing for boiler, process and pipeline material selection

Thank you for your attention!

Questions?

Further work on the Oxyfuel Capture technology

- Validation of results in lab scale and pilot plant
 - Combustion characteristics
 - Pollutants formation and destruction or removal in different components
 - Component operating characteristics and interaction with overall plant
- Material selection / Corrosion risk in the oxyfuel plant, from furnace to CO₂ compression part
- CO₂ quality demand with reference to O₂ content and other components
- Part load behaviour of the oxyfuel plant
- Thorough discussion on the impact from air in-leakage
- Overall optimisation of the process
- Scale-up to demonstration plant (250-350 MWe)

What are the effects, CO2 capture and processing

Corrosion

- H_2O , SO_x , NO_x , O_2 , H_2S , HCN, HF, HCI
- Effect on thermo-pysical properties
 - All components
 - Phase equilibrium
 - Density
 - Enthalpy, entropy
 - • •
- Hydrate formation
 - H₂O, CO₂, H₂S, CH₄
- Internal energy consumption and investment of cleaning the CO₂ to different levels

What are the effects on CO2 transport and storage, I

Pipeline transport

- Corrosion (operation, cost of pipeline, economy)
 - H₂O, SO_x, NO_x, O₂, H₂S, HCN, HF, HCI
- Hydrate formation (operational problem, risk of plugging)
 - H₂O, CO₂, H₂S, CH₄
- Two-phase flow (operation)
 - Ar, O_2 , H_2 , H_2S
- Leakage of toxic components (health and safety, legal)
 - H₂S, COS, CO, SO₂, NO_x, heavy metals.
 Requires safety measures to minimise risk.
- Odour (health and safety, legal)
 - H_2S , mercaptanes
- Fouling of pipe (operational problem)
 - particles
- CO₂ transport volume efficiency (economy)
 - O₂, Ar, N₂

What are the effects on CO2 transport and storage? II

Injection facilities

- Corrosion (operation, cost of injection pipe and equipment, economy)
 - Acid-forming compounds, SO₂, NO, H₂S, CO, HCN, HF, HCI, together with water and O2
- Hydrate formation (operational problem, risk of plugging)
 - CO_2 , H_2S and CH_4 can form hydrates in presence of free water.
- Toxic compounds, in case of a leakage (health and safety, legal)
 - H_2S , COS, CO, SO₂, NO_x, heavy metals. Requires safety measures to minimise risk.

Storage in deep laying aquifers and depleted hydrocarbon fields (OBS! Sitedependant conditions)

- Blockage of pores and reduced permeability (operation problem during injection phase)
 - Particulates and O_2 , H_2S , SO_2 through precipitation
- Dissolution of cementing carbonate minerals (operation and storage safety)
 - SO₂, H₂S, NO_x, HCI, HCN, HF
- Toxic compounds, in case of a leakage (health and safety, legal)
 - H_2S , COS, CO, SO₂, NO_x, heavy metals. Requires safety measures to minimise risk.

Caprock

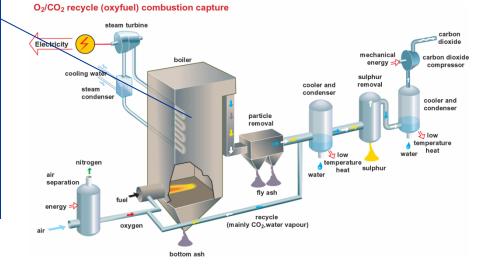
- Chemical effects on brine and storage rocks. Depends on composition of caprock and aquifer water (operation, health and safety)
 - HCI, HCN, HF, H₂S, NO, SO₂, O₂

What are the effects on CO2 transport and storage? III

Effects on environment and health

- Toxic compounds
 - H₂S, COS, CO, SO₂, NO_x, heavy metals (Hg), organic compounds (solvents, mercaptans). Requires safety measures to minimise risk
- flammable compounds
 - such as H_2 , CH_4
- Acidification
 - SO₂, NO_x, H₂S etc. can form stronger acids than CO_2
- Nutrients (eutrophications),
 - such as NO_x , N_2

The presence of other components than CO₂ in the transported/injected/stored gas stream may warrent increased safety measures and monitoring procedures.


•Combustion characteristics

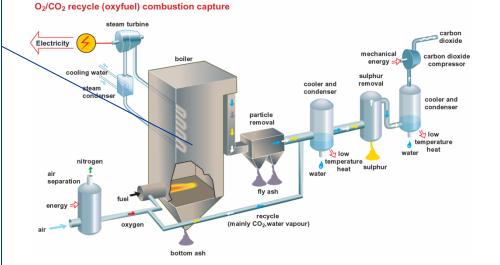
-(NO_x; SO_x; CO, O₂-level, CO₂; SO₂; SO₃, Hg and HC along flame and boiler path)

•Behaviour of recirculated products in flame

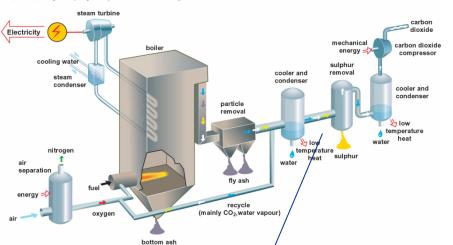
Flame characteristics

-(shape) and stability, mapping of these as well as species (O_2 ; CO; NO_X), temperature- and velocity profiles

•slagging/fouling


ash quality

radiation heat transfer in radiative section

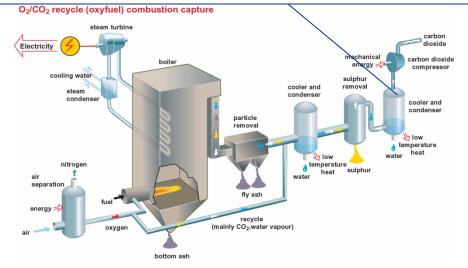

•convective heat transfer in boiler convective section,

Main loop air in-leakage / extracted gas quality
Corrosion and material testing

•All these measurement should be done in airfiring and oxyfuel atmosphere

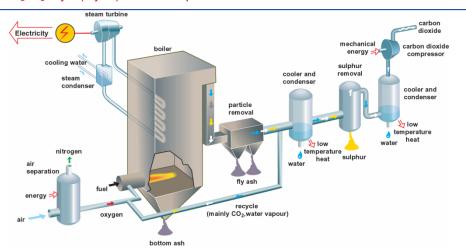
O₂/CO₂ recycle (oxyfuel) combustion capture

•Separation rates of ESP, FGD and FGC at different flue gas compositions


- •Acid dew point
- •SO₂ and SO₃ concentration
- Distribution of trace elements

•Effect of different levels of O_2 , acidic components, water vapour on CO_2 compressor train

CO2 product composition and capture rate


Condensate quality, FGC and CO₂-compression train

 Informations about the flexibility under the aspect of Load Changes

•Gathering of information of the complete system dynamics O2/CO2 recycle (oxyfuel) combustion capture

Technical Considerations for a Very Large Scale Air Separation Unit for a Coal Fired Power Plant Application

Kevin Fogash Air Products and Chemicals

IEAGHG International Oxy-Combustion Network 3rd Workshop Yokohama, Japan 5 - 6 March 2008

- Introduction to Air Products
- Very Large Air Separation Units
- Air Products' track record
- Air Products as a solution company
 - Air Separation Unit Integration to the Oxycoal process

Who Is Air Products?

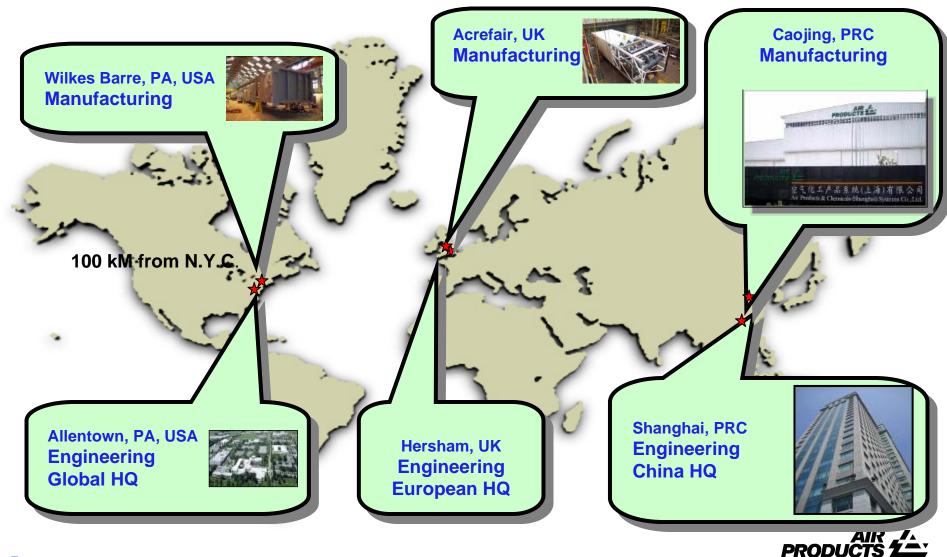
- Global atmospheric, process and specialty gases, performance materials, equipment and services provider
- Serving industrial, energy, technology and healthcare markets worldwide
- Fortune 500 company
- Operations in over 40 countries
- ~22,000 employees worldwide
- Known for our innovative culture and operational excellence
- Corporate responsibility commitment

Innovation-Driven

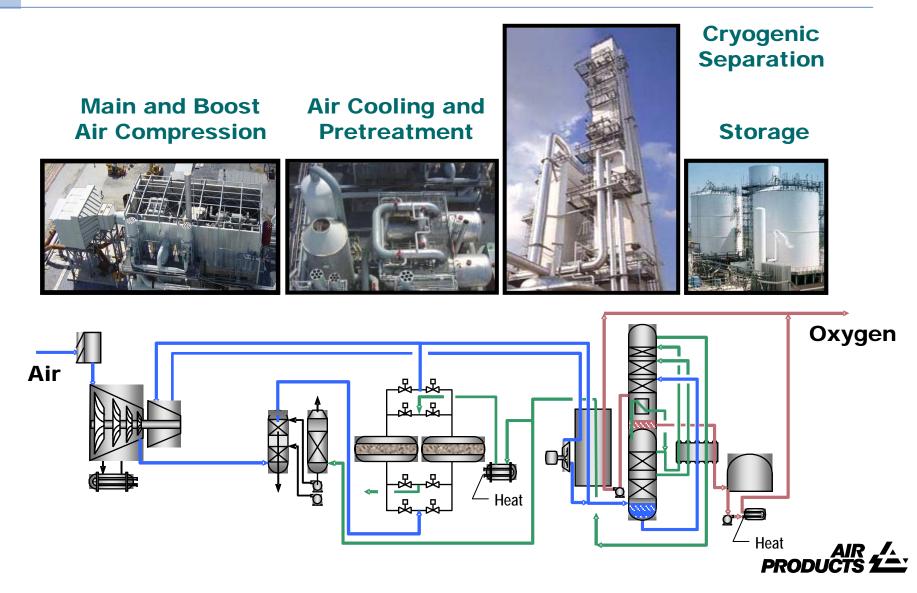
- FY'07 R&D spending: \$140 million
- Focus on creating value in high growth / emerging markets
- Applications focus is at the heart of our brand
- Alliances / technology partnerships with universities, labs, consortia, other companies
- Investments in venture capital funds to gain technology access
- Open Innovation approach

Sale of Equipment Overview

- Global presence All Industries
- Extensive reference list designed and built over 1,200 plants
- ASU operating know-how translated to a cost effective equipment solution
- Cryogenic plant offerings ranges from 50 to +5000 metric ton per day
- Value Added Options:
 - Increased engineering content
 - Construction advisory services
 - Commissioning services
 - Turnkey construction
 - Start-up and Operator Training services
 - Spare Parts support services
 - Operate and Maintain contracts


"On-Site" - Sale of Gas Overview

- Air Products designs and builds a plant adjacent to the customer or pipeline
 - Reduces schedule & capital cost risk
 - Allows integration of steam & power
- Plant investment by Air Products
 - Customer typically supplies land and utilities
- Operation and maintenance by Air Products
 - Safety
 - Proven supply reliability
 - Delivery, efficiency and availability guarantees
 - Potential co-product and scale benefits
 - Merchant oxygen, nitrogen, argon
 - Shared plant or pipeline systems
- Customer buys gas from the facility under a long-term agreement
 - Enables customer to focus resources and capital on core activities



ASU Engineering and Manufacturing Locations

Overview Of The Process


It is about more than just O2...

- APPLICATION EXPERIENCE: Supplied large oxygen/air separation equipment to all type of applications and industries:
 - Power
 - Gasification
 - Metals
 - Refining / Petrochemicals
- **INTEGRATION EXPERIENCE**: Air separation plants in all integration modes—
 - Oxygen supply control system (Load following, start-up shutdown, peakshaving)
 - MAC heat recovery
 - Standalone, nitrogen integrated, and air/nitrogen integrated (IGCC)
- MEGA-TRAIN EXPERIENCE: Operating very large single train air separation plants since 1997 in Rozenburg, The Netherlands (3250 MTPD); also installed a 2x3500 MTPD unit in Qatar
- RELIABILITY: First company to supply high-reliability tonnage oxygen for power projects without oxygen backup
- OTHER GAS PRODUCTS: Broad industrial gas industry experience creates synergies with H2, CO, and CO2 markets

Air Products and Power

- Long-term commitment to Power since the 80's starting with the IGCC market
- Focused on safe, highly reliable, and economic ASUs
- Baytown: LASU + Back-end
 - Designed, built, own and operate syngas cleanup and separation facility ("back-end") of heavy oil gasifier in TX
 - The result is a broad range of experiences for Power with Cogen (including coal), Gasification, and Syngas

88 MW Ebensburg (Cambria), PA USA

120 MW, Orlando, FL USA

55 MW, Stockton,CA USA

Syngas, CO, H2 Baytown, TX USA

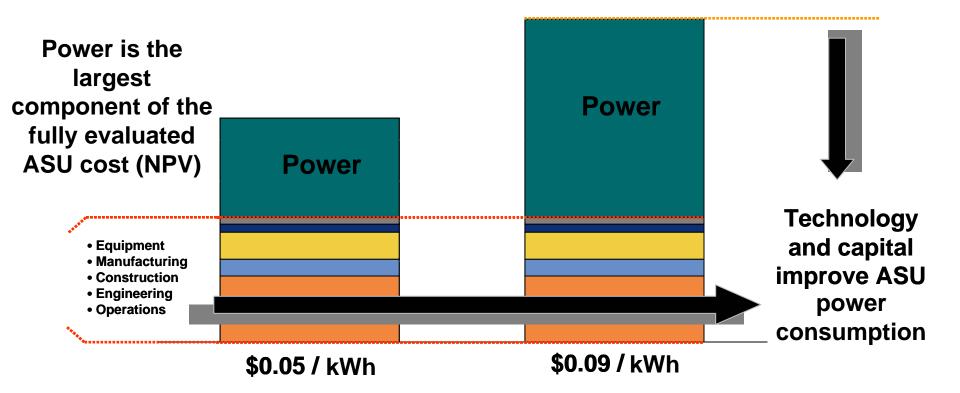
Very Large Air Separation Units

SALANJANG

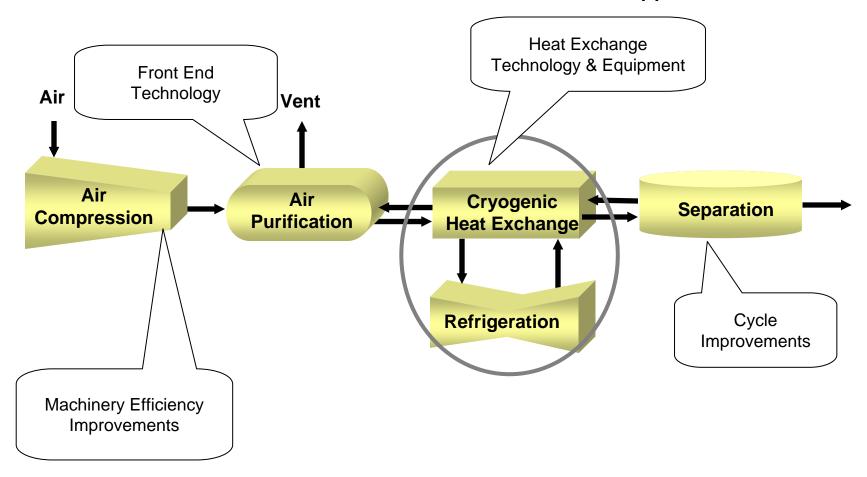
Very Large Air Separation Units

- Air Products' long track record providing the train size required by the project
 - Market drives ASU scale-up
- Site requirements >5000 metric ton/day in single or multitrain configurations
- Challenging cycle design, engineering, installation, and manufacturing issues
- Best train solution based on customer's specific requirements

VLASU Integration challenges to Oxycoal power plants

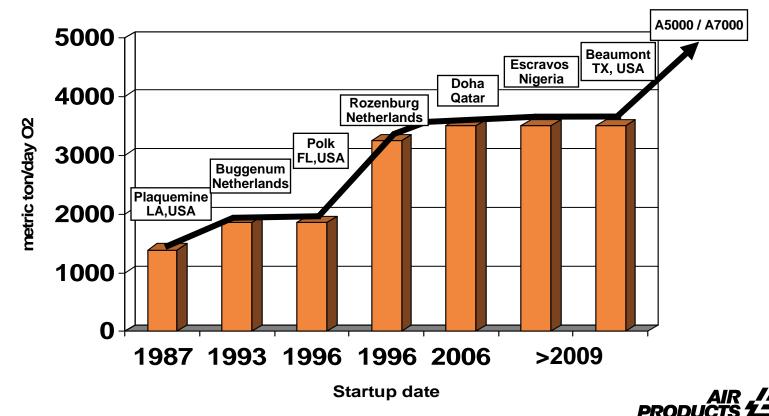

Number of trains based on customer's specific requirements:

- Power vs. Capital costs
- Transport of ASU(s) to site
- Reducing construction / erection costs and risks
- Operability
- Compression integration at large scale
- Fit with customer's use patterns
 - Turndown / ramping up
- Reliability, including spare parts handling
- Schedule



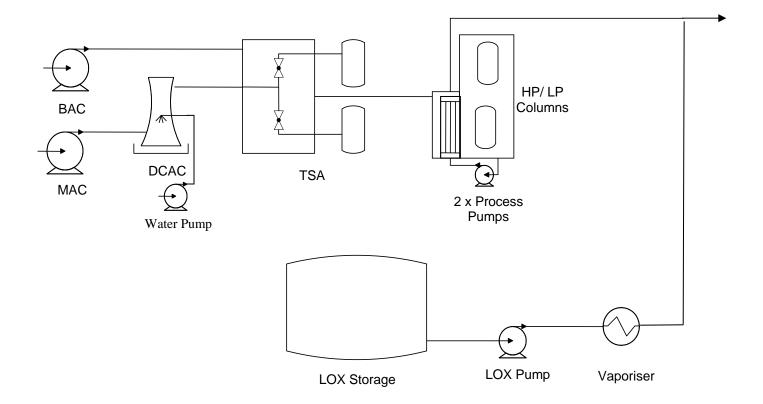
Power Costs and Design

Power Consumption Reduction Opportunities

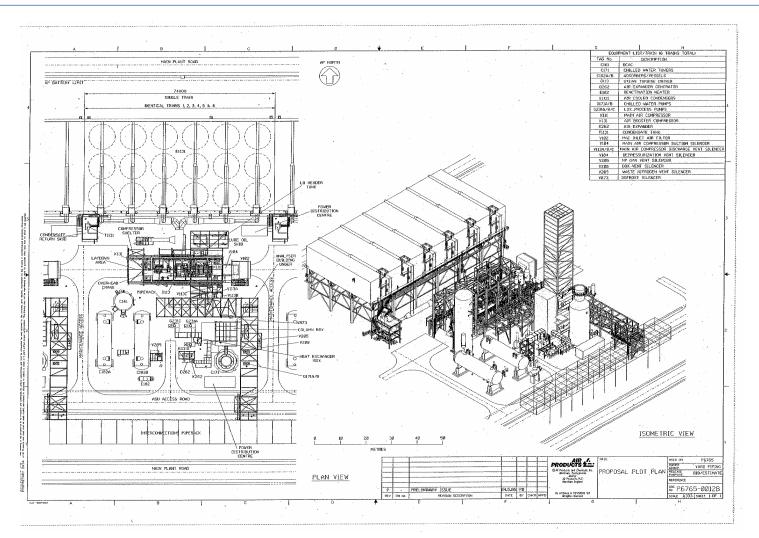


2012 Vision = 150-170 kWh/metric ton (*)

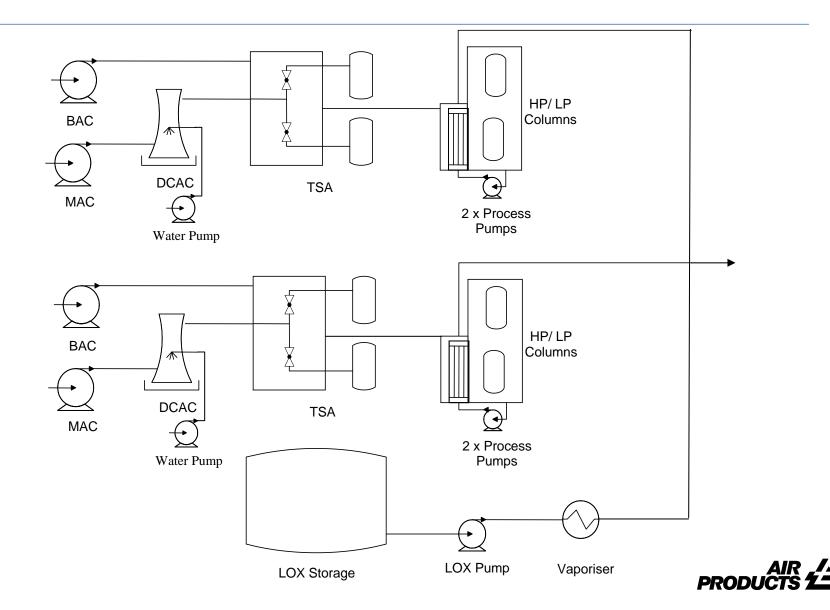
Experience - Large ASU Projects and Train Scale-up


- Market drives ASU scale-up
- Proven 70% scale-up
- Quoting 5000+ metric ton/d today

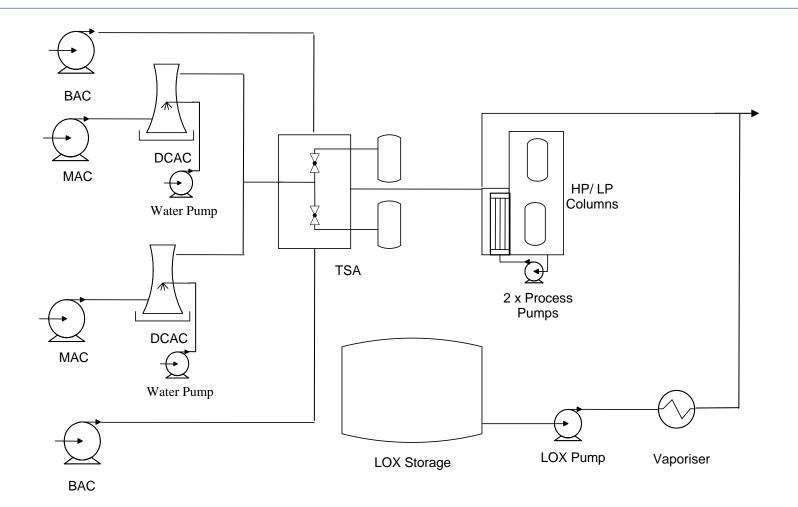
A5000



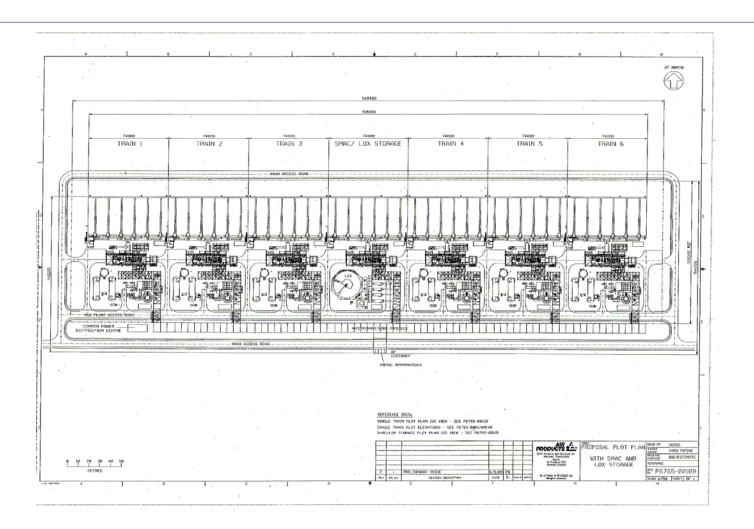
A5000 (1 train view)



A5000 Single Train

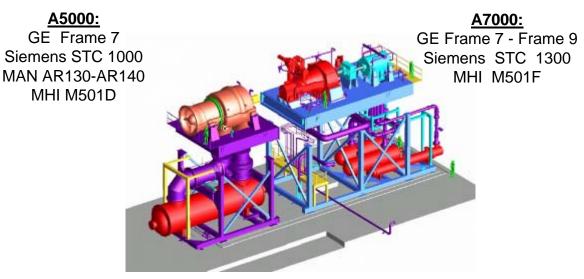


A5000 (2 x2500 trains)



A5000 (2x compression + 1 cold box view)

6xA5000 = Approx.30,000 t/d O2


Compression: Design Considerations

Oryx- Qatar – 2x3500 TPD

A5000 and A7000 t/d – Single Train Compression

- Axial main air compressor (no GT integration)
- In-line boost air and nitrogen compressors
- Four large suppliers = GE, MHI, Siemens, MAN

- MAC—Steam Turbine—BAC
- Air Cooled Condenser
- Shop Skids
- String Test

A5000 and A7000 t/d – (2x Compression – Multitrain)

- Integral gear (GT Copco or STC) or In-line air compressors (RIK)
- Integral gear or In-line boost air and nitrogen compressors (if N2 needed))

How Will Air Products Help Make Oxycoal Project A Success ...

- Extensive worldwide experience building and integrating Large Scale ASU
 - Geographic diversity for R&D, Engineering, Procurement, and Manufacturing
 - A focused group of individuals to support local and project specific activities such as FEED, Build, Start-up, Operation, and Optimization
- Clear understanding of the VLASU-Oxycoal integration challenges through an active participation in the following studies:
 - IEA GHG Study on New Build Supercritical PF Coal plants 2005
 - DTI Study on retrofitting UK Coal power plants for CO2 Capture -2006
 - DTI Study on Coal Power plants with CO2 capture for the Canadian market
 - Extensive integration experience with ASUs in other Power related projects
- Air Products is looking ahead of Cryogenic technology by developing and now in advance testing Oxygen Ion Transport Membranes (ITM)
 - Step-change savings compared to state-of-the-art cryogenic technology
 - 25-35% less capital
 - 35-60% less power
 - >65 Patents

Large air separation units (ASUs)

Thank you

tell me more www.airproducts.com

16:40-17:30: Discussion Forum

Oxygen production and CO_2 processing.

Focus on CO₂ processing

- Mini-panel: Presentation of two 10 minute introductions or "talking points"
 - 1. Regulatory barriers related to CO₂
 - C. Andy Miller, US Environmental Protection Agency, Research Triangle Park, NC 27711
 - 2. Technical barriers related to CO₂
 - Vince White, Air Products PLC
- Discussion
 - Floor and panel

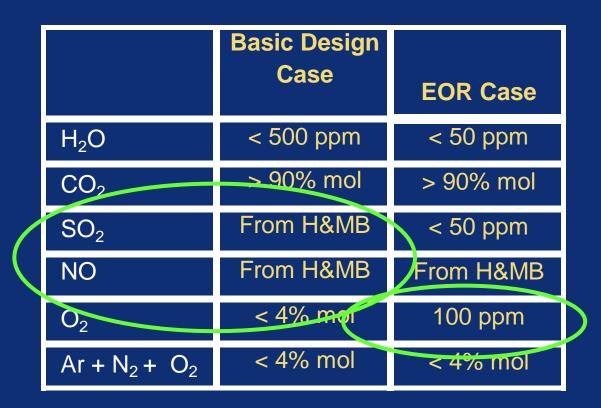
3rd Workshop

IEAGHG International Oxy-Combustion Network Yokohama, Japan

5th and 6th March 2008

CO₂ Quality For Storage: Technical Barriers

Vince White Air Products PLC, UK 5th March 2008



Technical Barriers???

What Technical Barriers???

CO₂ Purity Issues

- Regulations regarding onshore and off-shore disposal are being drafted world-wide
- Co-disposal of other wastes (NOx, SOx, Hg) is a sensitive issue
- Important that the CO₂ can be purified for disposal or EOR

PRODUCTS 2

CO₂ PRODUCT QUALITY Generic Pipeline Spec

D	ixon		Industry	Dakota		Character
L E	onsulting OR, Aug 2001	Kinder Morgan EOR, 2003	Working Group Prelim Spec 2005	Gasification Aug 2005	Canyon Reef EOR, Dec 05	Strawman Composite
<u> </u>		95% min	95% min	96.80%	95% min	97% min
CH ₄	<1.0%			0.30%		<1.0%
C_2H_6	<1.0%			1.0%		<1.0%
C_3^2 +	<1.0%					<1.0%
Total HC's		5% max	5% max		5% max	<3.0%
H ₂	<1.0%					<1.0%
CŌ			0.1% max			0.5% max
N ₂	<2.0 N ₂ & H ₂	4% max	4% max		4% max	1-3% max TBD
Other Inerts						
Total Inerts						<3%
O ₂ H ₂ S	<2.0 ppmw	10ppm	100 ppmv max		10 ppmv max	2 ppmv
H ₂ S	<100 ppmw	10-200 ppm	10-200 ppmv max	1.10%	1,500 ppmv max	10-200 ppmv TBD
SO ₂	<5.0 ppmw				4 450	5 ppmv
Total Sulfur	<300 ppw				1,450 ppmv max	10-200 ppmv
H ₂ 0	<-5C DP @ 300 psia	30 lbs/MMCF max	<-40C DP	Bone dry	28 lbs/MMCF max	<1 ppv
Hg			Controlled			TBD
Other				0.90%		TBD
Glycol		0.3 gal/MMCF max	0.174 m3/MMm3		0.3 gal/MMCF max	
Methanol						TBD
Selexol						TBD
Amine						TBD
Delivery Pressure			2,000 psia	2,190 psia		2,200 psig
Temperature		120F max	120F max	(2,700 psig @ source)	120F max	120F main /

Dynamis CO₂ quality recommendation

Compound	Concentration limit	Remarks	
H ₂ S	200 ppm	Health and safety considerations	
CO	2000 ppm	Health and safety considerations	
SOx	100 ppm	Health and safety considerations	
NO _x	100 ppm	Health and safety considerations	
H₂O	500 ppm	Technical limit	
0 ₂	Aquifer <4 vol% (all non cond. gases), EOR >100 ppm	Technical limit; storage issue	
CH₄	Aquifer < 4 vol%, EOR <2 vol% (all non cond. gases)	Like ENCAP	
N ₂ , Ar, H ₂	<4 vol% (all non cond. gases)	Like ENCAP	
CO ₂	> 95%	Result of other compounds in CO ₂	

http://www.cachetco2.eu/c2ws/presentations/39_dynamis_de_visser.pdf

Why Remove Inerts?

More volume

- Makes pipes bigger/reduced capacity
- Takes up storage space
- Avoids two phase flow
- Requires less compression power

How to do it?

SOx, NOx, Hg

- Conventional Technologies
- Air Products' integrated CO₂ purification system
- Water
 - Glycol, Adsorption
- Inerts
 - Low temperature phase separation

Oxygen

- Low temperature distillation
- Catalytic combustion?

Thank you

Vattenfall's Schwarze Pumpe Oxyfuel Pilot – An update

Marie Anheden Vattenfall Research and Development

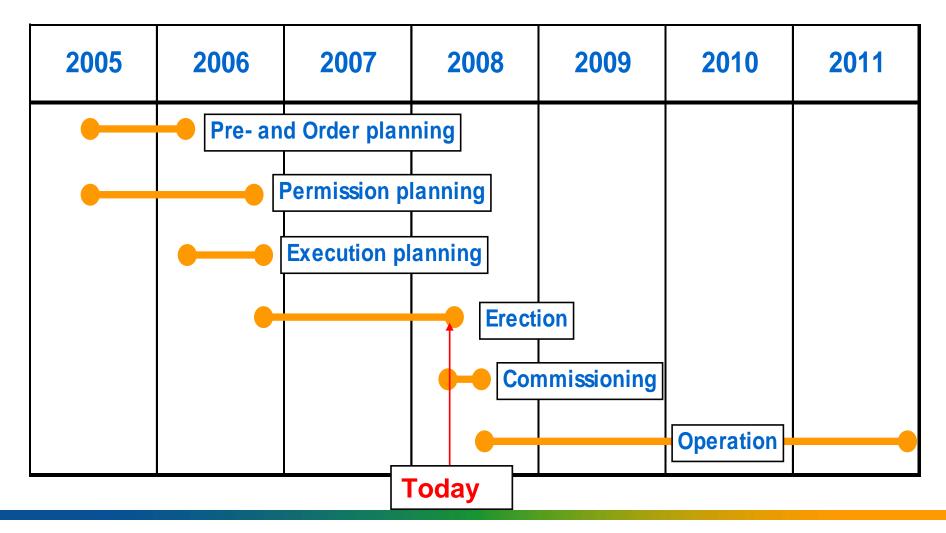
3rd IEA GHG Oxyfuel Workshop March 5-6, Yokohama, Japan

Vattenfall 30 MW Oxyfuel pilot plant

- Vattenfall has taken a decision to build a 30 MW_{th} Oxyfuel PF pilot plant
- New-built plant located next to the Schwarze Pumpe power station in Germany
- Investment decision taken by Vattenfall in May 2005. In operation August 2008.
- Size of pilot plant chosen to facilitate a scale-up to a commercial-size burner as the next step

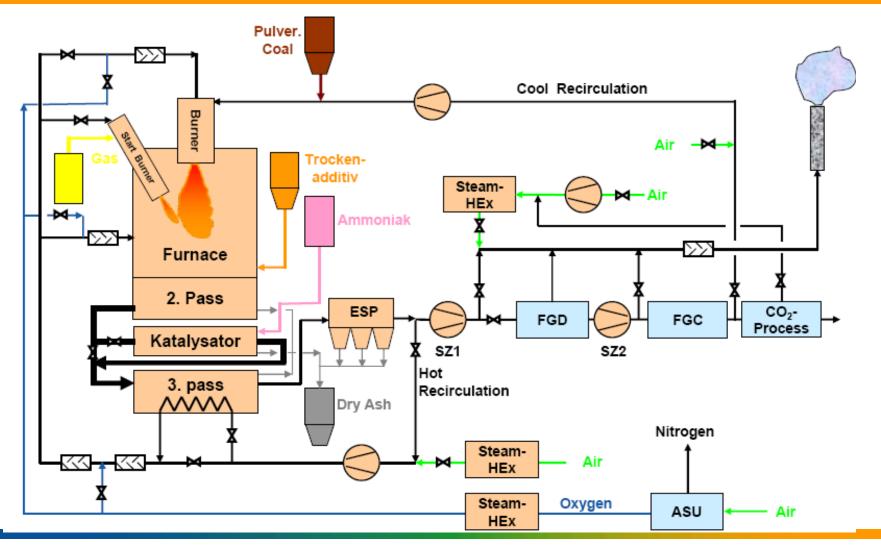
Pilot testing will result in validation and tuning of the more or less commercially available technologies included in the Oxyfuel concept to allow launch of a demonstration project of the technology in commercial scale within 5 years.

- ⇒ Define optimal operating conditions for Oxyfuel conditions in a large-scale facility for the entire process. Experience will serve as data input for scale-up of the Oxyfuel concept.
- \Rightarrow Identify critical issues for further R&D
- \Rightarrow Gain operating experience in the Oxyfuel field



Basic data

Boiler:	Combustion heat performance	30 MW _{th}
Pulverized fuel	Steam production	40 t/h
	Steam parameter	25 bar / 350 °C
Coal:	LHV	21.000 kJ/kg
pulverized lignite	Moisture	10,5 %
(Lausitz)	Coal demand	5,2 t/h
Media:	Oxygen (purity > 95%)	8,5 t/h
	Own consumption	8,5 MW
	CO ₂ (liquid)	9 t/h
Other:	Required area	14.500 m²
	Erecting time	15 month
	Investment	70 Mio. €

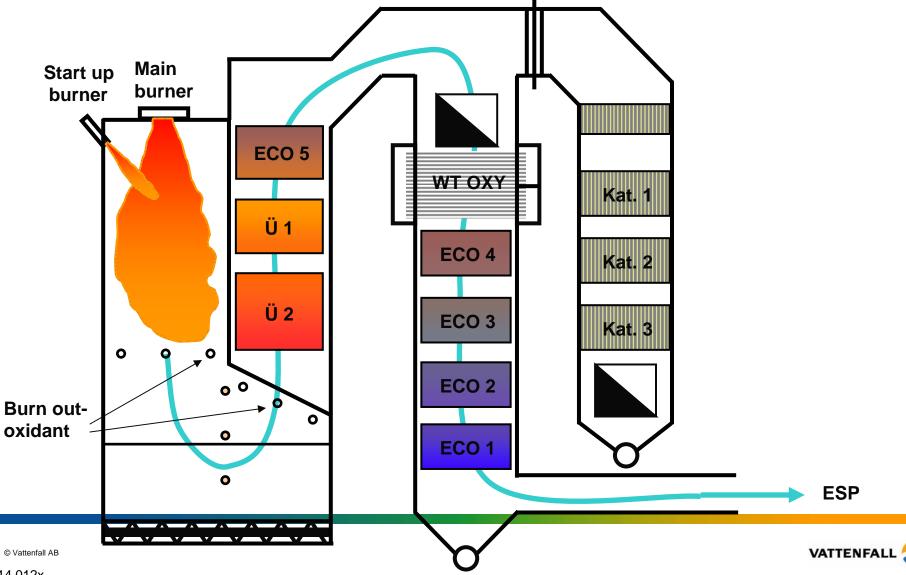


Overall Time schedule

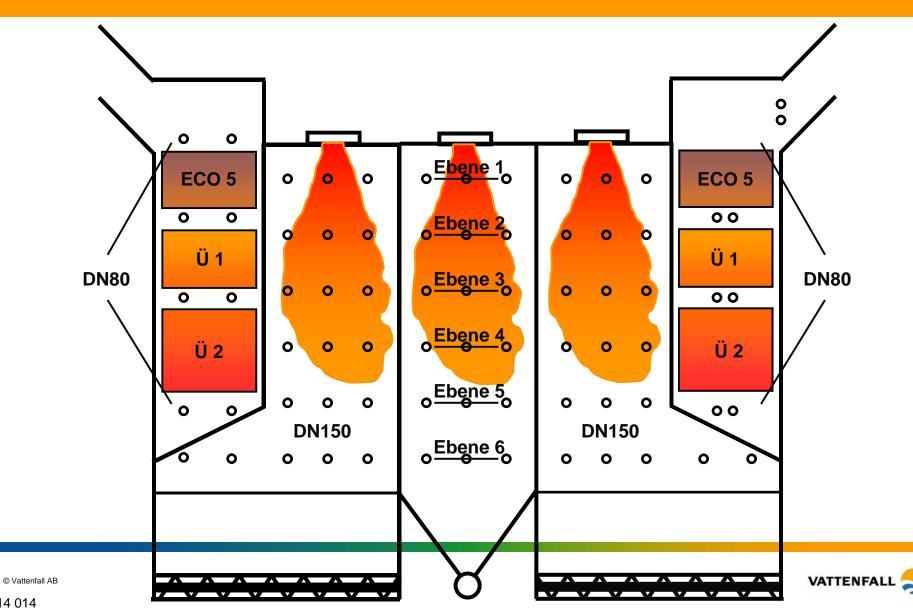
Process scheme of the pilot plant

The plant – status 2008-01-15

Main Contractors



ESP Boiler steel structure and equipment



The Oxyfuel boiler in cross section (3 passes)


014 012x

Measurement ports in the furnace and 2nd pass

014 014

The furnace in the making

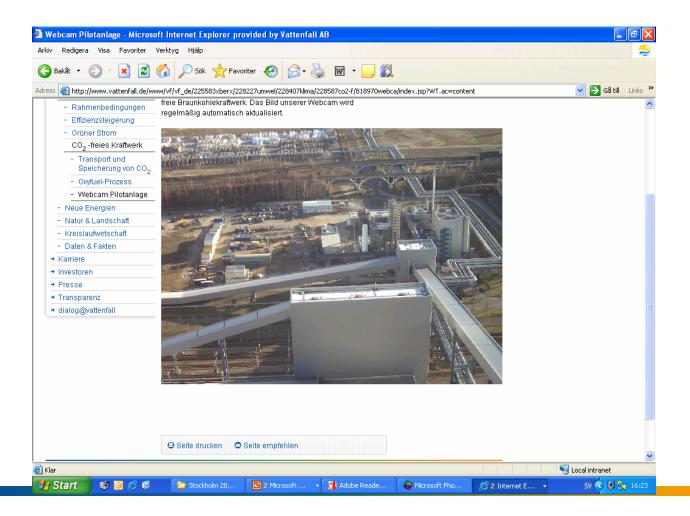
Measurement ports in the furnace

O2-tank, ASU

Flue gas desulpherisation

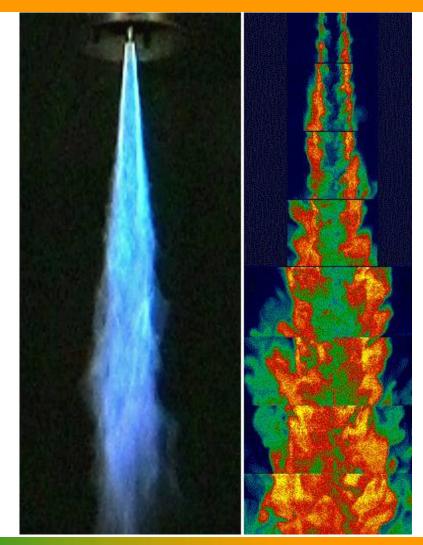
Flue gas condenser

Compression chiller & CO2 tank station



Pilot plant web camera

http://www.vattenfall.de/www/vf/vf_de/225583xberx/228227umwel/228407klima/228587co2-f/818970webca/index.jsp?WT.ac=content


Test Program for the Oxyfuel Pilot Plant

Boiler tests:

- Tests with lignite (1st test period) and hard coal
- Variation of moisture content in lignite (10.5 20 %)
- Variation of oxygen excess (1 5 %)
- Variation of recirculation (flow, temperature, O₂-content)
- Variation of oxygen content at different burner registers

Benchmark against air-firing:

- Combustion performance
- Ash qualities
- Flue gas composition
- Heat transfer
- Combustion characteristics
- Flame characteristics
- Corrosion potential
- Identification of optimal configurations

Test Program for the Oxyfuel Pilot Plant (2)

Tests of other components:

- Interaction between ASU and boiler (load change)
- Separation rates of ESP, FGD and FGC at different flue gas compositions
- Reachable raw gas qualities upstream of CO₂-processing
- Scrubbing efficiency of CO₂-processing
- CO₂-recovery rate of entire process (target > 90 %)

Benchmark:

- Requirements on process control / I&C
- ideal pH-value for FGD/FGC process
- Corrosion potential
- Minimum requirements for raw gas quality upstream of CO₂-processing
- Identification of optimal operating conditions

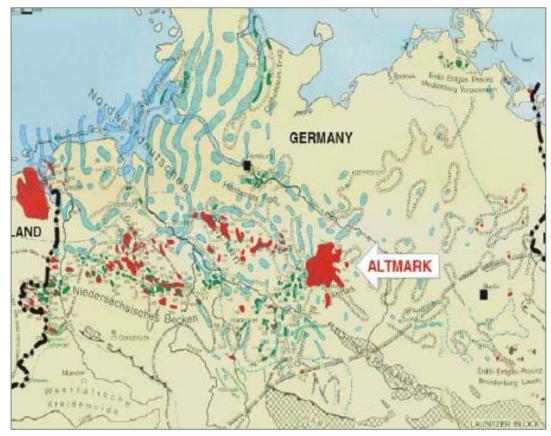
Pilot CO₂ storage project in the Altmark gas field

GDF, Vattenfall plan CO2 pilot program in Germany

Doris Leblond OGJ Correspondent

PARIS, Sept. 28 -- In a move it claims is consistent with its sustainable development policy, Gaz de France has signed a cooperation agreement with Germany's Vattenfall Group for a carbon dioxide pilot project in Germany.

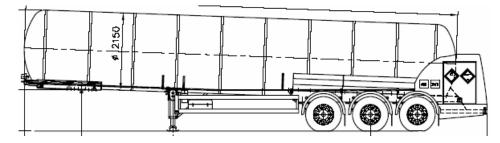
Erdgas Erdol GMBH Berlin, GDF's wholly owned exploration and production affiliate, will use CO2 to enhance gas recovery from its nearly depleted Altmark gas field—the second largest onshore field in Europe.


The project will take 15 months to implement and will contribute to GDF's research program on CO2 capture, injection, and storage.

Altmark gas field

Altmark:

- One of Europe's largest on-shore natural gas fields
- Gas findings at 3000 m depth
- Natural gas production since 1969
- 78% recovery rate
- The field is now at the end of its economic life
- Methods for life time extension is being investigated
- The R&D-project CSEGR has shown that it seems possible to extend the life time through CO₂ injection
- A 3 year pilot trial period will be initiated using CO₂ from Vattenfall's Schwarze Pumpe oxyfuel pilot



Altmark – Schwarze Pumpe

- Estmated storage capacity 600 Mton
- Total planned injection: ca. 100.000 ton CO₂
 - \rightarrow 0,02% of the storage capacity
- Truck transport will be used for the transportation of CO₂ from the Schwarze Pumpe pilot to Altmark
 - 7-8 Trucks in continuous operation
- If the pilot trial shows that Altmark is suitable for large scale operation it will be used for a demo plant:
 - − CO₂-capture from a demo plant ~ year 2015 → 1,5-2 Mton per year
 - Pipeline transport 330 km
 - A route could be arranged along the existing natural gas pipeline

Pilot- och Demonstration projects in perspective

10 years of R&D is now resulting in investments in several large-scale projects:

Plant	Schwarze Pumpe, Germany	Mongstad, Norway	Demoplants , Germany, Denmark, Poland	
Туре	Large scale pilot plant	Large scale pilot plant	Demonstration plant	
Capacity		100 000 ton CO ₂ /a (~35 MW)	Storage	
Fuel	Storage Pilot by al	Flue gas from CCGT & cracker	demonstrations by Vattenfall / Cooperation partners Ca 2015	
CO ₂ technology	GdF / Vattenfall	Post-combustion		
Operation	2008	2010		

Thank you!

PCIENT & CLIME DEVELOPMENT & CLIME APP Oxyfuel Working Group (OFWG)

NERSHIP

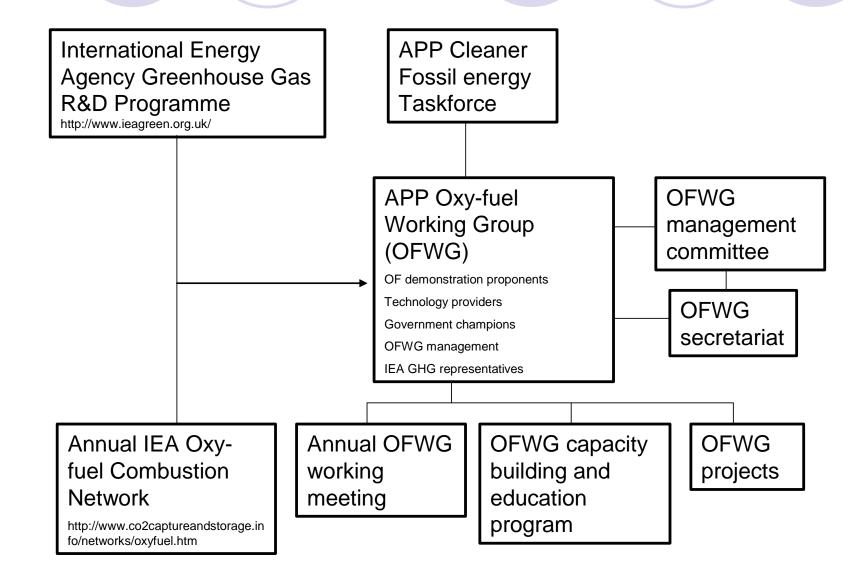
3rd Oxy-Combustion Network, Yokohama, March, 2008

ASIA-PACIFI

Background

 Oxyfuel technology has a number of "demonstration " projects

 The demonstrations have common issues, which can be progressed by collaboration


 OFWG will not restrict its activities to APP countries alone

OFWG objective and participation

 The objective is to facilitate and support the implementation of oxy-fuel demonstration trials, and thereby accelerate deployment of the technology.

 OFWG participation is for proponents and technology suppliers of oxyfuel demonstrations and large pilot-plants.

OFWG – IEA Oxyfuel Network relationship

Inaugural meeting objectives

- To explain and develop the objectives of the OFWG
- Establish interest in participation
- Establish areas of research projects in which participants are willing to work collaboratively, and planning of initial projects

Plan first education course and future OFWG meetings

OFWG support from APP

- Meetings and management OFWG and education course
- Web site
- Some support for project development
- Roadmap and updates

OFor an initial three year period

Demo/pilot-plant	Paper to be presented at 3 rd Oxyfuel Network	Project leader	Technology
			provider(s), nominated by PLs
Vattenfall pilot plant	Vattenfall Schwarze Pumpe Pilot Plant, Germany	Prof Lars Strömberg, Vattenfall	?
Callide	Callide Oxyfuel Project – C. Spero, T. Yamada, E. Sturm, and D. McGregor CS Energy, Australia	Dr Chris Spero, CS Energy	Toshihiko Yamada, IHI
TOTAL	The TOTAL CO2 Pilot at Lacq N. Aimard, and C. Prebende TOTAL, France	Dr Nicolas Aimard or Claude Prebende, TOTAL	?, Air Liquide
CIUDEN	Test Facilities for Advanced Technologies for CO2 Abatement and Capture, Vicente J. Cortés CIUDEN, Fundacion Estatal Ciudad de la Energia, Spain	Prof Dr. Vicente J. Cortés, CIUDEN	Mr. Arto Hotta, Foster Wheeler
Youngdong	Oxy-Combustion Research Activities in S. Korea – Overview to the Youngdong 100MWe Oxy- Combustion Power Station Project Development J. S. Kim, KIST, Korea	Dr D C KIM, KEPRI Dr Jong Soo KIM,KIST	Not represented, as yet to be decided
Jamestown/Praxair	Oxy-Coal Combustion Demonstration Project D. Bonaquist, R. Victor, M. Shah, H. Hack, A. Hotta, D. Leathers Praxair, USA; Foster Wheeler, USA/Finland; and Jamestown Board of Public Utilities	Dan Bonaquist, Praxair	Horst Hack, Foster Wheeler
Orville Project	Jupiter Oxygen -15 MWt Oxy-Combustion Boiler Test Results B Patrick, Jupiter Oxygen	Brian Patrick, Jupiter Oxygen	Gerry Hesselman, DOOSAN Babcock
Babcock&Wilcox pilot plant	Scale Up of Oxy-Coal Combustion at B&W's 30 MWt CEDF H Farzan, B&W	Kevin McCauley, B&W	?, Air Liquide
Saskpower		Not attending	?

OFWG Inaugural Meeting aims, Tuesday, March 4th

- Understanding of project
- Interest in participation
- Potential project areas, and action points
- Education course

OFWG Inaugural Meeting outcomes

Roadmap for technology deployment, with IEA GHG?

 Technology status. Issues delaying deployment. Path to commercialization

Possible – collaborative - OFWG project areas

- Regulations. CO2 quality for geological storage. Stack (flue gas) emissions during operation – ppm or gm/MJ.Emissions from compression operations
- O **Plant specification guidelines**. Plant design. Operation
- Safety. Materials for high O2 environments. Higher O2 streams safety requirements, >23%O2. Explosions less possibility with O2/CO2 than O2/N2.O2 injection into ash streams with ash containing unburnts
- Coal quality tolerance. Sulfur, ash, moisture

Education course, annually

Closing comments

- A good start!!
- Oxyfuel demonstrations are being developed, several starting in 2008-10

Of similar scales

 Some OFWG projects identified for common pre-competitive projects

IEA Greenhouse Gas R&D Programme

CO₂ Capture Ready Plants

John Davison IEA Greenhouse Gas R&D Programme

3rd Oxy-combustion Network Meeting Yokohama, Japan, 5th-6th March 2008

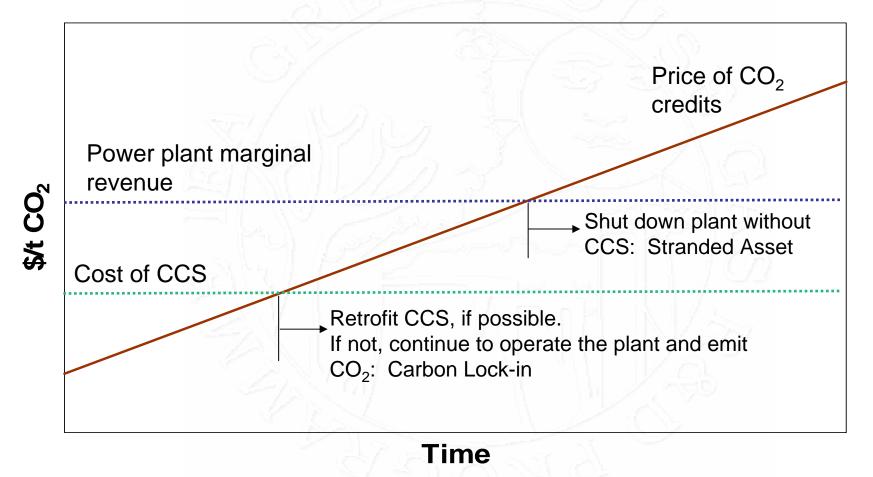
www.ieagreen.org.uk

Overview

- The need for capture ready plants
- Definition of capture ready
- Technical requirements
- Economic considerations
- Which technologies are best for capture ready?

Why are Capture Ready Plants Needed?

- CCS is currently not economic in most cases
 - No economic incentives in many countries
 - Even where there are incentives they are usually too low and uncertain
- CCS is still at the development and demonstration stage
 - Demonstration plants are needed to improve investor confidence
 - Regulatory issues are being addressed
- There is a large demand for new power stations in the near future
 - Developing countries mainly new capacity
 - Developed countries mainly replacement capacity
- Power plants have long lives (>50 years)
 - Emission reductions are likely to be necessary during their lifetimes


What is meant by 'Capture Ready'

- A CO₂ capture-ready power plant is a plant which can include CO₂ capture when the necessary regulatory or economic drivers are in place.
- The aim of building plants that are capture-ready is to reduce the risk of 'carbon lock-in' or 'stranded assets'.

Carbon Lock-in and Stranded Assets

Capture Ready Requirements

- 'Essential' requirements
 - Carry out a design study on retrofit of CO₂ capture
 - Include sufficient space and access for the additional facilities that would be required
 - Identify reasonable route(s) to storage of CO₂
- Optional pre-investments
 - To reduce the downtime and cost of capture retrofit
 - To optimise the plant operation after retrofit

Essential Requirements: Space and Access

- Space for new equipment etc
 - Oxygen plant, flue gas cooler, CO₂ compressor etc
 - Electrical distribution, cooling water, waste water treating etc
 - Safety barrier zones, if required
 - Extra space needed during construction
- Space for access within the existing plant
 - Pipe work and tie-ins with existing equipment
- Additional generating capacity, if required
 - CO₂ capture usually reduces net power output
 - By about 20% for current oxy-combustion technology
 - May need to build new capacity to maintain the site power output

IEA Greenhouse Gas R&D Programme

CO₂ Capture Ready Plant

'Capture - Ready' area

Proposed 'capture ready' power plant at Tilbury Courtesy of RWE Npower (One of the possible options for this site)

www.ieagreen.org.uk

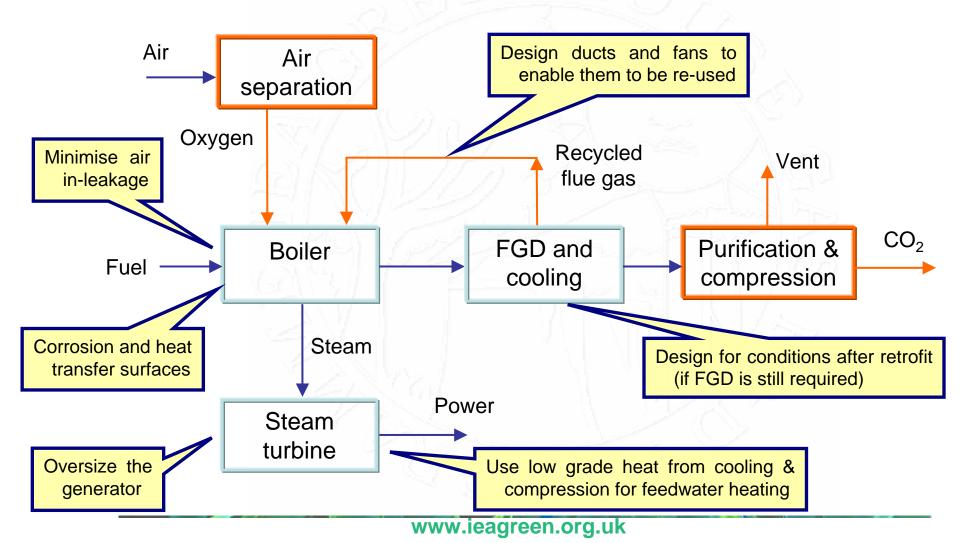
Essential Requirements: Access to CO₂ Storage

- Where are potential CO₂ stores?
- What are their capacities?
- How to transport CO₂ to the stores?
 - Rights of way for pipelines
 - Safety
 - Public acceptance
 - Proximity to other potential CO₂ sources
 - Large economies of scale for pipelines
- An alternative power plant site may be preferred

How to Establish a Credible CO₂ Store?

- Identify a broad area where a large amount of storage is expected to be available, e.g. the North Sea
- Identify specific reservoir(s)
 - What needs to be done to characterise the reservoir?
 - Seismic surveys
 - Exploratory drilling
 - Costs could be significant
- Purchase a reservoir or a contractual option to use it
 - To avoid someone else using the reservoir

Pre-Investments – Maximising Efficiency


- The efficiency/capital cost trade-off is different for plants with CO₂ capture
 - Thermal efficiency is lower
 - Cost of generation is higher
 - The trade-off favours higher efficiency/higher capital cost designs, e.g. ultra supercritical steam cycles
- Higher efficiency designs reduce emissions even before capture retrofit
 - An important environmental benefit

Pre-Investments - General

- Oversize pipe racks etc
- Include flanges for connecting new plant
- Provision for expansion of the control system, on-site electricity distribution, cooling capacity etc
- Some of these investments are expected to have low costs and high economic returns

Pre-Investments – Oxy-Combustion

Reasons for not Making Pre-investments

- Uncertainties
- Economic Discounting

Uncertainties

- If or when will capture retrofit be required?
 - Future values of carbon credits
 - Regulatory requirements
- Current uncertainties in large scale plant designs
- How will capture technologies develop in future?
 - Capture ready plants should be designed for current technologies
 - Incremental improvements in future
 - Possibility of substantially better technologies
 - Future technologies should be considered to reduce the risk of obsolescence

Economic Discounting

- Economic resources are worth less in the future than at present
- It may be several years before capture retrofit is required

Major pre-investment is unlikely to be worthwhile if there is a long time before capture retrofit

www.ieagreen.org.uk

Which Process is Best for Capture Ready?

- Post-combustion capture
 - Retrofit to capture ready plants is relatively simple
 - Capture ready requirements are relatively well understood but technology developments e.g. ammonia scrubbing could change the requirements
- IGCC pre-combustion capture
 - Potentially attractive option for new-build power plants with capture
 - IGCCs without capture are expected to be more expensive than pulverised coal plants – choosing IGCC is a major pre-investment
 - Capture retrofit impacts on many aspects of the plant, unless significant preinvestment has been made
- Oxy-combustion
 - Some risks for capture ready because oxy-combustion is still at the pilot plant scale
 - Plants could also be made capture ready for post-combustion as a fall-back

A Note of Caution

- Capture Ready does not reduce emissions
 - Unless a higher efficiency plant design is selected
 - In some cases emissions may be slightly higher
- Capture Ready is not a substitute for capture
- Some people may regard Capture Ready as 'greenwash'
- Plants with capture need to be built to demonstrate technology and increase investor confidence

Conclusions

- Capture Ready can reduce the risk of Stranded Assets and Carbon Lock-in
- Main Capture Ready considerations are:
 - Carry out a study of capture retrofit options
 - Leave space and access for capture plant
 - Identify reasonable route(s) to storage of CO₂
- Major pre-investment is unlikely to be worthwhile unless capture is going to be retrofitted soon after plant start-up
- Capture Ready is not a substitute for capture

3rd Oxy-Combustion Network Meeting 5th- 6th March 2008 Yokohama Symposia, Yokohama Japan

Recent Test Results on Oxy-Fuel Combustion Using the Pilot-Scale Test Facilities

6th March, 2008

T. Uchida, T. Yamada, K. Hashimoto, S. Watanabe IHI, Japan

Contents

- 1. Background
- 2. Flue gas analysis including Hg at Oxy-fuel combustion
 - Objectives
 - Test facilities
 - Condition
 - Analysis results
 - Further analysis items
- 3. Behavior of Liquefied CO2 in the various recovery condition using the simulation model
 - Outline & Objectives
 - Simple simulation model & simulation results
 - Further Studyitems
- 4. Conclusion

*Test was performed at 18th – 29th February.

1. Background

Oxy-fuel system is one candidate of the CO2 recovery from the pulverized coal power plant.

Flue gas from oxy-fuel includes many types of impurities.

In the purification system, purity of CO2 can be increased to be more than 98%.

However, the behavior of the impurities in the recovered CO2 is uncertain during the liquefaction process.

Therefore, flue gas analysis data for the oxyfuel combustion and the behavior of the impurities during the liquefaction process are measured using the pilot-scale combustion test facilities.

2. Flue gas analysis including Hg at Oxy-fuel during combustion and CO2 liquefaction process

<u>Objectives</u>

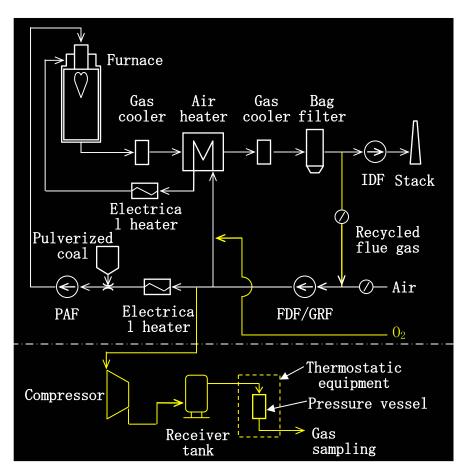
* To obtain the analysis data of flue gas and Hg using the pilot-scale oxy-fuel combustion test facilities.

*To obtain the analysis data of liquefied CO2 from the actual flue gas of oxy-fuel combustion in order to have the basic data during the CO2 liquefied process.

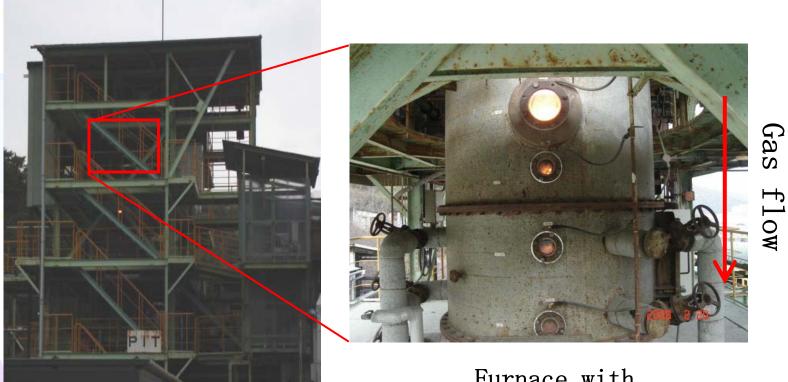
<u>Coal analysis data</u>

Items		Coal A	Coal B
HHV	MJ/kg as fired	20.6	29.0
C	wt% dry	51.6	71.5
Н	wt% dry	2.6	3.9
0	wt% dry	15.4	12.3
Total-S	wt% dry	0.1	0.6
Ν	wt% dry	0.3	0.4
Ash	wt% dry	24.7	8.1
Moisture	wt% dry	5.3	3.2
Hg	μ g/kg dry	50	10

Test facilities


<u>Combustion test</u>

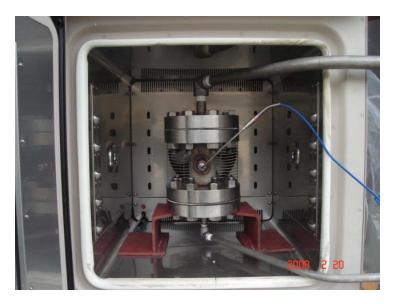
facilities Fu <mark>r</mark> nace	Vertical furnace		
	(Top burner)		
Size	I.D. 1.3m × L 7.5m		
Burner	Swirl & stabilized type		
Capacity	1.2MWth		


<u>CO2 liquefaction test</u>


4.5MPa
N.T. to − 70℃

System configuration

Combustion test facilities



<u>Furnace with</u> <u>inspection</u> <u>hole</u>

CO2 liquefaction test facilities

Compressor (Recipro & Oil free type)

<u>Pressure vessel in the</u> <u>thermostatic equipment</u>

<u>Combustion condition</u>

C oal	_	Coal A	Coal B
Combustion mode	_	0xy-fuel	0xy-fuel
PC feed rate (Heat input)	kg/h (MW)	120 (0. 7)	90 (0. 7)
Fineness (under 74µm)	%	$75 \sim 80$	$75{\sim}80$
Flue gas O2 conc.	vol%dry	3. 3	3.3
O_2 conc. in Wind-box	vol%wet	33	33
Total O2 conc. to the furnace	vol%wet	27	27

<u>Test results of CO2 conc. at</u> <u>the several point</u>

Sampling point	_	Coal A	Coal B
CO2 conc. at AH inlet	vo1%dry	63.2	72.0
CO2 conc. at BF inlet	vo1%dry	60.5	70.6
CO2 conc. at recirculation point	vo1%dry	53.1	64.0
CO2 conc. at the branch point to liquefaction test facilities	vo1%dry	50.7	56.4
CO2 conc. at the compressor outlet	vo1%dry	49.0	53.5

*Furnace is the negative pressure, approx. -0.1kPa.

*Total volume of air ingress is 8 - 10 % for the volume of flue gas in our ca<mark>l</mark>culation.

<u>Test results of CO2</u> <u>liquefaction test</u>

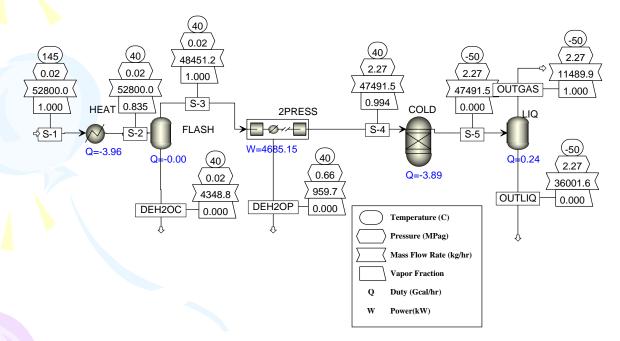
Items		Coal A	Coal B
CO2 conc. at compressor outlet	vol%dry	49.0	53.5
Pressure in the vessel	MPa	4.5	4.5
Partial CO2 pressure in the vessel	MPa	2.2	2.4
Temperature	°C	-50	-50
CO2 conc. of liquefied CO2	vo1%drv	QQ	97
<pre><ref.> CO2 liquefied</ref.></pre>	Solid Liquid	(Super critica	nl)
-50°C、2~2.5MPa	CAPON Transmertion Co	Gas 648 619 619 610 610 60 100 100 100	

<Sampling has done conducted and now on analysis>

3. Behavior of Liquefied CO2 in the various recovery condition using the simulation model

<u>Objectives</u>

*To obtain the knowledge of recovered CO2 during the liquefaction process

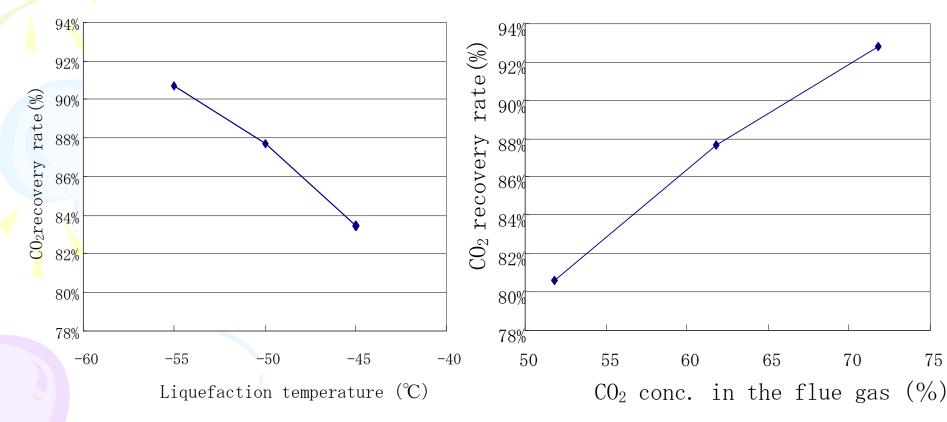

Modeling the simple liquefaction process
Reflection of the analysis data at CO2
liquefaction

test

*To evaluate the behavior of the impurities in the recovered CO2 at the next step

Simulation model

Simple process of the liquefaction test is simulated by Aspen as below.



 $\begin{array}{c|c} \hline \text{Inlet flue gas} \\ \hline (base) \\ CO_2: & 62Vol\% \\ H_2O: & 20Vol\% \\ O_2: & 3.7Vol\% \\ N_2: & 12Vol\% \\ Ar: & 1.3Vol\% \\ Hg: & 1.03 \,\mu \, \text{g/Nm}^3 \\ Temp. & 145^{\circ}\text{C} \\ Draft & 0.02\text{kPa(g)} \end{array}$

<Liquefaction condition> -50 °C/2.4MPa

Simulation results

Behavior of CO2 recovery rate was confirmed at the various condition.

Further study using the simulation model

*To confirm the behavior of Hg at the various CO2 liquefaction condition

*To compare the results of CO2 and Hg analysis data of CO2 liquefaction test and to reflect to the simulation model

Conclusions

We will be able to obtain much information from the results of combustion test and liquefaction test and reflect such data to simulation model.

Our target is to evaluate the behavior of CO2, Hg etc. through the oxy-fuel combustion and the purification system using the upgraded simulation model in the near future.

"Thank you for your attention!"

power generation group

Oxy-Coal Combustion Pilot IEAGHG International Oxy-Combustion Network; Yokohama, Japan; Mar. 5-6, 2008

H Farzan, DK McDonald, KJ McCauley; Babcock & Wilcox R Varagani, R Prabhakar, C Periasamy, N Perrin; AirLiquide

> Kevin J. McCauley Manager, Strategic Planning

> > a Babcock & Wilcox company

Why Oxy-Coal Combustion?

Oxy-coal combustion has reasonable potential to be the lowest cost, highest efficiency, most reliable and easiest to deploy large scale carbon capture technology.

- Next generation improvements in progress
 - USC technology development
 - Reduction of recycle
 - Simplified moisture removal
 - Elimination of gas reheating
 - Total plant integration

Power Generation Group

Research

Development

Deployment

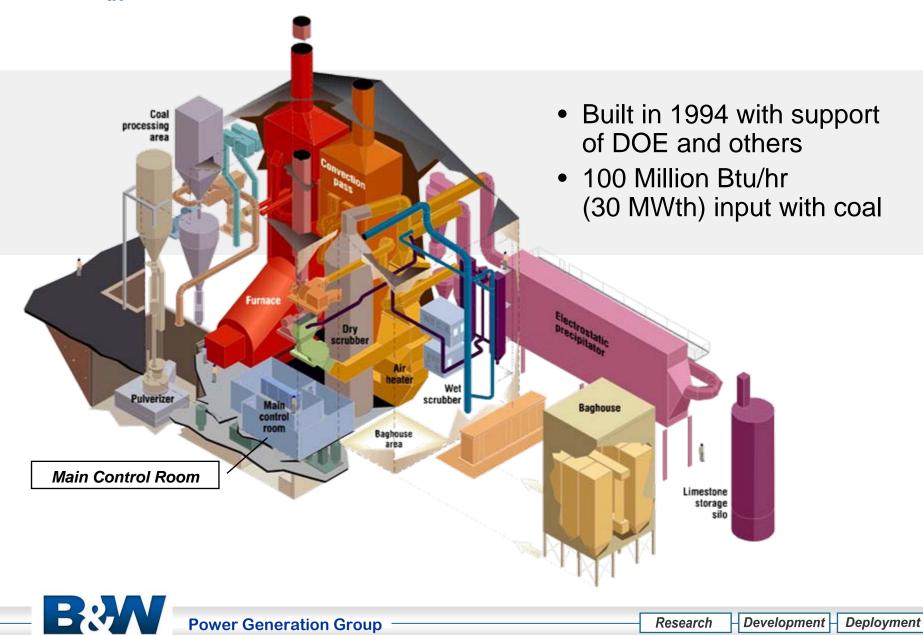
New Product Commercialization – R&D Process

Research – Development – Deployment

3

30 MW_{th} Oxy-Coal Tests at B&W Clean Environment **Development Facility (CEDF) for CO₂ Capture**

- Managed and funded by **B&W**, American Air Liquide, Inc. and Utility Advisory Group
- CEDF modified to use and mix oxygen, added WFGD, other auxiliary equipment for oxycoal
- Utility Advisory Group providing end user design feedback for commercial applications
- Test campaigns underway include Saskatchewan lignite, sub-bituminous (PRB) coal and eastern bituminous coal


Power Generation Group

Research

Development

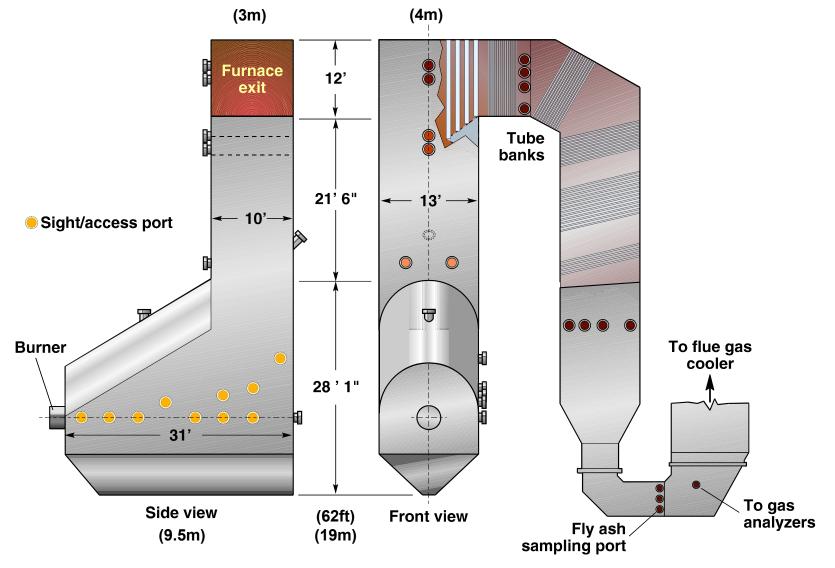
Deployment

30 MW_{th} Test Facility located in Alliance, Ohio

CEDF Oxy-coal Campaign

Expected Major Goals

- Optimum burner design for each coal
- NO_x emissions
- Floxynator performance
- Pulverizer performance
- Furnace exit gas temperature
- Boiler/convection pass heat transfer
- Scrubber performance
 - SO₂ Control
 - SO₃
- Potential enhancement of mercury speciation with oxy-combustion
- ESP performance
- Insights for materials development
- Air infiltration evaluations (future CPU design)



Power Generation Group

Research – Development –

Deployment

CEDF Furnace Views

Power Generation Group

Development Deployment Research

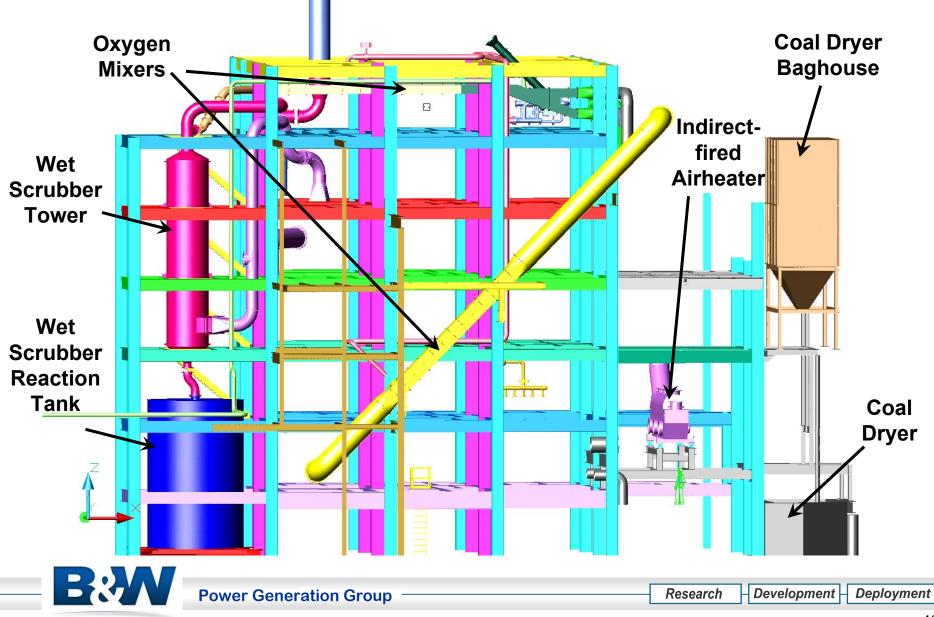
CEDF Oxy-Coal Campaign - Coals

	Mahoning 7	Black Thunder	Shand
	Eastern Bituminous	Western Sub-Bituminous	Lignite
С	73.30	50.66	39.62
S	1.37	0.33	0.51
Н	4.97	3.58	2.54
H_2O	4.73	27.43	34.19
N	1.52	0.65	0.54
0	6.62	12.13	10.18
Ash	7.49	5.22	12.42
HHV, Btu/lb	13,124	8,758	6,495
HHV, kJ/kg	30,251	20,367	15,104

Power Generation Group

Research

CEDF Modifications for Oxy-coal Testing



- **Recycle flue gas system and air intakes**
- Oxygen supply and mixing system
- Moisture removal system
- Full flow wet flue gas desulphurization (WFGD) system
- Capability to direct fire (indirect-fired heater)
- Coal dryer for flexibility in testing
- Furnace panel for assessing heat flux and emissivity
- Instrumentation for data acquisition and control
 - Desired process parameters
 - Gas compositions at key locations
 - Mercury at selected locations
- Controls upgrade for new equipment
- Maintenance and preparation of existing equipment
 - Replace furnace refractory
 - Upgrade fan shaft seals
 - Service and refurbish all existing equipment

CEDF Modifications for Oxy-coal Testing

Oxy-coal CEDF - SO₂ Scrubber system installation

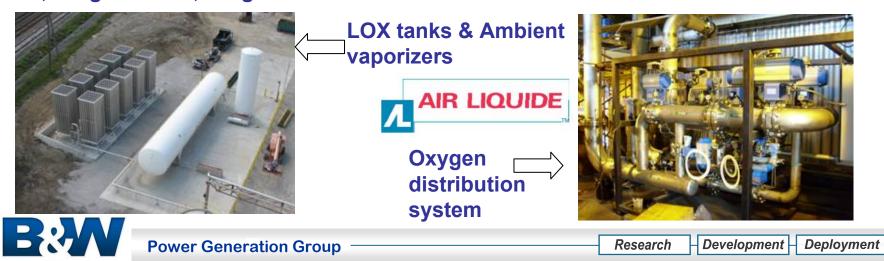
Recirc & Bleed Pumps

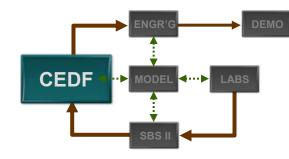
Tower Inlet Flue

Power Generation Group

WFGD Tower

- Development - Deployment


240 tons/day Oxygen supply and distribution system


Sec. Floxynator[™] installation

CEDF Oxy-coal Program

Project Timeline

- Jan 2007: Start site demolition/construction
- Jun 2007: Most major construction complete
- Aug 2007: **Component shakedown completed**
- Sep 2007: First fire on coal with oxygen
- Oct 8 2007: First full oxy-transition at 80 MBtu/hr
- **Begin baseline tests** - Oct 2007:
- Nov 2007: Three days continuous operation on oxygen, with bituminous coal
- First test campaign complete, 100+ hours - Dec 2007:
- Early 2008: Lignite and sub-bituminous testing

Power Generation Group

Research

Oxy-combustion CO₂ Control – 2007 Highlights

100+ hours in oxy mode (bituminous coal)

Oxy-coal Flame

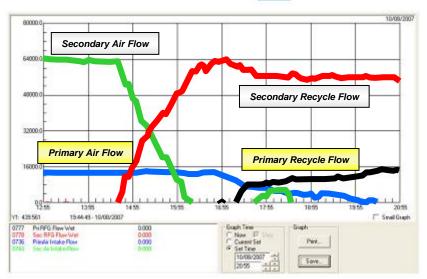
Research

h – Development –

Deployment

CEDF Baseline Test Campaign #1

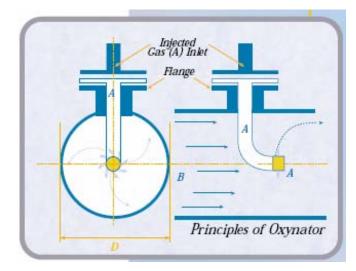
•Test Plan Objectives


- Establish baseline for three major fuel types
- Verify process parameters for full scale design
 - Multiple burner configurations, with pulverizer
 - Flue gas recycle with commercial O₂ mixing system
 - Wet scrubber
 - Flue gas moisture control

•Results to Date

- CO₂: 70% (dry volume), air infiltration high
- NO_x: Similar to SBS tests, SBS achieved
 60% reduction
- CO: Low
- SO₂: No noticeable change in wet scrubber removal
- Transition: First two very smooth over several hours in manual
- Stability: Burner very stable, brighter flame vs. air

Power Generation Group



Floxynator^{™*} for O₂/FG Mixing

- Based on AL's patented Oxynator[™]
 - Air/O₂ mixing
 - **Radial injection with swirl**
 - Low pressure drop
 - **Commercial installations at 800 tons/day**
- Challenges
 - Up to 10,000 tons/day O₂ mixing
 - Large turndown
 - Additional safety constraints
 - Flue gas impurities
 - Coal handling
- **Floxynator**[™]
 - Mixing in the center, safe-guarding the duct walls
 - Extensive numerical and bench scale tests
- Floxynator[™] concept successfully validated at CEDF

Power Generation Group

* TM, Patent pending

Oxy-combustion CO₂ Control – 2007 Highlights

LESSONS LEARNED SO FAR:

- 1. The process works.
- 2. Oxy flame is bright and stable
- 3. NOx is significantly reduced (>50%)

Power Generation Group

- 4. SO₂ removal not significantly different than with air
- 5. Safe and efficient mixing of O_2 /flue gas with Floxynator
- 6. There's more air infiltration at CEDF than expected
- 7. Transition is very controllable in both directions
- 8. Unit tripping at high load on oxygen is safely manageable and anticipated control scheme works

– Development – Deployment

Research

AIR LIQUIDE

Temperature: 053 F Camera ID

Dōmo Arigatō Gozaimasu

Power Generation Group

Research

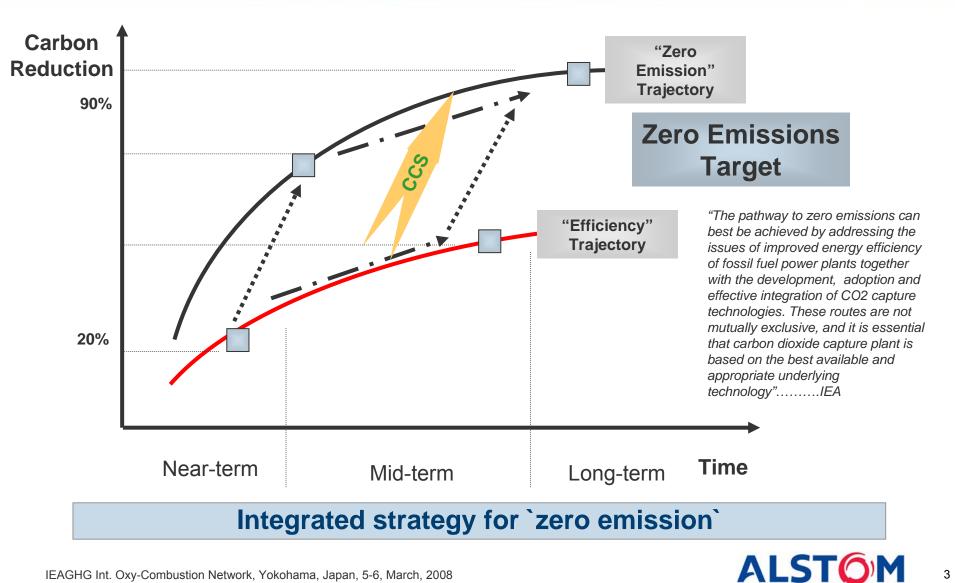
Development

Deployment

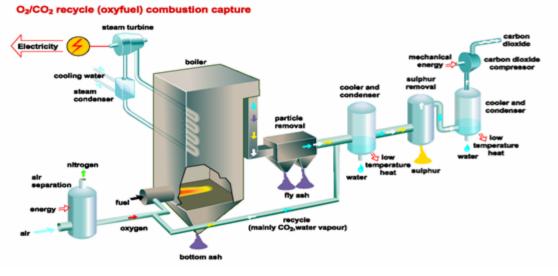
Alstom Development of Oxyfuel PC and CFB Power Plants

Frank Kluger & John Marion

3rd Oxy-Combustion Workshop Yokohama, Japan March 06, 2008


Improvement Measures for Fossil Power Plants Regarding CO2 Mitigation

Pathway to "Zero Emission Power" for Fossil Fuels



Oxy-fuel Firing

 <u>Complementary with</u> conventional boiler and steam power plant technology, including efforts towards ultra-supercritical conditions (for <u>efficiency improvement</u>), as well as <u>environmental control</u> <u>developments</u>

Applicable for <u>new and retrofit plants</u>

Oxy-combustion opportunities and challenges

Opportunities

- Low technological risk option
- Large power plant size possible
- Repowering and Retrofit possible
- All boiler technologies adaptable
- Fuel flexibile
- Steam Cycle increases possible
- Potential boiler size reduction
- Advanced O2 supply

Innovation

<u>Challenges</u>

<u>Cost</u>

- Cryogenic oxygen
- CO2 Quality
- CO2 compression
- Heat flow optimisation
- Integration

<u>Time</u>

- On time Development

<u>Technology</u>

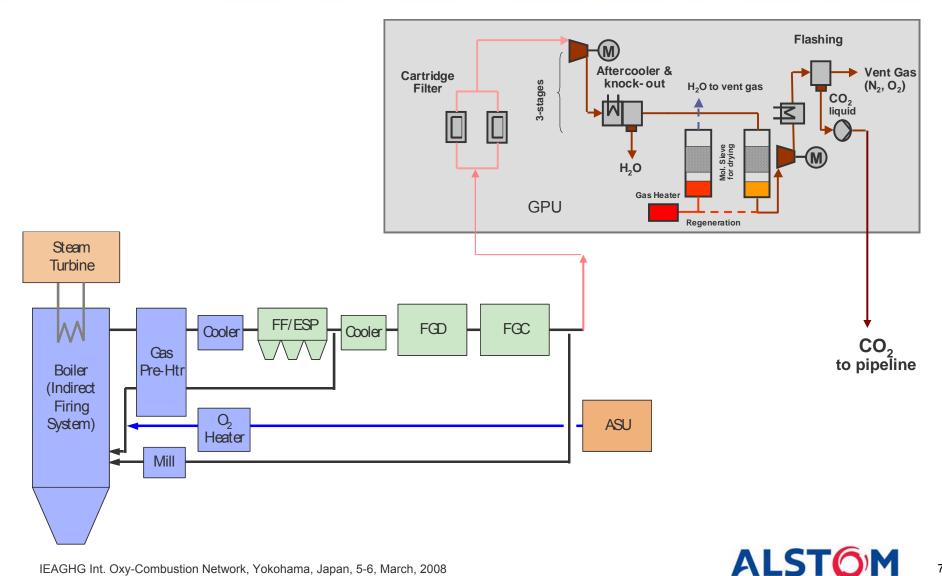
- Scale-up validation
- Adaptation to installed base
- Innovation

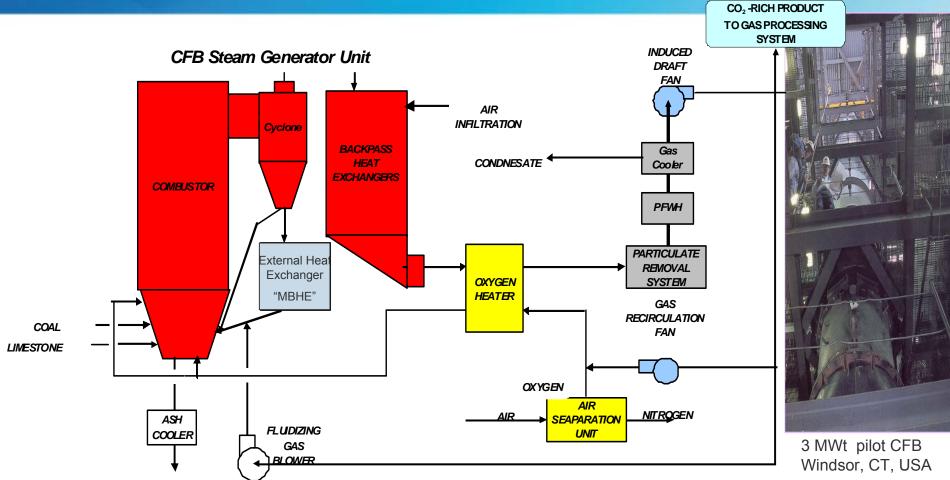
ALST<mark>O</mark>M

CO2 Product Quality Discrepancies

Table: Tolerances for the various contaminants of CO2

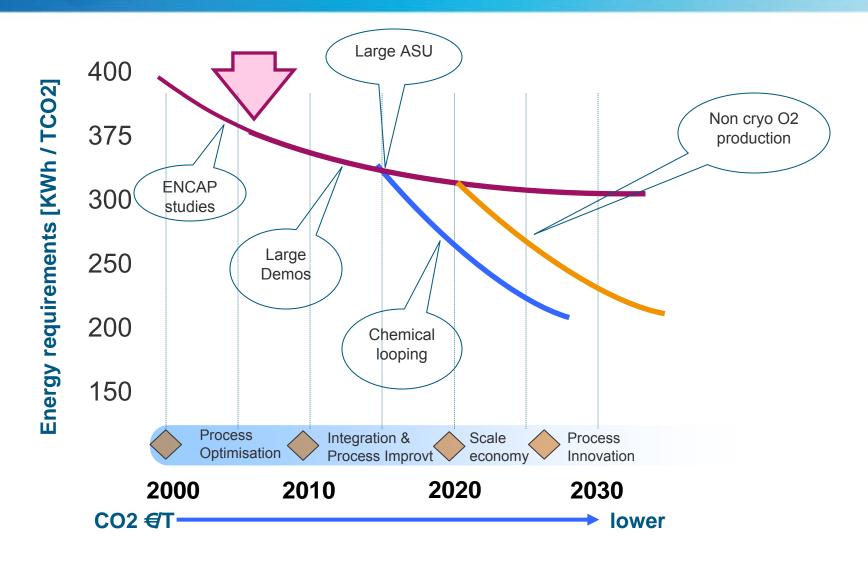
	Tolerance	
Component	low	high
CO ₂ [%]	> 90	> 95
H ₂ [%]	< 4	< 4
N ₂ [%]	< 4	< 4
Ar [%]	< 4	< 4
CH _y [%]	< 4	< 5
O ₂ [ppm]	< 10	< 1000
H ₂ O [ppm]	< 10	< 600
CO [ppm]	< 100	< 40000
NO _x [ppm]	< 100	< 1500
SO _x [ppm]	< 100	< 1500
H ₂ S [ppm]	< 100	< 15000
Particulates [mg/Nm ³]	< 0.1	< 10
Limiting factor:	EOR H&S Corro	osion unclear Storage


Alstom compilation from published reference data

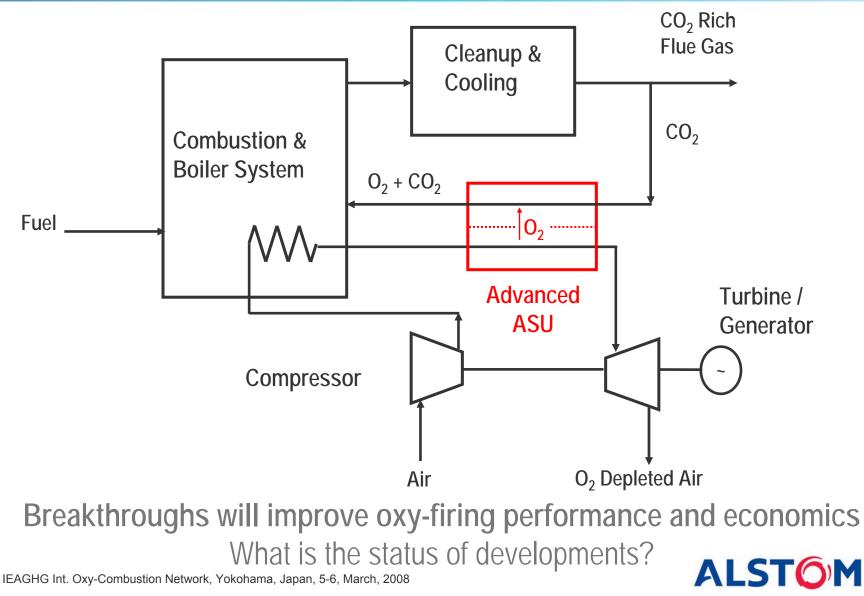

6

IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008

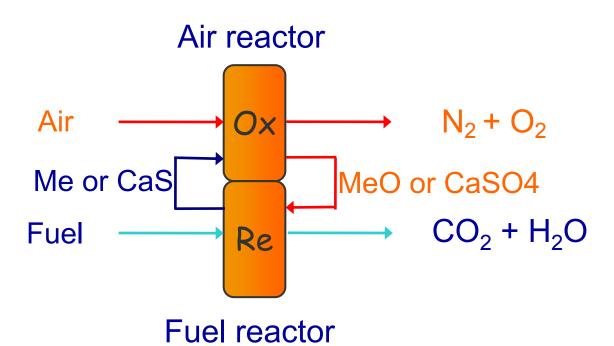
Oxy-PC Power Plant -CO2 product quality impact on ASU, APC, and GPU equipment

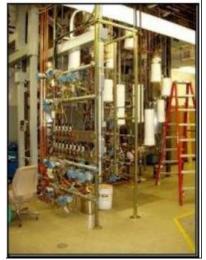

Oxy-CFB Concept

- Potential for Reduced recycle FGR and resultant smaller boiler & APC
- Market segmentation as with air-fired CFB's (low quality fuels)



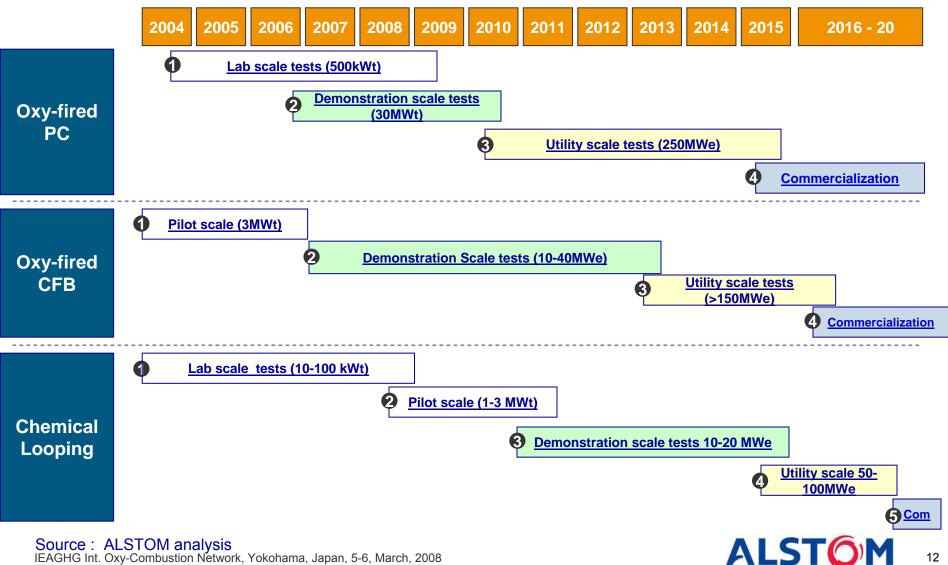
Going Down The Experience Curve for Oxy Combustion CO2 Capture




Oxy-Fuel Power Plant with Advanced O2 Production Technology

Oxy-combustion: Chemical Looping Combustion (CLC)

Lowest Cost CO2 Capture

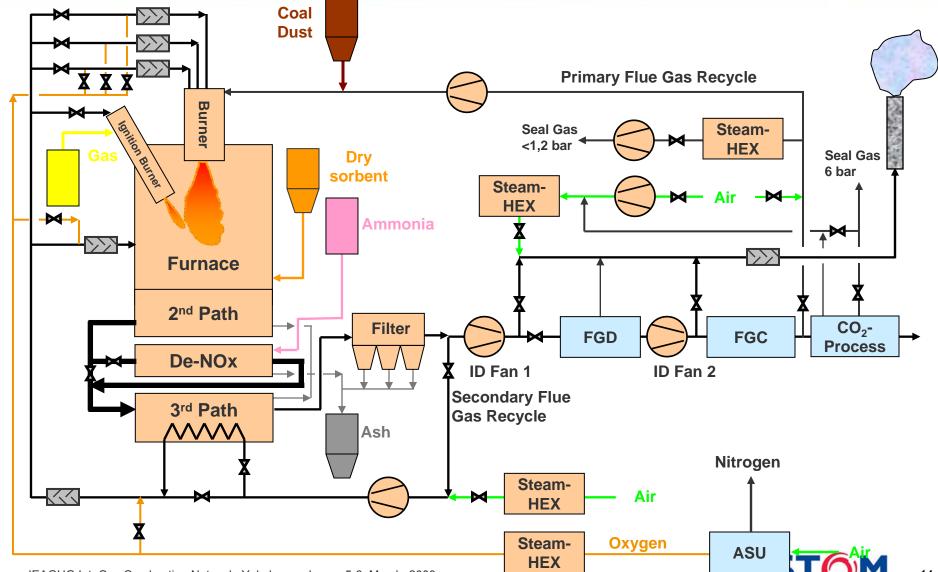


Alstom Pilot in USA Solids 2-Stage Cyclones (2) Product Gas Coolers & Filters (5) Reduce Oxidizeı Sealpot Control Valves (2) Ash Coolers (6) **ALST**

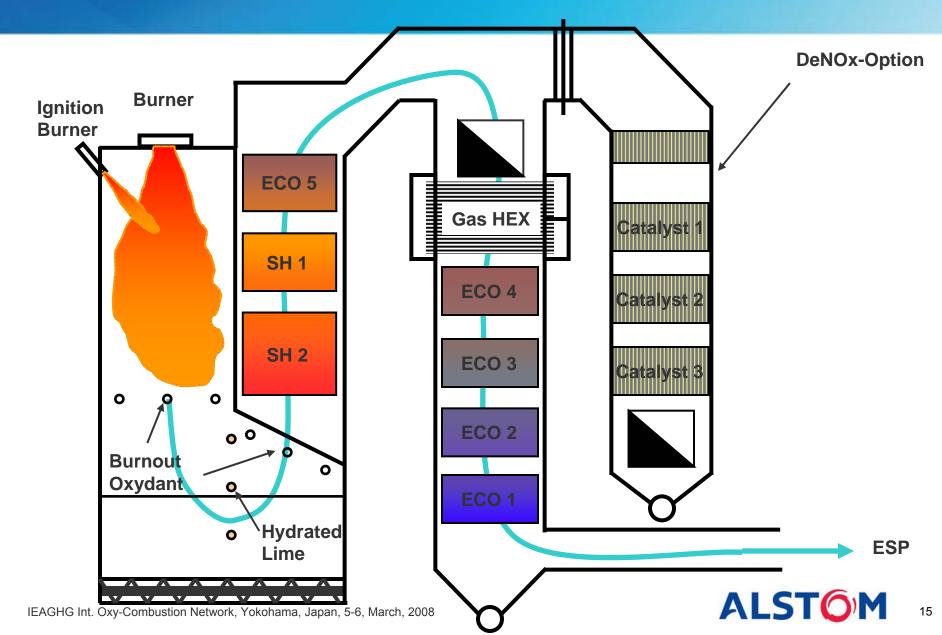
CLC features

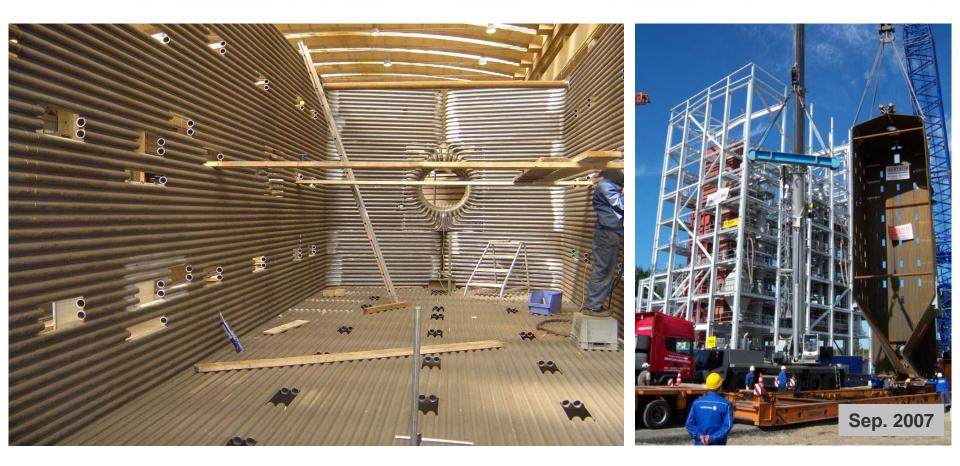
- 100% CO2 Capture
- No Air Separation Unit
 High Net Plant Efficiency

Long term products: Oxy-fired PC, **Oxy-fired CFB and Chemical Looping**


IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008

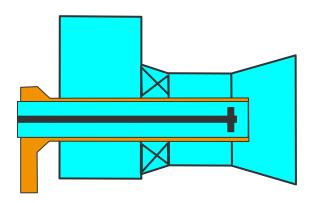
30 MWth Oxyfuel Steam Generator – Vattenfall Schwarze Pumpe Site (Erection Status)



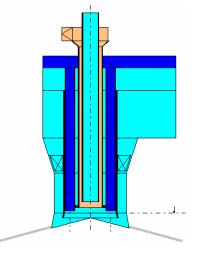

30 MWth Oxyfuel Steam Generator – Process

30 MWth Oxyfuel Steam Generator – Boiler Design

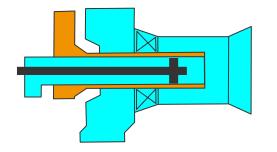
30 MWth Oxyfuel Steam Generator – Boiler Manufacturing

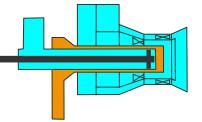


16


IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008

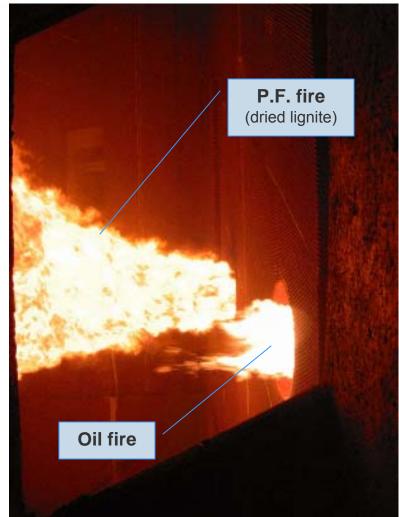
30 MWth Oxyfuel Steam Generator – Burner for Indirect Firing Systems


Niederaussem-K: 8 x 90 MW_{th}


OxPP: 1 x 30 MW_{th}

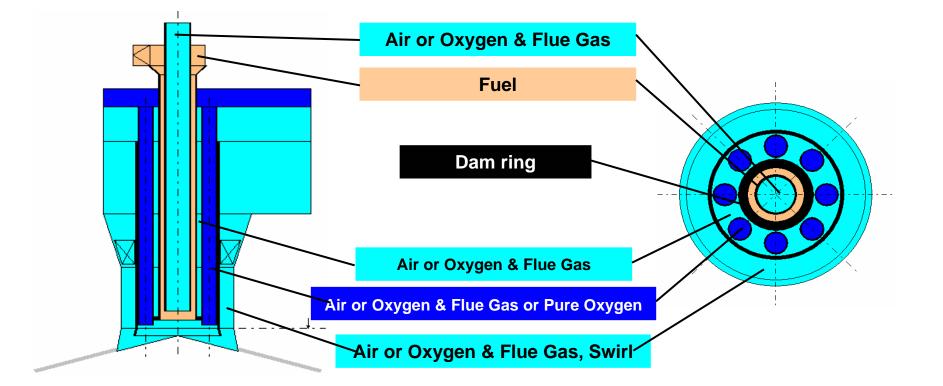
ROW Wesseling K5 : 4 x 25 MW_{th}

HKW Senftenberg : 2 x 19 MW_{th}



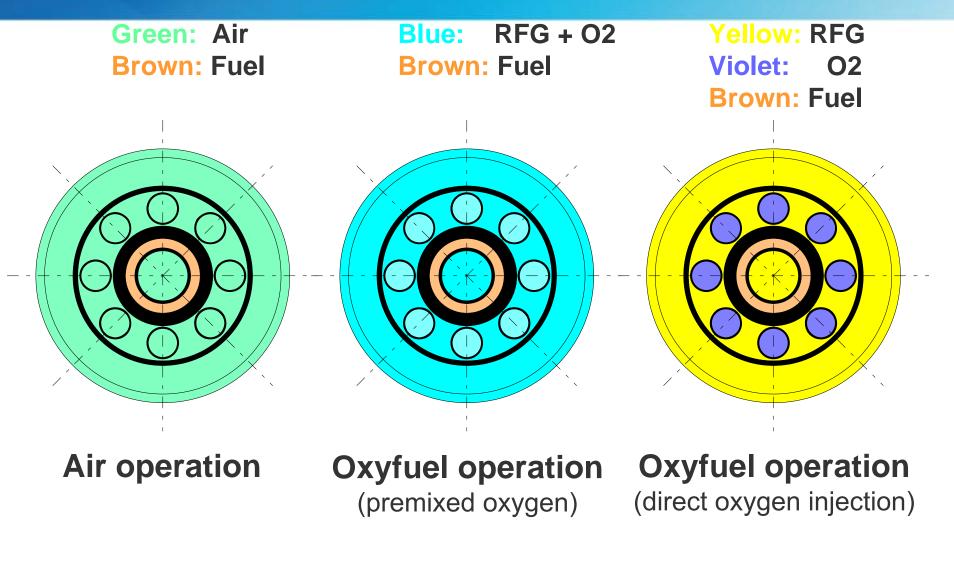
IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008

30 MWth Oxyfuel Steam Generator – Burner for Indirect Firing Systems (Reference Niederaussem K)


Niederaussem-K: 8 x 90 MW_{th}

- Since 2003 in operation
- Start up / Support firing system for a 1000 MW_{el} unit
- ➤ T-fired
- 8 burners installed
- ➢ Fuel : Dried Lignite ; 19,5 .. 21.7 MJ/kg
- Furnace Width : 23160 mm
- Furnace Depth : 23160 mm
- ➢ Oil gun

30 MWth Oxyfuel Steam Generator – Burner Design



19

IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008 014 013

30 MWth Oxyfuel Steam Generator – Burner Operation Modes

Conclusions

- New coal fired power plants shall be <u>designed for Highest Efficiency</u> to minimize CO2 and other emissions
- Oxy-combustion is <u>Complementary with</u> conventional boiler and steam power plant technology, including efforts towards ultra-supercritical conditions (<u>for Efficiency</u>), and <u>Environmental control developments</u>
- Cost Attractive Options are needed and should be actively supported, particularly, <u>breakthroughs</u> like <u>Chemical Looping & Adv. Oxygen</u>
- Scale-up and Validation is needed
- The Schwarze Pumpe project is an important and significant demonstration. Start-up is expected this year

ALSTOM – The Clean Power Specialist

Clean Power Today ! Thank you !

Today we provide the cleanest air solutions
For New Plants
For the Installed Base

IEAGHG Int. Oxy-Combustion Network, Yokohama, Japan, 5-6, March, 2008

Doosan Babcock Energy

Demonstration of an Oxyfuel Combustion System Project Update

IEAGHG International Oxy-Combustion Workshop 3rd Workshop, 5th – 6th March 2008, Japan

E D Cameron and F D Fitzgerald

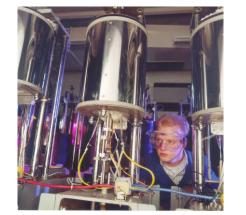
Date: 6th March 2008 Department: Research & Development

Doosan Babcock Energy Limited

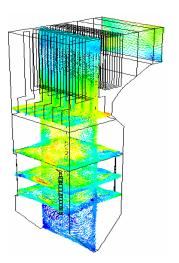
- Doosan Babcock Energy Limited is a global, multi-specialist, energy services company, operating in the thermal power, nuclear, petrochemical, oil and gas and pharmaceutical industries
- Established in 1891 and headquartered in the UK, Doosan Babcock Energy Limited is a leading Original Equipment Manufacturer (OEM) of clean coal power plants and emission control technology
- In December 2006, Doosan Heavy Industries and Construction acquired Mitsui Babcock Energy Limited from Mitsui Engineering and Shipbuilding
- Doosan Heavy Industries & Construction forms part of the Doosan Group – one of the top 10 conglomerates in Korea - active in engineering, manufacturing and construction of power plants and industrial facilities worldwide
- Listed on the Korean Stock Exchange. Largest shareholder is Doosan Corporation

Doosan Babcock Energy Limited

- Headquartered in Crawley, England, with main facilities in Renfrew, Scotland, and Branch offices throughout the UK
- FY 2007 annual order book £771 million (US\$1500m approx)
- Employees 4,500 worldwide
- The only remaining UK based boiler OEM supplier
- Strong local aftermarket service capability and presence, combined with Engineer-Procure-Construct (EPC) capability
- Accreditations include:
 - ISO9001 : 2000 (Quality)
 - OHSAS 18001 (Health & Safety)
 - ISO14001 : 1996 (Environment)
- Dedicated to developing market leading technology through investment in people

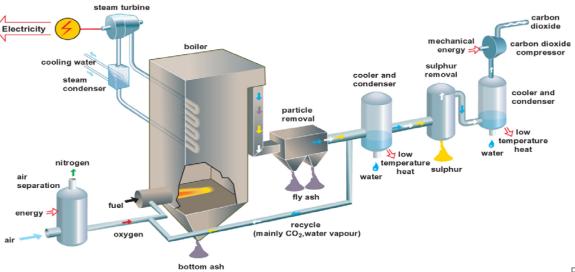

Research & Development

- Long tradition in R&D and technical support
- 250 multi-disciplinary scientists and engineers in purpose built building (2001)
- Specialised facilities and equipment
- Dedicated R&D Centre established July 07 growing from 50 to 200 staff.



R&D Areas:

- Boilers
- Combustion
- Materials and Fuels
- Software and Tools
- Asset Management


Oxyfuel Technology - Three Stage Development Programme

- To Develop a competitive Oxyfuel firing technology suitable for full plant application post-2010
- A phased approach to the development and demonstration of Oxyfuel technology:

Phase 1: Fundamentals and Underpinning Technologies (2006 – 2008)

Phase 2: Demonstration of an Oxyfuel Combustion System (2007 – 2009)

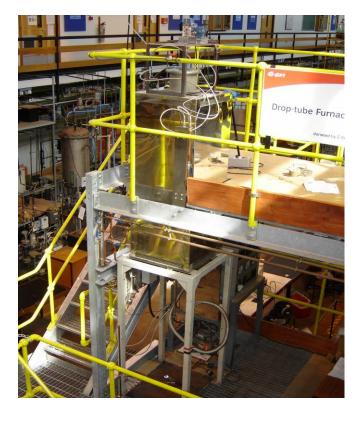
Phase 3: Reference Designs (2009 – 2010)

O₂/CO₂ recycle (oxyfuel) combustion capture

1) Combustion Fundamentals

The tests, supported by TGA, microscopic, and elemental analysis, will establish the devolatilisation, char combustion, and nitrogen partitioning behaviour under air and oxyfuel firing conditions.

Drop tube furnace (DTF) characterisation of devolatilization, char burnout and nitrogen partitioning behaviour of six UK and world-trade coals under oxyfuel firing conditions.


First coal completed

Development of devolatilization and char burnout kinetic parameters from DTF data and application in CFD models of oxyfuel burner and oxyfuel boiler. *In progress*

Explosion bomb characterisation of coal ignition behaviour under oxyfuel firing conditions (same coals as DTF tests).

In progress

1) Combustion Fundamentals

Preliminary test results show the following:

- The effect of CO₂ on coal devolatilisation was negligible at low temperatures (<1100°C) but became significant at higher temperature (1300°C). This may be indicative of some gasification of the coal. As expected, higher volatile yields were seen for the finer size fraction.
- Burnout varied dramatically with temperature (900-1300°C) and residence time (200-600 ms). Much higher levels of char burnout were achieved with an oxygen level of 10%, compared to 5%.
- Chars burned off quicker in CO_2 and the 75% CO_2/N_2 gas mix than in N_2 for both size fractions. However, the improvement in char burnout performance appeared to become less significant with increasing oxygen content. The promoting effect of CO_2 on char burnout was greater for the coarse char fraction.

Drop Tube Furnace testing and analysis of the other coals in the programme is ongoing at University of Nottingham

2) Furnace Design & Operation

To investigate the performance of the oxyfuel process and its key impacts on utility plant operation and performance.

Pilot scale testing (1MWt) of oxyfuel firing behaviour to two coals (parametric testing, fouling and corrosion behaviour).

First coal completed (as presented in Session 2b by B. Goh, E.On)

Characterisation of 1MWt test deposit samples by Computer Controlled Scanning Electron Microscope (CCSEM).

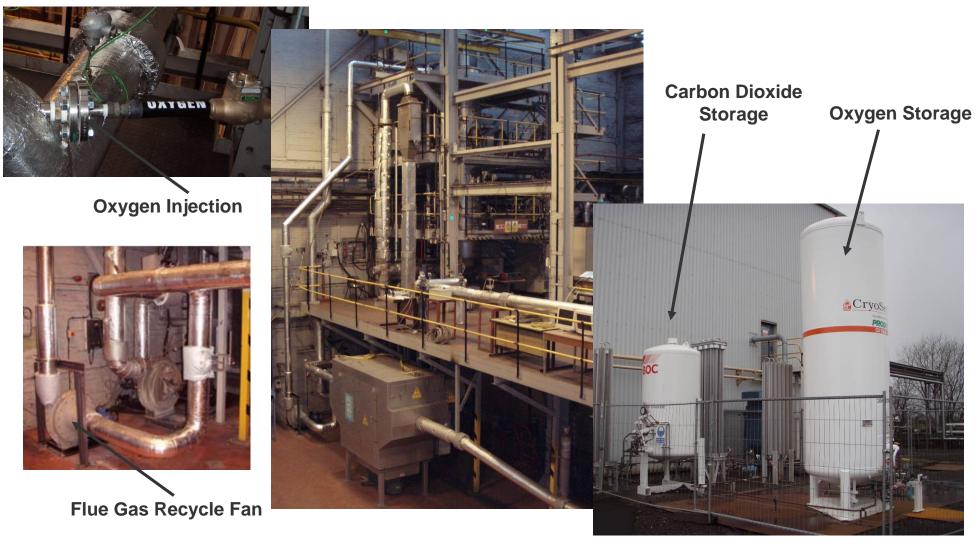
In progress

Laboratory-scale corrosion testing of candidate materials for final Superheater and Reheater sections of boiler under simulated oxyfuel flue gas. *First test completed*

3) Flue Gas Clean-up / Purification

A numerical modelling study of AP's proposed CO_2 purification system will be undertaken, with particular emphasis on SO_x , NO_x , and Hg removal.

Conversion of 160kWt NO_x Reduction Test Facility (NRTF) to oxyfuel firing configuration. *Completed, Commissioning in Progress*


Parametric testing of Oxyfuel Process. Planned April 2008

Development and testing of novel flue gas clean-up / purification system using simulated and real oxyfuel flue gas.

Lab scale testing in Progress (as presented in Session 3 by V. White, Air Products) Pilot scale testing planned April 2008

4) Generic Process Issues

A desk-top study, supplemented by test results from the other project activities, will be undertaken to investigate the key process issues associated with an oxyfuel installation on a large utility plant.

Assessment of oxyfuel power plant reliability, availability, maintainability, operability and safety.

In progress

Front End Engineering Design (FEED) Study, including preliminary HAZOP study, for oxyfuel conversion of 90MWt Multi-fuel Burner Test Facility (MBTF) *Completed*

HAZOP Study Key Concerns

- Material compatibility in oxygen enriched atmospheres.
- Effect of fly ash on oxygen safety.
- Leaks of CO₂ rich flue gas from Flue Gas Recycle (FGR) ducts.
- FGR spray cooler effluent disposal.

HAZOP Study Actions

- Discussions regarding material compatibility continuing.
- FGR off-take located downstream of grit arrester rather than downstream of economiser to reduce FGR fly ash concentration.
- Primary FGR and Secondary FGR fans located as close to burner front as possible to minimise length of pressurised FGR duct.
- Primary FGR / Transport FGR spray cooler design(s) to minimise effluent acidity and discussions regarding appropriate disposal route.

Project Aims:

- The aim of the project is to demonstrate an oxyfuel combustion system of a type and size (40MWt) applicable to new build and retrofit advanced supercritical oxyfuel plant.
- The specific objectives are:
 - Demonstrate successful performance of a full-scale (40MWt) oxyfuel burner firing at conditions pertinent to the application of an oxyfuel combustion process in a utility power generating plant.
 - Demonstrate performance of an oxyfuel burner with respect to flame stability, NOx, flame shape and heat transfer characteristics.
 - Demonstrate operational envelope of an oxyfuel burner with respect to flame stability, turndown, start-up shutdown and the transition between air- and oxyfuel-firing.
 - Demonstrate safe operation of an oxyfuel combustion process under realistic operating conditions.
 - Generate sufficient oxyfuel combustion process performance data to inform future investment decisions.
 - Demonstrate level of technology readiness of the oxyfuel combustion process.

OxyCoal-UK : Phase 2 – Multi-Fuel Burner Test Facility (MBTF)

- 90 MW Thermal Input
- Capability to Fire a Wide Range of Fuels
 - Coals, Bituminous and Low Volatiles
 - •8% to 40% Volatiles, Dry Ash Free
 - Up to 35% Ash, As Fired
 - Up to 20% Inherent Moisture, As Fired
 - Heavy Fuel Oil
 - Natural Gas
 - Orimulsion
- Facility usage:
 - New Burner Development
 - Contract burner testing
 - Third party burner testing

Task 1: Development of a Purpose-Designed Oxyfuel Demonstration Facility

Task 1.1: MBTF Oxyfuel Conversion Design

- Planning Approval
- Design (Process, Mechanical, Civil and EC&I)
- Safety
 - HAZOP Study
 - Risk Assessments
 - Work Instructions
 - Operating Procedures
 - Method Statements
 - COSHH Assessments
- Coal Characterisation by University of Nottingham

Task 1.2: MBTF Oxyfuel Conversion Installation

- Procurement
- Fabrication
- Installation

- Design Coal:
- Design Heat Input:
- Flue Gas Recycle Rates:
- Excess Oxygen Range:

- Kellingley (UK Bituminous coal, 28%VM)
- 16, 28, 40, 49 and 70MW_t
- 50, 66 and 80%
- 2 to 5% v/v (dry basis)

- Retain air firing capability.
- Additional Equipment:
 - Flue Gas Recycle (FGR) Fans.
 - Transport FGR.
 - Primary FGR.
 - Secondary FGR.
 - Transport FGR Cooler/Condenser.
 - Primary FGR Cooler/Condenser.
 - Primary FGR Heater.
 - Oxygen Storage, Supply and Injection Systems for Primary and Secondary FGR.
 - Ductwork.
 - Isolating and Control Dampers.
 - E, C & I, including Burner Management and SCADA System, Modifications.

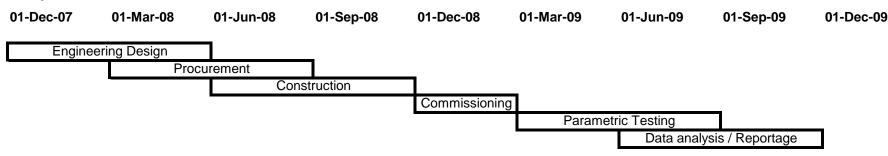
Task 2: Finalising of Burner Design and Manufacture

Task 2.1: Oxyfuel Burner Design and Fabrication

 First generation oxyfuel burner design based on Doosan Babcock's expertise and experience in air firing technology for coal

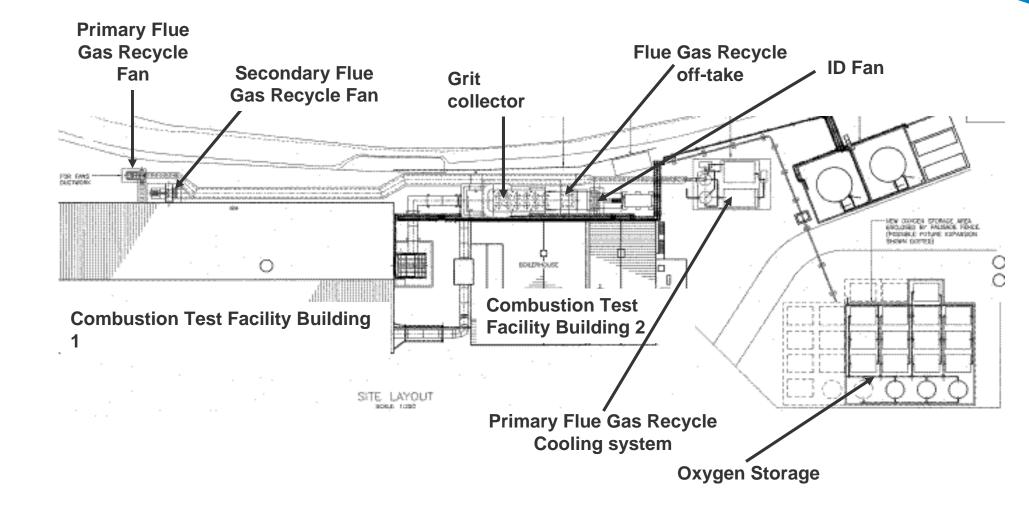
Task 2.2: MBTF Oxyfuel Conversion Commissioning

- Cold commissioning
- Hot commissioning


Task 3: Demonstration of an Oxyfuel Combustion System

- Establish operational envelope of the burner and performance characteristics of the combustion process. Key parameters to be investigated include:
 - Change-over from air to oxyfuel firing at various loads.
 - Turndown.
 - Flame stability.
 - Heat release and heat flux to furnace walls.
 - Pollutant emissions.
 - Flame visualisation by Imperial College London

OxyCoal-UK : Phase 2 – Progress


• Project Start: 1st December 2007

- Planning application submitted
- Initiation Scottish Environmental Protection Agency (SEPA) Variation application
- Design in progress all disciplines
 - Site Layout
 - PFD
 - Duct and fan sizing
 - Oxygen plant
 - Civils
 - Power supply requirements
 - P&ID

OxyCoal-UK : Phase 2 – Planned Layout

Phase 1

- Investigate Combustion Fundamentals, Furnace Design & Operation, Flue Gas Clean-up / Purification and Generic issues associated with Oxyfuel Process
 - Lab and Pilot Scale test data being produced and under going analysis
 - Safety issues associated with Oxyfuel Process identified

Phase 2

• Full Scale component test ready for application on Full Plant Demonstration

The current tasks complete the foundation for the development of an oxyfuel boiler reference design

OxyCoal-UK : Phase 1 – Project Participants

Lead company

Doosan Babcock Energy Limited

e.on UK

:nerav

energy made better

Scottish and Southern

Doosan Babcock Energy

Imperial College London

ScottishPower

energy wholesale

enerau

Industrial Participants

Air Products plc BP

E.ON UK Limited RWE

bp

University Participants Imperial College London University of Nottingham

Sponsors / Sponsor Participants

Scottish and Southern Energy Scottish Power EdF Energy **Drax Power Limited** Dong Energy Generation A/S

Government Support

Technology Strategy Board

Department of Business, Enterprise and Regulatory Reform

R

Department for Business **Enterprise & Regulatory Reform**

ING

OxyCoal-UK : Phase 2 – Project Participants

Lead company Doosan Babcock Energy Limited

Doosan Babcock Energy

University Participants Imperial College London University of Nottingham

Prime Sponsor

Scottish and Southern Energy

ScottishPower

energy wholesale

Imperial College London

Sponsors

The University of

Nottingham

Air Products plc

Dong Energy Generation A/S

Drax Power Limited

EdF Energy **F.ON UK I imited** Scottish Power

RFK

e.on UK

Department for Business

Enterprise & Regulatory Reform

Government Support

Department of Business, Enterprise and Regulatory Reform

HFCCAT Demonstration Programme

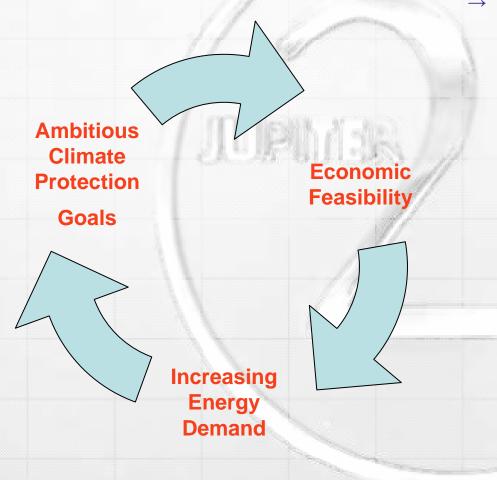
Thank you for your attention

Contact details:

ecameron@doosanbabcock.com

dfitzgeral@doosanbabcock.com

www.doosanbabcock.com

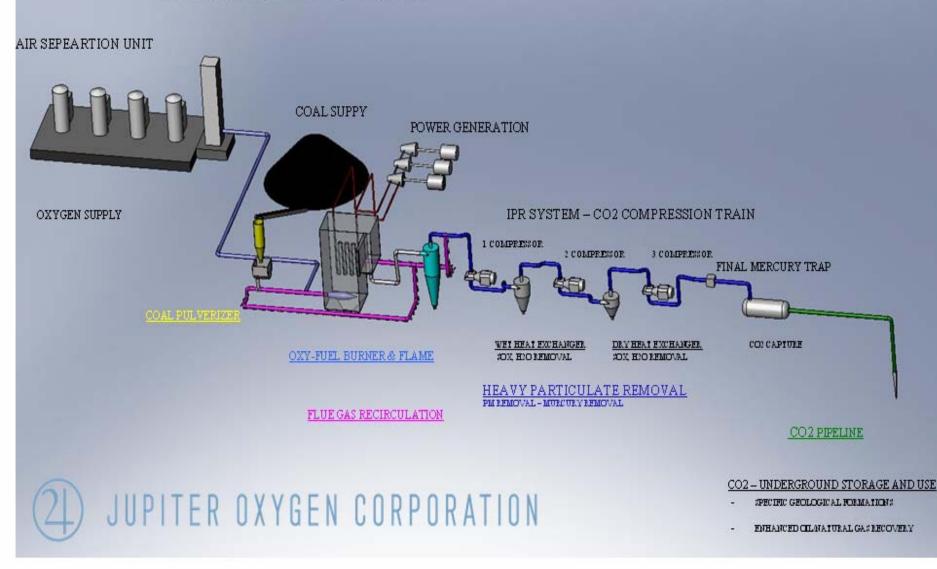


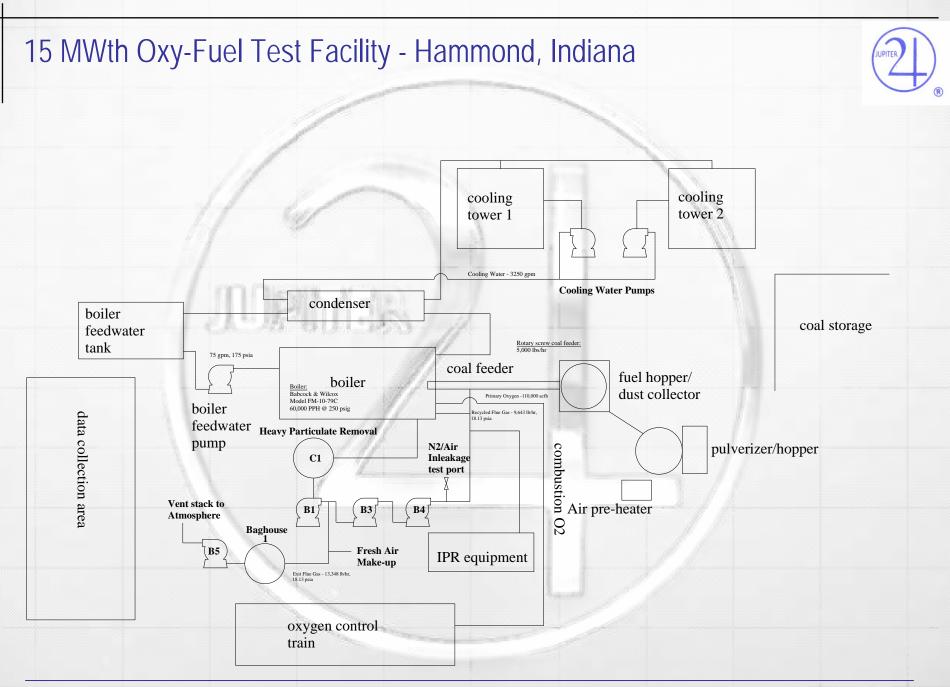
3rd Workshop IEAGHG Oxy Fuel Network Yokohama, Japan March 5th and 6th 2008

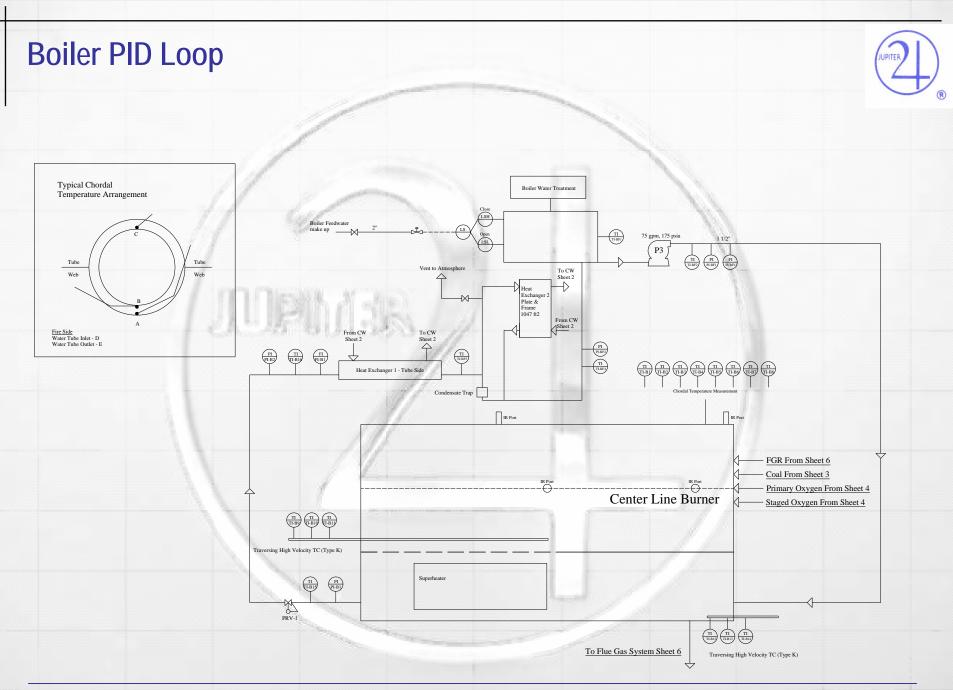
Brian R. Patrick Director of Development Jupiter Oxygen Corporation (USA) www.jupiteroxygen.com

Keys for Carbon Capture Technology

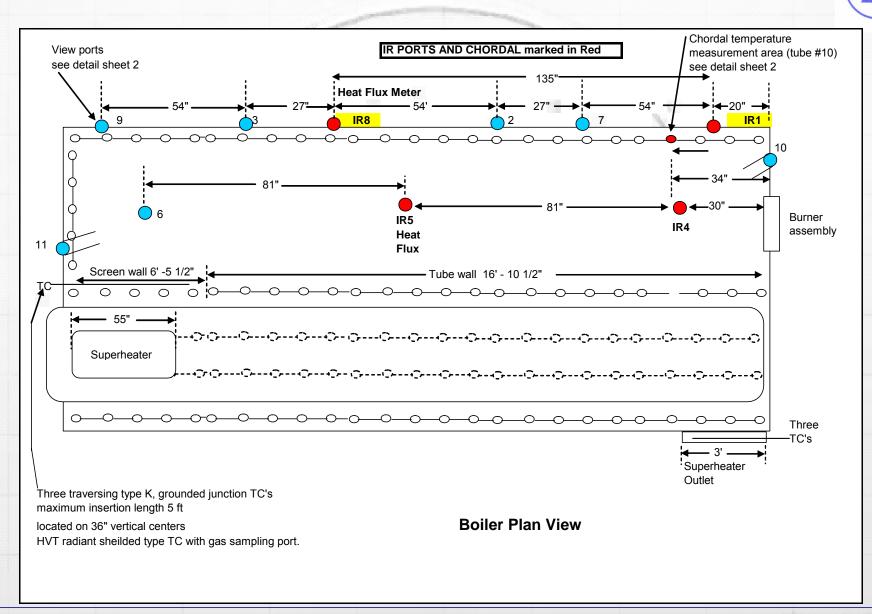
 Key for successful carbon capture technology development:

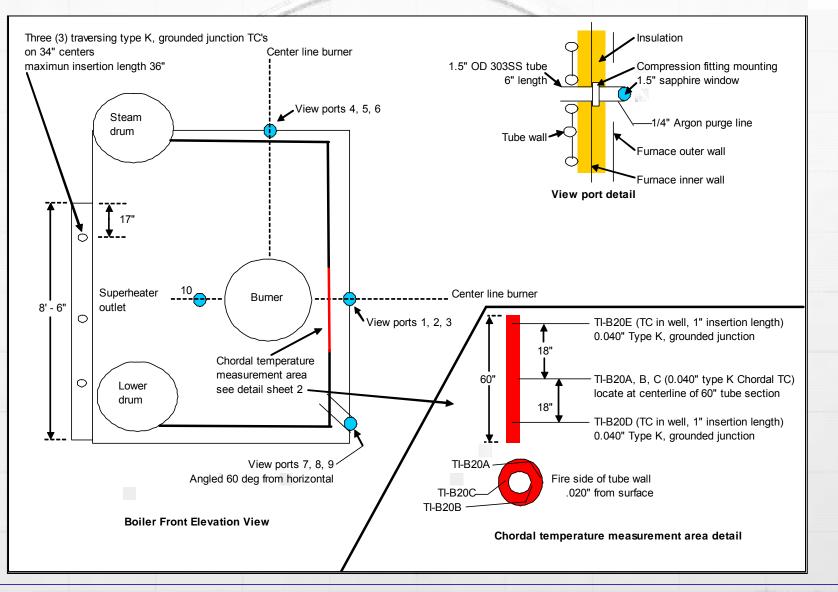

- Reduce parasitic power losses associated with carbon capture
- Use cost effective technology for carbon capture
- Create a practical approach for retrofits
- Design a truly CO2 capture ready concept

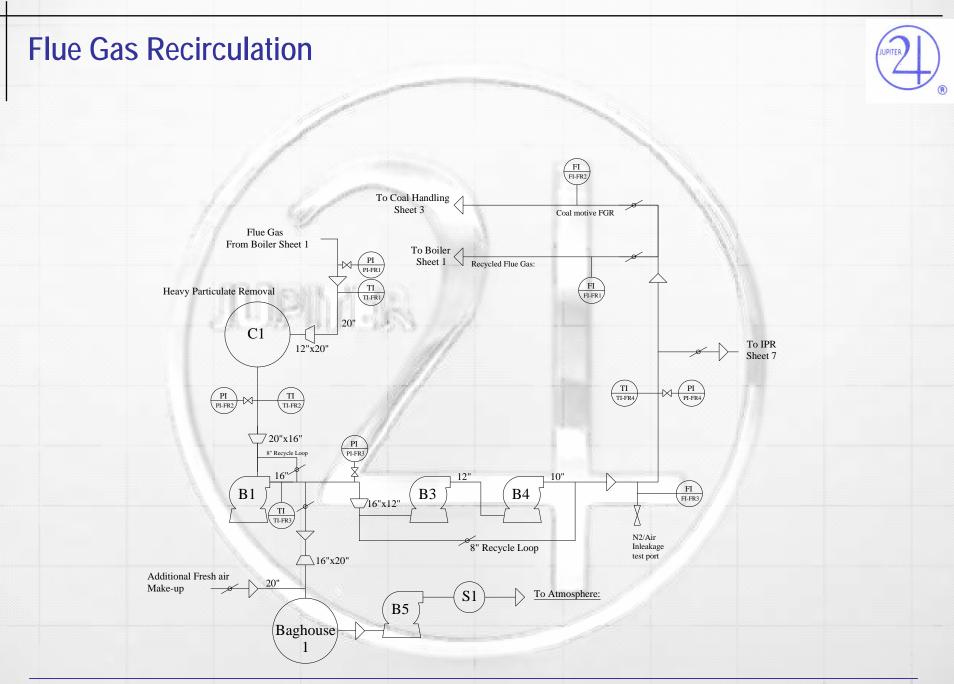

Jupiter Oxygen – Hammond Indiana 15 MWth Test Facility

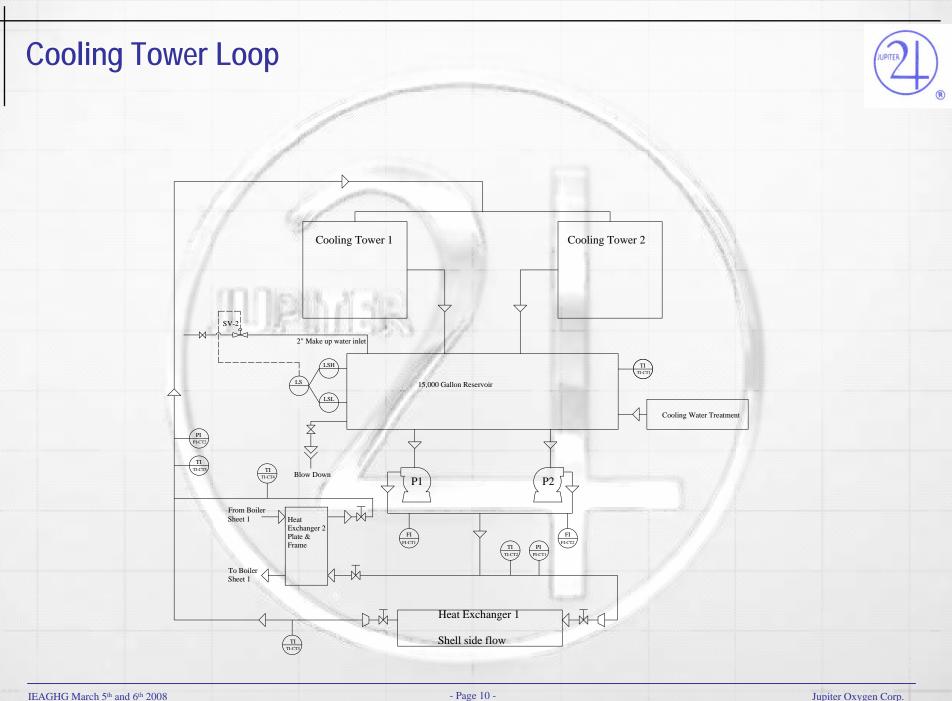


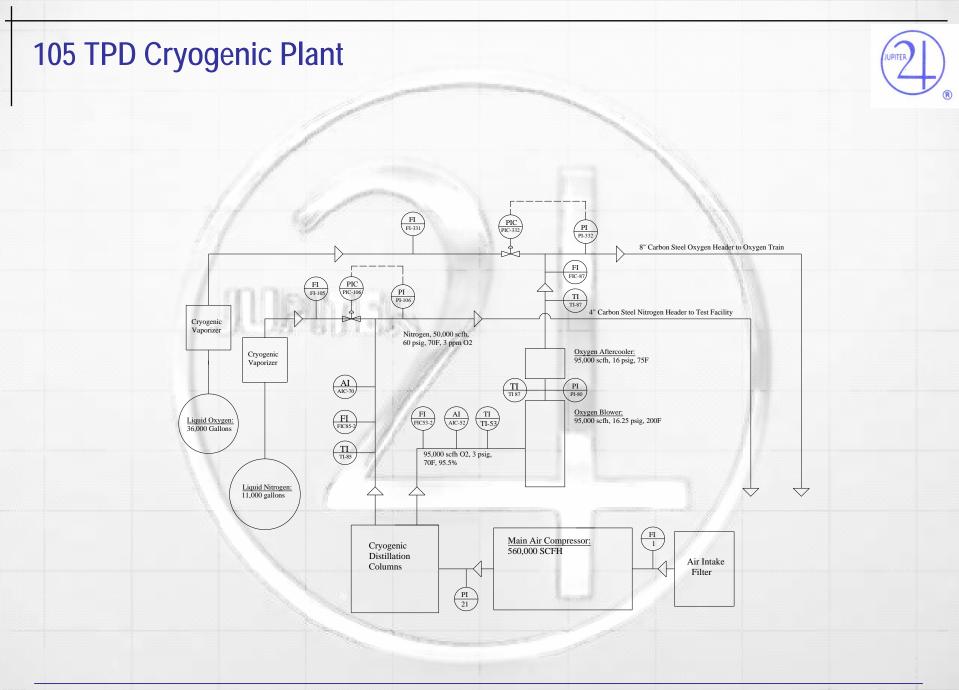
JOC OXY-FUEL IPR* CLEAN COAL POWER GENERATION

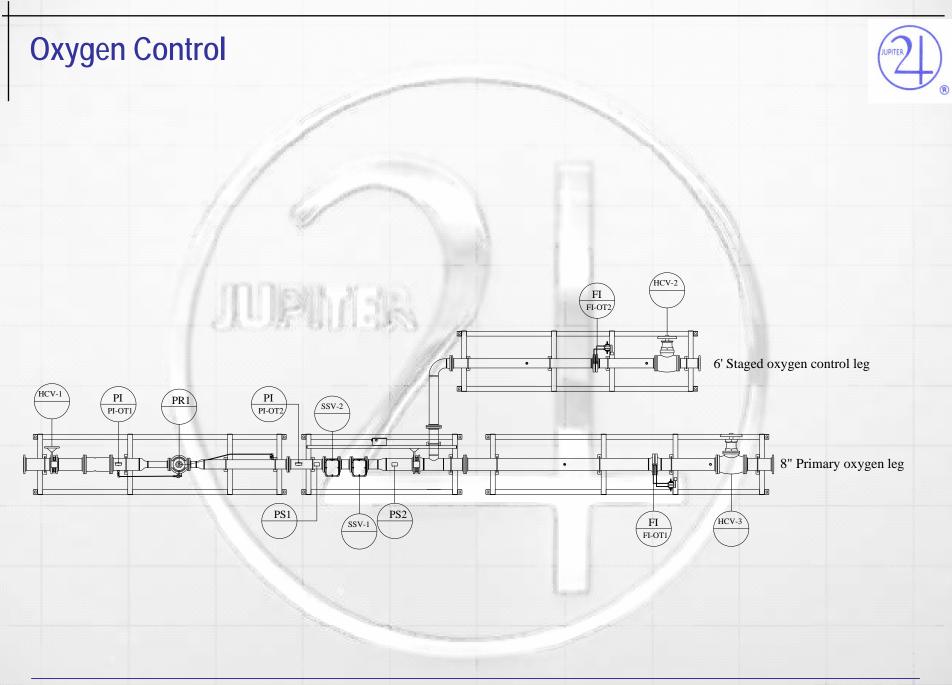

*Integrated Pollutant Removal (IPR) System, NETL US DOE






15 MWth Boiler Plan View




15 MWth Boiler Front View

Project Participants

- Jupiter Oxygen
 - Construction of the test facility
 - Operation of the test facility
 - Technology provider for the Oxy-fuel
- Doosan Babcock LLC
 - Part of the data evaluation team
 - Slagging and fouling studies
- USDOE National Energy Technology Laboratory
 - Integrated Pollutant Removal System
 - Data Collection design
 - Materials analysis
 - Final fate analysis
 - CO2 Quality

- Maxon Corporation
 - Supplier of oxy-fuel burner
 - Supplier of oxygen control systems
 - Coalteck LLC
 - Consultant power generation
- Michigan State
 - High Temperature oxygen sensor
 - Material coupon analysis
- Purdue University
 - Heat Transfer Radiant versus Convective
 - Thermal Transfer modeling
 - Data reduction and Analysis
 - University of Wyoming
 - Study on recycle with Wyoming coals

Visionary Innovation Scientific Approach Operational Experience

WEB:

- www.jupiteroxygen.com
- CONTACT US:
- Mark K. Schoenfield, Senior Vice President -Operations & General Counsel
- Jupiter Oxygen Corporation
- 4825 N. Scott St., Suite 200, Schiller Park, IL 60176
- PHONE: 219 712 5206 FAX: 847 928 0795
- EMAIL: m_schoenfield@jupiteroxygen.com
- Brian R. Patrick, Director of Development
- Jupiter Oxygen Corporation
- 4825 N. Scott St., Suite 200, Schiller Park, IL 60176
- PHONE: 219 746 5586 FAX: 847 928 0795
- **EMAIL**: b_patrick@jupiteroxygen.com


Session 7 Panel Discussion Large Scale Pilot and Demo Projects

Chairperson	Dr. H. Sho Kobayashi	Praxair
Panel Members	S	
	Dr. Marie Anheden	Vattenfall
	Dr. Frank Kluger	Alstom
	Dr. Chris Spero	CS Energy
	Dr. Claude Prevende	TOTAL
	Prof. Vicente Cortes-Galeano	CIUDEN
	Prof. Sangmin Choi	KAIST
	Dr. Minish Shah	Praxair
	Dr. Horst Hack	Foster-Wheeler

Large Scale Pilot and Demo Projects

PROJECT	Location	MWt	Start up	Boiler Type	Main Fuel	CO2 Train	
B & W	USA	30	2007	Pilot PC	Bit, Sub B., Lig.		
Jupiter	USA	20	2007	Industr. No FGR	NG, Coal		
Oxy-coal UK	UK	40	2008	Pilot PC			
Vattenfall	Germany	30	2008	Pilot PC	Lignite (Bit.)	With CCS	
Total, Lacq	France	30	2009	Industrial	Nat gas	With CCS	
Pearl Plant	USA	66	2009	22 MWe PC	Bit	Side stream	
Callide	Australia	90	2010	30 MWe PC	Bit.	With CCS	
Ciuden - PC	Spain	20	2010	Pilot PC	Anthra.(Pet ck)	?	
Ciuden - CFB	Spain	30	2010	Pilot CFB	Anthra.(Pet ck)	?	
Jamestown	USA	150	2013	50 MWe CFB	Bit.	With CCS	
Vattenfall	Germany?	~1000	2015	~250 MWe?	Lignite (Bit.)	?	
Youngdong	Korea	~400	2016?	~100 MWe PC?	?	?	

Oxy-Fuel Combustion Boiler Projects

MWe

Callide Oxyfuel Project Technical evaluation of oxy-combustion and CO2 capture system

IEAGHG International Oxy-Combustion Network

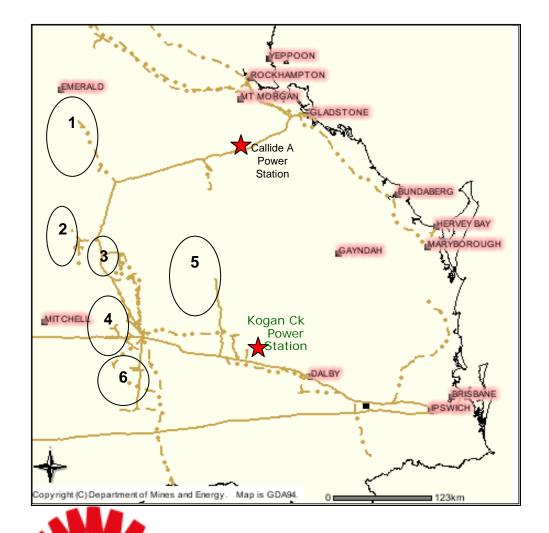
Yokohama, Japan 5 & 6 March 2008

C Spero (CS Energy) T Yamada (IHI Corporation) E Sturm (Air Liquide Engineering) D McGregor (GLP Engineering)

Callide Oxyfuel Project

Presentation content

- Project overview
- Process description
- Evaluation of stack emissions
- Construction program update


The purpose of this presentation is two-fold:

- 1. To share technical data on the project; and
- 2. To highlight some of the practical considerations associated with an oxyfuel retrofit

Project location

Callide A Power Station 4 x 30 MWe Steam 130 t/h at 4.1MPa, 460°C Commissioned: 1965 – 69 Refurbished 1997/98

CO2 storage areas:

- 1. Northern Denison Trough
- 2. Southern Denison Trough
- 3. Fairview CSM Field
- 4. Roma Shelf
- 5. Burunga/Wandoan Anticlines (CSM)
- 6. Wunger Ridge
 - Gas & Oil Pipelines

Project participants

Participants:

- CS Energy (QLD Government)
- Xstrata Coal
- Australian Coal Association ACALET
- Japanese Partnership (IHI, J-Power, Mitsui & Co.)
- JCOAL Supporting Collaborator
- Schlumberger

Other:

- Commonwealth Government (LETDF Program)
- METI (Japanese Government)

Plant suppliers

- Air separation unit (ASU) and CO2 compression and purification unit (CPU), design & equipment supply – Air Liquide Engineering
- ASU & CPU construction GLP Engineering
- Boiler retrofit design & equipment supply IHI
- Boiler retrofit construction CBH

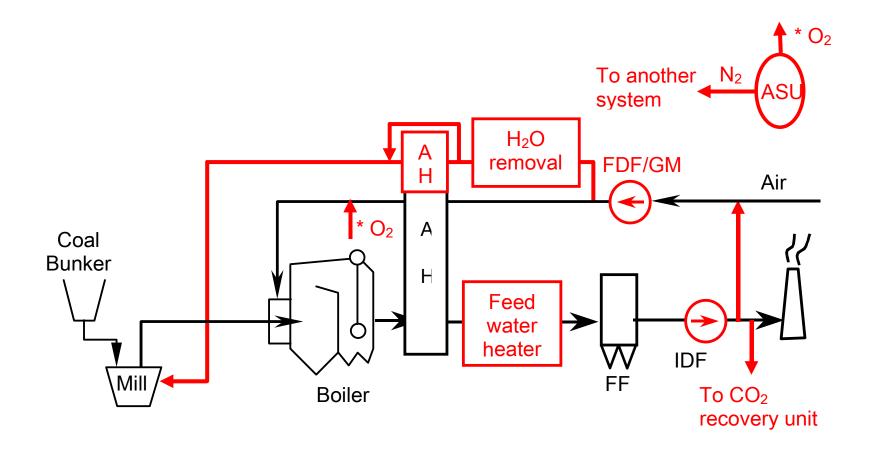
Callide oxyfuel project

CALLIDE OXYFUEL PROJECT VISUAL AMENITY - AERIAL VIEW FROM NORTH EAST OF CALLIDE A

Scope:

4 Yr project duration
Boiler refurb.
2 x 330 TPD ASU
Oxy-comb. Retrofit
75 TPD CO2 recovery
Trucking to CO2 reservoir

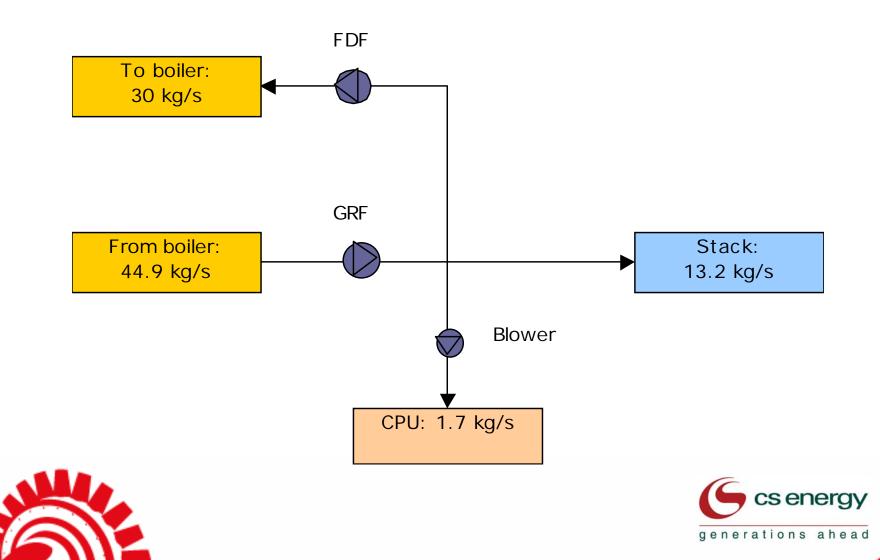
Injection and monitoring (50kt)


Boiler parameters

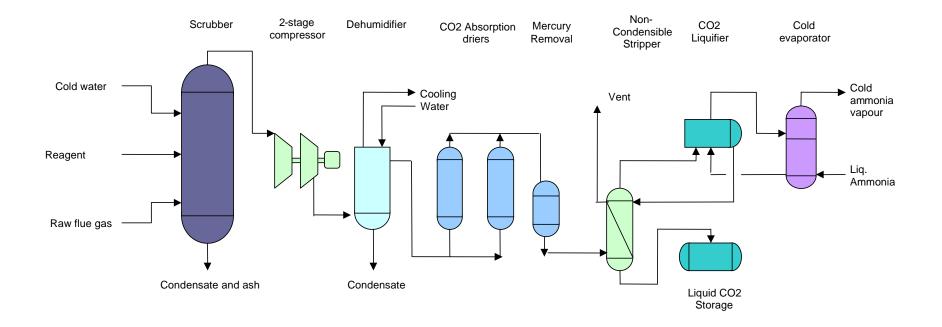
Coal							
Total moisture	%	12 - 16					
Ash	%, as-received	19 - 24					
Gross calorific value	MJ/kg, as-received	18 - 20.5					
Greenhouse emission factor	kg CO2/MWh	1.9 - 1.95					
Steam @ maximum continu	Steam @ maximum continuous rating						
Mass flow (design)	kg/h	136,080					
Peak rating (design)	kg/h	149,688					
Pressure	kPa(a)	4,410					
Temperature	° C	463					
Unit conditions							
Rating	MWe	30					
Coal flow @ MCR	kg/h	18,300 - 21,000					
Flue gas flow @ MCR	kg/h	158,000 - 165,000					
Typical steam condition:	115,920 kg/h, 4160 kPa(a) and 465°C						

Retrofit flowchart

Oxygen supply


2 x nominal 330 TPD Air Liquide Sigma cryogenic ASUs

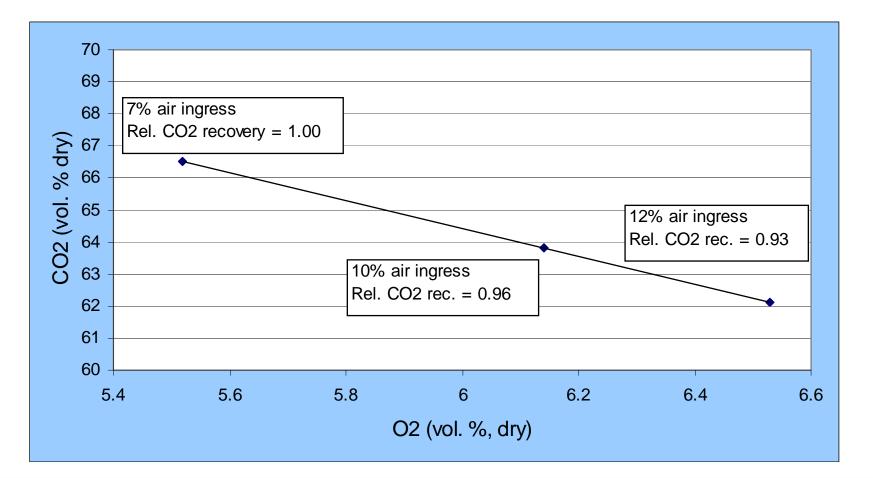
Parameter	Unit	Value		
O2 production	t/day	660		
Product flow rate	Nm3/h	19,200		
Product now rate	kg/h	27,430		
Delivery pressure	kPa(a)	180		
O2 purity	vol. %	98		



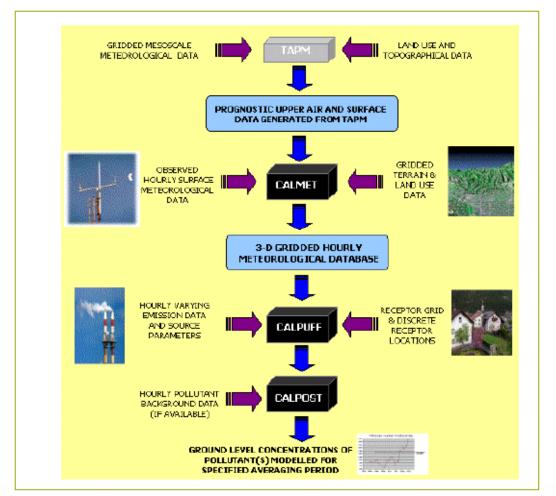
Flue gas mass balance

CO2 compression & purification plant (CPU): Flowchart

CO2 compression & purification plant (CPU): Inputs & outputs

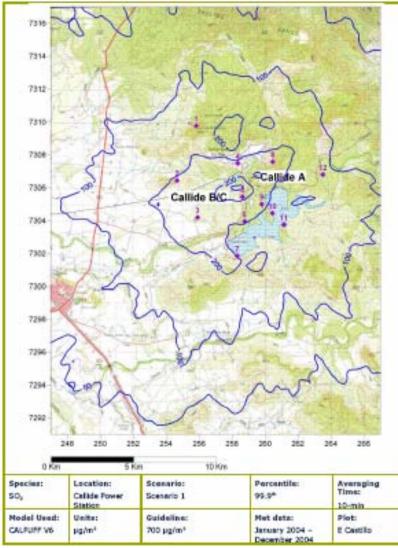

75 t/day liquid product

Parameter	Units	CPU Inlet	CO2 Product
Flow rate	kg/s	1.3	0.9
Flow rate	Am3/s	1.7	
Temperature	°C	145	-30
Pressure	kPa (a)	101	1600
Composition			
H2O	mole %	20.0	< 0.002
02	mole %	4.2	< 0.003
N2 (+ Ar)	mole %	18.6	< 0.1
CO2	mole %	55.9	99.9
S02	mole %	0.06	< 0.003
NOx	mole %	0.03	< 0.003
Particulate	mg/Nm3	< 100	< 1
Trace elements (As, Be, Cd, Hg, V)	ppbv	< 1	< 0.1


Effect of air ingress on CO2 concentration and recovery

Stack emission modeling

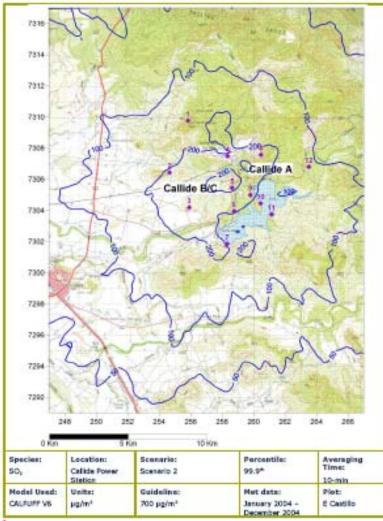
Stack mass emission rate data


Load Factor	ad Factor %		00	70				
Fuel	GJ/s	0.105		0.105 0.		0.0	.076	
Firing mode		AF	AF OF		OF			
Gas to Stack	Nm3/s	39.1 10.3		28.1	5.7			
NOx	g/s	44.2	15.6	31.7	13.0			
SOx	g/s	22.4	15.8	16.1	13.2			
Gas temperature	Oo	143	143	138	138			
Efflux velocity	m/s	10.0	2.8	7.2	1.6			

AF = Air-firingOF = Oxy-firing

SO2 ground level concentrations (Scenario 1)

10-min conc. SO2


Callide A: 100% LF, Air-firing

Callide B: 100% LF, Air-firing Callide C: 110% LF, Air-firing Worst coal

SO2 ground level concentrations (Scenario 2)

10-min conc. SO2

Callide A: 100% LF, Oxy-firing

Callide B: 100% LF, Air-firing Callide C: 110% LF, Air-firing Worst coal

Project schedule

Task Calendar Year	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Stage 1 - Boiler refurb/retrofit											
Project development											
Finalisation of contracts											
Site preparation											
Unit 4 refurbishment											
Operation in Air-firing Mode											
Site Construction of Oxyfuel retrofit/ASU/CPU											
Operation in Oxy-firing Mode						-					
Stage 2 - Geological storage											
Pre characterisation work - Data audits etc											
Site characterisation, well design and construction											
Field CO2 Injection works Construction											
Injection & monitoring											
Stage 3 - Project conclusion											
Post monitoring & rehabilitation +											
Commercialisation.											

Concluding comments

- 1. The Callide Oxyfuel Project is now entering the preconstruction phase with funding approved, and project agreements, and plant supply contracts at the final negotiation stage.
- 2. The following key activities are running in parallel to the Callide oxyfuel retrofit work program:
 - Geosequestration site selection & development (for 50,000 t CO2 over 3 - 4 years)
 - Development of an International collaboration and supporting R&D program
 - Long-term implementation plan especially involving proving up of large CO2 storage reservoirs and defining associated infrastructure requirements

Callide OxyFuel Project

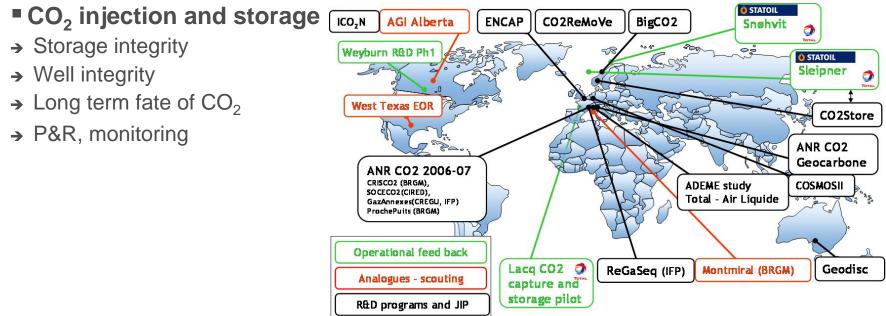
The CO₂ Pilot at Lacq

An Integrated Oxy-Combustion CO₂ Capture and Geologial Storage Project

Nicolas AIMARD, <u>Claude PREBENDE</u> **Total** Denis CIEUTAT, Ivan SANCHEZ MOLINERO, Remi TSIAVA **Air Liquide**

3rd Workshop IEAGHG International Oxy-Fuel Combustion Network

Yokohama, 5th and 6th March 2008

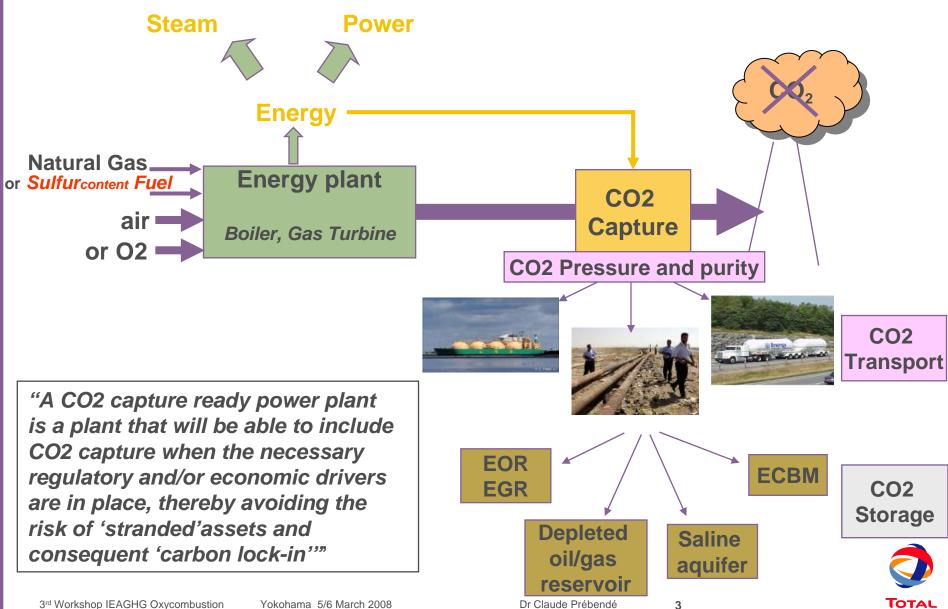

Why Total involved in Carbon Capture and Storage ?

Another option to reduce our industrial CO2 emissions :

- Gas flaring reduction (world bank GGFR) on existing facilities
- Improve power efficiency
- CCS as breakthrough technology

Dedicated CCS program since 2001 :

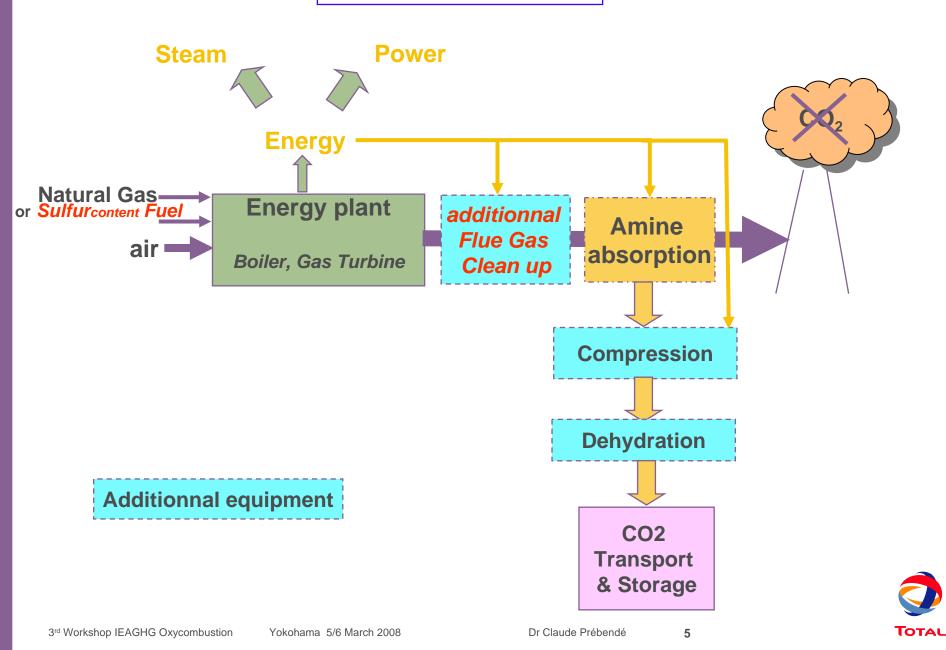
Capture technology development

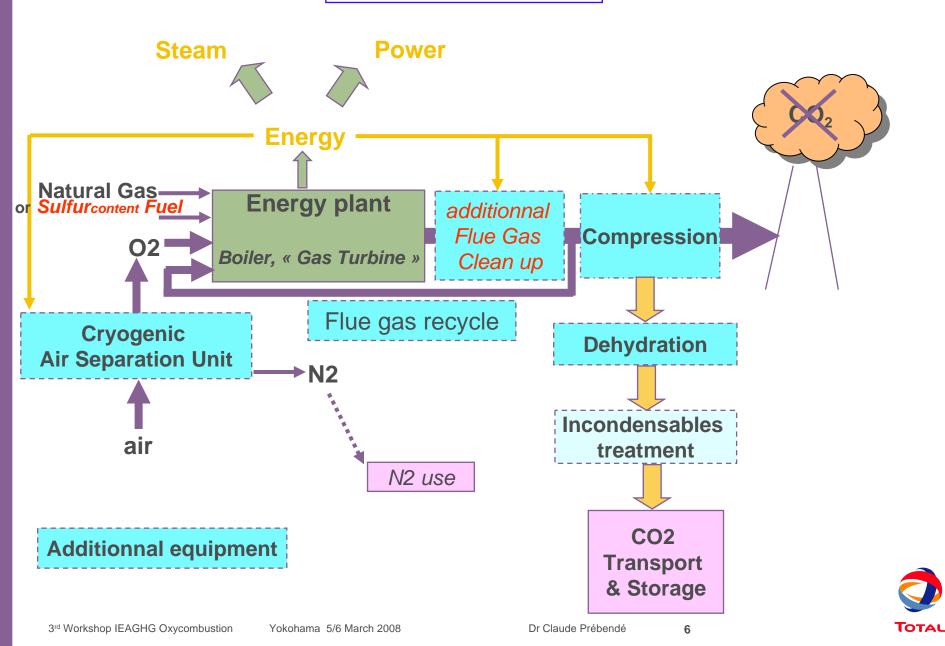


2

TOTAL

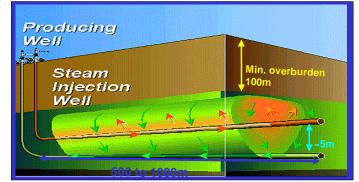
"Capture ready" plant....


or CCS ready plant


Why Oxycombustion capture?

Post Combustion

Oxy Combustion

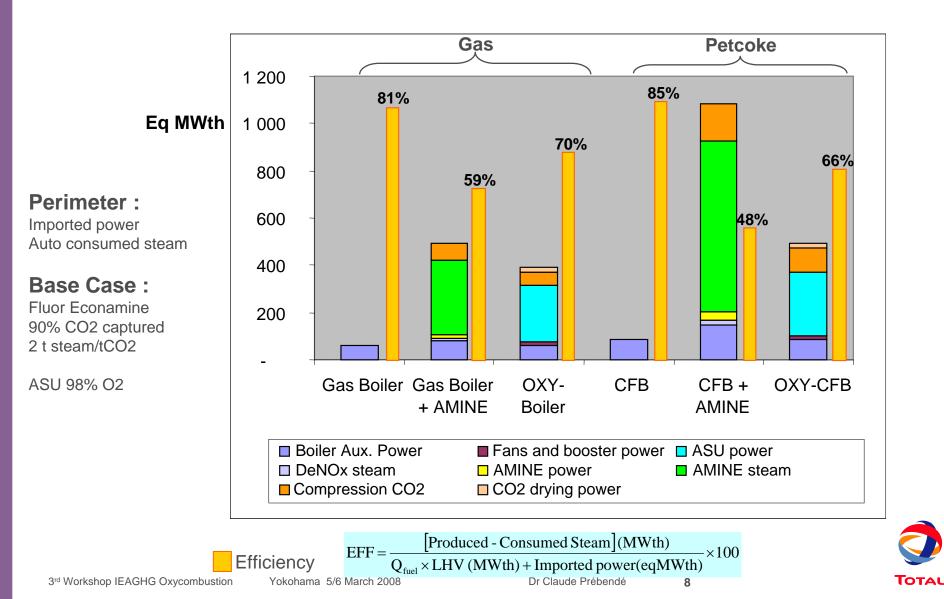


Oil sands production

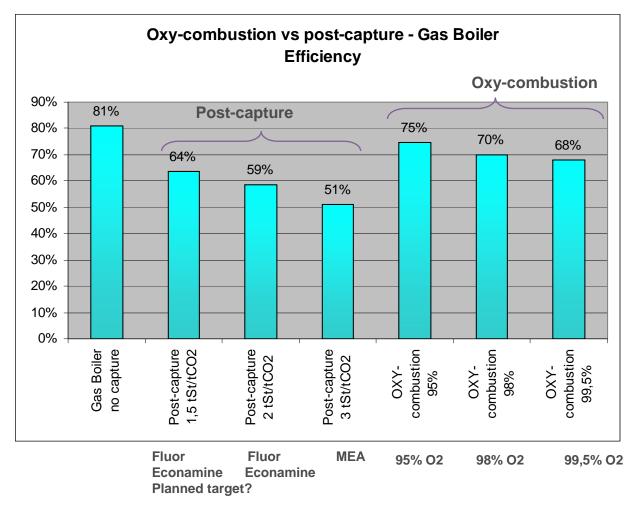
Production of Extra Heavy Oil in Athabasca (Alberta, Canada)

Use of huge quantity of STEAM

→ SAGD (Steam Assisted Gravity Drainage)


For production of 100000 bbl/d bitumen and Steam/Oil=2,5 → HP steam 39600t/d 100 bars and 312°C (1044MWth)

Steam generation by combustion of natural gas or an alternative fuel like petcoke


FUEL	BOILER	CAPTURE						
NATURAL	GAS	Post-combustion				Oxy-combustion		
GAS	BOILER	AMINES Unit Cryogenia		AMINES Unit			Cryogenic /	ASU
		No	No 90 % capture LP Steam (t/tCO2)					
PETCOKE	CFB					O2 purity (%mol)		imol)
			3	2	1.5	95	98	99.5
Base case								
3 rd Workshop IEAGHG Oxycombustion Yokohama 5/6 March 2008 Dr Claude Prébendé 7								

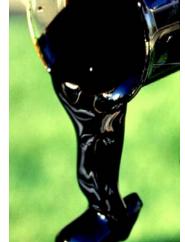
Oxycombustion vs Postcombustion

STEAM PRODUCTION Efficiency and consumptions for base case – Gas or Petcoke

Oxycombustion vs Postcombustion STEAM PRODUCTION Sensivity of Efficiency

9

Oxyburners development


AIR LIQUIDE Oxyburner concept for Oil & Gas applications

Challenges for oxyburner concept:

- In-furnace heat flux management
- Minimize flue gas recycle (FGR)
- High viscosity / high density liquid fuels
- High sulfur and high metals content
- Use of usual materials

Air Liquide's oxyburner concept achieves:

- Fuel flexibility for gas & liquid fuels
- Variable flue gas recycle rate
- Air mode for transient operation
- Important turndown ratio
- Oxyflame stability with difficult fuels
- Optimum operating procedures (air-oxy mode)

11

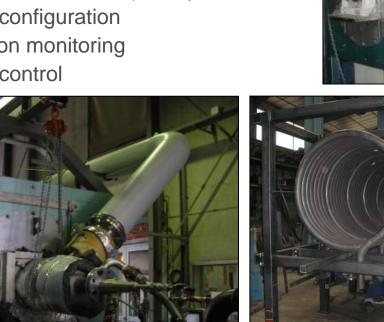
1 MWth Oxycombustion test rig


Objectives:

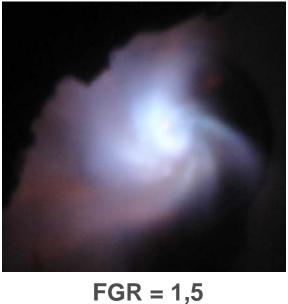
AIR LIQUIDE

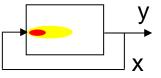
- Expand scientific knowledge on oxy-flames.
- Contribute to industrial oxyburner design.

Versatile and functional test rig


- Variable FGR rate and temperature
- Liquid / gas fuel feed capability
- Cold wall configuration
- Combustion monitoring
- Emission control

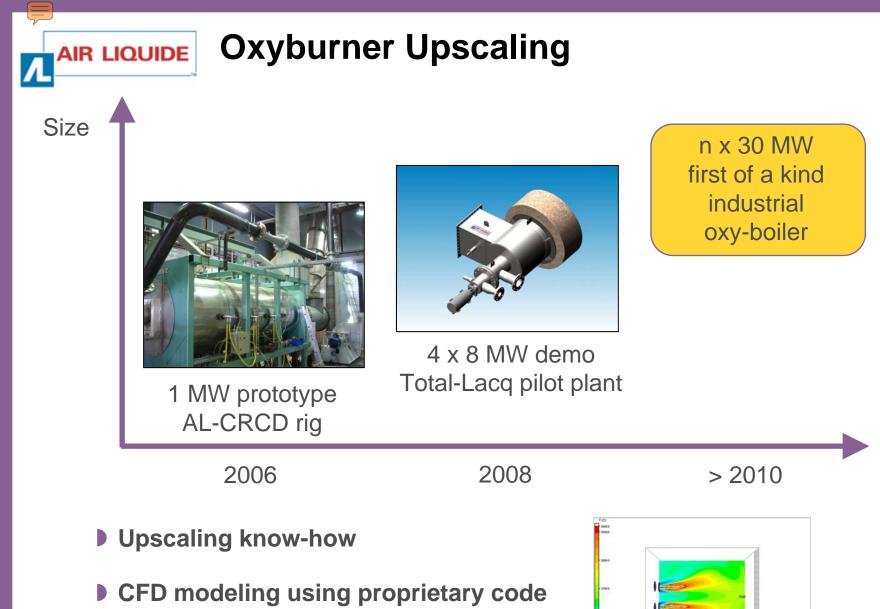
AIR LIQUIDE Experimental results at test rig


Views of 1MW oxyburner prototype with natural gas



FGR = 0

FGR = 1


FGR rate = x / y

3rd Workshop IEAGHG Oxycombustion Yokohama 5/6 March 2008

Dr Claude Prébendé

13

- Specific to oxycombustion
- Calibrated with real oxycombustion data

bendé 14

CRCD

Τοται

Oxyburner implementation into Lacq boiler

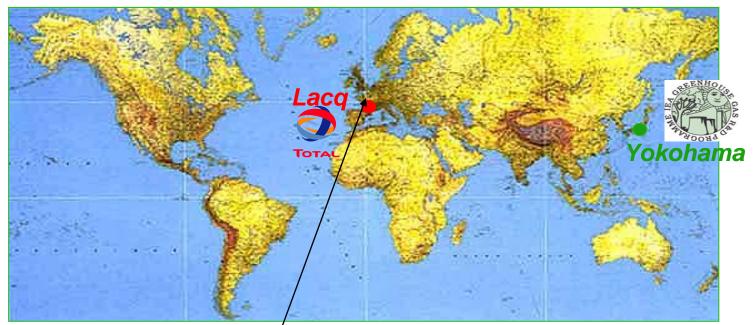
Retrofitting of an air-fired boiler

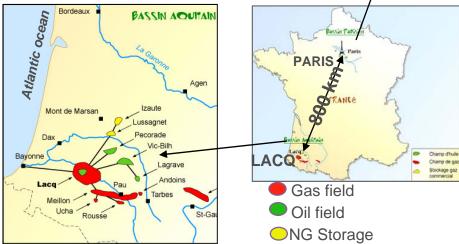
- Oil & Gas boiler configuration
- Fixed geometry:
 - four horizontal burners
 - Chamber: L 5 m; W 4,5m; H 6-7m
- Careful sealing at every interface to minimize air in-leakage
- Fluid distribution control and measurement
- Operating mode
- Safe operation Safety analysis
- Tests and measurement plans

Openings for the four existing air-fired natural gas burners

Existing measurement port

Oxycombustion and CO2 storage pilot

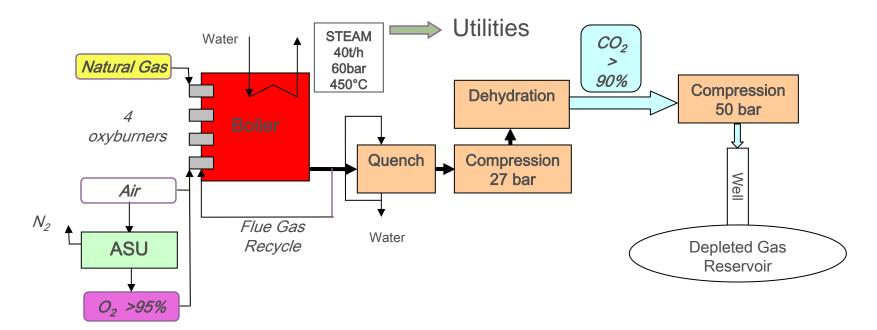

General objectives of the Lacq pilot



- Contribute to a potential climate change mitigation technology
- Demonstrate the technical feasibility and reliability of an integrated CO₂ capture, transportation, injection and storage scheme for steam production at a reduced scale (1/10th of future facilities)
- Design and operate a 30MWth oxycombustion boiler for CO₂ capture
- Develop and apply geological storage qualification methodologies, monitoring and verification techniques on a real operationnal case to prepare future larger scale long term storage projects

Pilot location Total Exploration & Production in France

3rd Workshop IEAGHG Oxycombustion

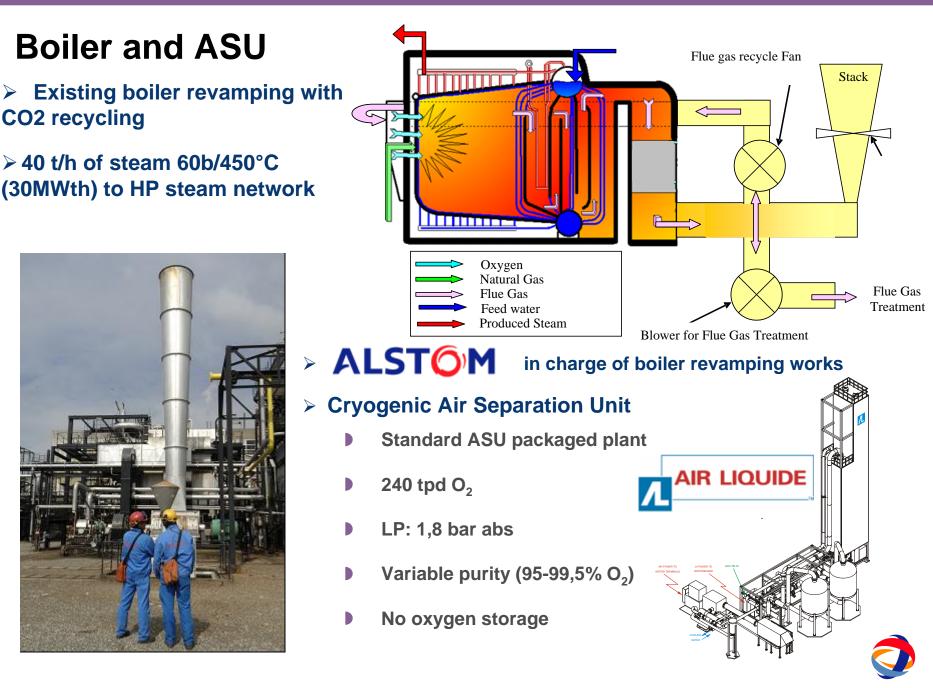

Yokohama 5/6 March 2008

Dr Claude Prébendé

18

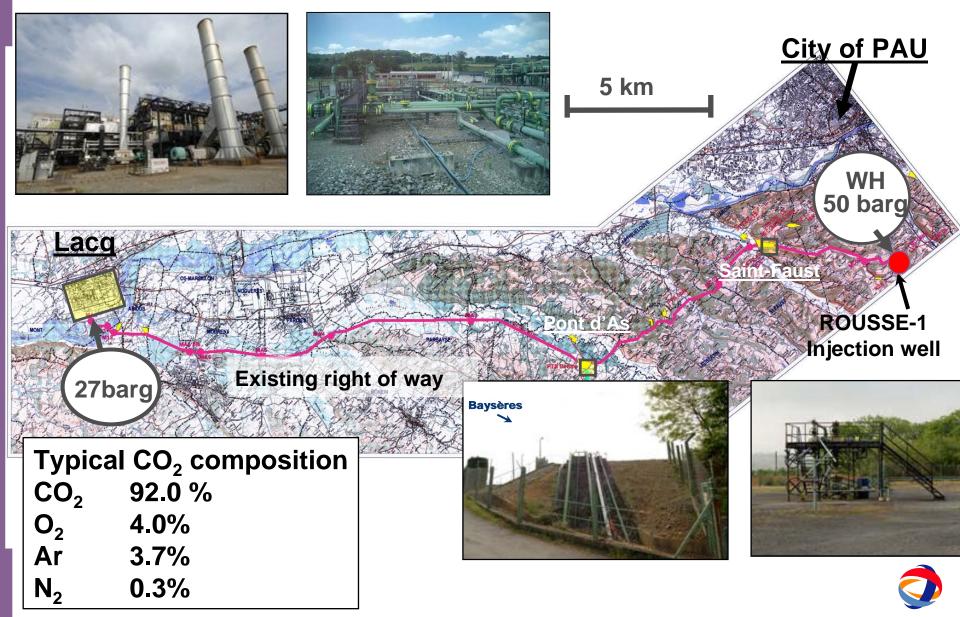
Τοται

CCS Lacq pilot to start beginning 2009

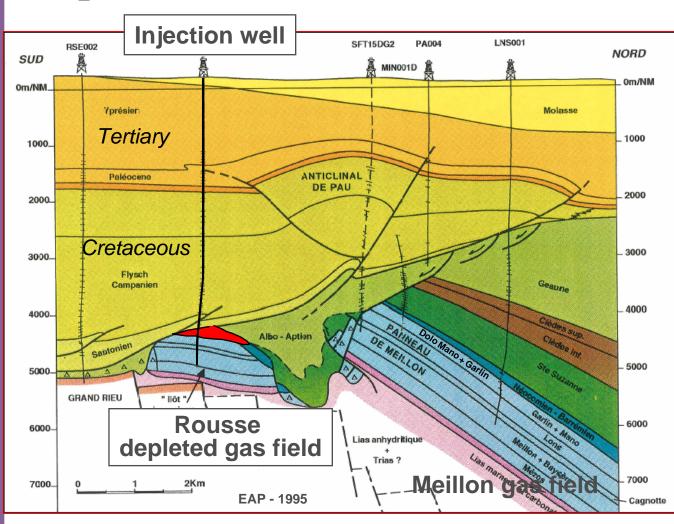


CHALLENGES

- ✓ Industrial scale 30MWth oxycombustion unit with gas
- ✓ Revamping of a conventional boiler
- ✓ CO2 transport and injection for 2 years
- ✓ 150 kt CO2 storage in a depleted reservoir
- ✓ First CO2 injection for storage in France
- Public acceptance with consultation and dialogue
- ✓ French and international legal framework not frozen



19


Τοται

Transportation and injection into a gas depleted reservoir

Τοται

CO₂ injection into a depleted gas reservoir

Jurassic fractured dolomitic reservoir (in red)

Thick cap rock (in green and orange)

Depth # 4500m/MSL

Temp. # 150°C

Initial P = 485 barg

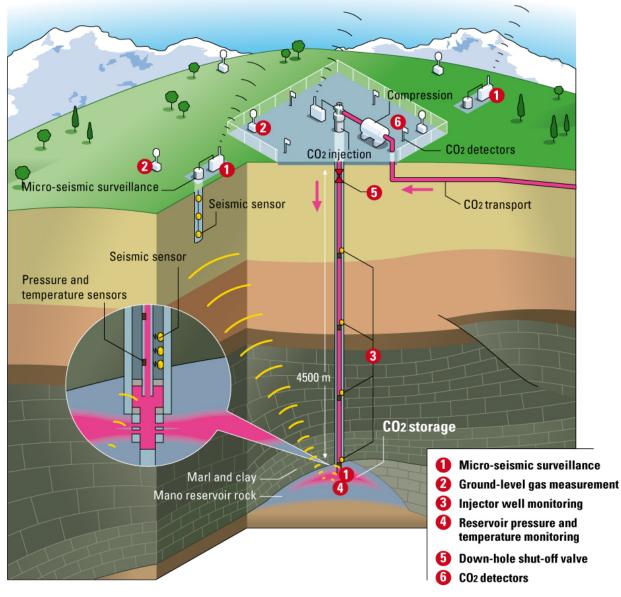
Current P # 30 barg

Rousse

Initial CO, = 4,6%

No aquifer

Existing unique well RSE-1 producing since 1972 Well work over planned mid 2008


3rd Workshop IEAGHG Oxycombustion

Yokohama 5/6 March 2008

Dr Claude Prébendé

22

Lacq CO2 pilot CO2 injection - monitoring system

Project schedule – main milestones

	2006	2007	2008	
	JFMAMJJASOND	JFMAMJJASOND	JFMAMJJASOND	
Conceptual and pre-project studies				
Project's approval		-		
Public announcement				
Public consultation and dialogue				
Basic engineering studies				
Air separation Unit				
CO2 capture and compression facilities				
Well work over				
Geosciences studies				
CO2 injection permitting process		+ +		
CO2 capture and injection start up				

Beginning 2009

24

Gobierno de España

TEST FACILITY FOR ADVANCED TECHNOLOGIES FOR CO₂ CAPTURE IN COAL POWER GENERATION UPDATE AND UPGRADE

Prof. Dr. Vicente J. Cortés **CO₂ Capture Program Director CIUDEN, SPAIN**

۱.

- II. Conceptual design. Size and technologies
- III. The site. Design criteria and plant configuration
- IV. Virtual walkthrough
- V. Project structure
- VI. Research Program
- VII. Time schedule

Fundación Ciudad de la Energía A brief introduction

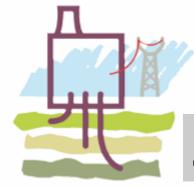
Fundación Ciudad de la Energía

An initiative of the Spanish Administration

Objectives and activities

Promote and financially support R&D+d for CO₂ capture and storage technologies and abandoned mines restoration

PROGRAM A	PROGRAM B	PROGRAM C
TEST FACILITY	CO ₂ GEOLOGICAL	ABANDONED LAND
FOR CO ₂	STORAGE	ACTION PLAN
CAPTURE TECHNOLOGIES ADDRESSING	ADDRESSING	ADDRESSING
OXYFUEL AND POST-COMBUSTION TECHNOLOGIES AT EL BIERZO	FULL SIZE INJECTION TESTS IN SUITABLE GEOLOGICAL FORMATIONS IN SPAIN	RESTORATION OF LAND RESOURCES THROUGH REVEGETATION FOR LANDSCAPE RECOVERY



Conceptual design: Size and technologies

ZEP Recommendations

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

ZEP Technology Platform Zero Emission Fossil Fuel Power Plants

Recommendations for RD&D priorities within FP7 Energy and National RTD Work Programmes 2008

Revised Version 6th Draft 15th February 2008

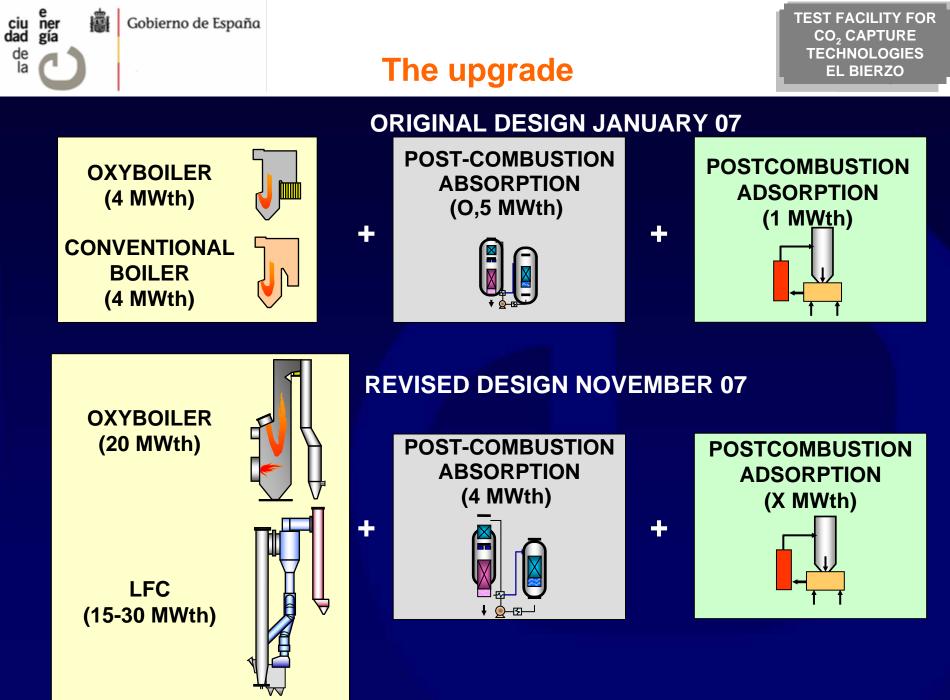
R&D area: Developing and implementing OXY-FUEL combustion for boilers

- 1. Pilot plant tests (10s of MWth) of full oxy-fuel pulverised fuel (PF) process, to validate results from scale-up based on laboratory tests.
- 2. Development of PF burner designs and piloting in 10s of MWth scale
- 3. Pilot plant tests (10s of MWth) of full oxy-fuel CFB

Gobierno de España Comparison of main characteristics of CCS options

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

	Suitable/applicable				Does not require		
Technology	Existing PF Plant	New PF Plant	CFB Plant	Capture- ready Plants	Slip- stream of flue gas	O ₂ supply	CO ₂ capture prior to compression
Post	X	×	x	x	×	X	
Pre				X, But unlikely	X, But unlikely		
Оху	X	×	×				x


X: Desirable characteristic

ciu ner dad gía

de la ন

Addressed at El Bierzo

Adapted from: Wall, T.F.: Combustion Processes for Carbon Capture. Proc. Comb. Inst., 31 (2007) 31-47

The site

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

Design criteria and plant configuration

General design criteria

MODULARITY

LAY-OUT AS INDEPENDENT BUT INTERCONNECTED MODULES (OXYCOMBUSTION, FLUE GAS TREATMENT...) ALLOWING SIMULTANEOUS OR SEPARATE OPERATION FOR INDEPENDENT STUDY OF PROCESSES

OPERATION UNDER A WIDE RANGE OF CONDITIONS, INCLUDING DIFFERENTS COALS AND COMBUSTION FROM AIR MODE TO OXYMODE

DESIGNED TO STUDY FULL PROCESS INTEGRATION OF THE DIFFERENT UNITS AND SYSTEMS

CONCEIVED TO EXPLORE HEAT INTEGRATION AND PERFORMANCE OPTIMISATION WITHOUT PUTTING INTO COMPROMISE REQUIREMENTS FOR FLEXIBLE TESTING

LAY-OUT ALLOWING FOR EXTENSIONS AT A LATER STAGE IN LINE WITH ANY TECHNOLOGICAL PROGRESS AND/OR STRATEGIC DEVELOPMENT

Prof. Dr. V. J. Cortés

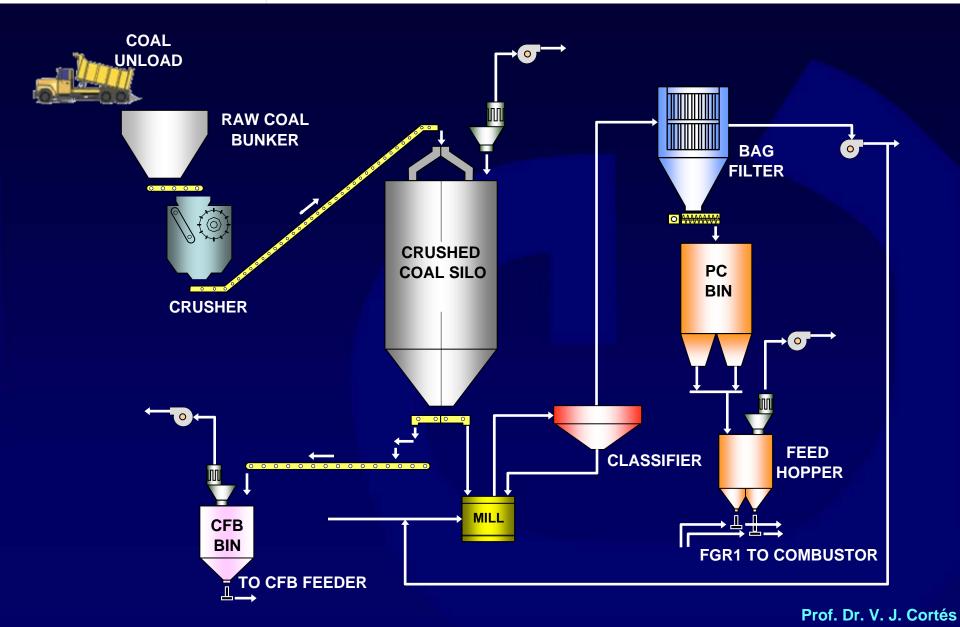
TEST FACILITY FOR

CO₂ CAPTURE

TECHNOLOGIES

EL BIERZO

The facility


TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

- A. COMBUSTION SECTION
 - ✓ FUEL PREPARATION/FEEDING WITH INTERMEDIATE STORAGE OF PULVERIZED COAL
 - ✓ LIMESTONE PREPARATION/FEEDING
 - ✓ PC BOILER, 20 MWth
 - ✓ CFB BOILER, 15 MWth (AIR), 30 MWth (OXYGEN)
 - ✓ HEAT RECOVERY SECTION
- **B. FLUE GAS CLEANING SECTION**
 - ✓ SCR ✓ FF ✓ WET FGD
- C. CO₂ CAPTURE SECTION
 - ✓ COMPRESSION/COOLING UNIT FOR OXY-FLUE GASES
 - ✓ CHEMICAL ABSORPTION UNIT FOR AIR-FLUE GASES (PHASE II)
- D. O₂ SUPPLY SECTION
 - ✓ CRYOGENIC STORAGE + VAPORIZING SYSTEM
 - ✓ AIR SEPARATION UNIT (PHASE II)

Coal preparation section "Indirect" combustion

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

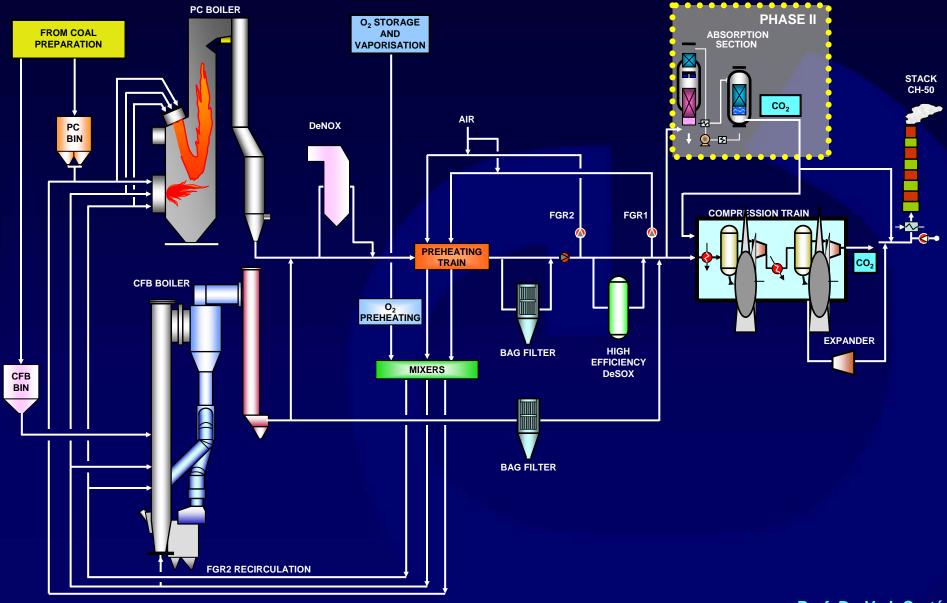
Design coals

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

Proximate analysis as received (wet)	Anthracite I	Bituminous Coal	Sub- Bituminous Coal	Pet Coke
Moisture (%)	8.8	7.5	26.8	6.8
Volatiles (%)	6.5	22.3	36.8	10.6
Ash (%)	32.0	13.8	1.5	0.8
Fixed carbon (%)	52.7	56.4	34.9	81.8
Ultimate analysis as received (wet)				
C (%)	52.59	66.91	52.66	79.82
Н (%)	1.68	3.37	3.76	3.93
N (%)	0.88	1.65	0.66	1.78
S (%)	1.07	0.38	0.09	5.11
O (%)	2.95	6.34	14.59	1.70
High heat value				
H.H.V. (kcal/kg) as received (wet)	4888	6550	4941	7785

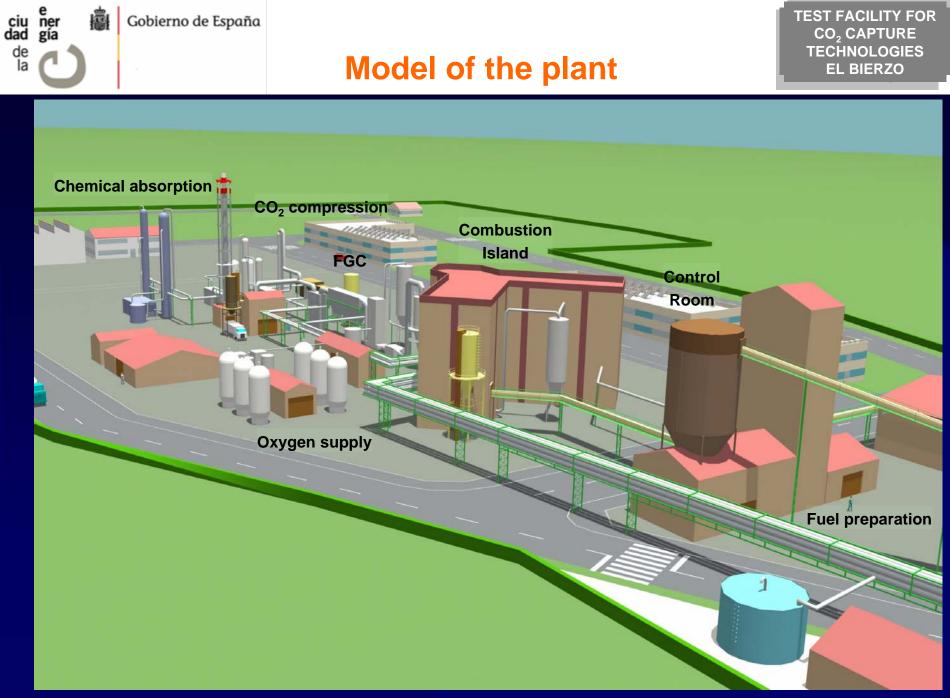
PC boiler (by FW) main characteristics

Height (m)	19.5		
Wide(m)	4.3		
Depth (m)	2.4		
Burners	2 vertical + 2 horizontal		
Heat transfer system	Evaporator + drum + superheater + economizer		
Design data (for Cupo Bierzo Coal)	Air mode	Oxymode	
Thermal Power (MW HHV)	20	20	
Air flow (kg/h)	27068	0	
Oxygen flow (kg/h)	0	7880	
Recirculation gas (kg/h)	0	19757	
Exhaust gas (kg/h)	29213	27814	
Exhaust gas temperature (°C)	350	350	
Coal consumption (kg/h)	3278	3278	
Steam generation (t/h)	32	32	
Steam Pressure (bar) / Temperature (°C)	30 / 250		



CFB (by FW) main characteristics

Height (m)	21			
Wide(m)	2.7			
Depth (m)	2.4			
Heat transfer system	Evaporator + drum + intrex + superheater + economizer			
Design data (for Cupo Bierzo Coal)	Air mode Oxy mode			
Thermal Power (MW HHV)	14	16	30	
Air flow (kg/h)	21240	0	0	
Oxygen flow (kg/h)	0	4748	8775	
Recirculation gas (kg/h)	0	24327	25532	
Exhaust gas (kg/h)	23040	29520	28800	
Exhaust gas temperature (°C)	346	358	355	
Coal consumption (kg/h)	2703	2846	5469	
Limestone consumption (kg/h)	278	354	720	
Steam generation (t/h)	21.6	22.7	44.6	
Steam Pressure (bar) / Temperature (°C)	30 / 250			



Simplified process diagram

Virtual walkthrough

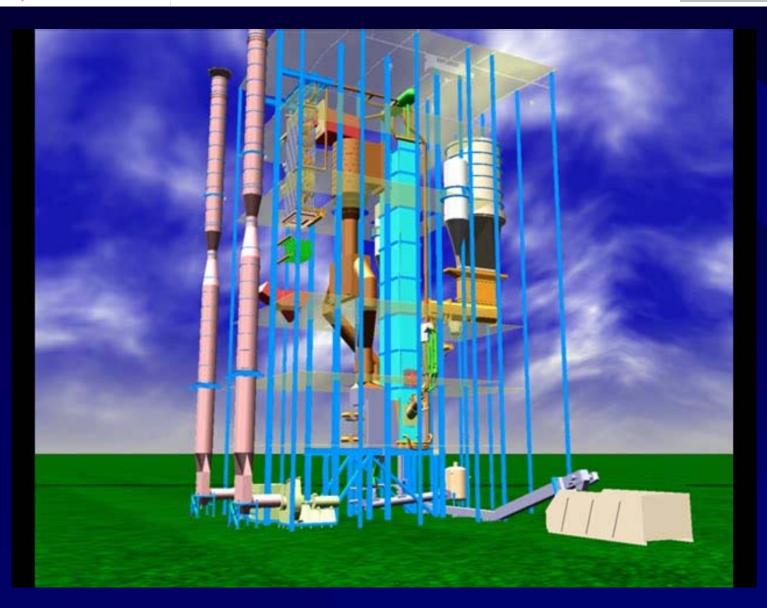
Combustion island and O₂ supply

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

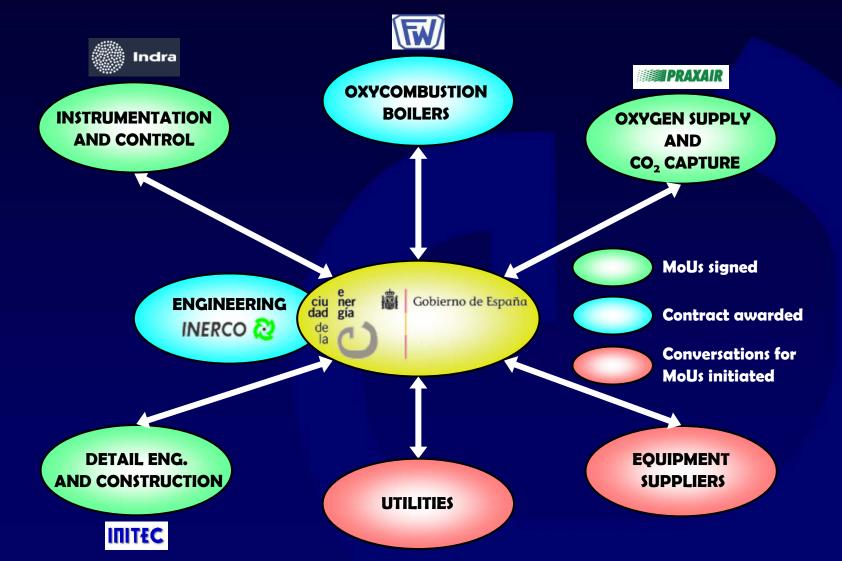
Flue gas cleaning section

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

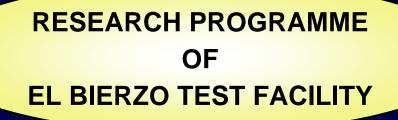
CO₂ capture section


TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

CFB by Foster Wheeler


TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

Project Structure



Research program

The R&D programme structure

TEST FACILITY FOR CO₂ CAPTURE TECHNOLOGIES EL BIERZO

SCIENTIFIC PROGRAMME EXPERIMENTAL PROGRAMME

PROMOTED BY CIUDEN AND PERFORMED BY RELEVANT SPANISH RESEARCH INSTITUTIONS PERFORMED AT THE FACILITY IN COOPERATION WITH RESEARCH INSTITUTIONS, TECHNOLOGY PROVIDERS AND TECHNOLOGY USERS

Experimental Programme

✓ PROCESS PERFORMANCE IN CONTINUOUS, PART-LOAD OPERATION AND LOAD FOLLOW-UP

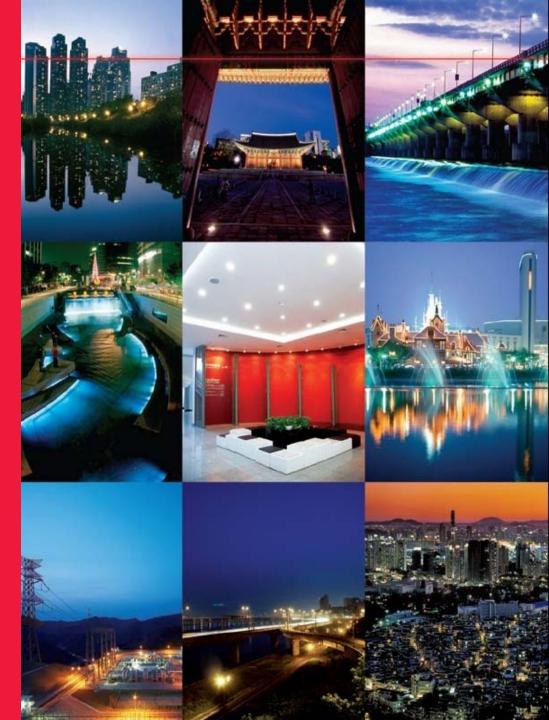
✓ VALIDATION OF ENGINEERING AND DESIGN TOOLS AND PROCESS MODELS FOR SCALE-UP

Time schedule

Time schedule

		2007	2008	2009	2010
1	BASIC ENGINEERING				
2	SPECIFICATION, PROC. AND DETAIL ENGINEERING OF MAIN UNITS				
3	OFF-SITES DETAIL ENGINEERING				
4	PERMITTING				
5	CONSTRUCTION				
6	OPERATION PERMITS				

Gobierno de España



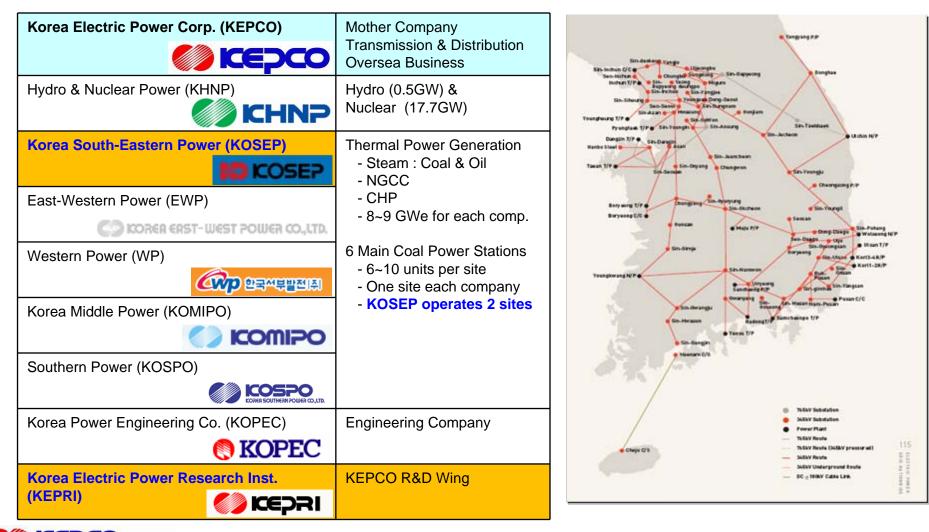
TEST FACILITY FOR ADVANCED TECHNOLOGIES FOR CO₂ CAPTURE IN COAL POWER GENERATION UPDATE AND UPGRADE

Prof. Dr. Vicente J. Cortés **CO₂ Capture Program Director CIUDEN, SPAIN**

Oxy-Combustion Research Activities in Korea –

An Overview to the Youngdong 100MWe Oxy-Combustion Power Station Project Demonstration

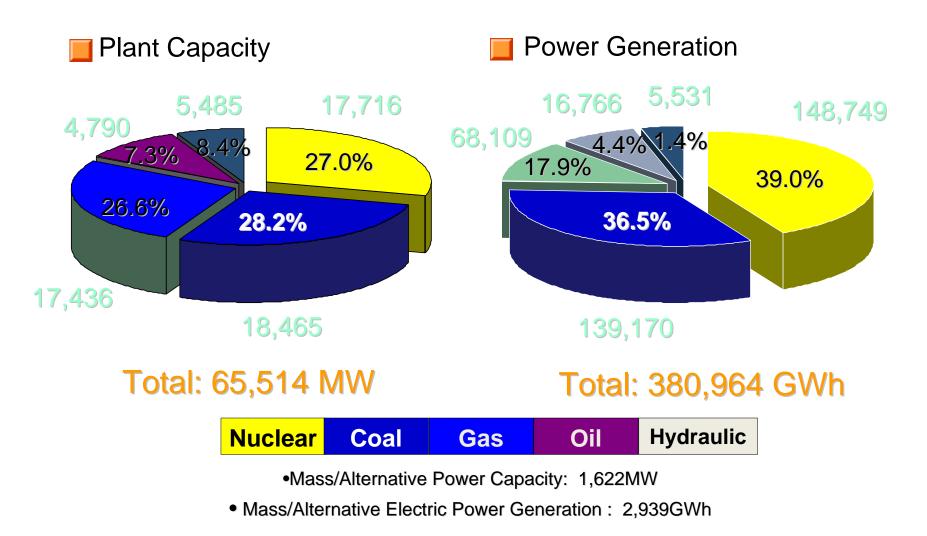
Oxy-Combustion Research Activities in Korea


An Overview to the Youngdong 100MWe Oxy-Combustion Power Station Project Demonstration

Jong Soo Kim¹, Sangmin Choi², Youngju Kim³ and Sung Chul Kim^{3*}

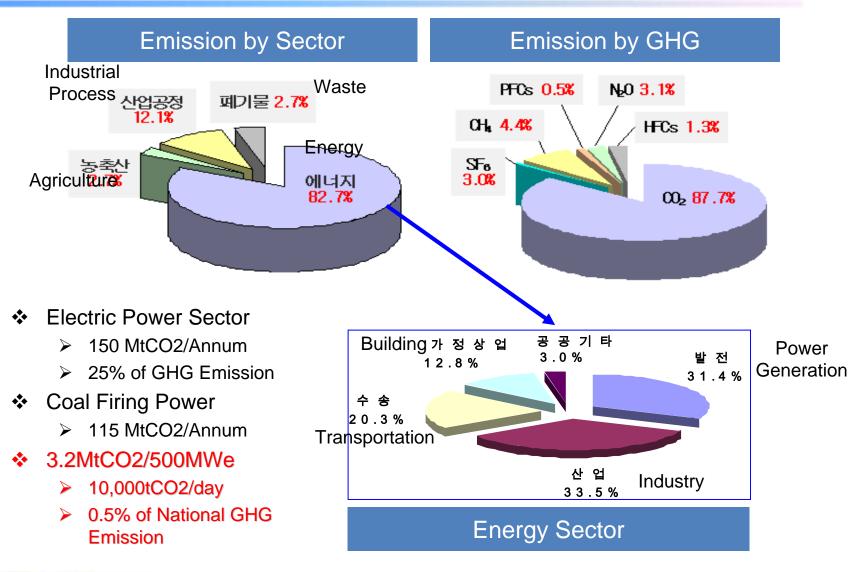
Korea Institute of Science and Technology
 Korea Advanced Institute of Science and Technology
 Korea Electric Power Research Institute
 * Project Leader

Electric Power Companies



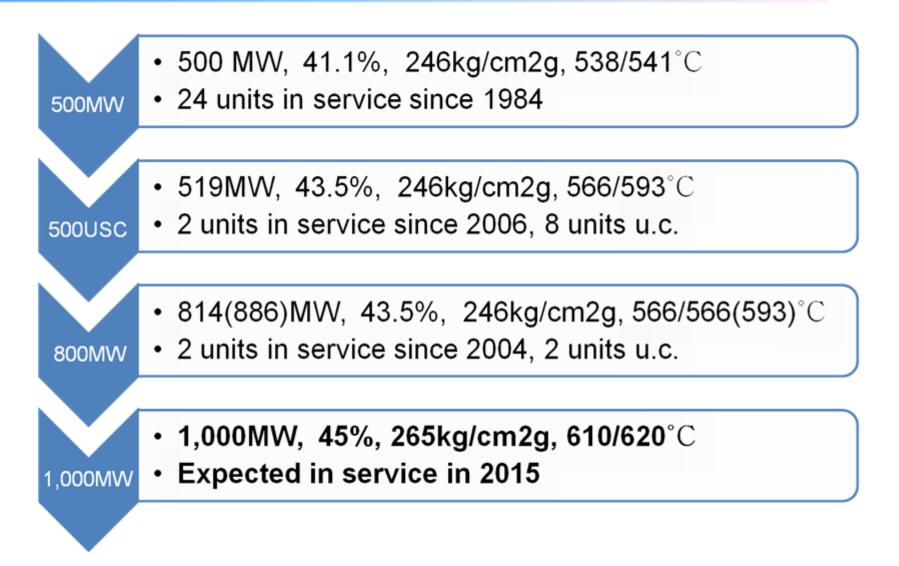
C POWER CORPORATION

Power Capacity & Generation (2006)



GHG Emission in Korea

Key Technology Development in KEPCO


- Nuclear Power Generation
- High Efficiency PC Power Generation
 - USC Power Generation Technology
- CO₂ Capture from Thermal Power Plants
 - Post-Combustion Capture
 - Wet-Scrubbing : Amine Scrubbing (Currently 1TPD)
 - ◆Dry-Scrubbing
 - Pre-Combustion De-Carbonization
 - ♦ IGCC (300MWe) Construction by 2014 : without CO2 Capture
 - Oxy-Fuel Combustion
 - ◆100MWe Demonstration by 2018

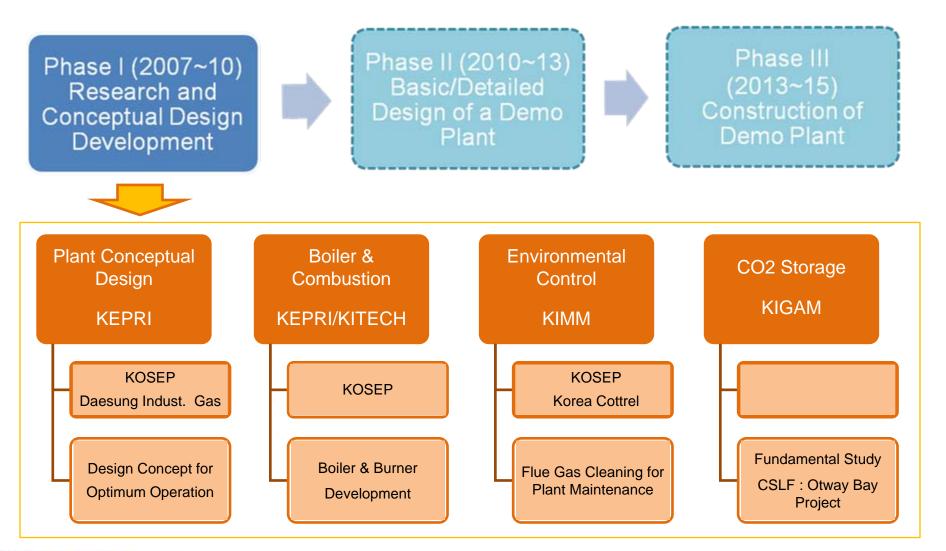
Trend of the Standardized Coal Plants

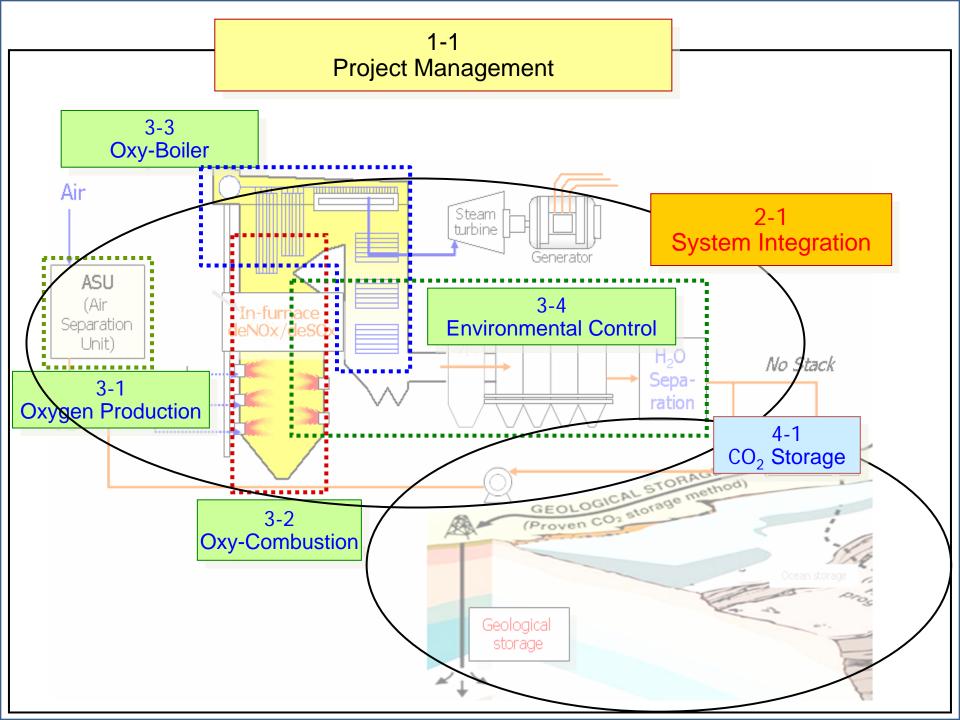
Summary of the Progress- 2007 Korean Oxy-PC Project

- Oxy-Fuel Combustion R&D
 - Started in 2002 for Oxy-NG Combustion in Industrial Furnaces
 - Small Scale Oxy-Coal Combustion R&D from 2006 by CDRS
- New MOCIE Energy R&D Program
 - > 10 New Research Areas Proposed (2006)
 - Planning Writer : J. S. Kim for CCS by Oxy-Combustion
 - ♦ Planning Report Submitted in May 2007.
- National R&D Program Led by the KEPRI group
 - Launched in October 2007
 - Industrial Participants
 - ♦ KOSEP
 - ♦ Daesung Industrial Gas
 - Korea Cottrel
 - Tentative Demonstration Site : Youngdong Power Station Unit #1

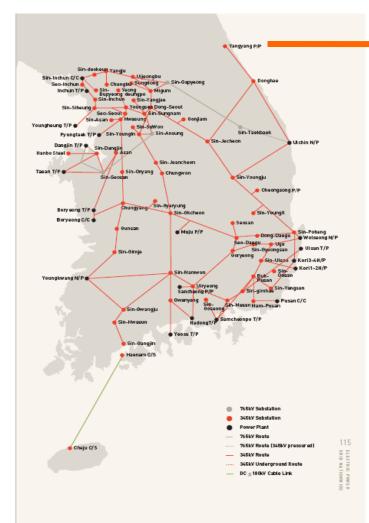
Why Oxy-Fuel ?

Competitive Performance


- Efficiency Penalty : 8% (depending on system configuration)
- Cost of CO₂ Capture : Less than 20€/tCO₂ Possible
- Complete Separation of CO₂ Possible
 - Perhaps Necessary for Deep Cut in CO₂ Emission
- Improved Fuel Flexibility
- Key Technologies Available
 - ➤ Oxygen Production, Combustion, Boiler, ...
- Higher Level of Integration Needed



Oxy-PC Technology Development Plan



Proposed Demonstration Project

- Replacing the Youngdong unit #1
 - Current : 125MWe w. Domestic Anthracite
 - Decommission by 2013
 - Oxy-Fuel Repowering
- 100MWe Class Demonstration
 - Design by 2013
 - Construction by 2015
 - Demonstration : 2016~2018

Youngdong Opportunity

Youngdong Power Station

- ➢ Unit #1 : 125MWe
- ➢ Unit #2 : 200MWe
- Coal Type : Domestic Anthracite (Heavily Subsidized)
- Oxy-Fuel Opportunity @ Youngdong Unit #1
 - Coal Supply for unit #1 : End by 2013
 - MOEnv will not Renew the Environmental Permit for the Current Unit
 - ♦New Unit is Necessary
 - KOSEP Intends to Convert the Unit #1 for Oxy-Fuel Option
 - Coal Type : Sub-Bituminous (Low Sulfur)
 - Optimize the Power Production Cost
 - Almost "Greenfield" Construction

Issue of Fuel Flexibility

Increased Use of Sub-Bituminous Coal in Korea

- Sub-Bituminous : Blending with Bituminous Coal
- > Cheaper
- Higher Moisture, Dust & Volatiles
- Low Ash Fusing Temperature
- ≻ Low S & N
- Advantages of Oxy-Combustion for the Sub-Bituminous

Coal Characteristics	Oxy-Combustion Advantages
Tendency toward Explosion/Fire	Recycled Flue : Inert PC Carrier
High Slagging	Lower Flame Temperature
Low S & N	Simpler Environmental Control

Project Objectives

Demonstration of Oxy-Fuel Operation by 2018

Oxy-Fuel Repowering by 2015

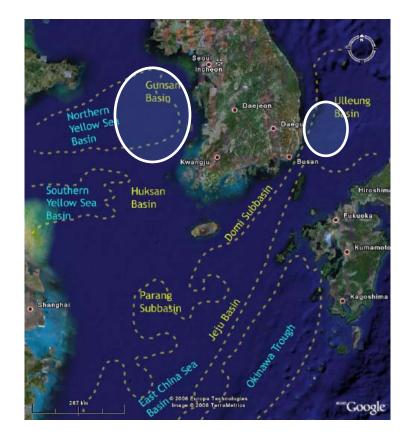
Target Coal Type : Sub-Bituminous

Improved Fuel Flexibility

Optimize the Power Generation Cost

- Minimize the Efficiency Penalty : 8%
- Minimize the Plant & Environmental Cost
 - ♦ No SCR, FGD (Possible ?), Stack
- CO₂ Capture Cost : Less than 20€/tCO₂

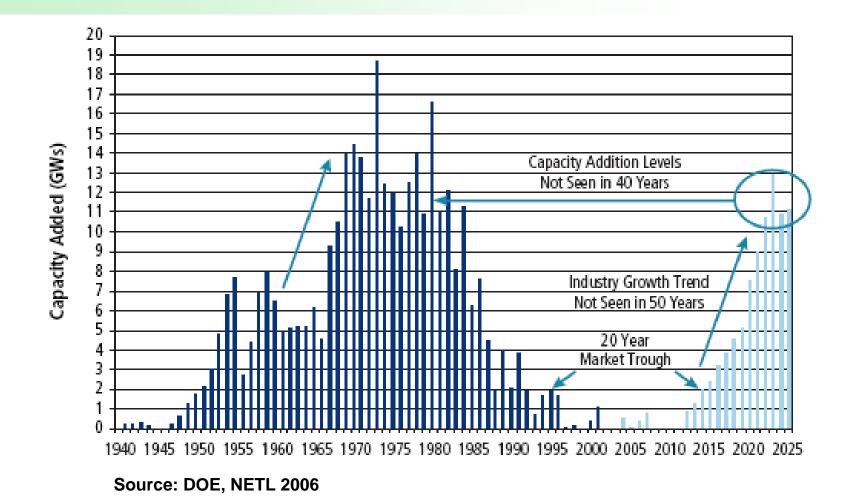
Technological Objectives


- Performance Optimization
 - ➤ Management of Incondensibles (Ar, N₂, O₂, …)
 - Combustion
 - ♦ Low NOx & Excess O₂ Combustion
 - Boiler Start Up : Additional Fuel Saving by Oxy-PC Start Up
 - Boiler Optimization : Capture Ready Possible ?
- Plant & Environmental Cost
 - Bypass SCR & FGD
 - ◆Dry DeSOx Process : Combined with Low S Coal Type & Hybrid EP
- CO₂ Treatment
 - Currently No Full Scale CO₂ Storage Possible
 - Main Concern
 - Post Capture Treatment (Purification & Compression)
 - ♦ Utilization of the Captured CO₂

Future Uncertainties

- Deregulation of the Power Market
 - Need to see how the circumstances unfold
- Increased Fuel Cost
 - Constricted Cash Flow Stream from the Power Companies
- International CCS Regulations
- How to Achieve the Capture Readiness
 - Do we have to go for the direction of CFB ?
- Weak Storage Resources
 - No Confirmed Storage Resources Yet !
 - Possibility in Saline Aquifers
 - West & South-East Coasts

Thank You



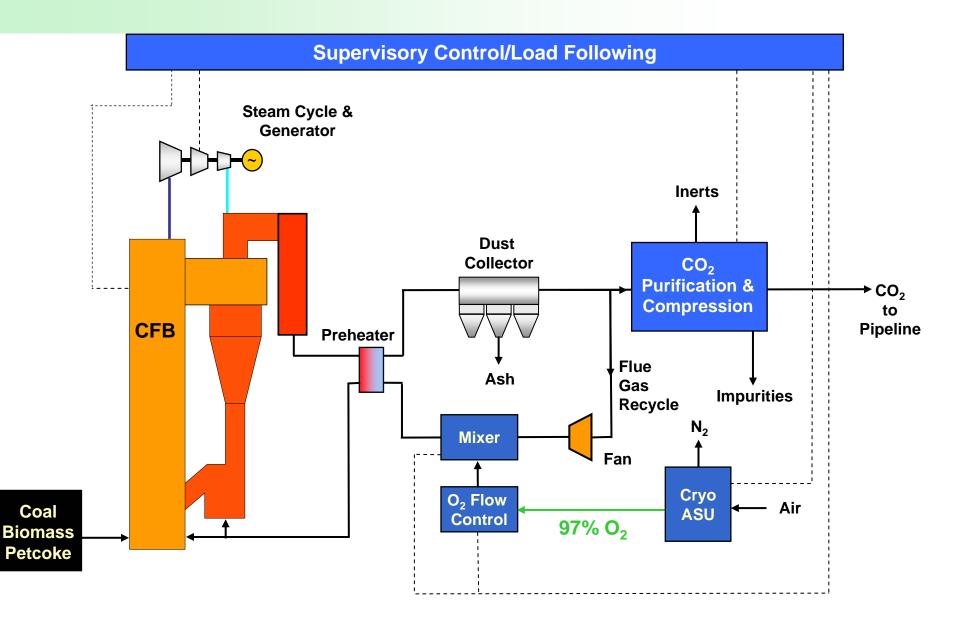
Oxy-Coal Combustion Demonstration Project

Dante Bonaquist, Rick Victor and Minish Shah (Praxair), Horst Hack and Arto Hotta (Foster Wheeler), Dave Leathers (Jamestown BPU) IEAGHG International Oxycombustion Network – 3rd Workshop Yokohama, Japan March 5 – 6, 2008

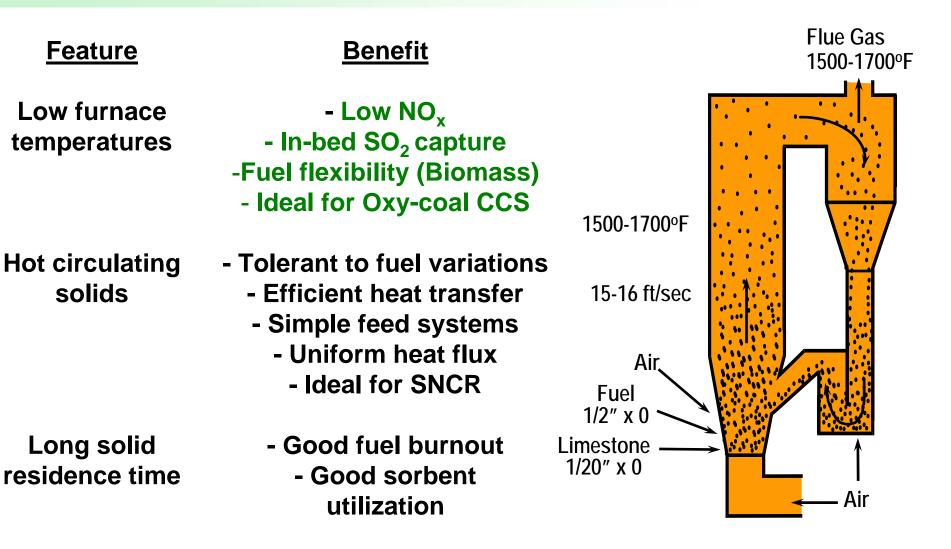
U.S. Coal Capacity and CCS Potential

Up to 100 GW of coal capacity with CCS in next 25 years ASU + CPU potential \$2 - \$3 Bn/yr

Objectives of Demonstration

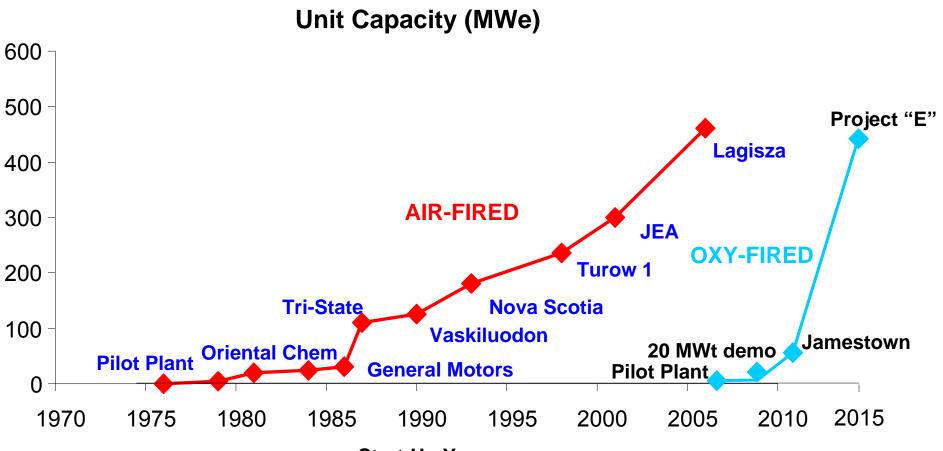


- Demonstrate fully integrated CCS project
- Employ advanced technologies
 - CFB Boiler
 - ASU and CO₂ processing unit
 - System integration
- Prove reliability and availability
- Operate with typical load factor variations
- Learn transient modes of operations


Enable Direct Scale-Up to a Commercial CCS Operation

Oxy-Coal CFB Power Plant

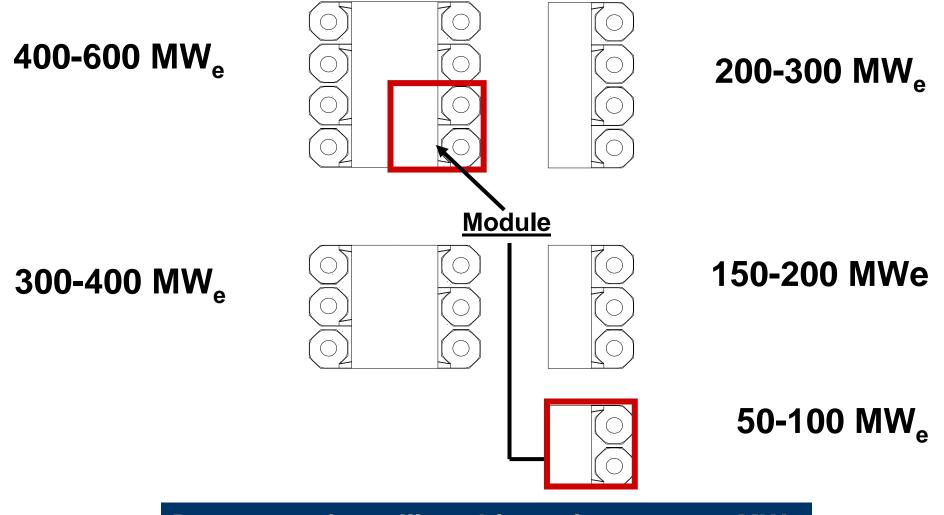
Circulating Fluidized Bed Process Advantages



PRAXAIR

FOSTER WHEELER

Foster Wheeler CFB Experience



Start-Up Year

CFB Process Scale-up and Modularization

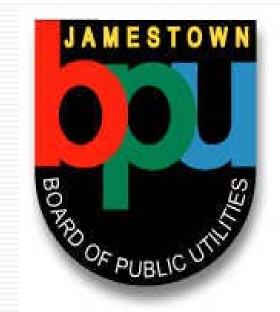
Demonstration will enable scale-up to 600 MWe

Success Factors for Demonstration

- Proximity to a suitable geologic CO₂ storage site
- Advanced coal power plants that capture and store CO₂
 - All plant components are advanced and scalable
 - All learnings applicable to retrofit applications
- Availability of financing for capital investment
 - Base plant investment on a commercial basis
 - CCS investment funded by government
- Project timing on a fast track
 - 2013 start-up
- World class technology and project execution team
 - Boiler island, ASU and CO₂ processing, sequestration & environmental permitting

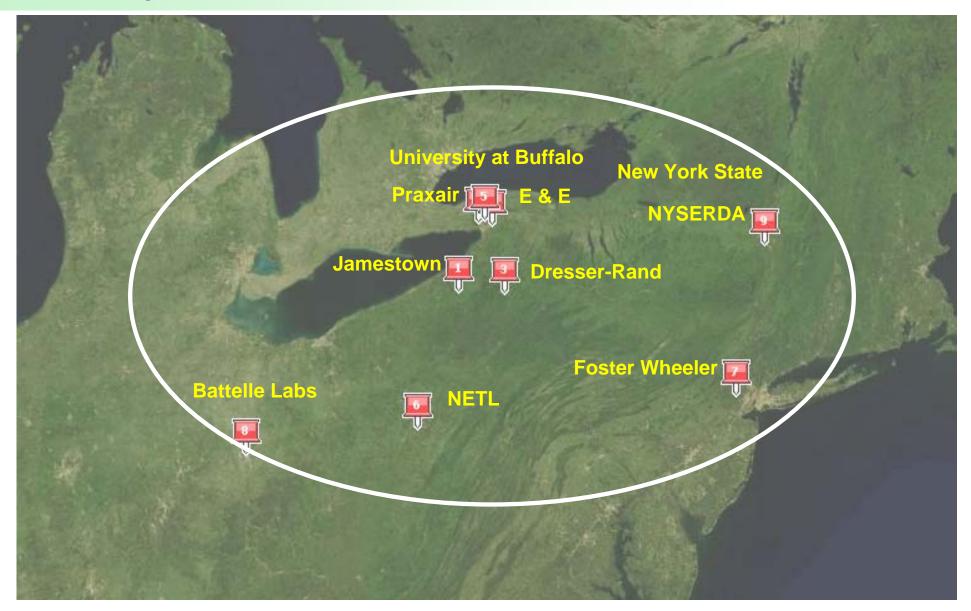
Jamestown BPU Background

- Existing PC plants are reaching the end of their useful life.
- Proposed replacement with CFB boiler
 - SO₂ 94% reduction
 - NO_x 89% reduction
 - Hg 95% reduction
 - CO₂ 20% reduction
 - Ability to fire biomass, petcoke and TDF
- Oxy-fuel combustion significantly enhances environmental performance
 - CO₂ mitigation plan required to obtain permit in NY state

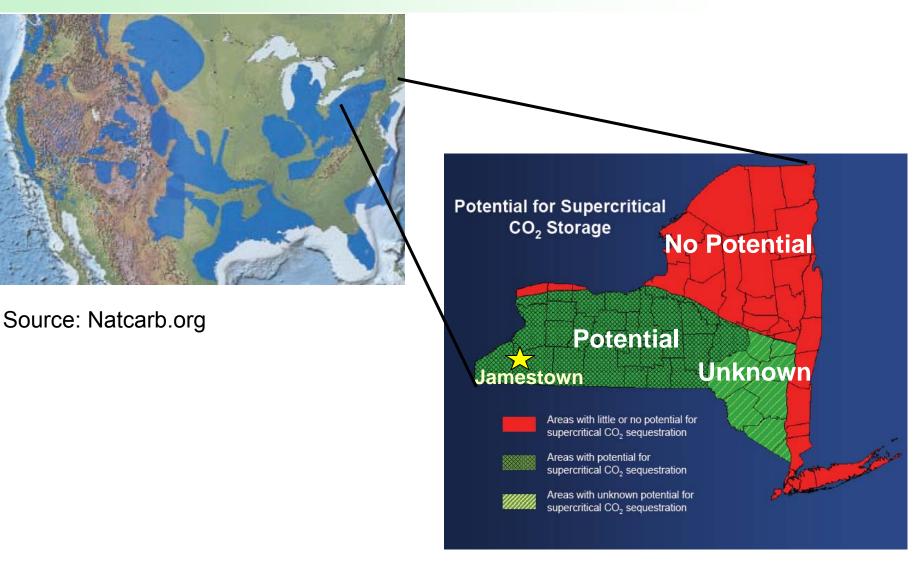


Battelle The Business of Innovation

DRESSER-RAND


Advanced Integrated Dual-Oxidant CFB Power Plant with CCS "Oxy-Coal CFB"

U.S. Oxy-Coal Technology Campus


Jamestown BPU Power Plant Site

Potential CO₂ Storage at Jamestown

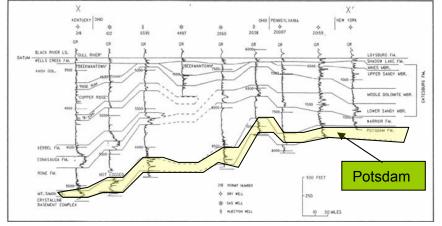
Source: NYSERDA

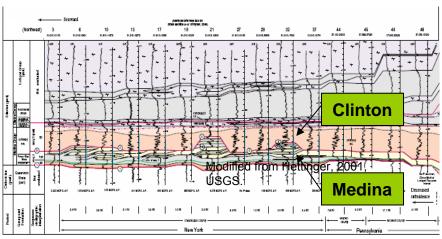
14

Jamestown Area - Preliminary Analysis of Sequestration Targets

Potsdam Sandstone

-The Potsdam Sandstone is the basal sand in SWNY


-Depth of about 7,000 ft


-Thickness ranges from approx. 100-250 ft -Possible seal would be the Utica Shale -Additional storage potential may be present in overlying Theresa Formation carbonates

Clinton-Medina Group

-Commonly produces gas in Chautauqua Co. -Average depth is between 3,000 and 5,000 ft -Thickness ranges from approx. 50-100 feet -Possible seal in shales of the Hamilton Group

NYSERDA Sponsored Study Planned to Identify Well Locations

Source: Battelle

Project Timeline

- Q2 2008 Preliminary feasibility study
- Q4 2008 NYSERDA feasibility study for sequestration
- Q1 2009 Funding for the project secured
- Q1 2010 Detailed design completed
- Q1 2010 Begin Oxy-coal CFB construction
- Q1 2013 Oxy-coal CFB Start-up

Challenges

- EPA regulatory framework for CCS
 - Air and CO₂ injection permits
- CO₂ liability
- Cost of operating CCS beyond demonstration
- Value for CO₂
- Government budget to support CCS demonstration

- 50 MWe demonstration project planned to enable direct scale-up to a commercial unit
- Jamestown BPU project selected for demonstration
- Significant challenges ahead
- Technology roadmap is clear
- The commercial roadmap is getting clearer
- Regulatory roadmap will provide clarity

The time is now for fully integrated CCS demonstration