

This document has been prepared for the Executive Committee of the IEA GHG Programme. It is not a publication of the Operating Agent, International Energy Agency or its Secretariat.

INTERNATIONAL ENERGY AGENCY

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Cooperation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 26 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. The IEA Greenhouse Gas R&D Programme is one of these Implementing Agreements.

DISCLAIMER

This report was prepared as an account of work sponsored by the IEA Greenhouse Gas R&D Programme. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEA Greenhouse Gas R&D Programme, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed or represents that its use would not infringe privately owned rights, including any party's intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply an endorsement, recommendation or any favouring of such products.

ACKNOWLEDGEMENTS AND CITATIONS

The IEA Greenhouse Gas R&D Programme supports and operates a number of international research networks. This report presents the results of a workshop held by one of these international research networks. The report was prepared by the IEA Greenhouse Gas R&D Programme as a record of the events of that workshop.

The international research network on CO_2 Capture is organised by IEA Greenhouse Gas R&D Programme. The organisers acknowledge the financial support provided by VEO, Federal Ministry for Transport and Technology and Wien Energie for this meeting and the hospitality provided by the hosts EVN.

The coordinator of this network is Dr John Topper, IEA Greenhouse Gas R&D Programme.

The report should be cited in literature as follows:

IEA Greenhouse Gas R&D Programme (IEA GHG), "International Network for CO_2 Capture: Report on 11^{th} Workshop, 2008/07, July 2008".

Further information on the network activities or copies of the report can be obtained by contacting the IEA Greenhouse Gas R&D Programme at:

IEA Greenhouse Gas R&D Programme, Orchard Business Centre, Stoke Orchard, Cheltenham Glos. GL52 7RZ. UK Tel: +44 1242 680753 Fax: +44 1242 680758 E-mail: mail@ieaghg.org www.ieagreen.org.uk

INTERNATIONAL NETWORK FOR CO₂ CAPTURE: REPORT ON 11th WORKSHOP

(20 - 21 May 2008, EVN, Vienna, Austria)

INTERNATIONAL NETWORK FOR CO₂ CAPTURE: REPORT ON 11th WORKSHOP

(20-21st May 2007, EVN, Maria Enzersdorf, Vienna, Austria)

1. Overview of the network and past workshops

This workshop was the eleventh in a series to discuss co-operation in development of MEA and other solvents and associated techniques to capture CO_2 from power plant flue gases. The previous events were, in Gaithersburg, Calgary, Apeldoorn, Kyoto, Pittsburgh, Trondheim, Vancouver, Austin, Copenhagen, and Lyon. Copies of previous reports after the Apeldoorn meeting are available on CD (contact Sian Twinning, sian@ieaghg.org).

Carbon dioxide capture and storage is now established in OECD countries' energy policies and R&D programmes as a potential contributor to climate mitigation strategies. Post combustion capture allied to improved efficiency power plant looks likely to be a major element for new plant as markets develop. Retrofit to established plant is technically feasible although economically unattractive for ageing, less efficient assets. Since the previous workshop in Lyon, progress has been made with pilot plant work in Europe, Japan, USA, Canada and Australia and announcements of new investigations and partnerships. Until the end of 2007 no announcements had been made about commercial sized demonstration plant. That changed with the announcement by the UK Government that it was establishing a competition to build a post combustion demonstration unit (could also be based on oxy fuel if using a retrofit design). Key features of the announcement are:-

- At least 300MWe in unit size
- Based on use of coal (with efficient supercritical technology implicit)
- Demonstrate the full carbon capture and storage (CCS) chain by 2014
- Dissemination of results/progress to other parts of the world (with major coal using developing countries in mind) will be an important part of the operation

At the time of the workshop in Vienna, 9 organisations had submitted expressions of interest in participation and at the time of writing this covering report, this had been reduced to 4. In the interim Vattenfall has also announced that it is undertaking investigations at the Vested aquifer, located about 30 km from the Nordjyllands power station in Denmark where it is intending to extend the plant. Sanction to proceed or not is expected in 2010. In USA it has become apparent that permissions to proceed with unabated coal plant are becoming almost impossible to obtain and there has been a number of announcements of intentions to build with CCS based on post combustion capture – in some cases associated with use of ammonia or chilled ammonia for CO2 capture.

This all amounts to a picture which has transformed the importance of the workshop series. In Calgary in 2001 there was a small group of 23 attendees comprising researchers and potential technology providers. Today we are dealing with operations at an increasing scale and with increasing confidence in the application of what might be termed 1st generation technology, as indicated by the many representatives from power generators at the later workshops. The registrations for this workshop in Vienna had to be closed before the meeting to keep within room limits of around 100 people.

This report contains presentations on a variety of developments including up dates on amines, use of ammonia as a solvent, and for the first time a panel session looking at potential future technologies, as the IEA Greenhouse Gas R&D Programme intends to keep the network focused on pre-commercial activity. There are many new lines of inquiry developing as research funding builds up and as the amine and ammonia based techniques move towards commercialisation.

2. Vienna, EVN workshop

The delegate list is appended as Annex I. There were 100 pre-registrants (including local EVN staff and Sponsors) and 16 countries were represented. Presentations are listed in section 3 below.

3. **Presentations by Attendees**

Presentations were made as listed below. Copies of slides appear in Annex II.

1	John Topper, for the IEA GHG R&D	Introduction to 11th Workshop						
	Programme, UK							
	Fundamental Studies	Chair: Prof Paitoon Tontiwachwuthikul,						
		Univ of Regina, Canada						
2	Thermal and Oxidative Degradation of	Jason Davis, University of Texas, USA						
	Amines							
3	Aqueous Concentrated Piperazine – a	Stephanie Freeman, University of Texas,						
	Fast, Stable, Effective Solvent	USA						
4	Evaluation of Post Combustion Capture	Jochen Oexmann, Hamburg Univ of						
	using Piperazine Promoted Potassium	Technology, Germany						
	Carbonate in a Coal Fired Power Station							
	More Fundamental Studies	Chair: Dr Paul Feron, CSIRO, Australia						
5	Liquid Speciation and reaction kinetics	Ardi Hartono, NTNU, Norway						
	for CO2 Aqueous polyamine (DETO)							
	solution							
6	Ebulliometric determination of Vapour-	Inna Kim, NTNU, Norway						
	Liquid Equilibria for pure alkanolamines							
	and their aqueous solutions							
7	Mass transfer in a small scale Flue Gas	Dr Patrick Huttenhuis, Procede Gas						

	Absorber; Experimental Modelling	Treating, the Netherlands						
	Studies and Programmes	Chair: Prof Alfons Kather, Hamburg						
	Studies and Frogrammes	Univ of Technology, Germany						
8	Update on Activities at and by Univ	Prof Paitoon Tontiwachwuthikul, Univ						
U	Regina	Regina, Canada						
9	CCS at IFP: from MEA to New	Raynal Ludovic, IFP, France						
-	processes for Post Combustion Capture							
10	Post Combustion work at CSIRO and in	Dr Paul Feron, CSIRO, Australia						
	Australia							
	CASTOR and Capture Ready	Chair: Prof Hallvard Svendsen, NTNU, Norway						
11	Results from CASTOR Project	Jan Hopman, TNO, Netherlands						
12	Performance Review of Castor Pilot Plant at Esbjerg	Jacob Knudsen, Dong Energy, Denmark						
13	The Concept of Capture Ready and its	Jon Gibbins and Matthew Lucquiard,						
	Application to Post Combustion Capture	Imperial College, UK						
14	Vattenfall's Proposed Demonstration Project at Nordjyllandsvaerket	Ole Biede, Vattenfall, Denmark						
	Ammonia	Chair: George Offen, EPRI, USA						
15	Use of Chilled Ammonia	Brice Freeman, EPRI, USA						
	Developments by Technology	Chair: Dr Jon Gibbins, Imperial College,						
	Providers	UK						
16	Activities by Babcock and Wilcox	Lisa Rumpf, B&W, USA						
17	Latest Developments by Fluor	Satish Reddy, Fluor, USA						
18	Cansolv Activities	John Sarlis, Cansolv, Canada						
19	Coal Fired Plant and Multi-Pollutant	Masaki Iijima, MHI, Japan						
	Control							
20	Panel Session: What Technical and	Chair John Topper for IEA GHG R&D						
20	I and Session. What reclinical and							
-	Technology Developments are Next	Programme						
20 20a		Programme Dr Robert Davidson; IEA Clean Coal						
20a	Technology Developments are Next Introductory Presentation	Programme Dr Robert Davidson; IEA Clean Coal Centre						
20a 20b	Technology Developments are Next	Programme Dr Robert Davidson; IEA Clean Coal Centre Hallvard Svendsen,						
20a 20b 20c	Technology Developments are Next Introductory Presentation	Programme Dr Robert Davidson; IEA Clean Coal Centre Hallvard Svendsen, Alfons Kather						
20a 20b 20c 20d	Technology Developments are Next Introductory Presentation	Programme Dr Robert Davidson; IEA Clean Coal Centre Hallvard Svendsen, Alfons Kather Jon Gibbins						
20a 20b 20c	Technology Developments are Next Introductory Presentation	Programme Dr Robert Davidson; IEA Clean Coal Centre Hallvard Svendsen, Alfons Kather						

4. Next Meeting(s)

The 12th Network meeting will be at the International Test Centre at the University of Regina in Canada, currently scheduled for end of September 2009.

5. Thanks and Acknowledgements

All participants wish to thank Dr Adolf Aumueller of EVN and his staff, Martin Burboek in particular, for all their hard work in providing the meeting place and facilities, coordinating the event and the visit to the biomass gasification research plant visit on the afternoon of the second day. Also to the Sponsors for the splendid dinner on the intermediate evening, the lunches and coffee breaks. They were Wien Energie, Verband der Elektritzitatsunternehmen Osterreichs and the Federal Ministry for Transport Innovation and Technology.

Paitoon Tontiwachwuthikul, Paul Feron, Alfons Kather, Hallvard Svendsen, George Offen, Jon Gibbins are all thanked for Chairing various sessions.

6. Contacting the Co-ordinator

The IEA Greenhouse Gas R&D Programme co-ordinates the development of this network and arranges the workshops.

Queries about or copies of this report can be obtained by contacting:-

John Topper <u>john.topper@iea-coal.org.uk</u> or Sian Twinning <u>sian@ieaghg.org</u> or via the "feedback" facility in the IEA GHG website's home page <u>http://www.ieagreen.org.uk</u>

Annex 1 - 11th International CO₂ Capture Network Meeting Attendees

Mr Jim Craigen Mr Guenter Gronald	ACARP/COAL21
Ms Lisa Rimpf	Austrian Energy & Environment AG & CoKG Babcock & Wilcox Power Generation Group
Mr Hugo Rafael Garcia Andarcia	BASE SE
Mr Harvey Wen	Bechtel Corp.
Mr Alfred Maeir	BMWA
Mr John Sarlis	Cansolv Technologies Inc.
Mr Devin Shaw	Cansolv Technologies Inc.
Dr Paul Feron	CSIRO
Mr Kaare Helle	DNV
Mr Jacob Nygaard Knudsen	DONG Energy
Mr Willy van Well	DONG Energy
Mr Poul-Jacob Vilhelmsen	DONG Energy Power
Mr Jonas Alin	E.ON Engineering
Mr Bernd Schallert	E.ON Engineering GmbH
Mr Nick Booth	E.ON Engineering UK
Dr Tom Dalziel	E.ON UK
Mr Mohamed Kanniche	EDF R&D
Dr Abhoyjit Bhown	Electric Power Research Institute
Mrs M.L Thielens	Electrabel
Dr Sven Unterberger	EnBW Kraftwerke AG
Miss Angela Mangiaracina	Enel Serearch and exsperimentation
Dr Moetaz Attalla	Energy Technology
Mr Brice Freeman	EPRI
Dr George Offen	EPRI
Mr Martin Burböck	EVN AG
Dr Gerald Kinger	EVN AG
Mr Franz Klemm	EVN AG
Dr Adolf Amüller	EVN AVG
Dr Satish Reddy	Fluor Corp
Mr Jochen Oexmann	Hamburg University of Technology
Mr Alfons Kather	Hamburg University of Technology
Mr Sebastian Linnenberg	Hamburg University of Technology (TUHH)
Rui Sun	HIT
Dr Christian Bergins	Hitachi Power Europe GmbH
Dr Arthur Heberle	Hitachi Power Europe GmbH
Mr Robert Davidson	IEA Clean Coal Centre
Dr John Topper	IEA GHG
Mr Stanley Santos	IEA Greenhouse Gas R&D Programme
Dr PIERRE-LOUIS CARRETTE	IFP
Mr Marc Jacquin	IFP
Dr Ludovic RAYNAL	IFP

Dr Jon Gibbins Ms Hannah Chalmers Mr Mathieu Lucquiaud Mr Nial MacDowell Dr Manoj Nagvekar Dr Jae-Goo Shim Mr Torsten Stoffregen Mr Masaki Iijima Mr Nobuo Imai Dr George Peridas Mr Ardi Hartono Mrs Inna Kim Mr Hallvard F. Svendsen Dr Namat Abu Al-Soof Mr Brian McCain Dr Peter W.J. Derks Mr Patrick, J.G. Huttenhuis Mr Nick, A.M. Ten Asbroek Mr Geert, F. Versteeg Dr Laurent NORMAND Dr Kazuya Goto Dr John Sidders Mr Yohei Tsujimoto Mr Yohei Tsujimoto Mr Mark Claessen Mr Jiri van Straelen Dr Vladimir Danov Dr Karl Anders Hoff Dr Thor Mejdell Dr Gelein De Koeijer Mr Bart Vandeputte Mr Cyril THEBAULT Mr Jason Davis Ms Stephanie Freeman Mr Jan Hopman Mr Kiyoshi Miyaike Mr Yukio Ohashi Dr Claude PREBENDE Dr Shujuan Wang Mr Kevin Brechtel Mrs Paula Galindo Cifre Mrs Elizabeth Heischkamp Prof Christopher Rayner Mr David Wappel Dr Paitoon Tontiwachwuthikul Prof Markus Haider

Imperial College Imperial College London Imperial College London Imperial College London KBR Korea Electric Power Research Institute Linde-KCA-Dresden GmbH MHI Mitsubishi Heavy Industries Europe NRDC NTNU NTNU NTNU OPEC **PB** Power Procede Gas Treating Procede Gas Treating Procede Gas Treating Procede Group BV PROSERNAT Research Institute of Innovative Technology for the Earth (RITE) **RWE Npower PLC** Sanki Engineering Co., Ltd. Sanki Engineering Co., Ltd. Shell Global Solutions Shell Global Solutions Siemens AG SINTEF Materials and Chemistry SINTEF Materials and Chemistry StatoilHydro Taminco The CO2 European Test Centre Mongstad The University of Texas at Austin The University of Texas at Austin TNO Toshiba **Toshiba** Corporation TOTAL **Tsinghua University** Universität Stuttgart - Institute of Process Engineering and Power Plant Universität Stuttgart - Institute of Process Engineering and Power Plant University of Duisburg-Essen, LUAT University of Leeds University of Leoben University of Regina University of Vienna

Prof Albert Hackl Prof Andreas Werner Mr Wilmersdorf Mr Ole Biede Mr Marius Noer Mr Moritz Köpcke University of Vienna University of Vienna University of Vienna Vattenfall A/S Vattenfall A/S Vattenfall Research and Development AB

11th International Post-Combustion CO₂ Capture Network Meeting

20th-21st May 2008 EVN, Vienna, Austria

Organised by

IEA Greenhouse Gas R&D Programme and EVN

Sponsored by Wien Energie VEO Federal Ministry for Transport, Innovation and Technology

VERBAND DER ELEKTRIZITÄTSUNTERNEHMEN ÖSTERREICHS

20th May 2008 Day 1

08.00 Delegates meet in lobby of Intercity Hotel for bus pick up and transfer 08.15 Delegates meet in lobby of Hotel Marriot for bus pick up and transfer

09.00 Session 1 - Introduction

Welcome: Austrian Ministry Official

Welcome: Dr Adolf Aumueller on behalf of EVN and the Sponsors

Welcome: Dr John Topper on behalf of IEA Greenhouse Gas R&D PRogramme

Session 2- Fundamental Studies - Chair Prof Paitoon Tontiwachwuthikul, U of Regina, Canada

09.30 to 09.55 Thermal and Oxidative Degradation of Amines: Jason Davis, University of Texas, USA

- 09.55 to 10.20 Aqueous Concentrated Piperazine a Fast, Stable and Effective Solvent: Stephanie Freeman, University of Texas, USA
- 10.20 to 10.45 Evaluation of Post Combustion Capture using Piperazine Promoted Potassium Carbonate in a Coal Fired Power Station: Jochen Oexmann, Hamburg University of Technology, Germany

10.45 to 11.15 Break

Session 2 - More Fundamental Studies - Chair Paul Feron, CSIRO, Australia

- 11.15 to 11.40 Liquid speciation and reaction kinetics for CO2 in aquoeus polyamine (DETA) solution: Ardi Hartono, NTNU, Norway
- 11.40 to 12.05 Ebulliometric determination of Vapour-Liquid equilibria for pure alkanolamines and their aqueous solutions; Inna Kim, NTNU, Norway
- 12.05 to 12.30 Mass Transfer in a Small scale Flue Gas Absorber, Experimental Modelling: Dr. Patrick Huttenhuis, Procede Gas Treating, The Netherlands

12.30 to 13.45 Lunch followed by Group Photograph

Session 3-Studies and Programmes - Chair Prof Alfons Kather, Hamburg University, Germany

- 13.45 to 14.05 Update on Activities at and by University of Regina: Prof. Paitoon Tontiwachwuthikul, University of Regina Canada
- 14.05 to 14.30 CCS at IFP: From MEA to New Processes for Post Combustion Capture: Raynal Ludovic, IFP, France

14.30 to 14.55 Post Combustion Work at CSIRO and in Australia: Dr. Paul Feron, CSIRO, Australia

14.55 to 15.30 Break

Session 4—CASTOR and Capture Ready- Chair Prof. Hallvard Svendsen, NTNU, Norway

- 15.30 to 15.55 Results from CASTOR project: Jan Hopman, TNO, The Netherlands
- 15.55 to 16.20 Performance Review of CASTOR Pilot Plant at Esbjerg: Jacob Knudsen, Dong Energy, Denmark
- 16.20 to 16.45 Studies on the Concept of Capture Ready and its Application to Post Combustion Capture: Jon Gibbins and Mattew Lucquiard, Imperial college, UK
- 16.45 to 16.55 Vattenfall's Demo project at Nordjyllandsværket: Ole Biede, Vattenfall, Denmark
- 16.55 Wrap Up Day 1 by Dr. John Topper

Close Day 1

17.00 Bus Transfer to Schottenheuriger at nearby Maria Enzersdorf for Dinner

21st May 2007 Day 2

08.00 Delegates meet in lobby of Intercity Hotel for bus pick up and transfer 08.15 Delegates meet in lobby of Hotel Marriot for bus pick up and transfer

Session 5 - Ammonia Chair George Offen, EPRI, USA

09.00 to 09.25 Update on Use of Chilled Ammonia: Brice Freeman, EPRI, USA

09.25 to 09.50 Use of Ammonia Based Processes with Coal Fired Plant: Frank Alix, Powerspan, USA

Session 6 – Developments by Technology Providers- Chair Dr. Jon Gibbins, Imperial College, UK

09.50 to 10.15 Activities by Babcock & Wilcox: Lisa Rumpf, B&W, USA

10.15 to 10.40 Latest Developments by Fluor: Satish Reddy, Fluor, USA

10.40 to 11.10 Break

11.10 to 11.35 Cansolv Activities: Colin Ryan / Devin Shaw, Cansolv, Canada

11.35 to 12.00 Coal Fired Pilot Plant and Multipollutant Control: Masaki lijima, MHI, Japan

Panel Session: What Technical and Technology Developments are Next: Chair Dr. John Topper

12.00 to 13.00 Robert Davidson IEA CCC will provide a list of potential developments before panel members will each be asked to give a brief personal view followed by audience comment and Questions.

Panel Members: Paul Feron Paitoon Tontiwachwuthikul Hallvard Svendsen Jon Gibbins Alfons Kather

13.00 Wrap Up by Dr. John Topper

13.00 Lunch

14.00 Departure from EVN by Bus 1 back to Hotels and Bus 2 to visit Biomass Gasification Experimental Unit at Durnrohr Coal Fired Power Station (North of Vienna)

FÜR BUNDESMINISTERIUM WIRTSCHAFT UND ARBEIT BUNDES NISTF RIUM FÜR WIR **TSCHAFT** FÜR UND ARBEI RU DESMINIS

ΔFT UND BUNDESMINISTERIUM FÜR IRTSC ARBEIT ERIUM FÜR WIRTSCHAF ARBE BUNDESM FÜR WIRTSCHAFT RIUM UND ARBEIT BUNDESMINISTE WIRTSC ΔF **BUN** DESMINIST FRIUM E ÜR TSCHAF ARBE BUNDESMINI FRIUM FÜR UND S W R

FÜR RIUM SCHA DESM EL NIS ERIIM ΔF SMINIST FÜR SCH E ÜR WIRTSCHAFT IS UND ARBEIT R UNDESMI NISTE **COLAET** BUNDESMINISTERIUM FÜR SCH

CCS

ESMINIS FRIUM FÜR IR SCHA ÜR UND TSCHAF ARRFIT R FÜR BUNDESMINISTERIUM SCH FÜR) ESMINISTERIUM WIRTSCHAFT UND

11th Meeting of the INTERNATIONAL POST-COMBUSTION CO₂ CAPTURE NETWORK

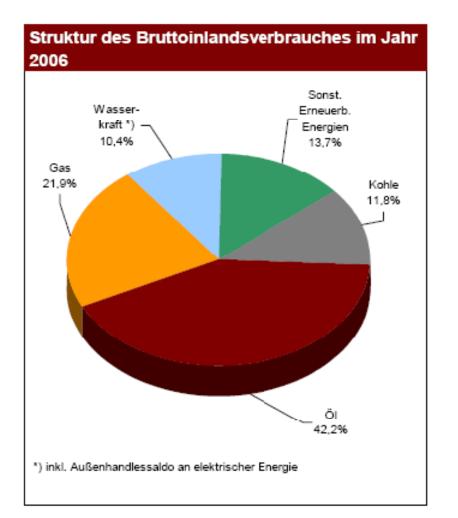
Fundamental remarks, May 20th 2008,

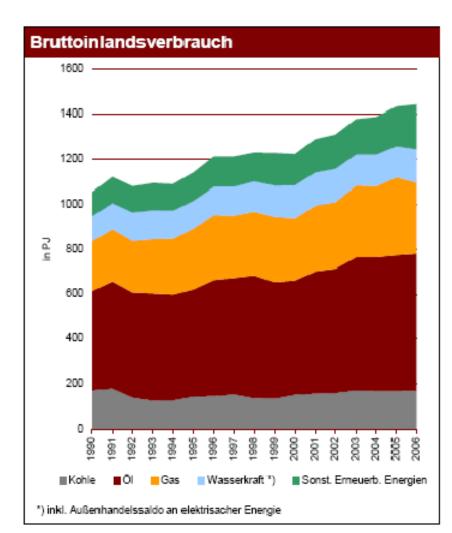
Alfred Maier

www.bmwa.gv.at

EIT

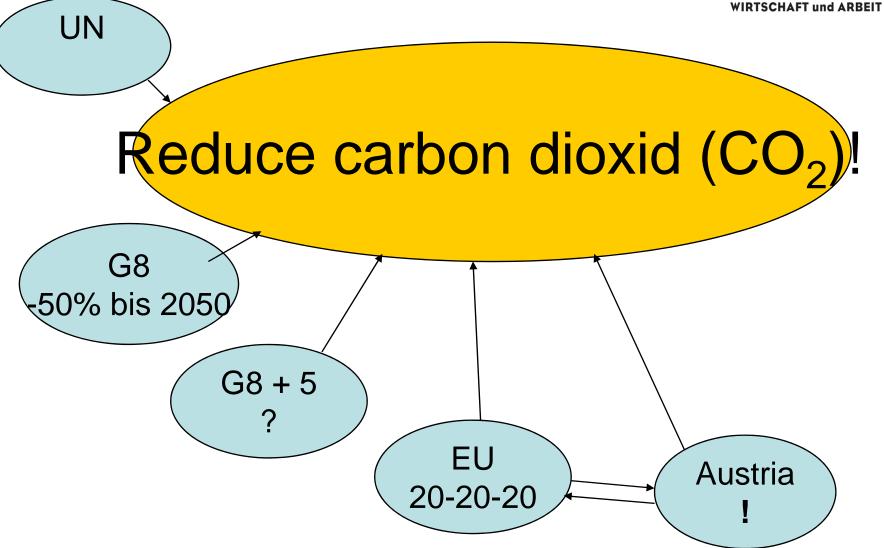
SCH

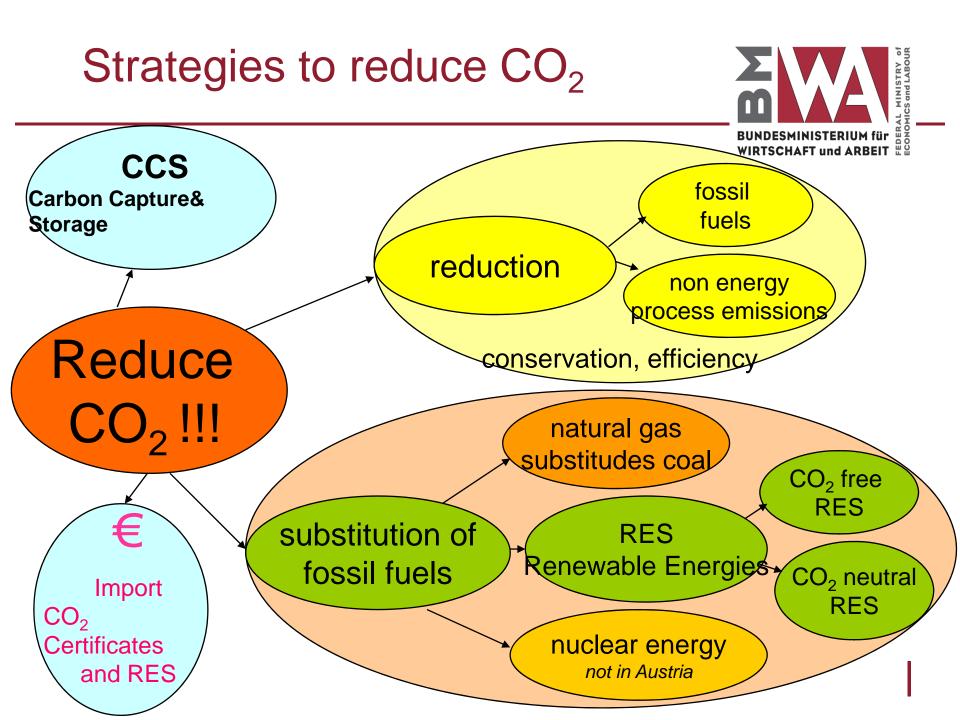

EIT

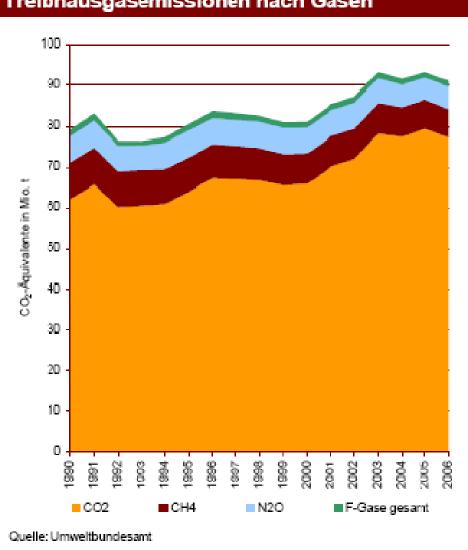

FEDERAL MINISTRY of ECONOMICS and LABOUR

WIRTSCHAFT und ARBEIT

Total Primary Energy Supply Austria

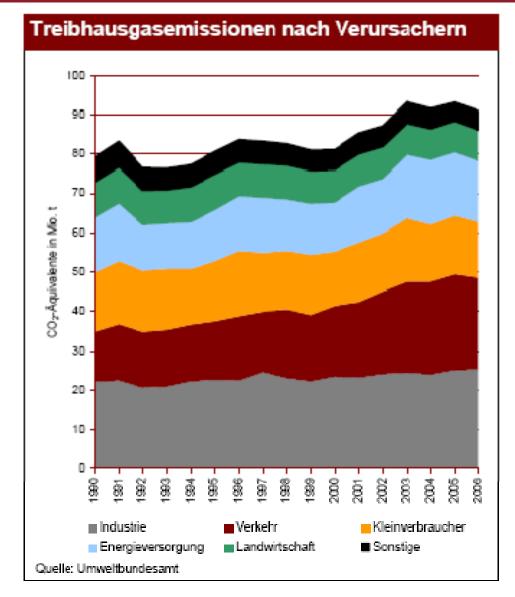






Treibhausgasemissionen nach Gasen; CO2-Äquivalente in Mio. t																	
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
CO ₂	62,1	65,7	60,2	60,5	60,9	64,0	67,4	67,2	66,8	65,5	65,9	70,2	72,1	78,3	77,5	79,5	77,3
CH₄	9,2	9,2	8,9	8,9	8,7	8,5	8,4	8,1	8,0	7,8	7,6	7,5	7,4	7,4	7,2	7,1	6,9
N ₂ O	6,3	6,6	6,2	6,0	6,5	6,6	6,3	6,3	6,4	6,4	6,3	6,2	6,2	6,1	5,4	5,4	5,4
F-Gase gesamt	1,6	1,7	1,2	1,0	1,2	1,5	1,6	1,7	1,4	1,3	1,3	1,4	1,5	1,5	1,6	1,3	1,5
Gesamt	79,2	83,2	76,5	76,4	77,3	80,6	83,7	83,3	82,6	81,0	81,1	85,3	87,2	93,3	91,7	93,3	91,1
Quelle: Umweltbundesamt																	

CO_{2 in Austria}



Treibhausgasemissionen nach Gasen

CO_{2 in Austria}

BUNDESMINISTERIUM FÜR WIRTSCHAFT UND ARBEIT BUNDESMINISTE RIUM FÜR WIRTSCHAFT UND ARBEIT BUNDESMINISTERIUM FÜR WIRTSCH

ΔFT UND ERIUM E R RTSC BU S RBE BU E R RIUM BUNDESMINISTE F. ΪR SCHAF UND Δ R ΕI ΔF IRTSC **BUN** E ÜR BE S UND

RIUM E CH ΔF S **BUN** STE E. ÜR S CHA E RI F CH IIR ΔF

Glück auf!

₹TSCHAFT UND ARBEIT BUNDESMINISTE RBEIT BUNDESMINISTERIUM FÜR WIRTSCH STERIUM FÜR WIRTSCHAFT UND ARBEIT

Π

BUNDESMINISTERIUM für WIRTSCHAFT und ARBEIT

Thank you!

EIT

STE

SCH

EIT

STF

FEDERAL MINISTRY of ECONOMICS and LABOUR

11th IEA GHG Post Combustion CO₂ Capture Workshop

Welcome by Dr. Adolf Aumüller EVN AG

20th to 21st of May 2008

EVN Forum - Austria

EVN

EVN Company profile – fact sheet

EVN	EVN is a leading integrated energy and environmental service group serving customer in Lower Austria and Central and Eastern Europe						
Business areas	Electricity, gas, heating, water, waste incineration						
Countries	Austria, Bulgaria, Croatia, Cyprus, Estonia, Germany, Poland, Lithuania, Macedonia, Russia, Slovakia, Slovenia, Denmark, Turkey						
Employees	9,535 (-4.4%) thereof ~ 75% in abroad						
Revenue	2,233.1 EUR m (+7.8 %)						
EBITDA	350.7 EUR m (-11.8 %)						
EBIT	197.3 EUR m (+7.0 %)						
Net results	227.0 EUR m (+2.3 %)						
	Moody's:	A1, stable					
Credit Rating	Standard & Poor's:	A, stable					

EVN currently active in 14 CEE countries

Highlights

- I m electricity, gas, heat and water customers in Lower Austria
- **1.5** m electricity customers in Bulgaria
- **720,000 electricity customers in Macedonia**
- 1,700 MW generation capacity (gas, coal, hydro, wind and biomass)
- **G** Coal-fired power plant of 790 MW in Germany
- 131,000 km electricity network and 10,500 km gas pipelines
- ☐ Waste incineration plant of 300,000 tons p.a. in Lower Austria
- 70 drinking and waste water plants for 10 m people
- Waste incineration plant and drinking water facility in Moscow
- Substantial holdings in Austria's second largest oil and gas producer and Austria's leading hydro power producer
- Strong partner in EnergieAllianz and EconGas in Austria

EVN activities for CO2-reduced electricity deperation

- ☐ High efficient power plant technologies
 - Research activities for 700 °C power plant
 - Utilisation of high efficient power plant technologies for retrofits and new constructed power plants
- ☐ Technologies for the reduction of fossil primary usage
 - Biomass gasification (site visit 21st of May)
 - Utilisation of steam from a waste incineration to reduce the fossil primary consumption
- □ Utilisation of an ecological primary energy mix including wind, biomass and hydro
- G Carbon capture storage technologies
 - Participation in national and international research projects
 - Research projects for oxyfuel technology and post combustion capture technologies
 - Cooperation with Japanese electricity utility


Programme for 11th International Post Combustion CO₂ Capture Network Meeting

- □ Day 1: 20th of May
 - Results of fundamental studies
 - Results from different programmes which take place world wide
 - Results from CASTOR and Capture Ready what is it?

- □ Day 2: 21st of May
 - Projects based on Ammonia
 - Developments by technology providers
 - Panel session: technology development what's next?
 - Visit to biomass gasification plant Dürnrohr

Thanks to co-sponsors

bm

Bundesministerium für Verkehr, Innovation und Technologie Federal Ministry for Transport, Innovation and Technology

Austrian Utility Association

IEA Greenhouse Gas R&D Programme

International Network for CO₂ Capture

Introduction to 11th Workshop, EVN Forum Maria Enzersdorf, Austria By J M Topper

Managing Director IEA Environmental Projects Ltd

IEA Greenhouse Gas R&D Programme

- A collaborative research programme which started in 1991.
- Its main role is to evaluate technologies that can reduce greenhouse gas emissions.
- Aim is to:

Provide our members with informed information on the role that technology can play in reducing greenhouse gas emissions

www.ieagreen.org.uk

- AIM: To establish a forum that will encourage practical work on CO₂ capture. Emphasis has been on use of MEA and derivative solvents. Now looking to broaden this
- WHY CO-OPERATE?:
 - avoid duplication of effort
 - encourage development
 - minimise cost of participation
 - enhance technology credibility
 - share risks

Three technical elements to the Network

- A Process Simulation
- B Economic Assessment
- C Process Innovation at Test Facilities

IEA GHG facilitates

The build up of international contacts has led to significant collaboration and exchange

1st Workshop in Gaithersburg, USA (Spring 2000) 2nd Workshop, Calgary, Canada(November 2001) 3rd Workshop in Apeldoorn; Netherlands (Spring 2002) 4th Workshop in Kyoto, Japan (Autumn 2002) 5th Workshop in Pittsburgh, USA (June 2003) 6th Workshop in Trondheim, Norway, (Spring 2004) 7th Workshop in Vancouver, Canada, (Sept 2004) 8th Workshop in Austin, USA (Autumn 2005) 9th Workshop at offices of E2, Copenhagen (June 2006) 10th Workshop at IFP in Lyon, France (May 2007) 11th Workshop in EVN Forum, Austria (May 2008) 12th Workshop in Univ Regina, Canada (September 2009?) 13th Workshop/Conference probably Australia 2010

23 people 24 people 34 people 33 people 40 people 69 people 41 people 52 people 62 +11 people 90+ people

GHGT-9

- Omni Shoreham Hotel, Washington D.C.
- 16th 20th November 2008
- Organised by MIT, USDOE and IEA GHG
- Major sponsors: USDOE
- Planning on 1500 participants
- Dinner to be held at Smithsonian National Aerospace Museum

- We are now a well established club
- > 16 countries here today
- Excellent networking; very popular.

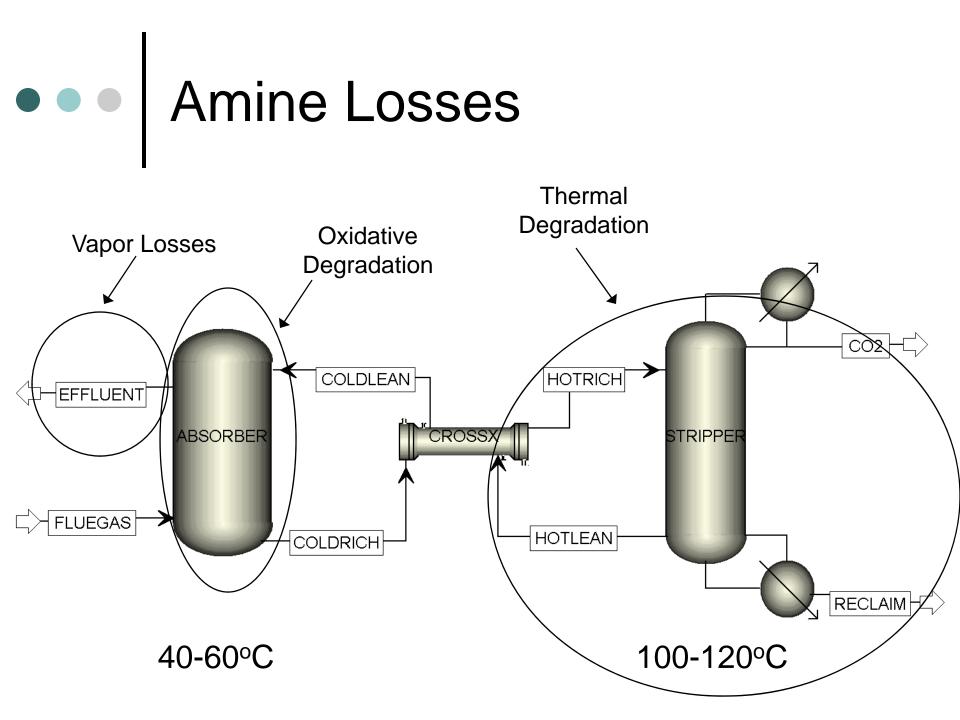
International Network for CO₂ Capture

Today: Housekeeping Points

- Coffee breaks around 10.45 and 14 55
- Lunch, 12 30 13 30 followed by photos
- Afternoon session will finish at around 17 00

Dinner this evening by bus to the heuriger

- ALL PRESENTERS ensure Stanley Santos gets a copy of their presentation on data storage stick if you want it on the GHG website next week
- Tomorrow we finish with a panel session and lunch
- Visit to power station follows.
- Mobile phones off or on vibrating alert

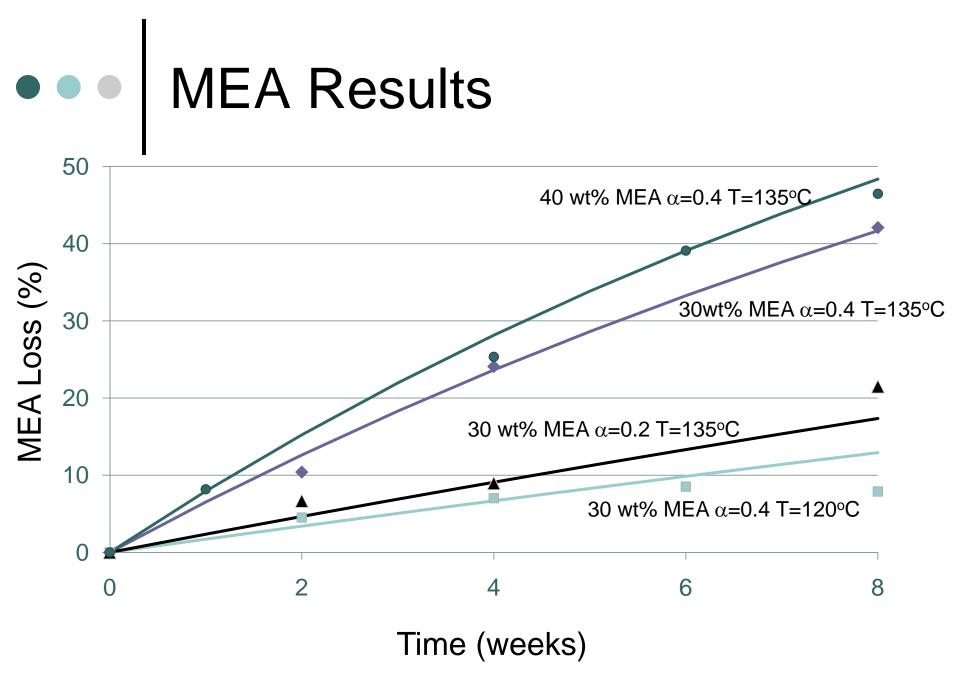


Thanks to EVN and all co-sponsors

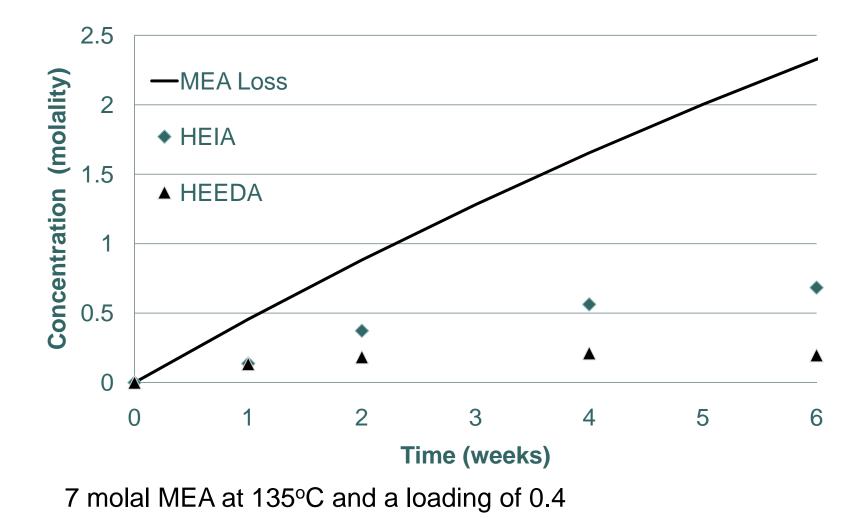
- To EVN for local organisation, offering the meeting room and visit to their facilities
- And especially to Federal Ministry of Transport Innovation and Technology for Sponsoring the Dinner this evening.
- And to the Austrian Utility Association
- And to Wienstrom GmbH

Jason Davis - Thermal Andrew Sexton - Oxidative The University of Texas at Austin

Degradation Issues


- Solvent make-up costs can be a significant operating cost
- Trade off between energy/capital costs and solvent degradation
- Environmental implications of amine waste disposal
- System performance including corrosion and foaming

Thermal Degradation


- Experimental Set-up
- MEA Degradation
 - Varied amine concentration, loading and temperature
 - Regressed data
 - Identified unknowns
- Amine Screening
 - One set of conditions

Thermal Degradation Experimental

- 10mL stainless steel sample containers filled with differing amine solutions
- Placed in forced convection ovens at set temperatures
- Analyzed for ionic products (amines) with IC and nonionic products with HPLC
- GC provided unreliable results with several solvent systems (overpredicted rates in all cases)

MEA Degradation Products

MEA Conclusions

- Thermal degradation quadruples every 15°C
- CO₂ loading increase degradation more than 1st order
- Amine concentration increases degradation more than 1st order
 - Increasing the concentration from 15 to 40wt% would also increase the BP by 4°C and degradation by 40%
- Analysis with ASPEN models showed
 - Highest degradation rates found at the bottom of the stripper where temperatures were highest
 - Lowering the stripper pressure/temperature is the surest way to decrease degradation
 - 30wt% MEA with average loading of 0.4 at atmospheric pressure yields <0.15kg MEA/ton CO₂

Thermal Screening (T=135°C α=0.4 t=4wks)

Amine	Concentration (molality)	Remaining Amine Peak (%)
PZ	3.5	100
AMP	3	97
DGA	7	93
MEA / PZ	7 / 2	88 / 68
MEA	7	76
MDEA	50 wt%	71
EDA	3.5	64
DETA	2.3	9
HEEDA	3.5	3

Thermal Screening Conclusions

- Most amines degraded thermally under the specified conditions
- MEA mainly converted to nonionic products
- Piperazine degradation could not be detected under these conditions
- Industrially, MDEA does not significantly degrade but under these conditions it does shift to other amines
- In a blended system of MEA and PZ, both MEA and PZ did degrade in significant quantities

 Oxidative Degradation (Andrew Sexton)

- Experimental setup
- Analytical
- High gas flow and low gas flow experiments
- Liquid and vapor phase products
- Relative rates of various amines

• • Experimental

- High gas flow apparatus
 - CO₂/O₂ mixture introduced by bubbling into bottom of reactor with agitation
 - Vapor phase analysis with FTIR
 - Liquid phase analysis with IC
- Low gas flow apparatus
 - CO₂/O₂ mixture introduced in headspace of reactor
 - Vortexing at high agitation rates used for vapor / liquid mixing
 - No vapor phase analysis

Analytical

- FTIR used to detect ammonia, amine volatility, NO_x, CO, acetaldehyde, formaldehyde
- Cationic IC for amine losses and anionic IC for heat stable salt products
 - Caustic addition used to measure for amide production
- HPLC with electrochemical detection for amino acids and UV detection for aldehydes

30 wt% MEA with 1mM Fe	High Gas Flow – Vapor (mM/hr)	High Gas Flow – Liquid (mM/hr)	Low Gas Flow (mM/hr)
Formate		0.181	0.289
Formamide		0.485	0.352
Acetate		0.018	0.002
Oxalate		0.003	0.020
Oxamide		0.092	0.090
Nitrite/Nitrate		0.0367	0.265
NH3	1.935		
NOx	0.154		
СО	0.027		
CH4 / C2H4	0.053		
Formaldehyde	0.010		
Acetaldehyde	0.011		
Methanol	0.025		
MEA	1.060		

Rate Comparisons

System	Iron (mM)	Inhibitor "A" (mM)	Carbon (mM/hr)	Nitrogen (mM/hr)
7m MEA	0.1	0	0.51	0.51
7m MEA	0.1	100	0.10	0.04
5m PZ	5	0	0.046	0.040
3m Amp	0.1	0	0.015	0.004
Glycine	1	0	0.026	0.001
EDA	1	0	0.065	0.042

Oxidative Conclusions

- MEA oxidative degradation is much faster than other amines tested when uninhibited
- AMP oxidative degradation is slower than other amine systems tested
- For MEA, amides of oxalate and formate are present in significant quantities
- Vapor phase FTIR shows NO_X and CO emissions present for uninhibited MEA systems

• • Conclusions

- MEA thermal degradation has been quantified over a wide range of conditions
- Most amines thermally degrade, but there is a wide variation in rates
- Thermally stable amines can degrade when used in a blended system
- MEA oxidative degradation was an order of magnitude faster than AMP and PZ under similar conditions
- Amides of common oxidative degradation products have been found at significant quantities
- NOx and CO emissions were found in the vapor phase analysis at absorber conditions

QUESTIONS?

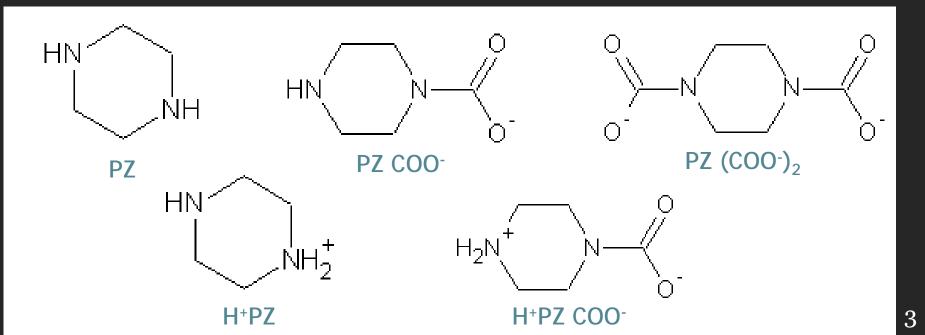
jdavis@che.utexas.edu

IEA GHG - 11th Meeting of the Post-Combustion CO₂ Capture Network

Aqueous Concentrated Piperazine - a Fast, Stable, and Effective Solvent

Stephanie Freeman, Marcus Hilliard, Andrew Sexton, Ross Dugas, and Gary T. Rochelle

The University of Texas at Austin

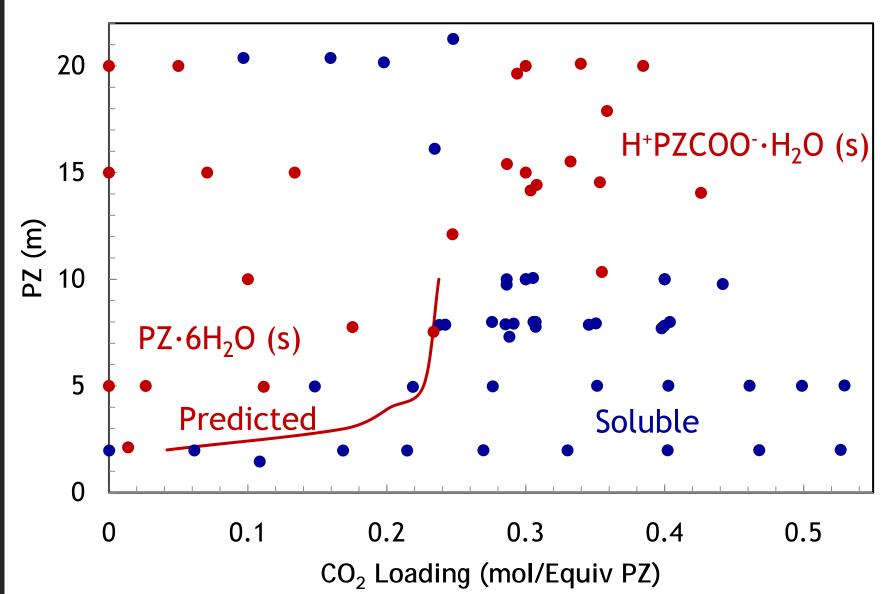

March 20-21st \circ EVN Forum \circ Vienna, Austria

Outline

- Introduction to Concentrated Piperazine
 - Previous Work
 - Solid-Liquid Equilibrium
 - Volatility
 - Viscosity
- Energy Performance
 - Vapor-Liquid Equilibrium
 - Kinetics of CO₂ Absorption
- Degradation
 - Oxidative
 - Thermal
- Conclusions

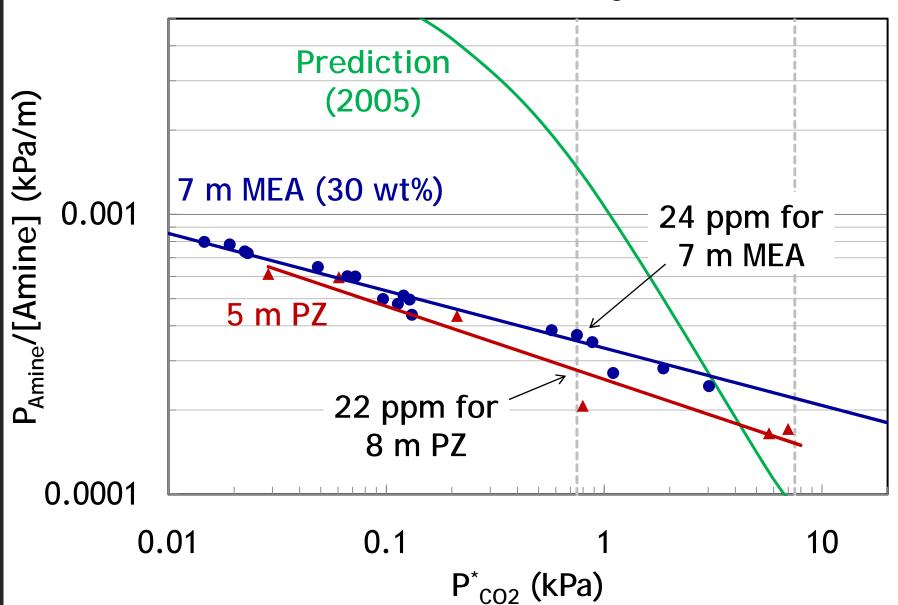
Previous work with Piperazine (PZ)

Piperazine has been used as a promoter at concentrations up to 4 m
7 m MDEA / 2 m PZ
2.5 m K₂CO₃ / 2.5 m PZ

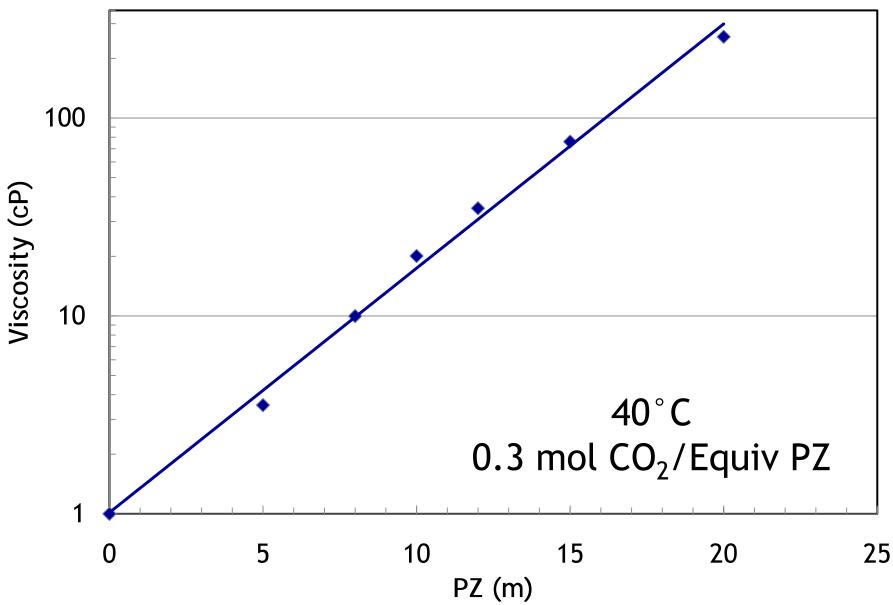


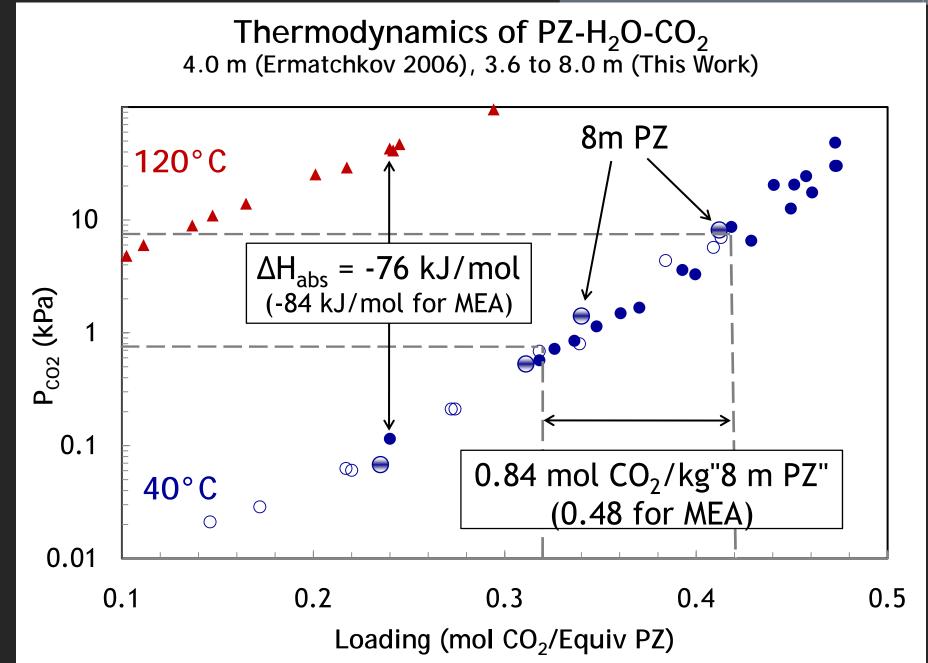
Introduction

• Why didn't we consider PZ before?

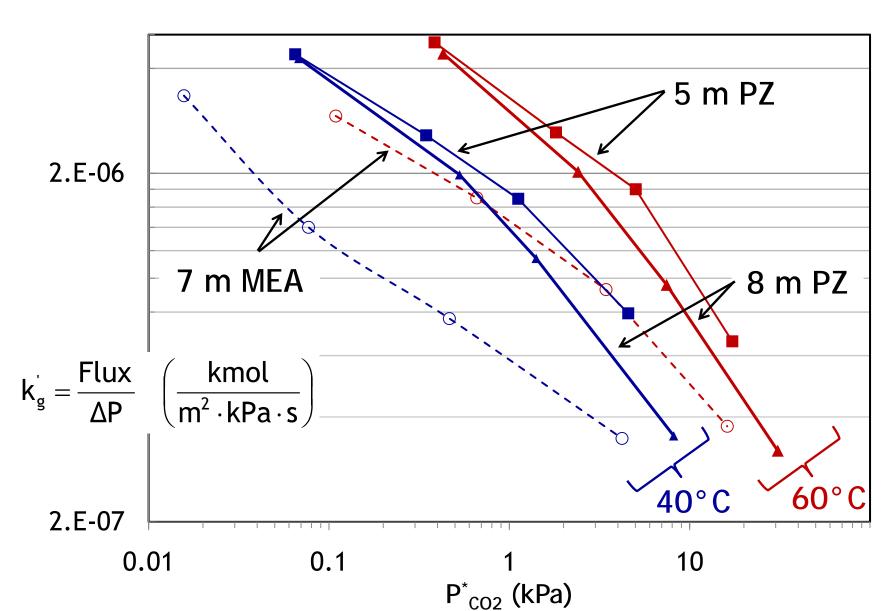

- Solubility = 1.75 m PZ
 - PZ has low capacity at 1.75 m PZ
- Boiling point is lower than MEA
 - Expected volatility is greater than MEA
- What's New?
 - We can prepare 8 m solutions at useful loadings
 - Non-ideality results in volatility equivalent to MEA

Solid Solubility at 21°C




6

Normalized Amine Volatility at 40°C



5 to 8 m PZ Doubles Rate of CO₂ Absorption

9

Simple Stripper Energy Requirement

- Interpolated from Oyenekan (2007)
- CO₂ product delivered at 10 MPa

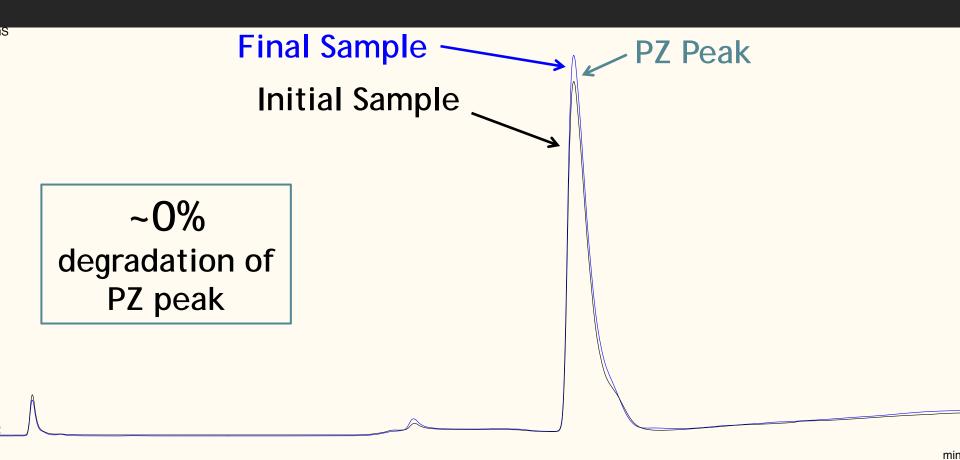
	7 m MEA	8 m PZ	Ideal
ΔH _{abs} (kJ/mol)	84	76	
CO ₂ Capacity (mole/kg soln)	0.46	0.84	
Rich P _{CO2} at 40°C (kPa)	5	7.5	12
Equiv Work (kJ/mole)	30.9	28.2	18

Degradation Products

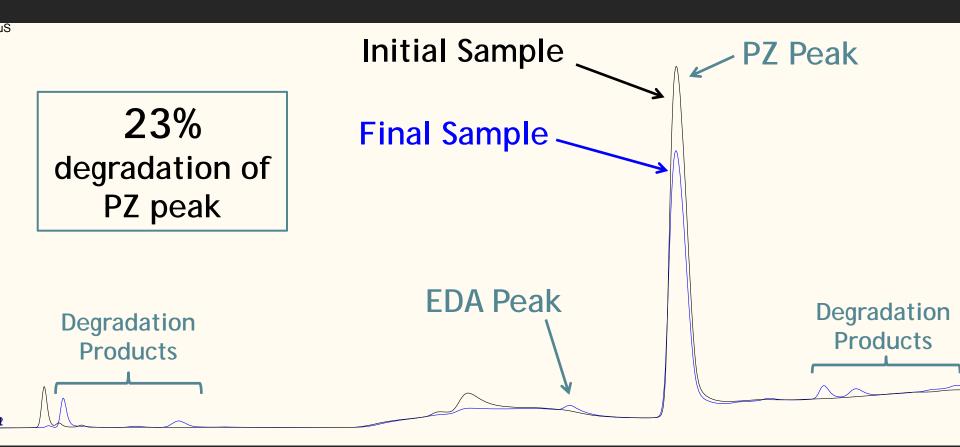
- Anion and cation chromotgraphy (Dionex)
- HPLC for molecular products
- Primary degradation products:
 - Amines: Ethylenediamine (EDA)
 - Amides: formamide, oxamide
 - Carboxylic acids: formate, oxalate
 - Nitrite and nitrate
 - (Ammonia)
- Total acid = acid + amide

PZ is resistant to Oxidation

• 55°C, 100 mL/min O₂ w/ 2% CO₂ in 350 mL


AMINE	7 m MEA	10 m PZ	8 m PZ	10 m PZ
Additives (mM)	0.6 Fe	4.0 Cu	5.0 Cu 0.1 Fe 100 "A"	0.1 Fe 0.1 Ni 0.6 Cr
	Production Rates (mM/hr)			
Ethylenediamine	-	0.43	-	-
Total Formate	0.40	0.36	0.03	0.01
Total Oxalate	0.04	0.02	0.001	-
Nitrate/Nitrite	0.46	0.01	0.001	0.0003

11th IEA GHG Capture Network Meeting – May 20-21st, 2008


Thermal Degradation of Piperazine

- SS bombs in forced convection ovens
- Degradation negligible up to 150°C
- Degradation not catalyzed by metals
 - □ Cu + Fe
 - Fe + Ni + Cr
 - Cu + Fe + Inhibitor "A"

5 m PZ at 135°C, 8 wks, α =0.5

8 m PZ at 175° C, 5 wks, α =0.3

11th IEA GHG Capture Network Meeting – May 20-21st, 2008

Conclusions

- 8 m PZ is soluble at 0.25-0.4 mol CO₂/Equiv PZ
- Viscosity becomes prohibitive above 8 m PZ
- PZ volatility less than predicted & equiv to MEA
- CO₂ capacity is double that of 7 m MEA
- CO_2 absorption rate is double that of 7 m MEA
- Thermal degradation of PZ is negligible
- Oxidative degradation
 - Negligible with Fe, Cr, Ni, V, and Cu/"A"
 - Significant with Cu alone

Alfons Kather Jochen Oexmann **Evaluation of Post-Combustion** CO₂-Capture using Piperazine-Promoted Potassium Carbonate in a Coal Fired Power Station

11th Workshop of the Post-Combustion CO₂-Capture Network Vienna, 21st May 2008

Agenda

• CO₂-Capture with K₂CO₃/PZ

- Thermodynamic model
- Boundary conditions
- CO₂-Compression
- Power Plant Integration
- Results
 - Specific reboiler heat duty
 - Specific power loss of overall integrated process

Column Design

- Absorber and desorber sizes
- Comparison to MEA
- Summary and Outlook

K₂CO₃ / PZ as an Alternative Solvent for PCC

• CO₂-capture process with MEA is considered the reference in postcombustion CO₂-capture, as

- Experience from commercial processes exist
- Drawbacks: corrosivity, degradation and large regeneration heat duty

• Potassium Carbonate (K₂CO₃)

- ► Cheap
- Non-volatile
- Non-toxic
- But: low rate of absorption at atmospheric pressure

• Promotion with Piperazine (PZ)

- ► Two amine functional groups ⇒ large capacity + high rate of absorption
- ▶ Less sensitive towards O₂, SOx and NOx than MEA

Thermodynamics

• Chemical absorption of CO₂ with K₂CO₃/PZ described by reaction scheme:

$$2 H_{2}O \longleftrightarrow H_{3}O^{+} + OH^{-}$$

$$CO_{2} + 2 H_{2}O \longleftrightarrow H_{3}O^{+} + HCO_{3}^{-}$$

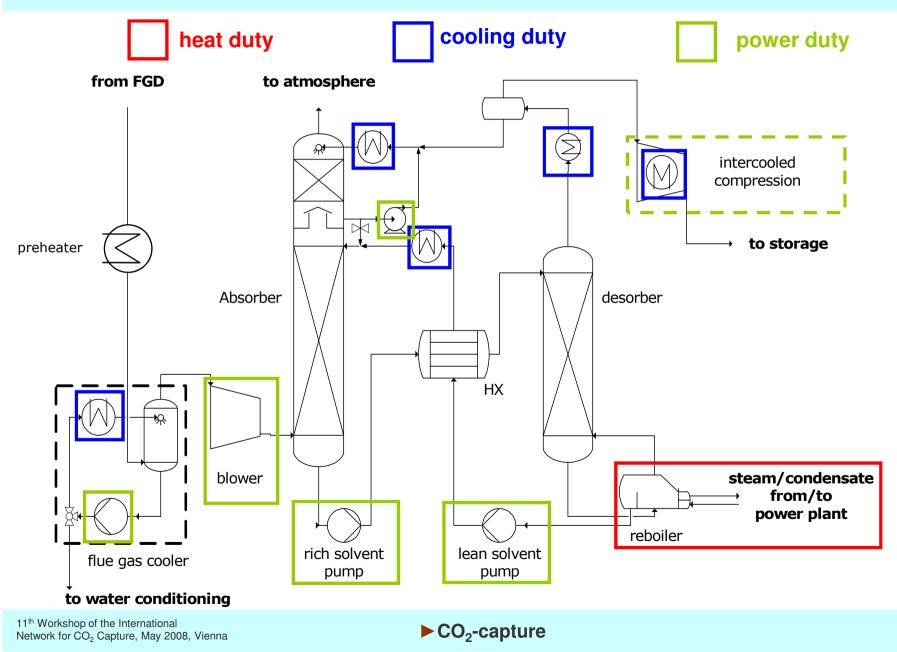
$$HCO_{3}^{-} + H_{2}O \longleftrightarrow H_{3}O^{+} + CO_{3}^{2-}$$

$$PZH^{+} + H_{2}O \longleftrightarrow PZ + H_{3}O^{+}$$

$$PZ + HCO_{3}^{-} \longleftrightarrow PZCOO^{-} + H_{2}O$$

$$PZCOO^{-} + HCO_{3}^{-} \longleftrightarrow PZ(COO^{-})_{2} + H_{2}O$$

$$HPZCOO + PZ \longleftrightarrow PZCOO^{-} + PZH^{+}$$


$$K_{2}CO_{3} \longrightarrow 2 K^{+} + CO_{3}^{2-}$$

$$KHCO_{3} \longleftrightarrow K^{+} + HCO_{3}^{-}$$

- Carbamate reactions dominant for overall absorption rate
- Electrolyte Non Randomness Two Liquid Model (eNRTL) in ASPEN Plus
- eNRTL parameters regressed by *Hilliard (2007)*

Interfaces to Power Plant

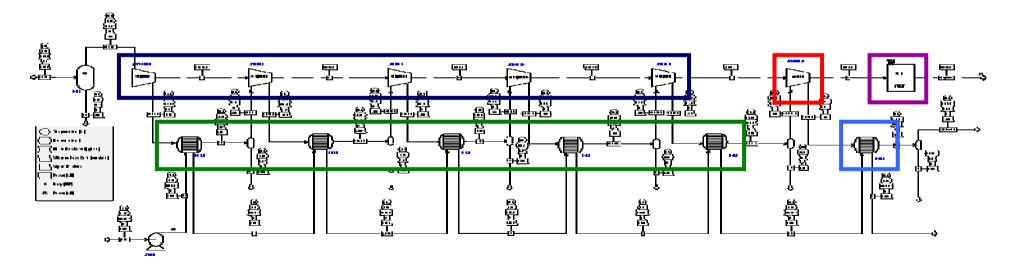
Boundary Conditions

 Flue gas mass flow 	577 kg / s	
 Flue gas temperature from FGD 	47 °C	
 Flue gas temperature at absorber inlet 	62 ℃	
 Flue gas CO₂ concentration 	14.2 vol% (wet) 15.9 vol% (dry)	
 Absorber solvent inlet temperature 	40 °C	
 Lean-rich heat exchanger LMTD 	5 K	
Reboiler temperature difference	10 K	
 CO₂ condition at compressor outlet 	40 °C / 110 bara	
Analysed solvents	2.5 m K_2CO_3 / 2.5 m PZ 3.2 m K_2CO_3 / 1.6 m PZ 4.8 m K_2CO_3 / 0.6 m PZ 3.0 m K_2CO_3	(S) (S) (S) (S)

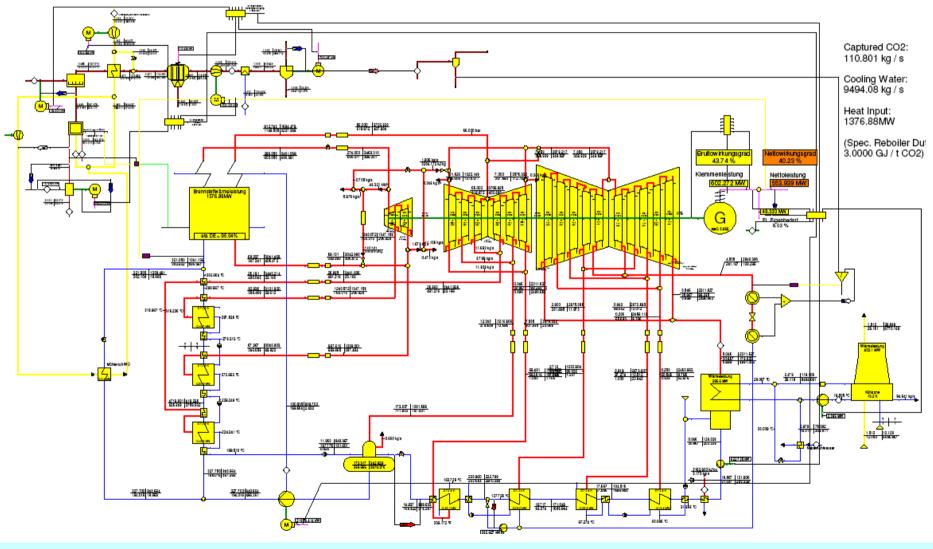
 $(S_{2.5,2.5})$ $(S_{3.2,1.6})$ $(S_{4.8,0.6})$ $(S_{3.0})$

varied for minimisation of reboiler duty

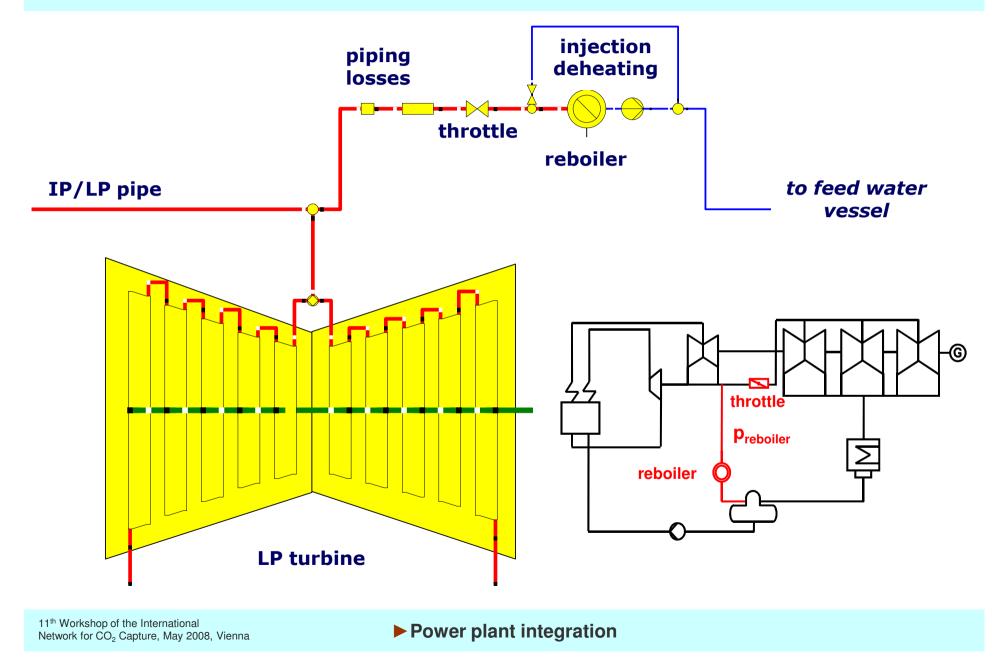
• Lean Loading


CO₂-Compression

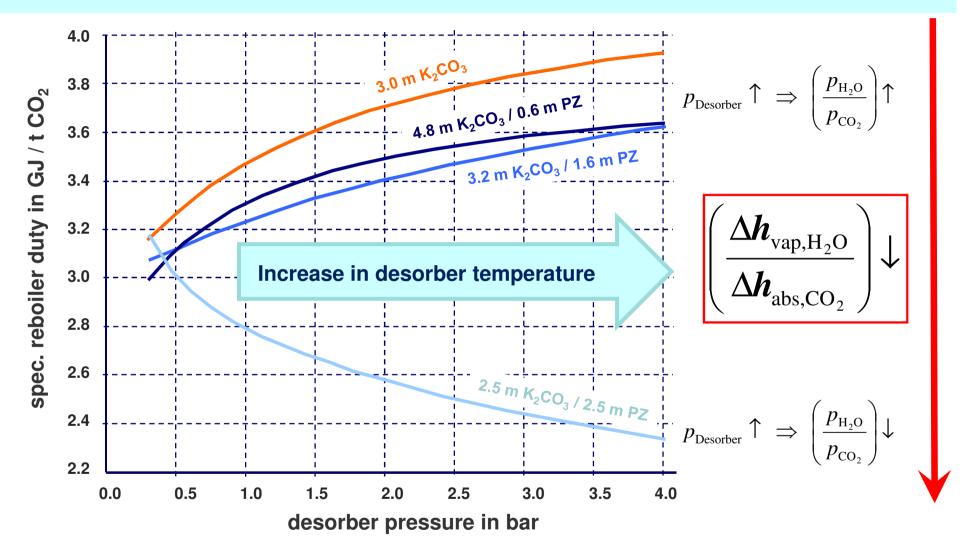
• Simulation tool: ASPEN Plus


• Technical data

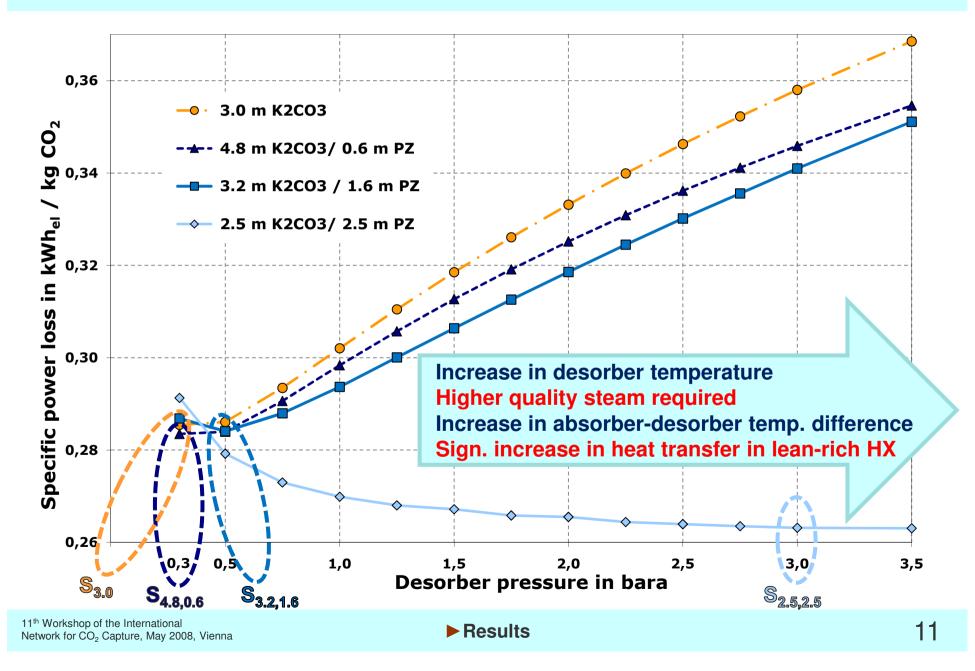
- 2 parallel trains of similar geartype compressors with **5 radial stages** (η_i = 0,84....0,87)
- 1 **booster** unit (outlet pressure 110 bar; $\eta_i = 0.82$)
- electric drive
- **intercooler** with water draw off after each stage ($\Delta p_{hot side} = 100 \text{ mbar}$)
- aftercooler (outlet temperature 40 °C)



• 600 MW_{el} hard coal fired power plant in EBSILONProfessional: η_{net} = 45.6 % (LHV)


Heat for Solvent Regeneration

Effect of Desorber Pressure @ 90 % CO₂-Capture Rate



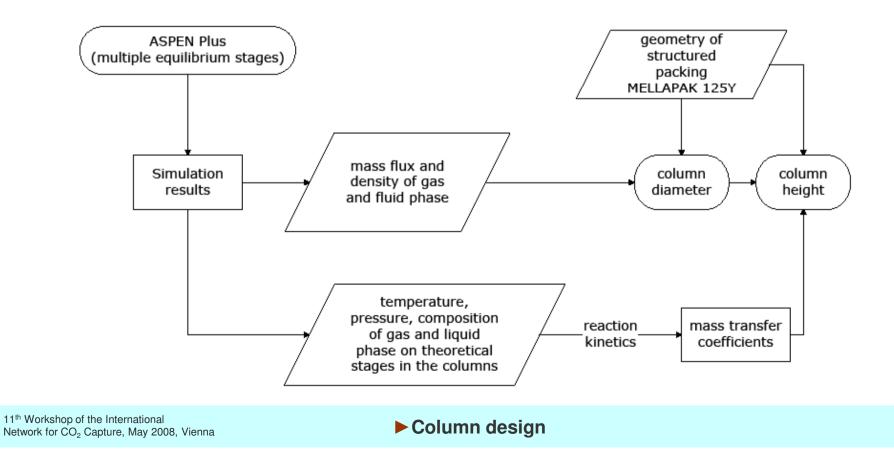
High heat of absorption solvents ($S_{2.5,2.5}$) profit from temperature swing

► Results

Overall Energy Requirement @ 90 % CO₂-Capture Rate

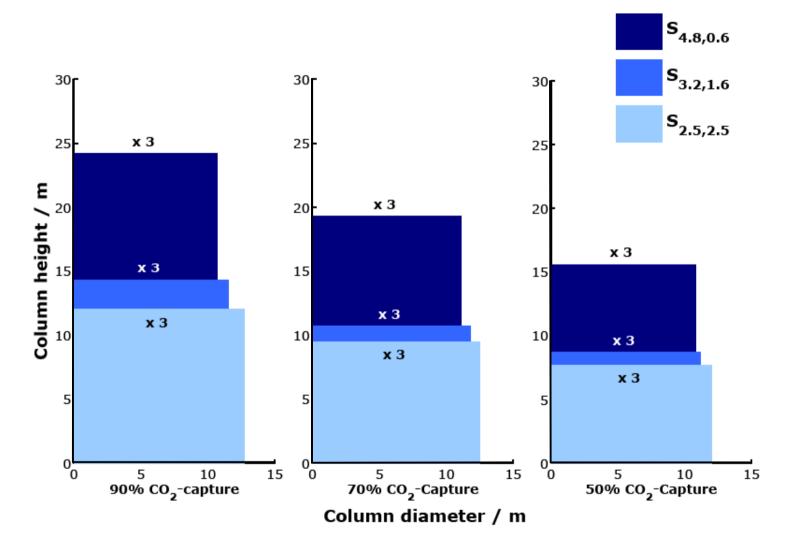
Results

		S _{2.5,2.5}	S _{3.2,1.6}	S _{4.8,0.6}	S _{3.0}
CO ₂ -capture rate	Desorber pressure (bara)	3.0	0.5	0.3	0.3
90 %	Spec. reboiler duty (GJ / t CO ₂)	2.44	3.12	3.00	3.16
70 %		2.07	2.68	2.57	2.92
50 %		2.05	2.65	2.52	2.92
90 %	Spec. power loss (kWh / t CO ₂)	263.2	341.0	345.9	358.0
70 %		243.5	300.1	307.7	334.6
50 %		252.5	304.1	312.3	343.3
90 %	Solvent circulation (kg / s)	9581	- smaller 6705	pick-up range 4512	4 350
70 %		9326	7491	5412	4596
50 %		7163	6169	4535	3442


 $S_{\rm 2.5,2.5}$ shows lowest reboiler duty and power loss also for $\rm CO_2\text{-}capture$ rates below 90 %

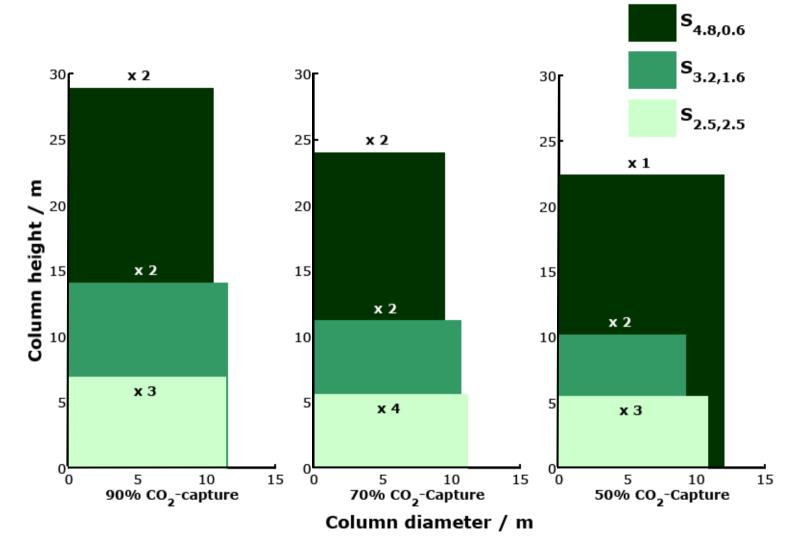
11th Workshop of the International Network for CO₂ Capture, May 2008, Vienna

Column Design



- Multiple equilibrium stages in ASPEN Plus
- Results from simulation runs used to determine required packing diameter and height considering kinetic data by *Cullinane and Rochelle (2006)*
- Structured packing MELLAPAK 125Y, maximum column diameter 12.8 m

Absorber Sizes


Increasing height with lower PZ concentration due to reduced reaction kinetics.

11th Workshop of the International Network for CO₂ Capture, May 2008, Vienna

► Column design

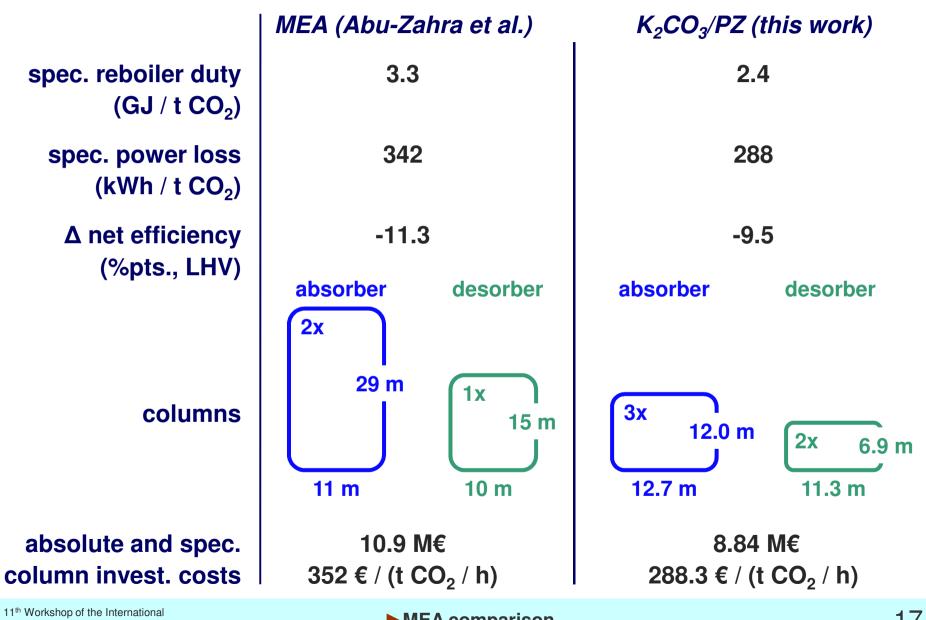
Desorber Sizes

More columns with higher PZ concentration due to larger solvent circulation rate.

11th Workshop of the International Network for CO₂ Capture, May 2008, Vienna

Column design

Comparison to MEA



- Results from Abu-Zahra et al. (2007) for a MEA process are applied to the same power plant and CO₂-compression model as used in this work
- Same methodology for process simulation, column sizing and cost estimation was applied in both works
- Comparison of energetic performance of integrated capture process, column sizes and specific column investment costs
- Boundary conditions:

	MEA	<u>2.5 m K₂CO₃ / 2.5 m PZ</u>
 Solvent concentration (wt%) 	30	22.1 / 13.8
► CO ₂ -capture rate (%)	90	90
 Desorber pressure (bara) 	2.1	3.0
 Reboiler temperature (°C) 	128	125
Lean loading (mol CO ₂ ^{tot} / mol solvent	t) 0.32	1.01
Pick-up range (mol CO ₂ / mol solvent	i) 0.17	0.09
 Specific solvent flow (m³ / t CO₂) 	27.8	74.4
11 th Workshop of the International Network for CO_2 Capture, May 2008, Vienna	EA comparison	16

Comparison to MEA: Results

Network for CO_2 Capture, May 2008, Vienna

► MEA comparison

Summary

- Preliminary evaluation of K₂CO₃/PZ process was performed
- Influence of key parameters such as solvent composition, loading, desorber pressure and capture rate was analysed
- 2.5 m K₂CO3 / 2.5 m PZ at 3 bara desorber pressure shows energetic advantageous over other solvent compositions
- Comparison of this solvent to a reference MEA-process from literature
 - The application of K₂CO₃/PZ bares the potential of significantly reducing the heat required for solvent regeneration
 - Relatively low pick-up ranges at the optimal lean loading lead to large solvent circulation rates and thus to larger column diameters and/or number of required columns
 - Promotion with PZ and enhanced kinetics can lead to significantly smaller column heights
 - Even though larger column diameters or more columns are needed, overall investment costs turn out to be lower than in the MEA case

Outlook

• Re-simulation with new eNRTL parameter set by *Hilliard (2008)*

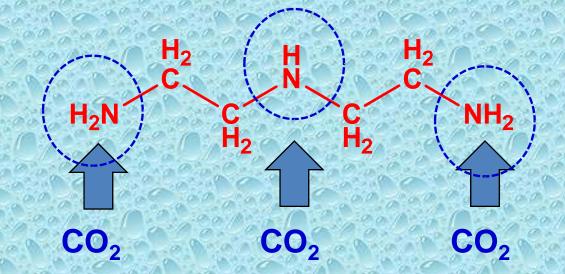
- ▶ Fixed inaccuracies in calorimetry for H₂O-K₂CO₃-PZ-CO₂
- Detailed parameter regression for H₂O-MEA-CO₂
- Own calculations for MEA to compare K₂CO₃/PZ to MEA on a fair and unbiased basis
- Component pre-engineering design for all major components
- Detailed economic evaluation
 - CAPEX, incl. investment costs for all major components, installation, engineering and construction
 - ▶ OPEX, e.g. for solvent make-up and maintenance
 - Determination of CO₂-avoidance costs (€ / t CO₂) and CoE (€ / kWh)

Thank you for your attention! Questions?

Liquid speciation and reaction kinetics determination in aqueous polyamine (DETA) solution with CO₂

Ardi Hartono and Hallvard F. Svendsen Norwegian University of Science and Technology (NTNU) Trondheim, NORWAY

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK – Vienna 20th-21st May 2008


www.ntnu.no

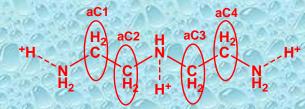
Outline

Review on DETA

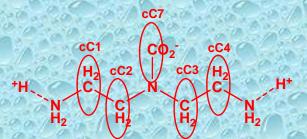
- □ Liquid speciation in DETA/CO₂ system
- Chemistry
- Qualitative & Quantitative NMR Work
- Reaction Kinetics of DETA with CO₂
- Zwitterion & Termolecular Mechanism
- Experimental set up
- > Parameters
- Determination of kinetic rate constants
- ➢ Result

Review on DETA

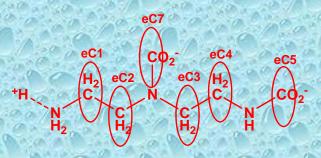
Possible as a promising solvent:

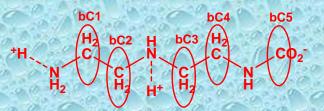

Higher loading capacity
Faster absorption rate
Lower heat of absorption

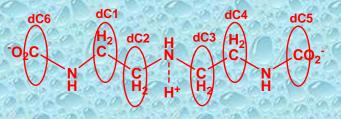
Chemistry : Characterization with NMR

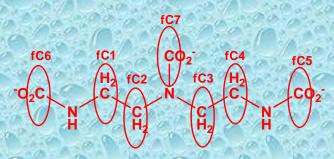

A. H₂O, H₃O⁺, OH⁻

B. CO₂, HCO₃⁻, CO₃²⁻


A. Group I :DETA, DETAH⁺(p), DETAH⁺(s) DETAH₂²⁺(pp), DETAH₂²⁺(ps), DETAH₃³⁺

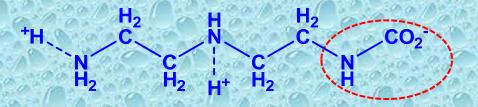

C. Group III: $DETACO_2^-(s)$, $DETAH_{(p)}CO_{2(s)}$, $DETAH_{2(pp)}CO_2^+(s)$


E. Group V: DETA(CO₂)₂²⁻(ps), DETAH(p)(CO₂)₂(ps)

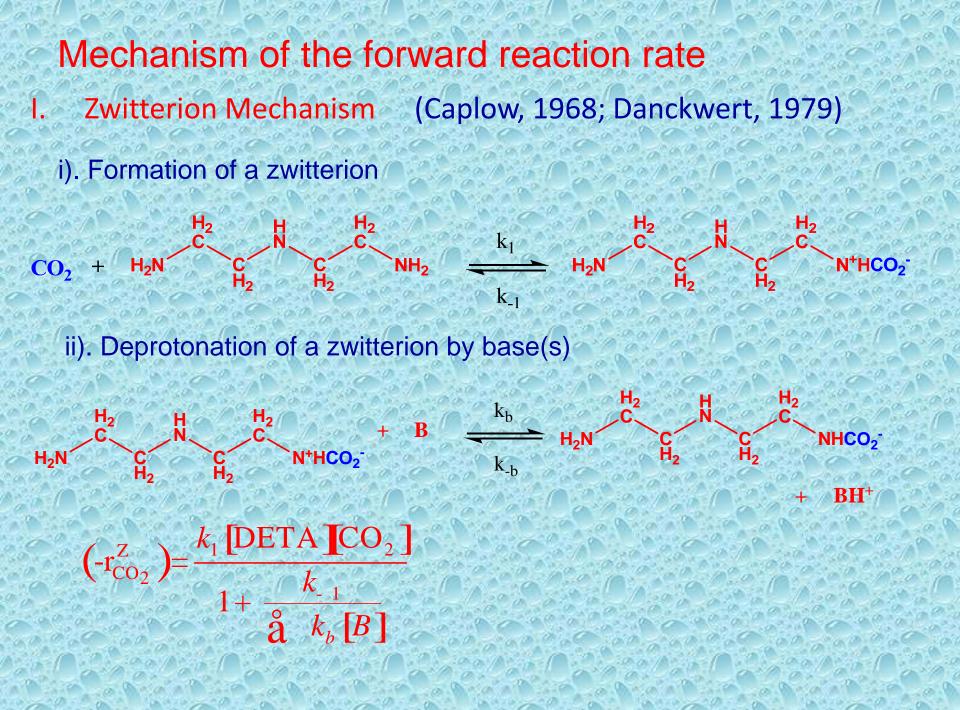

B. Group II: DETACO₂⁻ (p), DETAH_(p)CO₂ (p), DETAH_(s)CO₂ (p), DETAH_{2(ps)}CO₂⁺ (p)

D. Group IV: DETA(CO₂) $_{2}^{2}$ (pp), DETAH_(s)(CO₂) $_{2}^{-}$ (pp)

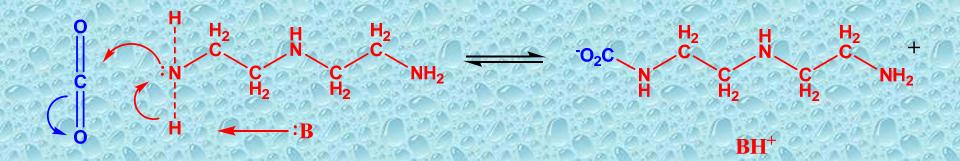
F. Group V: DETA(CO₂)₃³⁻



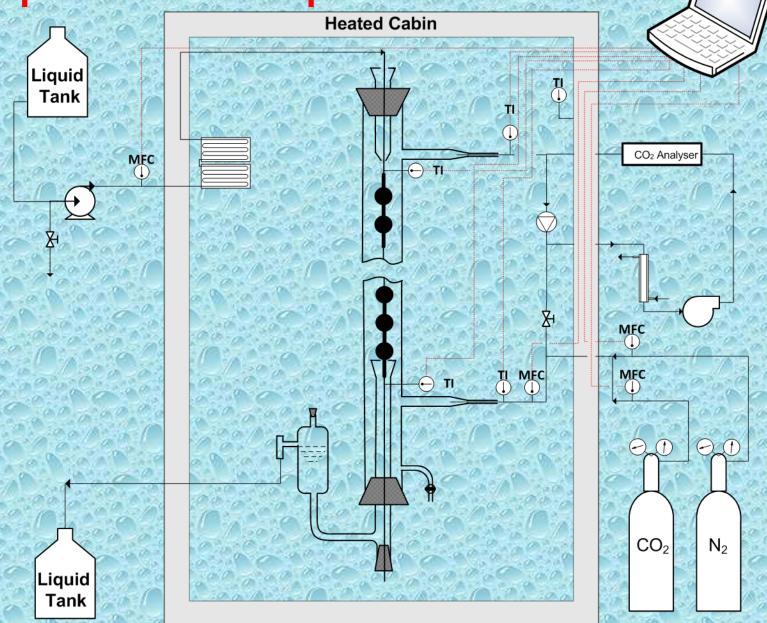
Qualitative & Quantitative NMR Work



Reaction Kinetics of DETA with CO₂


Species at very low loading

Main reaction $CO_2 + 2H_2O\hat{U}HCO_3^- + H_3O^+$ $CO_2 + OH^-\hat{U}HCO_3^-$ DETA+CO_2 + H_2O\hat{U}DETACO_{2(p)}^- + H_3O^+



II. Termolecular Mechanism (Crooks & Donnellan, 1989; da Silva & Svendsen, 2004)

 $\left(-\mathbf{r}_{CO_{2}}^{\mathrm{T}}\right) = \left\{k_{DETA}^{T} \left[DETA\right] + k_{H_{2}O}\left[H_{2}O\right] + k_{OH^{-}}^{T} \left(DETA\right] \left[DETA\right] CO_{2}\right]\right\}$

Experimental set up

Parameters

Physiochemical properties:

 $r_{DETA} = f(C,T) \qquad H_{N_2O-DETA} = f(C,T)$ this work $pKa_{DETA} = f(C,T)$ $m_{DFTA} = f(C,T)$ $D_{CO_2 - DETA} = D_{CO_2 - H_2O} \left(\frac{\mu_{H_2O}}{\mu_{DETA}}\right)^{0.8}$

The liquid-side mass transfer coefficient

 $\frac{k_L}{D} = 17.92 \left(\frac{4\Gamma}{\mu}\right)^{1.0} \left(\frac{\mu}{\rho D}\right)^{0.5}$ Vishwas, 2004; Hartono, et.al., 2006

 D_{CO_2}

The gas-side mass transfer coefficient

 $\frac{k_g d}{m_g} = 0.12 \,\mathrm{Re}^{0.79} \,Sc^{0.44} \qquad \text{Ma'mun, et.al., 2007}$

Determination of kinetic rate constants

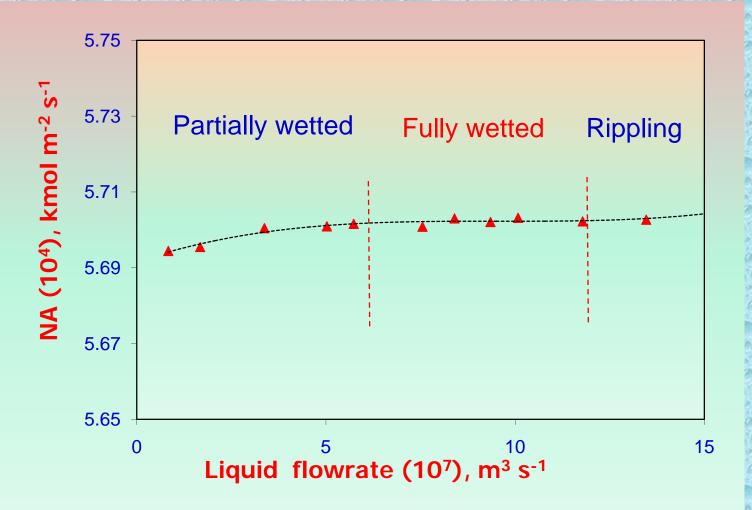
$$N_{A} = \frac{1}{\frac{1}{E_{A}k_{L}} + \frac{RT}{Hk_{g}}} \left(C_{A}^{*} - C_{A,b} \right)$$

$$E_A = \sqrt{1 + Ha^2} \qquad Ha = \sqrt{\frac{k_{obs}D_A}{k_l}} \qquad 3 < Ha < < E_{A^{\text{W}}}$$

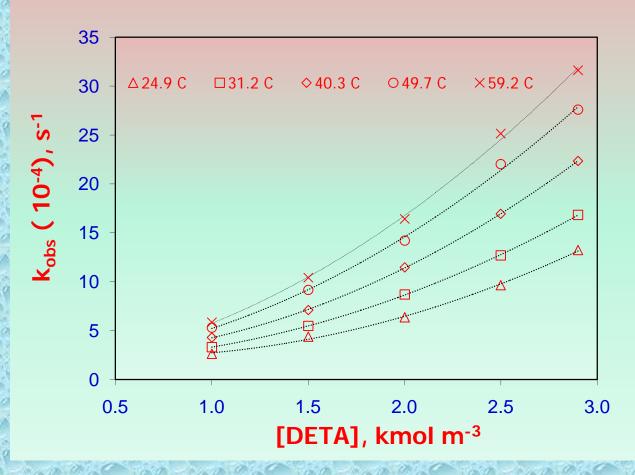
$$k_{obs} = \frac{k_1}{D_A [DETA]} \underbrace{\bigoplus_{k=1}^{k_1} k_L}_{\bigoplus_{k=1}^{k_1} M_A} \underbrace{\prod_{k=1}^{k_1} k_L}_{\bigoplus_{k=1}^{k_1} M_A} \underbrace{\prod_{k=1}^{k_1} k_L}_{Hk_g} \underbrace{\prod_{k=1}^{k_1} k_L}_{Hk_g}$$

Apparent kinetic rate constants

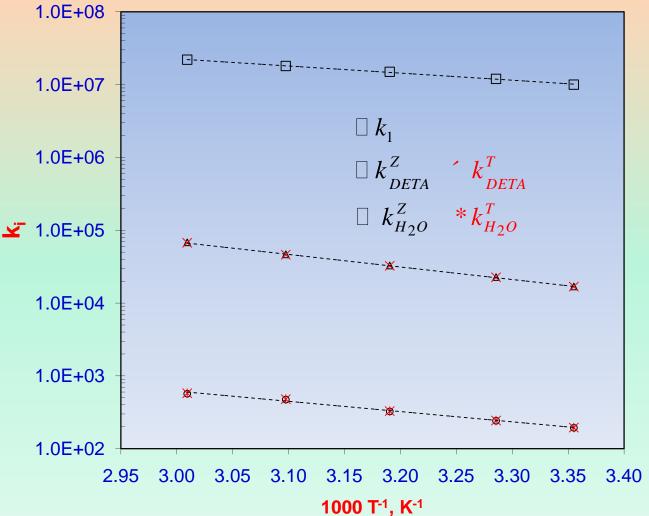
 $k_{app} = k_{obs} - k_{OH^-} \oint H^- \dot{\mathbf{u}} \qquad \begin{array}{c} CO_2 + OH^- \hat{\mathbf{U}} & HCO_3^- \\ DETA + CO_2 + H_2O\hat{\mathbf{U}} & DETACO_{2(p)}^- + H_3O^+ \end{array}$

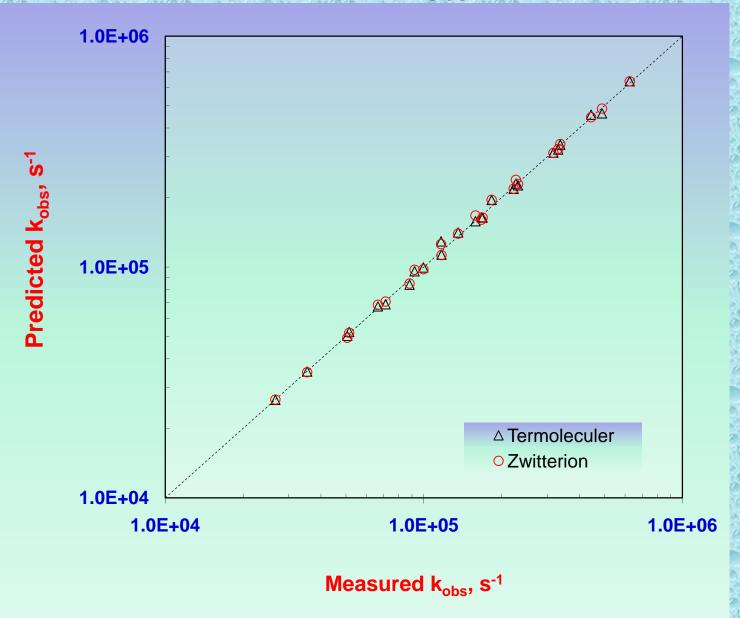

Zwitterion Mechanism

$k_{app} = \frac{[DETA]}{\frac{1}{k_1^2 + \frac{1}{k_{DETA}^2 [DETA] + k_{H_2O}^2 [H_2O] + k_{OH^-}^2 OH^- \dot{v}}}}$


Termolecular Mechanism

 $k_{app} = \left\{ k_{DETA}^{T} \left[DETA \right] + k_{H_{2}O}^{T} \left[H_{2}O \right] + k_{OH}^{T} \left[OH^{-} \right] \right\} \left[DETA \right]$


Results Effect of liquid flow rate on the average absorption flux of CO₂


Effects of DETA concentration on k_{obs} over the range of temperatures

Relationship between k_i and 1/T

Measured and Predicted kobs

Kinetic rate constants

Zwitterion			Termolecular		
- K	$1.9268 \ 10^{10} \exp(-2249.6/T)$				
$k_{\text{CMDA}}^{\prime} = \frac{k_{\text{CMDA}}^{\prime}}{k_{1}}$	$1.0827 \ 10^{10} \exp(-3983.0/\mathrm{T})$	$\mathbf{k}_{\mathbf{DF} \mathbf{F} 1}^{T}$	1.0191 10 ¹⁰ exp(-3967.0/T)		
$k_{\underline{H}\underline{C}}^{Z} = \frac{k_{\underline{F}}k_{\underline{H}\underline{O}}}{k_{1}}$	9.2721 $10^6 \exp(-3211.2/T)$	$k_{H_{c}}^{T}$	1.0405 10 ⁷ exp(-3243.9/T)		

In comparison with literatures at 25°C (Termolecular)

Absorbent	k (10 ⁻³)	$/k_{\rm H2O}$	С	Source
	m ⁶ kmol ⁻² s ⁻¹	m_1^q kmol ² s ⁴	kmol m ⁻³	
DETA	14.71	231	1.0-2.9	This work
AEEA	2.35	161	1.1-3.5	Ma'mun et al., 2007
PG	2.09	118	0.1-4.0	Kumar et al., 2003
MEA	1.71	73.7	3.0-9.0	Aboudheir et al., 2003

 $k_{app} = \left\{ k_{DETA}^{T} \left[DETA \right] + k_{H_{2}O}^{T} \left[H_{2}O \right] + k_{OH^{-}}^{T} \left[OH^{-} \right] \right\} \left[DETA \right]$

Conclusions

The carbamate species at very low loading is predominantly the primary carbamate

Both the Termolecular and the Zwitterion mechanism gave very good agreement to the experimental data

Based on the Zwitterion mechanism, the rate determining step is deprotonation of zwitterion

In comparison to literature data (AEEA, MEA, PG), DETA has a higher reaction rate

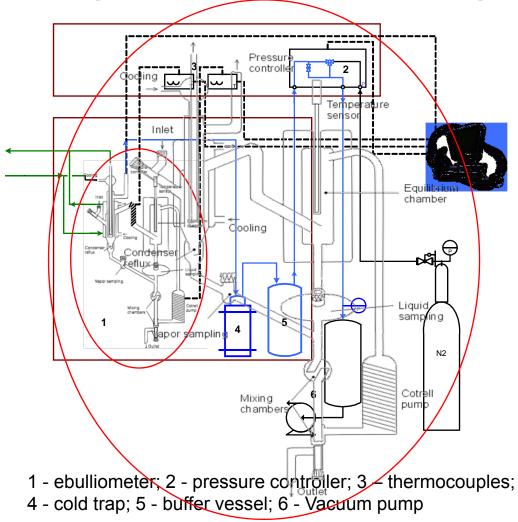
Future Work

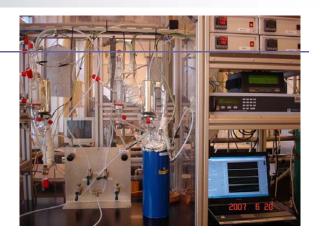
 $k_{app} = \left\{ k_{DETA}^{T} g_{DETA} \left[DETA \right] + k_{H_{2}O}^{T} g_{H_{2}O} \left[H_{2}O \right] + k_{OH^{-}}^{T} g_{OH^{-}} \left[OH^{-} \right] \right\} g_{DETA} \left[DETA \right]$

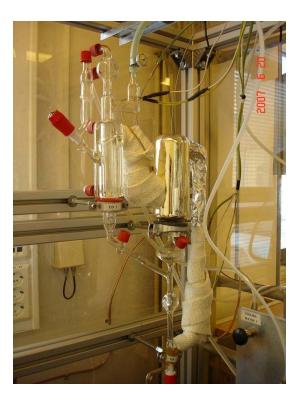
Thank you for your attention

Ebulliometric Determination of Vapour-Liquid Equilibria for Pure Alkanolamines and their Aqueous Solutions

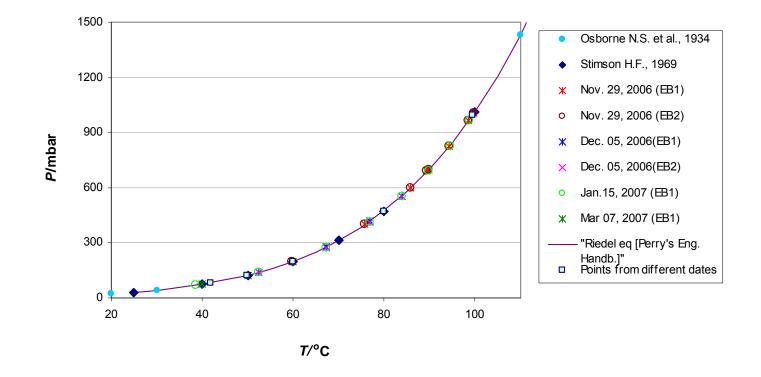
Inna Kim and prof. Hallvard F. Svendsen

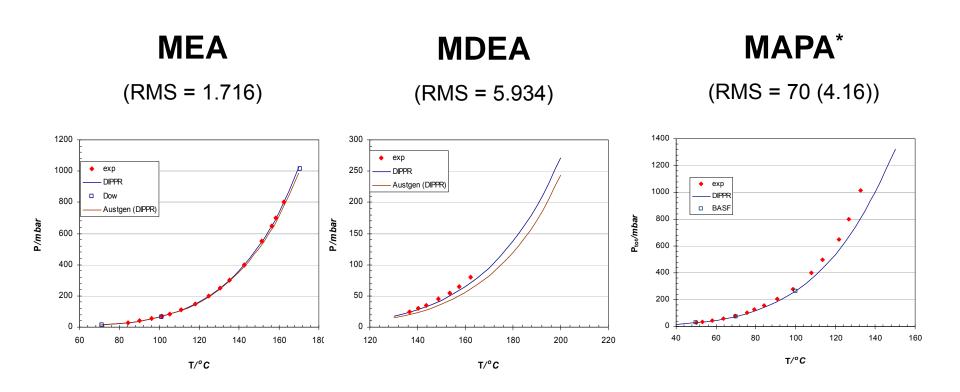



Outline


- Experimental set-up and procedure
- Results:
 - Pure components
 - □ Binary aqueous solutions
 - □ Ternary aqueous solutions
- Thermodynamic consistency test
- Summary

Experimental set-up and procedure

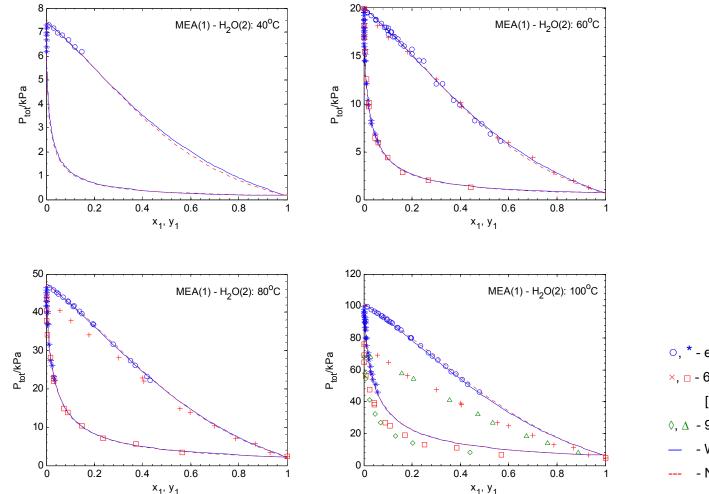

Experimental set-up

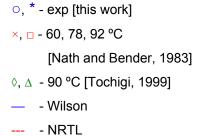


Vapour pressure: H₂O (RMS* = 0.59)

* Root Mean Square (RMS) deviation = $\sqrt{(\Sigma(Y_{exp}-Y_{pred})^2))/n}$

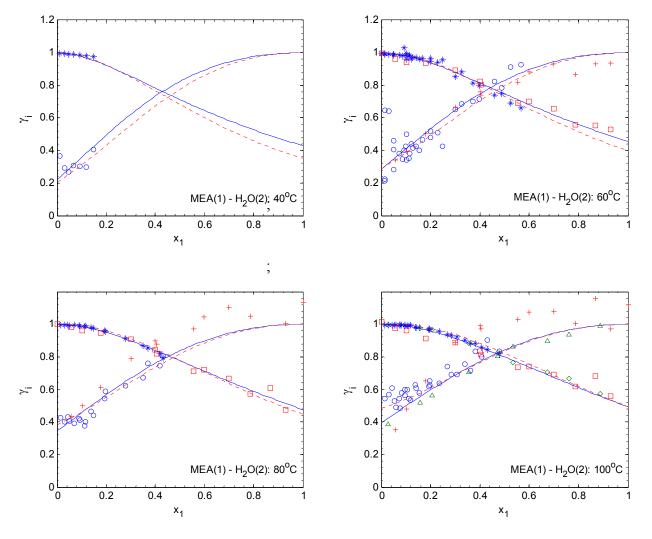
Vapour pressure of pure components




^{*}Methylaminopropylamine, CH₃NHCH₂CH₂CH₂NH₂, (CAS No. 6291-84-5)

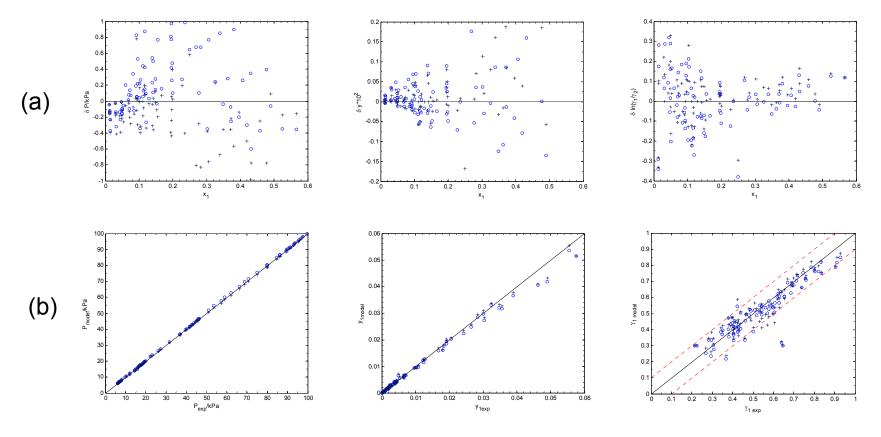
11th Meeting of the International Post-Combustion CO₂ Capture Network, Vienna, May 20-21, 2008

Results: binary aqueous solutions


 P_{tot} -xy diagram: MEA(1)+ $H_2O(2)$

Results : binary aqueous solutions

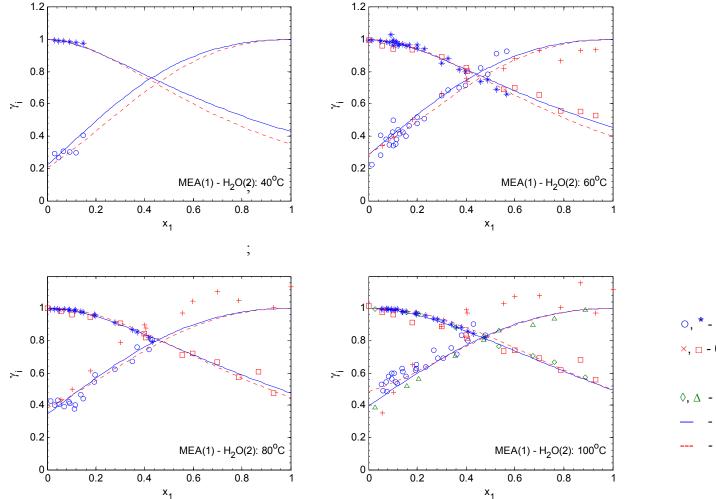
Activity coefficients: $MEA(1)+H_2O(2)$


MEA (1) – H ₂ O (2)				
	Wilson			
λ ₁₂	3506			
λ ₂₁	-5682			
	NRTL*			
a ₁₂	-0.488			
b ₁₂	-699.6			
a ₂₁	2.83			
b ₂₁	89.272			
α ₁₂	0.2			

* Temperature dependent parameters: τ_{12} = a_{12} + b_{12} /T; τ_{21} = a_{21} + b_{21} /T

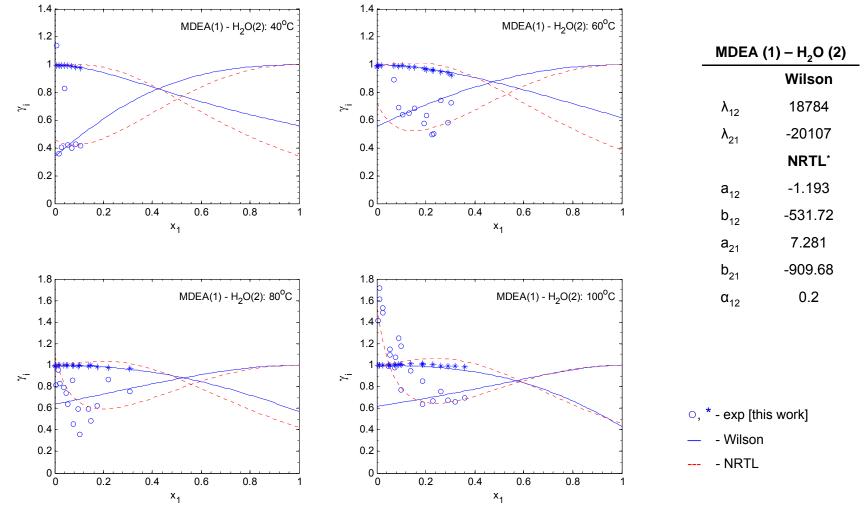
, * - exp [this work]
 ×, □ - 60, 78, 92 °C
 [Nath and Bender, 1983]
 ◊, △ - 90 °C [Tochigi, 1999]
 - Wilson
 - NRTL

Thermodynamic consistency test

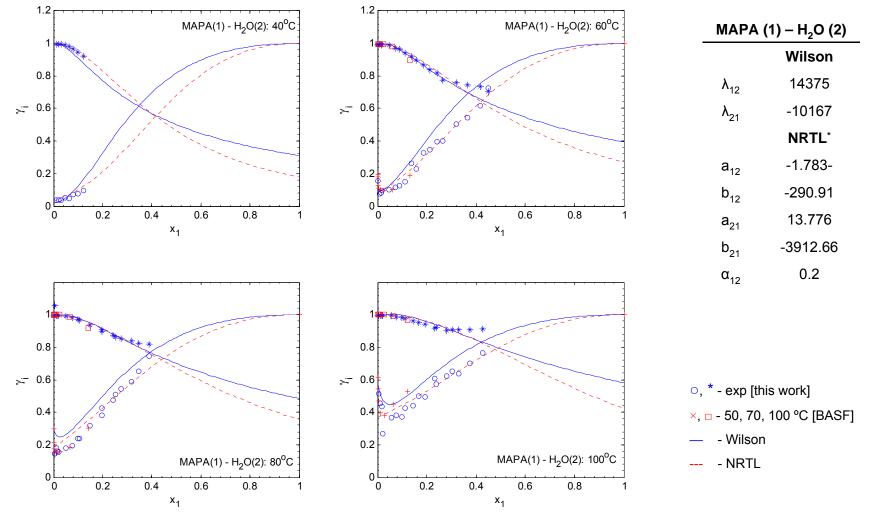

Pressure, vapour phase composition and activity coefficients (MEA): residuals (a), model vs experiment (b)

• - NRTL ; + - Wilson

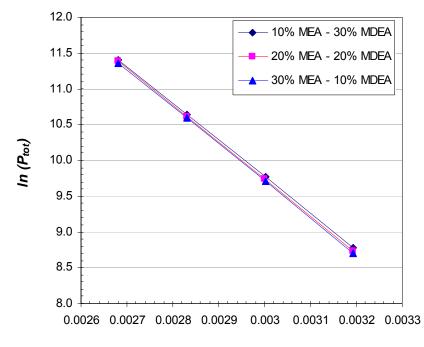
Results : binary aqueous solutions


Activity coefficients: $MEA(1)+H_2O(2)$

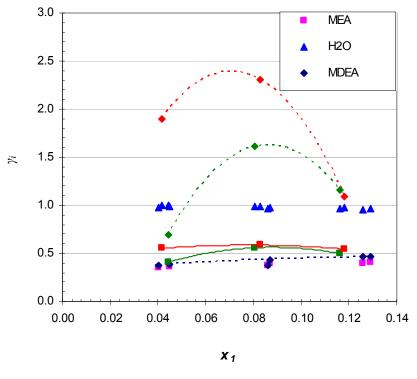
o, * - exp [this work]
 ×, □ - 60, 78, 92 °C
 [Nath and Bender, 1983]
 ◊, Δ - 90 °C [Tochigi, 1999]
 - Wilson
 -- NRTL


Results : binary aqueous solutions

Activity coefficients: MDEA(1)+H₂O(2)


Results : binary aqueous solutions

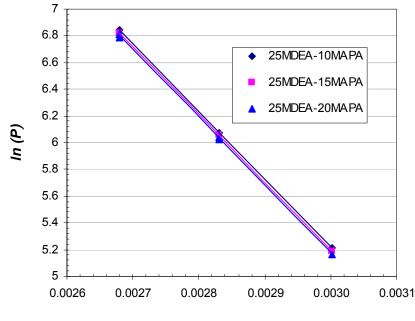
Activity coefficients: MAPA(1)+H₂O(2)


Results : ternary aqueous solutions

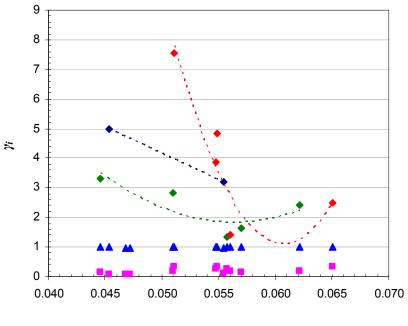
$MEA(1)+MDEA(2)+H_2O(3)$ system

1/T

(a) Total pressure vs temperature and composition



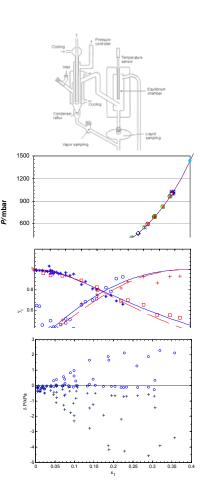
- - MEA (red 100°C, green 80°C); ▲ H₂O;
- ◆ MDEA (red 100°C, green 80°C),


Results : ternary aqueous solutions

$MDEA(1)+MAPA(2)+H_2O(3)$ system

1/T

(a) Total pressure vs temperature and composition


X 1

(b) Activity coefficients vs composition:

→ - MDEA (red – 100°C, green – 80°C),
 → MAPA; ▲ - H₂O

Summary

- Ebulliometry a simple and fast method for measuring VLE.
- VLE of pure components and binary and ternary aqueous solutions was measured. Accuracy of the results is limited by purity of the substances used and by the precision of the analytical methods used for the sample analyses
- Activity coefficients were calculated and fitted to Wilson and NRTL models
- Thermodynamic consistency test shows that measured data are consistent
- * The results were submitted for publication to the J. Chem. Eng. Data

Acknowledgements

This work has been financially supported by the European Commission through the **CASTOR** Integrated Project (Contract № SES6-CT-2004-502856) and the **BIGCO2** project, performed under the strategic Norwegian research program Climit. The authors acknowledge the partners: Norsk Hydro, Statoil, GE Global Research, Statkraft, Aker Kværner, Shell, TOTAL, ConocoPhillips, ALSTOM, the Research Council of Norway (178004/I30 and 176059/I30) and Gassnova (182070) for their support

THANK YOU FOR YOUR ATTENTION !

Questions?

11th Meeting of the International Post-Combustion CO₂ Capture Network, Vienna, May 20-21, 2008

Mass Transfer in a Small Scale Flue Gas Absorber – Experimental and Modeling

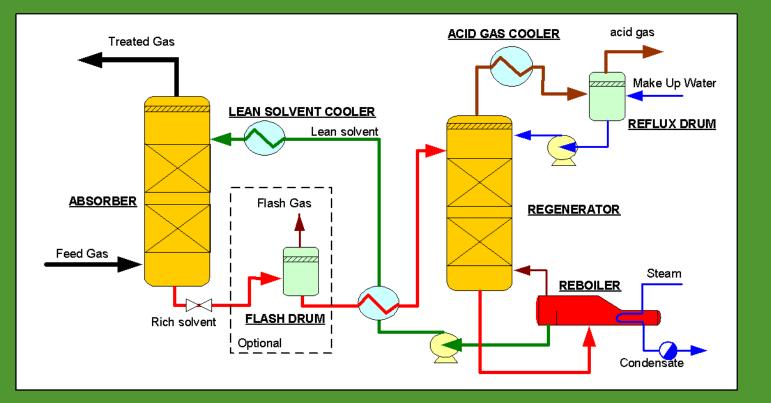
P.J.G. Huttenhuis, E.P. van Elk, S. Van Loo, G.F. Versteeg Procede Gas Treating B.V., The Netherlands

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO₂ CAPTURE NETWORK

20 May 2008, Vienna, Austria

Content

- Introduction;
- Shell ASAP unit;
- Rate based model;
- Results and Discussion;
- Conclusions & Future work.



11th CO₂ capture meeting; Vienna; Austria

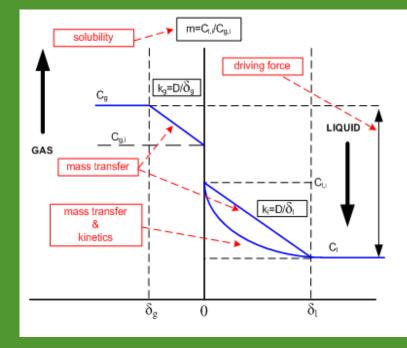
Typical flowsheet:

11th CO₂ capture meeting; Vienna; Austria

Main problems with this technology are:

- Degradation due to the presence of oxygen;
- Corrosion;
- High absorber costs;
- High regeneration costs $\rightarrow \pm$ 70 % of operational costs (4 GJ / tonne CO₂).

\rightarrow Better solvents required.


This Work:

 → Study of performance of aqueous MDEA and comparison with pilot plant data of an absorber – desorber.

- Process design:
 - Hydrodynamics (a);
 - Mass transfer parameters (k_L and k_G);
 - VLE (physical and chemical);
 - Kinetics (enhancement).
- Accurate prediction of fundamentals required;
- Rate based model required because absorber is not operating at equilibrium conditions.

Film model

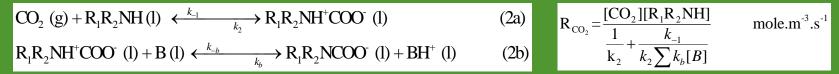
20 May 2008 5

11th CO₂ capture meeting; Vienna; Austria

• Kinetics tertiary amines:

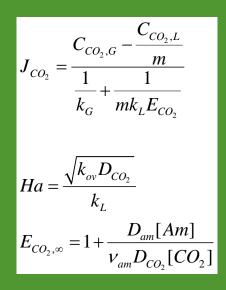
 $\operatorname{CO}_{2}(g) + R_{3}N(l) + H_{2}O(l) \xleftarrow{k_{1}}{\longrightarrow} HCO_{3}^{-}(l) + R_{3}NH^{+}(l)$ (1)

Reaction with tertiary amine is slow and has a low regeneration energy;


 $R_{CO_2} = k_2 [CO_2] [R_3N]$ mole.m⁻³.s⁻¹

(second order reaction)

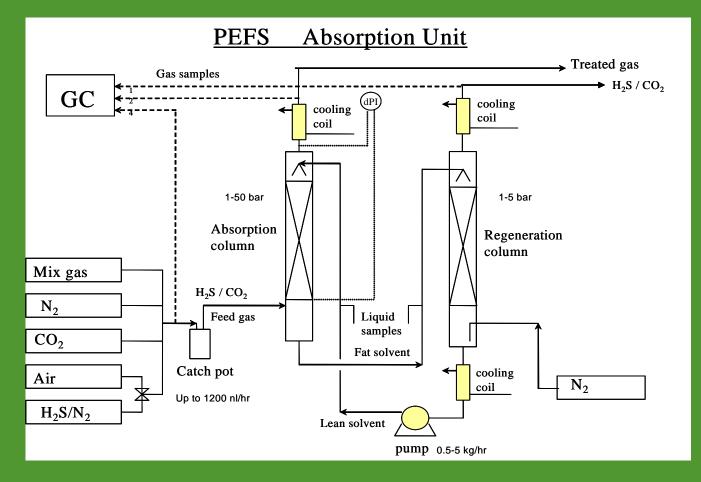
Kinetics primary-secondary amines:


Reaction with primary / secondary amine (carbamate formation) is fast and has higher regeneration energy;

Reaction is complex and can be described with zwitterion mechanism:

• Mass transfer:

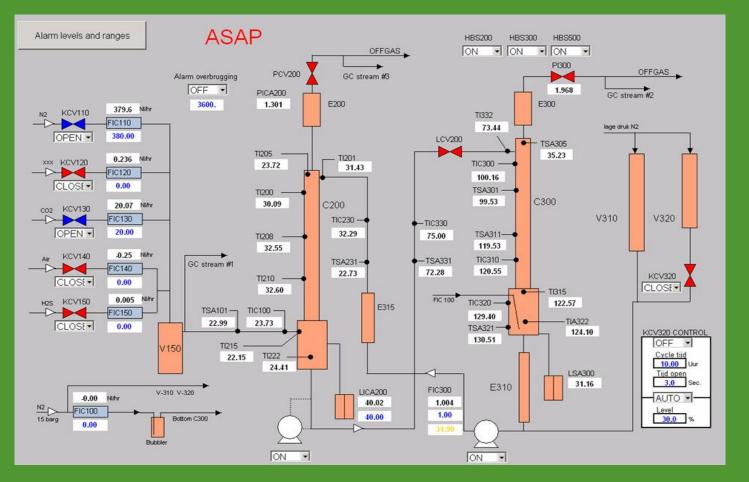
Pseudo first order regime: E_{co2} =Haif 2 < Ha << $E_{co2,\infty}$ Diffusion limited regime: E_{co2} = $E_{co2,\infty}$ if 2 < $E_{co2,\infty}$ << Ha</td>



Shell ASAP unit

- ASAP Unit (<u>A</u>mine <u>Screening AP</u>paratus) is developed by Shell Global Solutions - Amsterdam;
- Designed to test the performance of different solvents;
- Gas flow up to 1.3 Nm³/hr;
- Liquid flow up to 6 kg/h;
- D=2.5 cm, L=1.45 m;
- Sulzer EX laboratory packing; area is 1735 m²/m³.
- Following solvent have been tested and simulated:
 50 wt.% MDEA → solvent circulation is 80 m³ solvent / tonne removed CO₂.

Shell ASAP unit



11th CO₂ capture meeting; Vienna; Austria

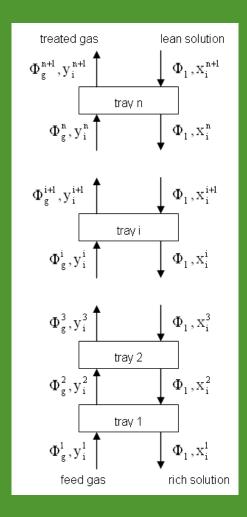
20 May 2008 9

Shell ASAP unit

11th CO₂ capture meeting; Vienna; Austria

Rate Based Model

Two (rate based) models are under development at Procede:


- Top down model (SimCol):
 → Unit operations;
 → Mass transfer + kinetics;
- 2. Bottom up model (Pro2Sim):
 → Fundamentals (equilibrium, flash and rate models);
 → Unit operations;

In this work SimCol is used to describe the absorber of the ASAP unit located at the Shell laboratories in Amsterdam.

Rate Based Model

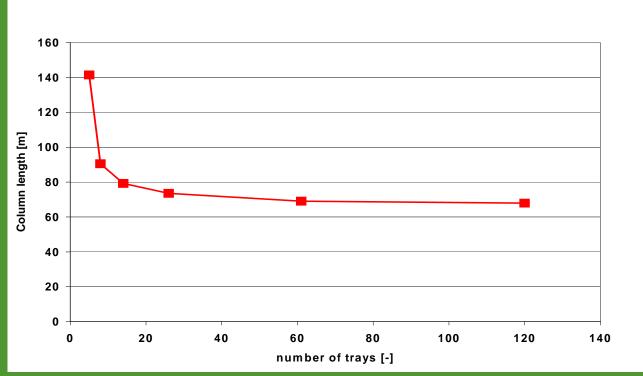
- Flux model for mass transfer;
- Ideal vapor / liquid phase (fugacity = 1);
- Tray to tray procedure (Blauwhof 1985);
- Series of ideal CISTR's;
- No pressure drop and back mixing;
- Constant heat and mass transfer parameters (k_L, k_G, a, h_L, C_P);
- Physical parameters only function of temperature (ρ, μ, D, K, m);
- Limited to blend of two amines.

11th CO₂ capture meeting; Vienna; Austria

Rate Based Model

Following input data are required:

- Solvent type;
- Gas and liquid temperatures;
- In- and outlet CO₂ concentrations;
- Lean solvent concentration;
- Mass transfer parameters: k_g, k_L and a;
- Physical properties (density and heat capacity);
- Reaction and absorption enthalpy;

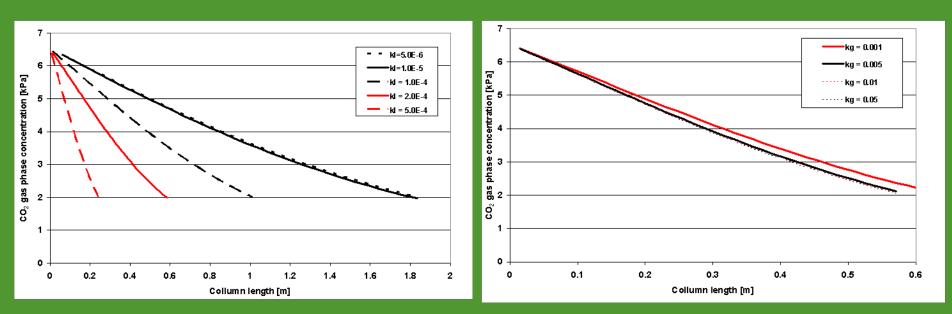

Output:

- Required absorber dimensions;
- Temperature profile in absorber;
- Concentration profile in column;
- Speciation of the liquid.

Model results and Discussion

Influence number of trays :

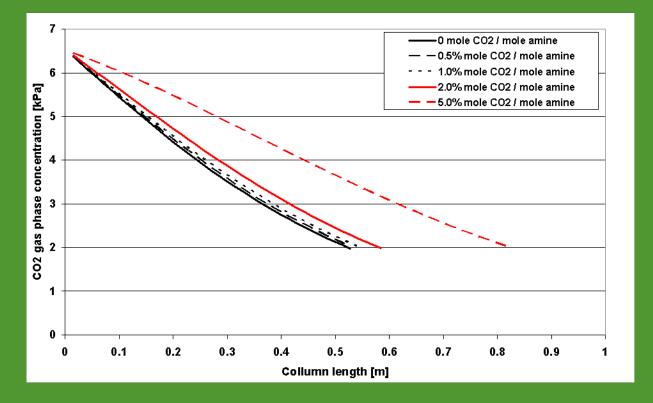
Minimum number of calculated trays should be at least 30 to assure plugflow in the column.



Model Results and Discussion

Influence k_L:

Influence k_G:

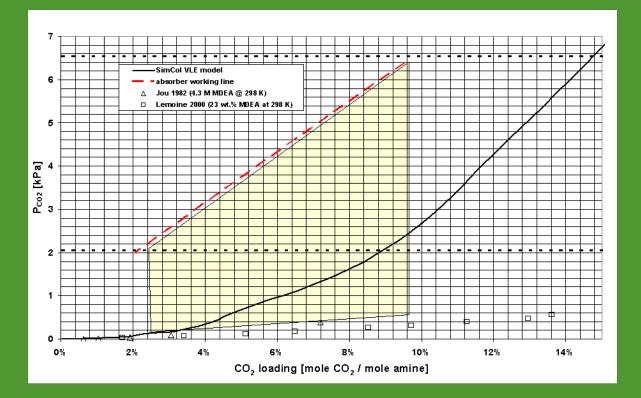


Conclusion: Mass-transfer is generally k_L limited and not k_G.

Model Results and Discussion

Influence lean loading:

Conclusion: Mass-transfer is highly depended on lean loading.

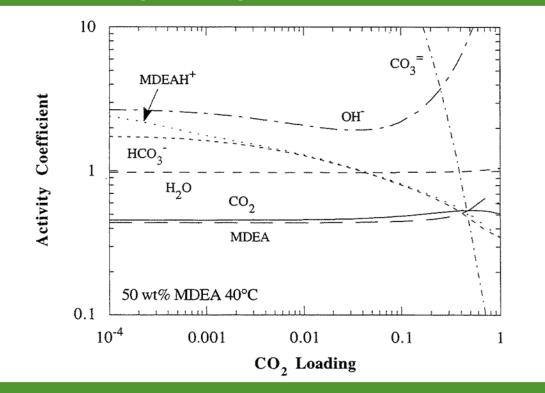


11th CO₂ capture meeting; Vienna; Austria

20 May 2008 16

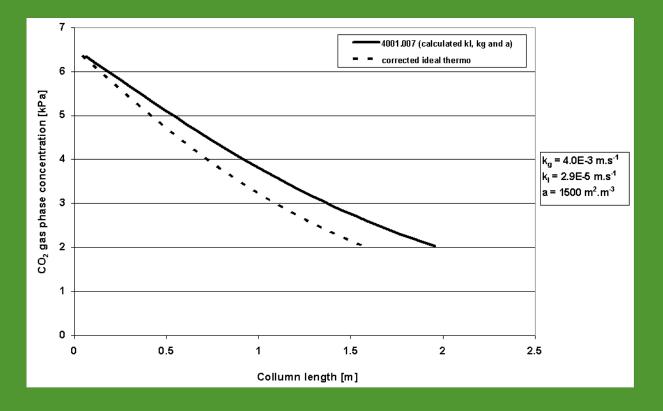
Model Results and Discussion

Driving force in absorber:



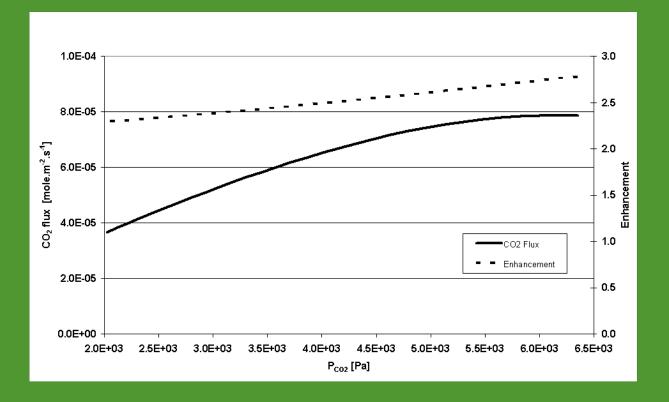
17

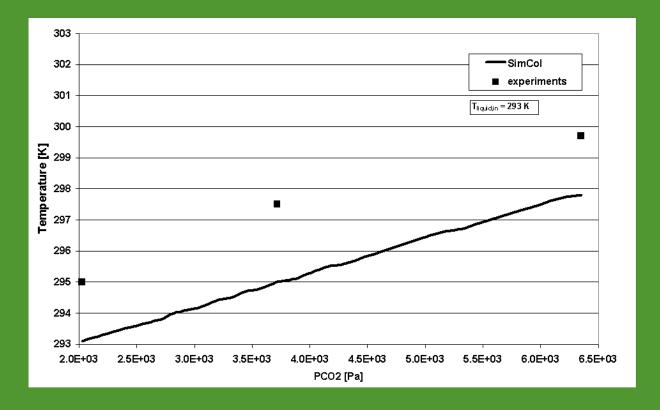
11th CO₂ capture meeting; Vienna; Austria


Calculated activity coefficient in CO₂ loaded 50 wt.% MDEA at 40 °C as calculated by electrolyte NRTL model:

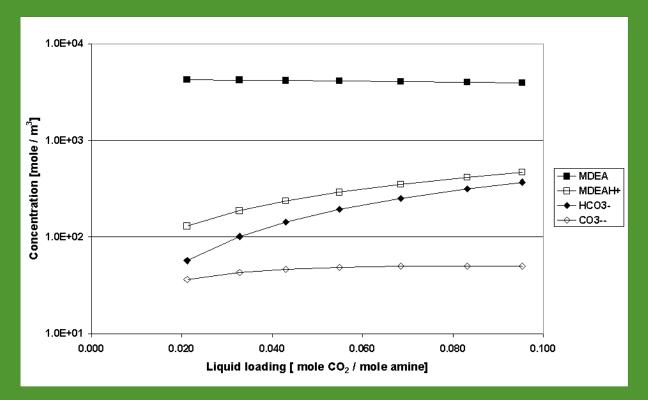
Ref: PhD – thesis Posey (1996) University of Texas.

Calculated column length:


Calculated length; good agreement with experiments (1.45 m).



Flux and chemical enhancement:



Temperature profile:

Speciation in liquid phase:

Conclusions & Future work

- SimCol can be used for qualitatively absorber calculations;
- Simple thermodynamic and enthalpy model not sufficient for accurate calculations → Extension to more accurate thermodynamic models, like E-EOS models;
- Good prediction for MDEA experiments; other solvents will be studied.

Acknowledgement

- Shell Global Solutions for the experimental part of this work;
- This work has been carried out as part of the CAPTECH project;
- CAPTECH is sponsored by the Dutch Ministry of Economic Affairs and is part of the EOS Long Term (Energy Research Strategy) research program.

CCS at IFP

from MEA to New Processes for CO₂ Post-Combustion Capture

o

L. Raynal, E. Lemaire, P. Broutin (IFP)

& L. Normand (Prosernat)

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK,

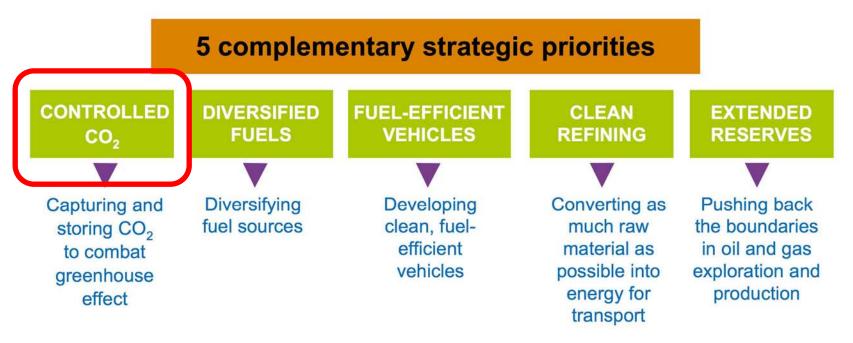
20th-21st May, 2008, Vienna, Austria

- IFP & CCS
- MEA process
- New processes
- Conclusion

IFP

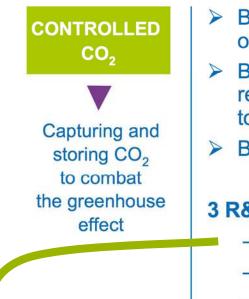
IFP in a nutshell

- 1,735 people*, of which 65% in R&D based in Rueil-Malmaison and Lyon
- 219 doctoral and post-doctoral researchers
- More than 50 professions represented: from geological engineers to motor engineers
- A very high-quality technical environment (testing resources, equipment)


- Status: State-owned industrial and commercial establishment (EPIC)
- Funding: State budget and resources provided by private French and foreign partners
- ➢ Budget for 2007: €301.5 million including €241.3 million for R&D
- More than 12,500 active patents
- More than 200 scientific publications every year

IFP

Preparing for the energy transition



IFP's research programs are structured around these 5 priorities

Research and development

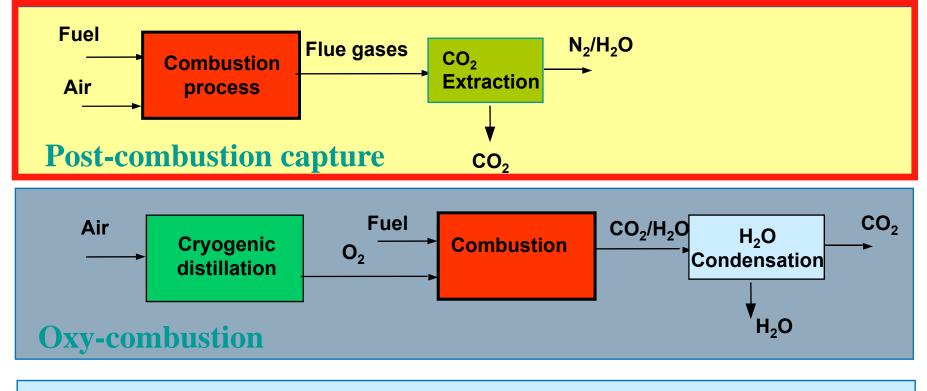
Controlled CO₂

- Because IFP places sustainable development at the heart of its work
- Because IFP has all the expertise and technological skills required to intervene at all stages in the process, from capture to storage

geogreen

Because the bulk of CO₂ emissions result from energy use

3 R&D themes


- CO₂ capture
- Transporting and injecting CO2
- Geological storage of CO₂

Industrial Outlets

Environment

Energy production with CO₂ capture

IEA meeting, 20/05/08, Vienna, Austria

£

Outlook

IFP & CCS

MEA process

New processes

Conclusion

The MEA+ process

The MEA process = BAT

- only proven technology for demos and first generation CO₂ ready power plants
- second generation will not be ready before at least 5 years for industrial demos/applications

The MEA+ process @ IFP

- Demonstration and knowledge partly acquired within CASTOR project
- Huge experience with gas treatment processes commercialized by Prosernat (Technologies and equipment supplier to the natural gas industry, an IFP fully owned subsidiary)
- = => IFP process for minimum costs
 - optimized formulation (corrosion, degradation)
 - optimized design (column size)

Ē

Optimized formulation

standard MEA

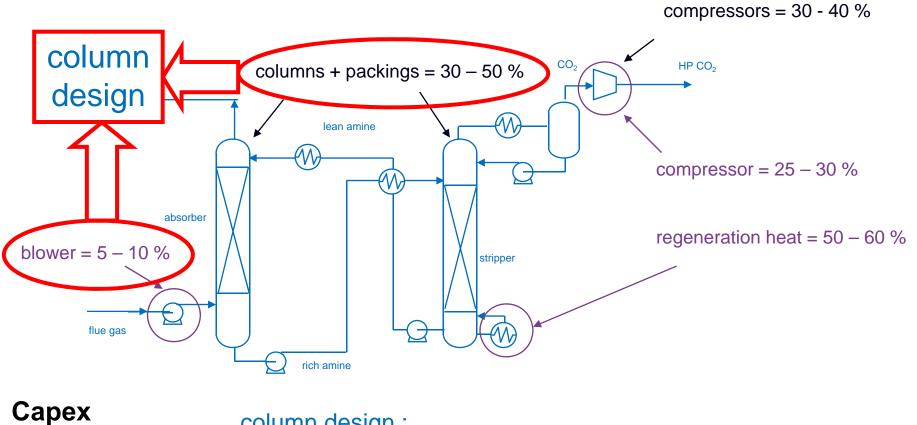
Oxygen & Thermal Degradation

(schematic reaction) MEA $+O_2 \longrightarrow HSS + NH_3$

- HSS formation, corrosion, slower reactivity, ammonia specification
- solvent consumption
- = > tests and screening for inhibitors

Corrosion

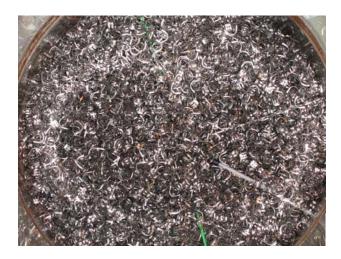
- comparison and evaluation off various material
- use of Castor data (monitoring done by IFP)
- = > tests and screening for inhibitors


AISI 1018 carbon steel coupon after 3 weeks exposure in the lean solvent outlet of the regenerator.

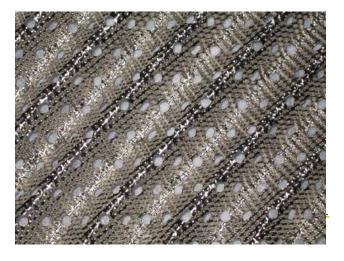
=> original IFP formulation MEA+ 30%wt + additives

Optimized design

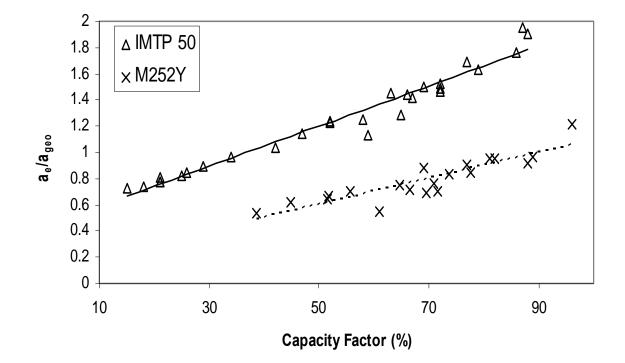
Opex


column design :

- optimum packing / distribution
- minimum pressure drop
- maximum mass transfer characteristics


Experiments (1/2) Large scale experimental facilities

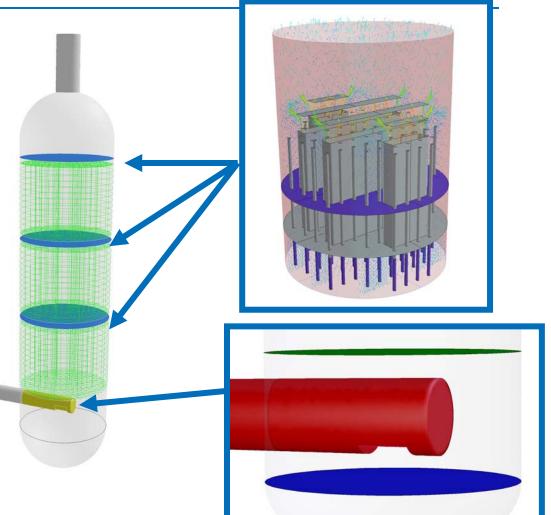
IMTP 50


Mellapak 252 Y

Ц

Experiments (2/2) Results - Mass Transfer Measurements

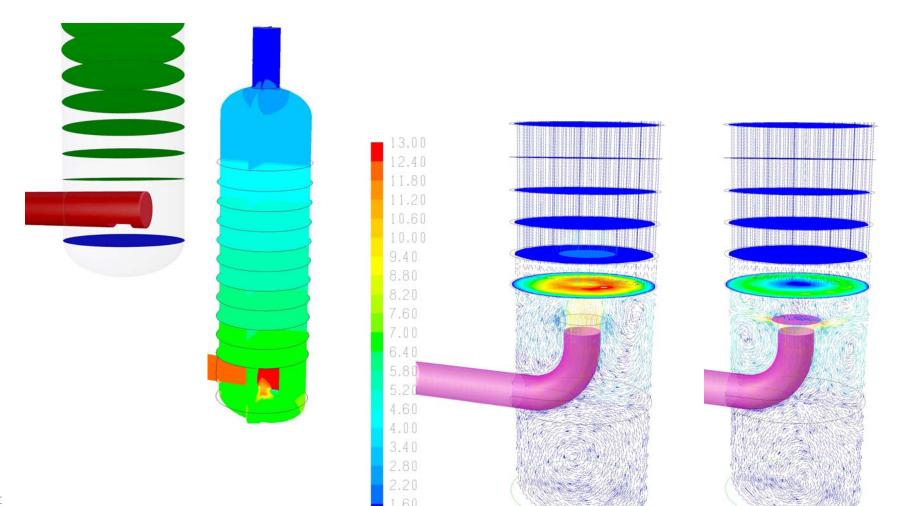
- comparison between random & structured packing
- = => strong differences in behaviour


Ц.

CFD calculations (1/2) strategy

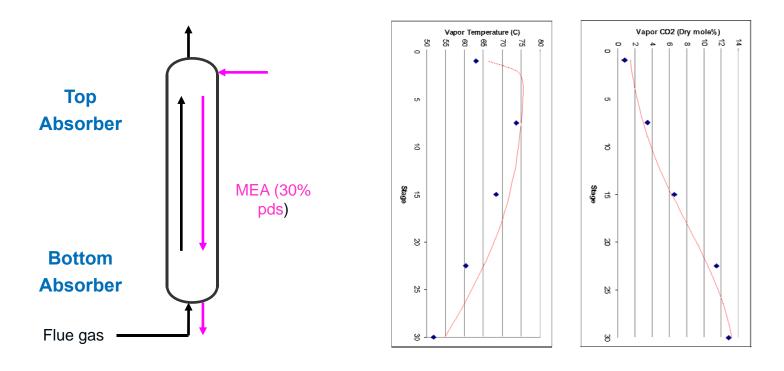
Geometry : the whole column 3D calculations

Outputs : tests of design


Inputs : local information on packings < experiments

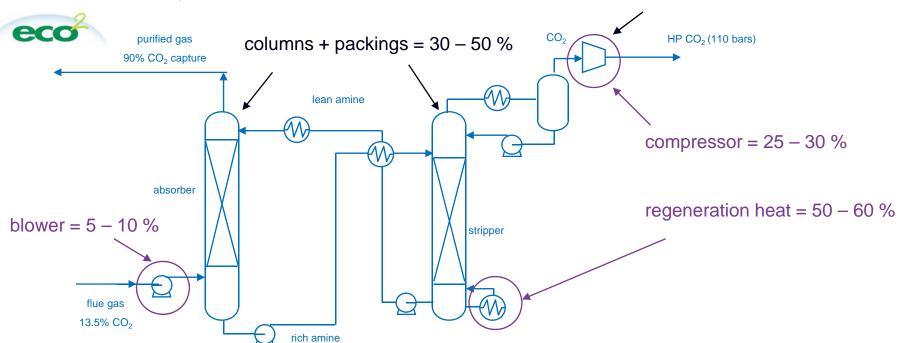
Energy Environment

13


CFD calculations (2/2) Results – tests of gas distributors

Validation Process simulation

IFP Simulation of Castor results


- electrolyte NRTL thermodynamic
- IMTP 50 random packing characteristics (IFP data)

MEA process cost

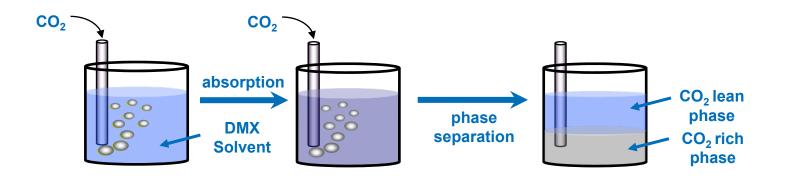
from the IFP – Alstom $éCO_2$ study, a project sponsored by Ademe case of a CFB Coal fired power station, 1400 MW_th, 630 MW_é

	Reference power plant	plant with CCS (MEA)
Net efficiency	45 %	34.5 %
Cost of electricity	38 €/MWh	66 €/MWh
Cost of CO ₂ avoided		44 €/t

compressors = 30 - 40 %

Outlook

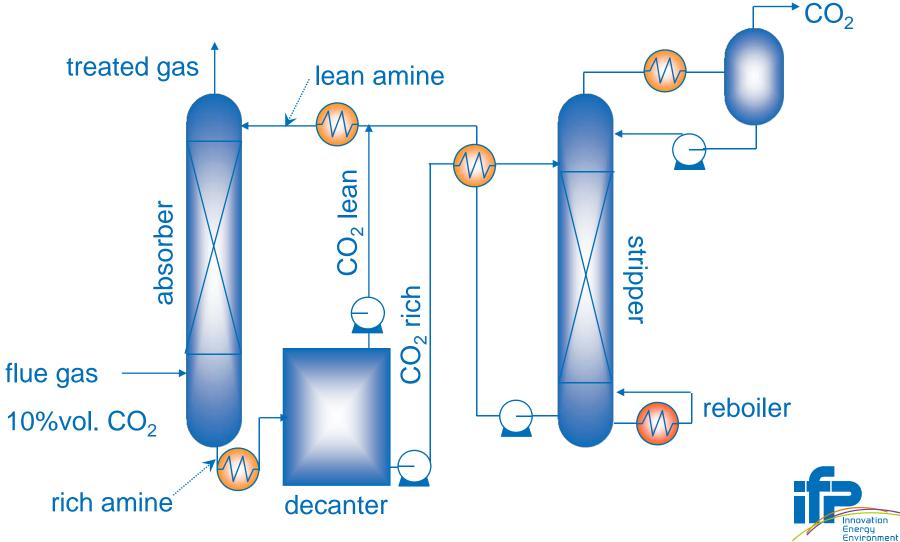
IFP & CCS


MEA process

New processes

Conclusion

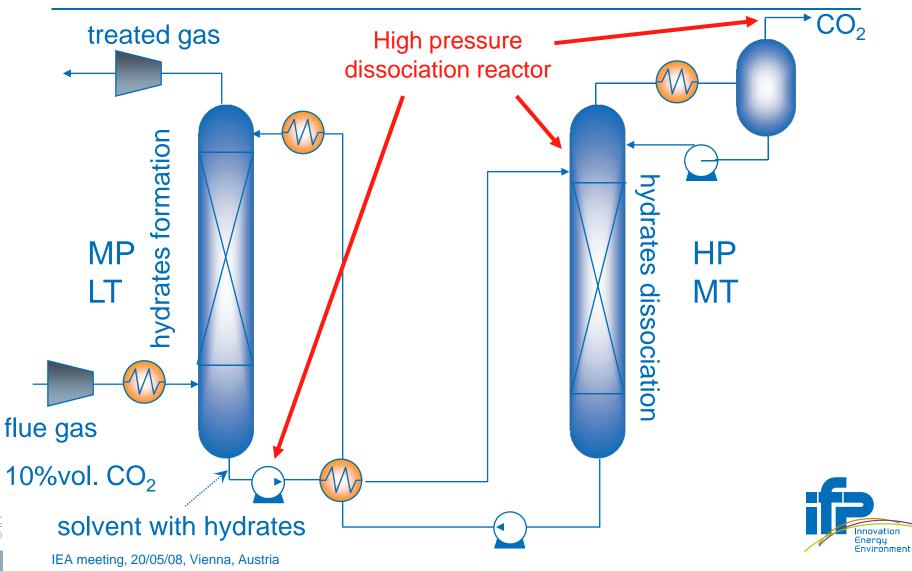
New concepts Demixing solvents



amine + $H_2O + CO_2 \leftrightarrow$ ammonium salts

- 1) high capacity solvents
- 2) regeneration of a fraction of the solvent only
- 3) CO₂ rich phase has an "abnormally" high loading
- => important energy savings

Process with DMX solvents


New concepts Hydrates formation

Hydrates

- natural selectivity towards CO₂ hydrates formation
- HP, LT
- => needs for a promoter (TBAB, THF...)
- natural formation of agglomerates which leads to plugging
- => original IFP formulation : water in oil emulsion with a proprietary antiagglomerate

Process Hydrates

Other works

New processes

- amine blends
- adsorption : functionnalized adsorbents MOF
- ionic liquids
- original solvents ...
- New technologies
 - membrane contactors
 - high performance packings

IFP Collaborations

- Castor, Cesar, Caprice, Acacia, Axelera, Gascogne, CapCO2, éCO2, …
- + Encap, Coach, Decarbit, Dynamis, Cachet, ...

Energy savings

from the IFP – Alstom $éCO_2$ study, a project sponsored by Ademe case of a CFB Coal fired power station, 1400 MW_th, 630 MW_é

=> loss of 150 MWe

Demixing solvents

+ : lower L flowrate, lower reboiler duty, lower stripping

=> loss of 130 – 90 MWe

Others

- many ideas but many work to do before any estimation !
- will not be ready for commercialization before 7-10 years

Outlook

- IFP & CCS
- MEA process
- New processes

Conclusion / future work

MEA +

- A first industrial process for now
- advanced MEA
- ready for pilotes, demos and more ...

Next generation processes

- energy loss reduction by at least 30 %
- original concepts (DMX solvents, Hydrates, ...) need further investigations (solvents characteristics, thermodynamics, kinetics, degradation; process studies ...)
- proposition for pilote tests for 2010-2012 +

Thank you !

Innovating for energy

www.ifp.fr Ludovic.Raynal@ifp.fr

Innovation

Environment

Energy

0

Post-Combustion Capture (PCC) R&D and **Pilot Plant Operation** in Australia

IEA GHG 11th Post Combustion CO₂ Capture Network Meeting

GSH

Vienna, Austria, 20-21 May 2008

Clean Coal Technologies in Australia

PCC in Australia

- The Need
- The Issues

PCC programme at CSIRO

- Pilot plant activities
- Research activities

Australia's Greenhouse Gas Emissions

>Australia emitted 559 M tonnes CO_2 equiv. (2005)

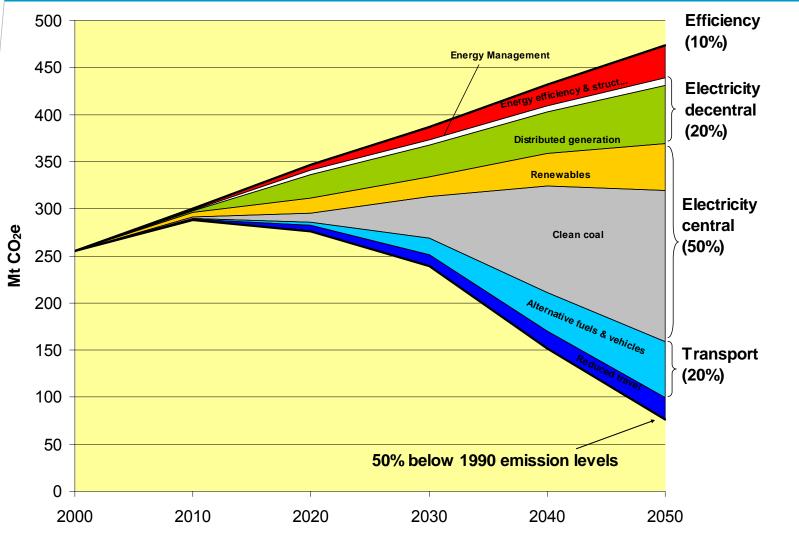
Australia has signed the Kyoto Protocol. Committed to the Kyoto target of a 108% increase over 1990 emissions (to 2012) – currently on track

Australia's greenhouse gas intensity (per capita) at ~27 tonnes CO_2 – equiv. per capita is among the highest in the world

Australia's greenhouse gas intensity (per \$ of GDP) is 0.7 kg CO₂

Importance of Coal to Australia

Black coal is Australia's largest commodity export and is worth
 \$25 billion (AUD) per annum


>Australia is the world's largest exporter of coal

Electricity generation accounts for ~35% of Australia's net GHG emissions

Australia's electricity derives mainly from coal (57% black coal, 30% brown coal)

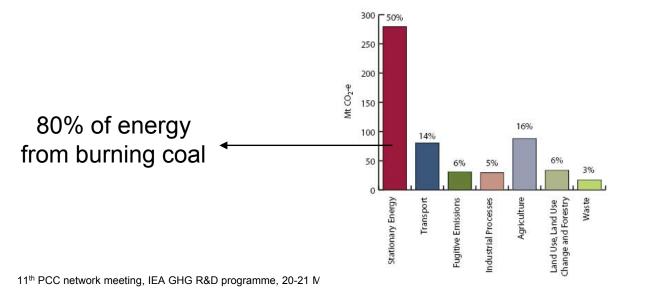
Emission reduction pathway for Australia

Source: Energy Futures, Paul Graham, CSIRO

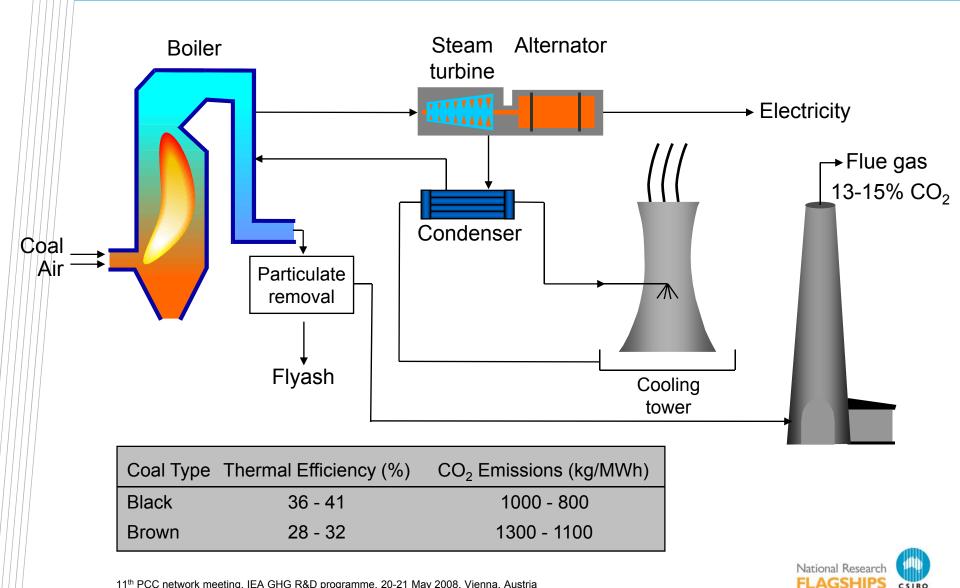
Australian Research Organisations in CCT

- Cooperative Research Centre for Coal in Sustainable Development (CCSD)
- Centre for Low Emission Technologies (cLET)
- Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC)
- Australian Coal Association Research Program (ACARP)
- Energy Transformed Flagship of the Commonwealth Scientific and Industrial Research Organisation (ETF-CSIRO)

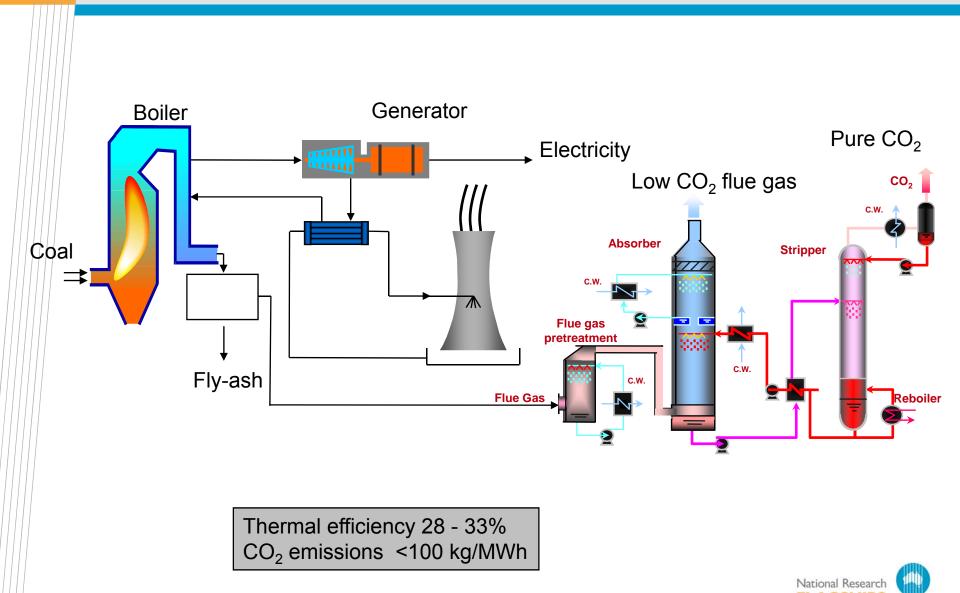
• Until 2006 there was also a CRC for Clean Power from Lignite


Clean Coal Technology Pilot and Demonstration Projects

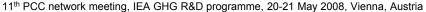
- 1. IDGCC (HRL)
- 2. Monash Energy -Gasification/ GtL/ CSS
- 3. Stanwell IGCC/ CSS ZeroGen Project
- 4. CS Energy Oxyfuel Project
- 5. International Power Lignite Power Repowering, Drying and Capture
- 6. Gorgon
- 7. Zero Carbon Fairview
- 8. CO2CRC Otway Basin Project
- 9. Kwinana Project
- 10. Latrobe Valley PCC Project
- 11. Moombah Carbon Storage
- 12. APP Post Combustion Capture Project
- 13. APP Enhanced Coal Bed Methane Project


The Need for PCC in Australia

- Potential for substantial impact on very high GHG intensity of nations with a heavy reliance on coal for power generation
- ➢Offers ultimate long-term objective of near-zero CO₂-emissions
- Addresses the risk of having major stranded generation assets (if a high cost is applied to carbon emissions)
- PCC potentially offers cost competitive route to low GHG emission electricity from coal for existing and new power stations



PF Power Plant


CSIRO

PF Power Plant with Post Combustion Capture

AGSI

CSIRO

PCC application in Australian coal fired power stations

- ➤Generation capacity ~ 28 GW
- Electricity production 170 TWH/a
- Average generation efficiency
 - Black coal: 35.6% 0.9 tonne CO₂/MWh
 - Brown coal: 25.7% 1.3 tonne CO₂/MWh

>CO₂-emissions ~ 170 Mtonne CO₂/a from ~ 60 flue gas streams >SO₂ levels:

- Black coal: 200 600 ppm
- Brown coal: 100 300 ppm

≻NO_x levels:

- Black coal: 300-700 ppm
- Brown coal: 100-200 ppm

➢Flue gas temperature

- Black coal: 120 °C
- Brown coal: 180 °C

➤Cooling water: 1.5-3.0 m³/MWh

Data used from CCSD – technology assessment report 62

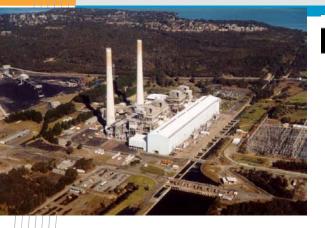
Known issues with PCC

- ➢ High cost: around \$30/t CO₂ captured
- Electricity cost increase from \$30/MWh to \$50/MWh for an 85% reduction in GHG
- Loss of generation efficiency around 20-30% to capture 90% of CO₂
- Not demonstrated in integrated power plants scale
- Sensitive to O₂, SOx and other flue gas constituents
- Large increase in cooling water requirement

PCC programme at CSIRO

Integrated PCC R&D Programme

Pilot plant programme (Learning by doing)


- Hands-on experience for future operators
- Identification of operational issues and requirements
- Testing of existing and new technologies under real conditions

Lab research programme (Learning by searching)

- Support to pilot plant operation and interpretation of results
- Develop novel solvents and solvent systems which result in lower costs for capture
- > Addressing Australian specifics (flue gases, water)

Confirmed Pilot Plants

Latrobe Valley Post Combustion Project

- APP support
- Munmorah Power Station
- Black coal
- Ammonia based
- No FGD/DeNox

M CHINA HUANENG

- APP support
- Gaobeidian Power Station
- Black coal
- Amine based
- FGD/DeNox installed

- ETIS support

- Loy Yang Power Station
- Lignite
- Amine based

Pilot plant locations

Gaobeidian power station

Latrobe Valley Post-Combustion Capture Project

Energy Technology Innovation Strategy

Project activities and actors

- New solvent development research CSIRO/CO2CRC
- Membrane research 10 tpa CO2CRC
- Adsorbent research at 100 tpa CO2CRC
- Solvent testing in 1000 tpa test facility CSIRO/Loy Yang Power
- Solvent testing in 10000 tpa demonstration plant CO2CRC/International Power Hazelwood
- Process and energy integration studies all
- Technical and economical studies all

Scope of pilot plant experiments at LYP

Technical and economical scale-up information about CO₂ capture plant based on operation on flue gas from brown coal combustion

>This includes determining the following interrelationships:

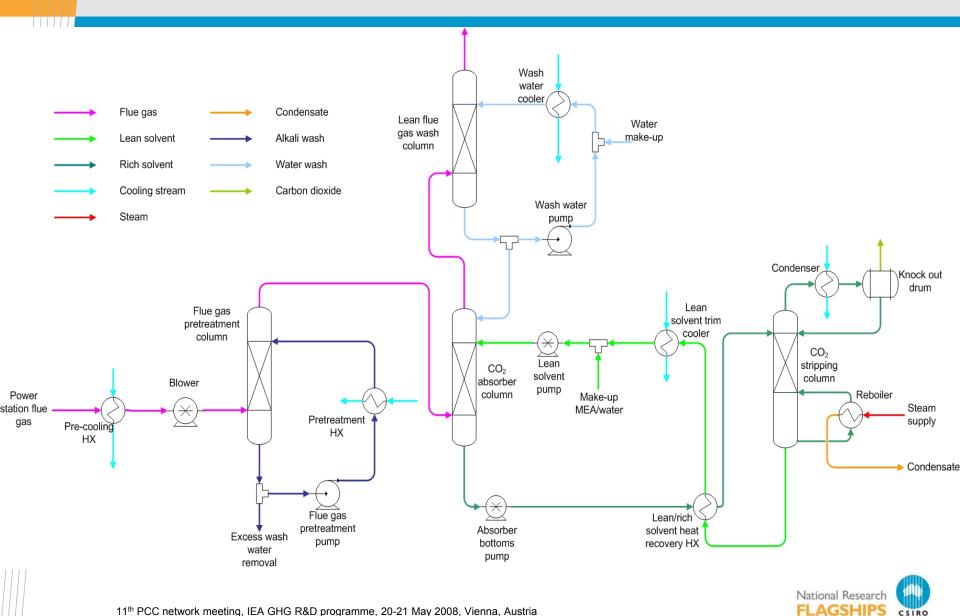
- CO₂ capture energy consumption
- CO₂ capture efficiency
- Solvent CO₂ loading
- Solvent and flue gas flow rates
- Regeneration temperature and pressure
- Absorption temperature
- Solvent consumption and degradation rates
- Fouling and corrosion
- Effectiveness of the conditioning stage
- Reagent loss rate both to acid gas and to release with flue gas
- System water consumption

Loy Yang Power Station, Victoria

- The power station is capable of generating 2,200 megawatt.
- Loy Yang mine is the largest producing open cut brown coal mine in the southern hemisphere.
- Loy Yang Power supplies one third of Victoria's electrical energy needs.
- The Loy Yang open cut coal mine excavates approximately 30 million tonnes of brown coal each year.
- There are 168,000 million tonnes of accessible brown coal beneath the Latrobe Valley, or in excess of 1,300 years supply at current rates of usage.

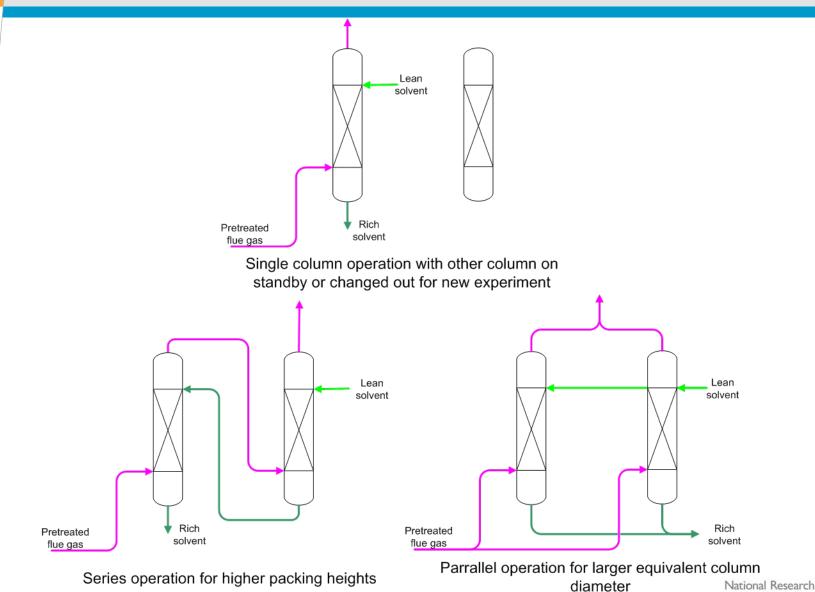
LYP Pilot plant design

- Use of two columns with a specified single column design CO₂ capacity of 100 kg/hr as a minimum (85% removal)
- >Based on local flue gas composition (11% CO_2)
- ≻Based on the use of MEA (30%)
- ➢Operate with reboiler temperatures 100 120°C
- ➢Operate with stripper pressures 1 2 bar
- Be able to determine thermal and electrical energy requirements of the pilot plant
- ➢Be able to determine emissions to atmosphere and CO₂-product quality



Pilot plant design process

- Process modelling based on Winsim and Aspen Plus providing heat and mass balance -> basis for design
- Sizing and costing of major equipment both internally and by external contractors
- Frame/skid design
- Detailed design including piping
- Process and Instrumentation
- Control logic



Simplified Pilot plant flow sheet

CSIRO

Two absorbers for added flexibility

FLAGSHIPS

CSIRO

Pilot Plant Gas Analysis

Gas analysis will be performed at 5 points throughout the pilot plants.

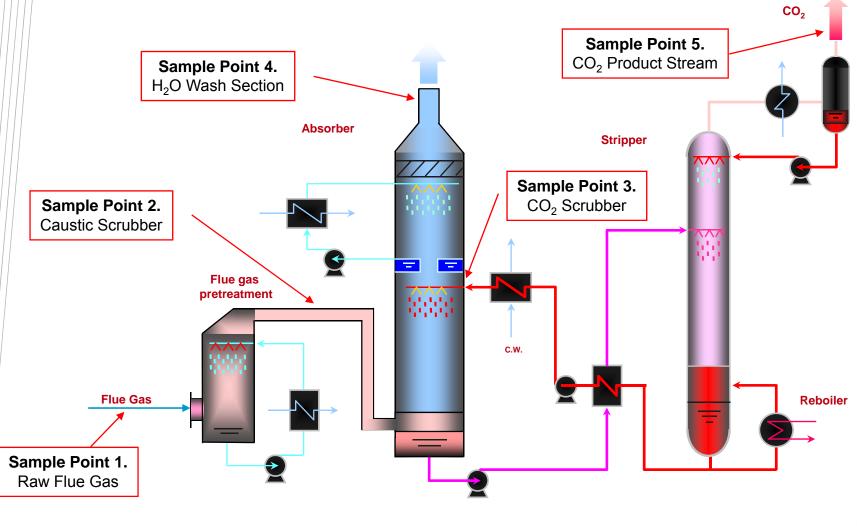


Diagram adapted from MHI. 11th PCC network meeting, IEA GHG R&D programme, 20-21 May 2008, Vienna, Austria

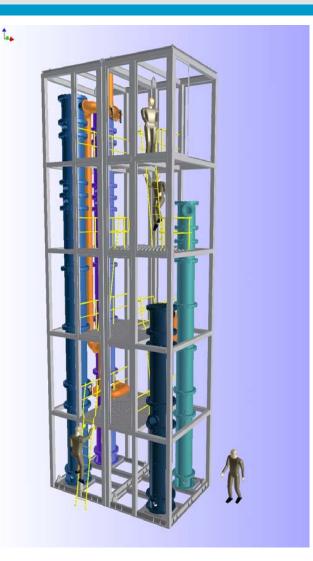
Loy Yang Pilot Plant Program

Collaboration Partners

- Loy Yang Power
- Victorian Government (Energy Technology Innovation Strategy -ETIS)

Project Milestones

- Establishment of pilot plant on site Jan 2008
- Official opening 29 April 2008
- Pilot plant operational May 2008
- Experimental program Jun 2008 Dec 2009

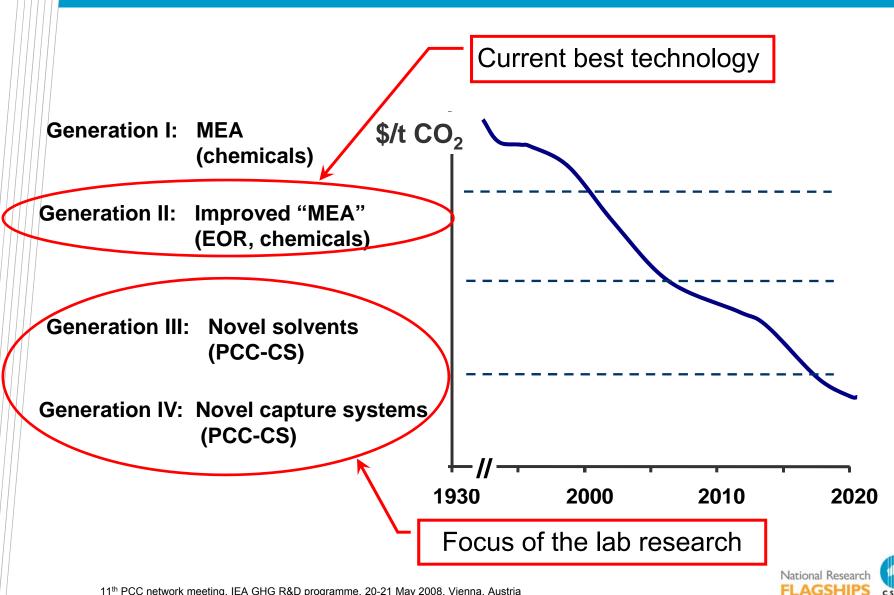

Munmorah Pilot Plant

Collaboration Partners

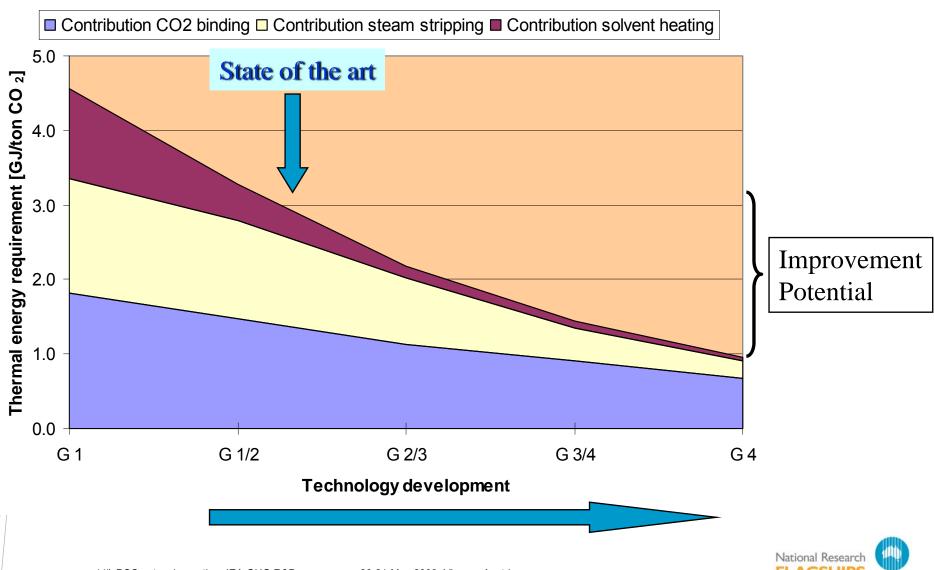
- DELTA Electricity
- Department of Resources, Energy, & Tourism (Asia Pacific Partnership program)

Project Milestones

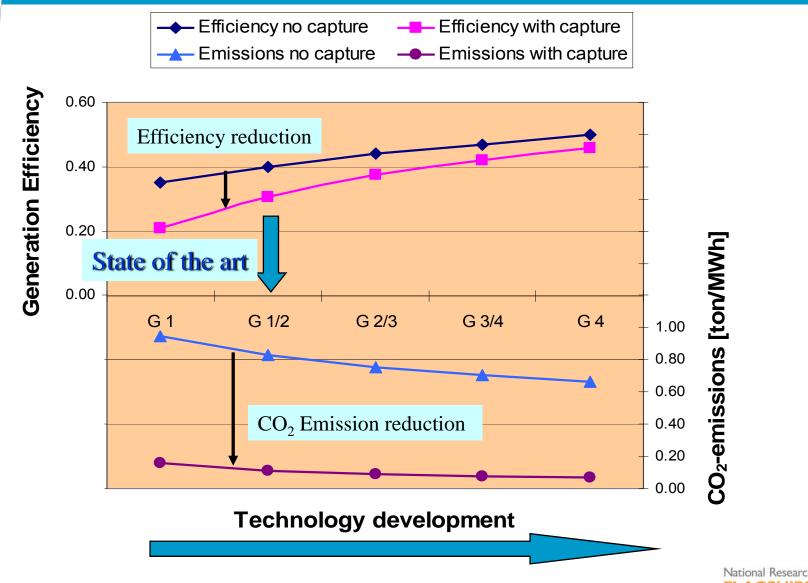
- Detailed design complete Feb 2008
- Construction complete June 2008
- Commissioning and experimental program – July 2008 – July 2010


Australian Government

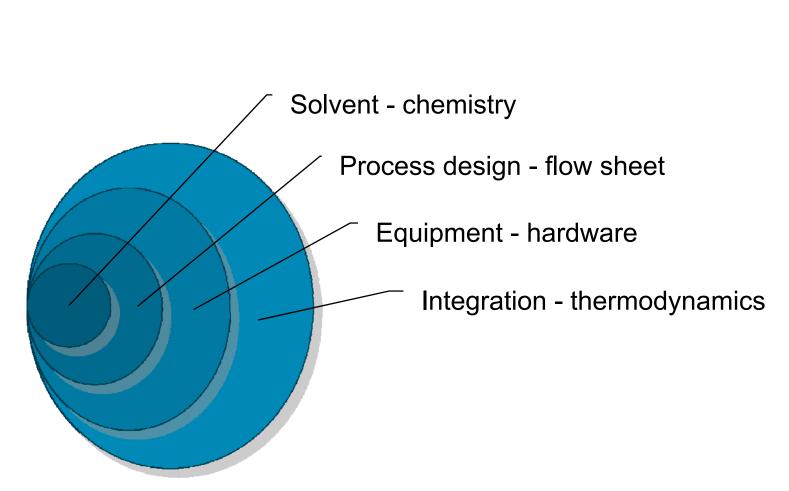
Department of Industry, Tourism and Resources



Development Pathway for PCC


CSIRO

PCC Technology Development Scenario

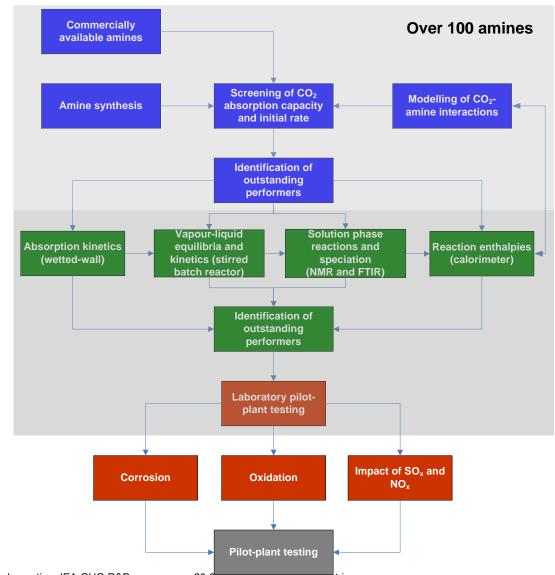

CSIRO

Efficiency and CO₂ Emissions

CSIRO

Research: Solvent system development

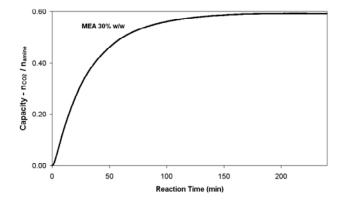
A holistic approach is essential!



PCC Research programme overview

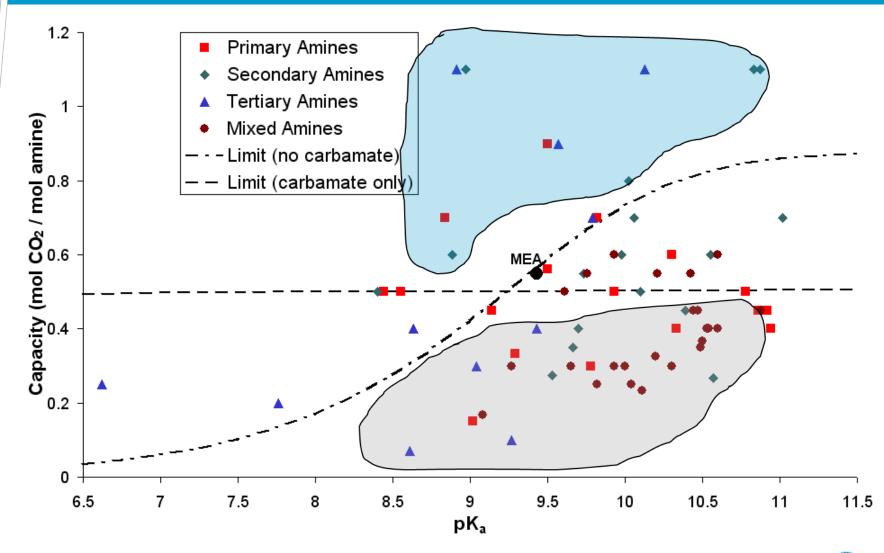
- 1. Solvent development focuses on new chemicals or chemical formulations for reversible binding of CO₂
- 2. Solvent process development involves the development of alternative processes, novel process flow sheets, inclusion of other separation processes such as membrane technology to improve the solvent process performance
- 3. Equipment development is particularly aimed at reducing the equipment sizes and the physical footprint of capture technology and hence reducing investment costs
- 4. Optimal power plant integration is required to have minimal impact of the capture process on the power plant, including the usual of solar energy

Solvent development programme



Screening of Capacity and Initial Rate

Gravimetric method used to measure CO_2 absorption and initial absorption rate on μL scale



Traditional absorption method used on the mL scale

Modelling + Screening

G III-IV - R&D Directions

Advanced amines

• Formulated mixtures, multiple amine groups

➢Non-aqueous solvents

• Ionic liquids

Phase change solvents

• Slurries, emulsions

Modified process concepts

- Intervolving, heat exchange integration in stripper, integration of compression, split flow
- Novel process components
 - Membrane contactors, heat pumps
- Robust solvents
 - Ammonia, carbonates

Biomimetic approaches

Enzymes for solvent process improvements

CSIRO Energy Technology Paul H.M. Feron PCC Science Leader

Phone: +61 (0)2 4960 6022 Email: paul.feron@csiro.au Web: www.csiro.au

www.csiro.au

Contact Us

Phone: 1300 363 400 or +61 3 9545 2176 Email: Enquiries@csiro.au Web: www.csiro.au

CSIRO ENERGY CENTRE

Results from CASTOR project

International Post-Combustion CO2 Capture Network Vienna, 2008.05.20&21

TNO | Knowledge for business

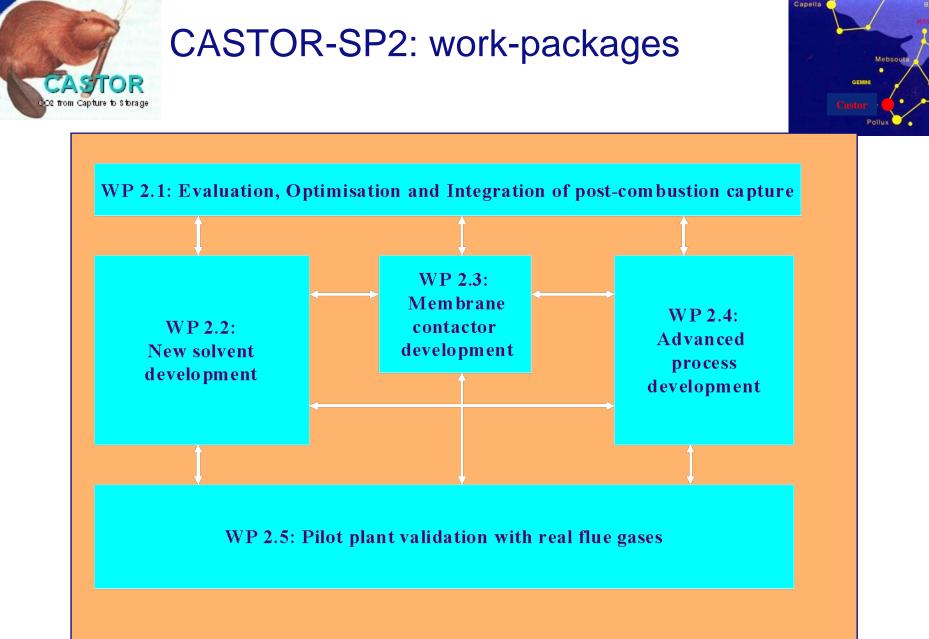
Jan Hopman

Energy/CO₂ TNO Science & Industry

E: jan.hopman@tno.nl T: +31 15 269 2196

CASTOR-SP2 objectives (2004)

- Development of absorption liquids, with a thermal energy consumption of <u>2 GJ/tonne CO₂</u> at 90% recovery rates (4 GJ/tonne CO₂ with reference process)
- Resulting costs per tonne CO₂ avoided not higher than <u>20 to 30</u>
 <u>€tonne CO₂</u>, depending on the type of fuel (40 to 50 €/tonne CO₂ with reference process)
- **European pilot plant** tests showing the reliability and efficiency of the post-combustion capture process


CASTOR-SP2 Members

Capella Mebsouta GEMMI Cristor Pollux

- Knowledge
 - IFP
 - NTNU
 - SINTEF
 - TNO
 - USTUTT

- Industrial
 - Alstom-Power
 - BASF
 - DONG Energy
 - Doosan-Babcock
 - Electrabel
 - EON-Engineering (D,UK)
 - Gaz de France
 - PPC
 - RWE
 - SIEMENS
 - StatoilHydro
 - Vattenfall

CASTOR WP2.1: Base cases & Integration

- Capella Mebsouta GEMMN Criston Pollux
- Integration Carbon Capture in Power Plants for following base cases:
 - 1. 393 MWe CCGT (Siemens)
 - 2. 600 MWe bituminous (Doosan Babcock)
 - 3. 1000 MWe lignite (RWE/Alstom)
 - 4. 380 MWe lignite (PPC)
- Economic models for each base case
 - Process base case definition

Process modelling – flow sheeting tools

- Equipment design and process integration

- Economic evaluation and analysis

5

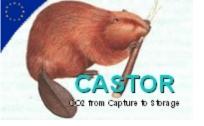

WP2.1: Base cases & Integration

Conclusions:

- A <u>techno-economical model</u> has been developed, which enables process analysis, optimization and integration.
- The <u>optimum flue gas CO₂ recovery</u> from coal fired power station lies in the range 80% - 95%.
- Process integration and heat recovery results in 15-20% heat recovery, which could save 0.4-1.6 percentage points from the overall efficiency penalty using MEA.
- Using improved <u>CASTOR2 solvent</u> results in extra 1.2-2.1 percentage points savings.

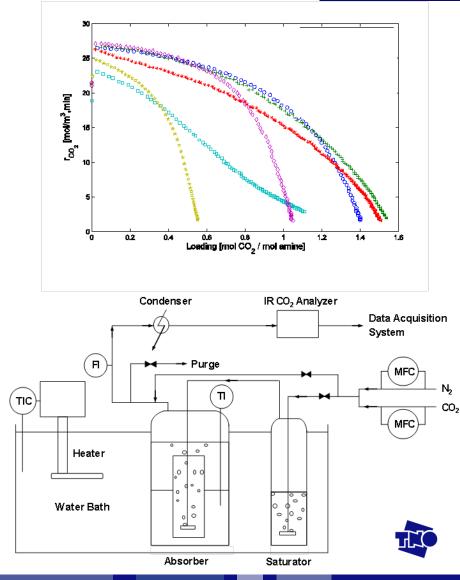
WP2.2: New solvents objectives

- To make a <u>preliminary selection</u> of suitable solvents as alternatives to the state-of-the-art monoethanolamine solutions
- To <u>characterise</u> selected solvent alternatives to enable design studies and to assess potential to reduce CO2 capture costs
- To determine the <u>degradation</u> of selected solvents as a result of flue gas components
- To assess corrosion rates for selected solvents
- To define and <u>validate</u> mass transfer models and pressure drop models for the absorber and for the desorber, suitable for extrapolation purposes

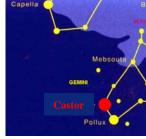


WP2.2: New solvents

- 30 solvents investigated
- Models developed and validated
- Three solvents tested at CASTOR-pilotplant-Esbjerg:
 - **1. MEA**
 - 2. CASTOR-1 solvent
 - 3. CASTOR-2 solvent



WP2.2 Solvent selection (SINTEF/NTNU)


- Background
 - Examination of literature and patents
 - Steric hindered primary and secondary amines
 - Polyamines
 - Partial loading of polyamines with acid (polyamine salts)
- 30 solvent were chosen for pre-selection
- Screening tests
- Equilibrium data at 40 and 120 C.

Solvent Characterisation

- Gas-liquid equilibrium
- Determination of suitable lean and rich loading
- Calculation of thermal energy requirements
- Calorimetric measurement of heat of absorption
- Reaction kinetics estimation of absorber heights
- Viscosity, diffusivity, solubility
- Corrosiveness

Solvent test facilities

Miniplant (USTUTT)

Esbjerg Pilotplant (DONG)

WP2.3: Membranes

Objectives:

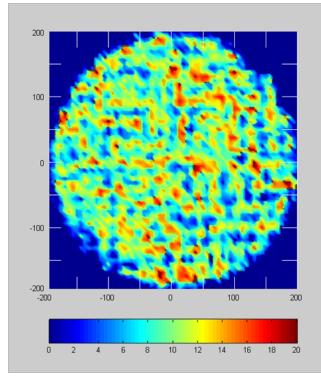
- Conceptual design of membrane absorber & desorber
- To determine membrane performances
- To validate performances under realistic conditions

Results:

- Membrane desorber
 - Conceptual design
 - Lab tests
- Membrane absorber
 - Flue gas exposure test with 3 membranes
 - Flue gas test with hollow fiber membrane module

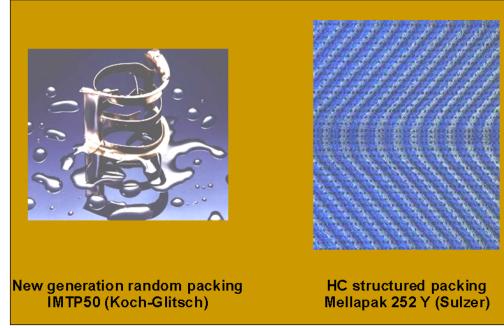
WP2.3: Membranes


- Three membrane types developed and tested:
 - Transversal flow module
 - Flat membrane module
 - Fibre module
- Practical data generated:
 - Filter recommended



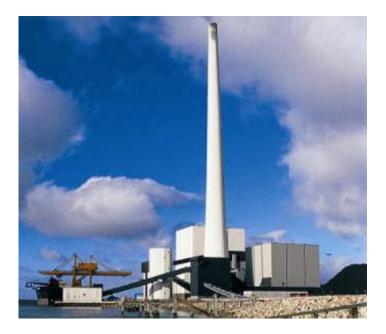
WP2.4: Advanced processes

- Process optimization of the absorption / desorption loop (Gaz de France, IFP)
- Packing material characterization (IFP)
 - Two packings fully characterized (IMTP50 & ME252Y)
 - Hydrodynamic test on pilot plant (Esbjerg) equipped with IMTP50.



WP2.4: Advanced processes

- Process optimization of the absorption / desorption loop (Gaz de France, IFP)
- Packing material characterization (IFP)
 - Two packings fully characterized (IMTP50 & ME252Y)
 - Hydrodynamic test on pilot plant (Esbjerg) equipped with IMTP50.



WP2.5: Pilotplant tests

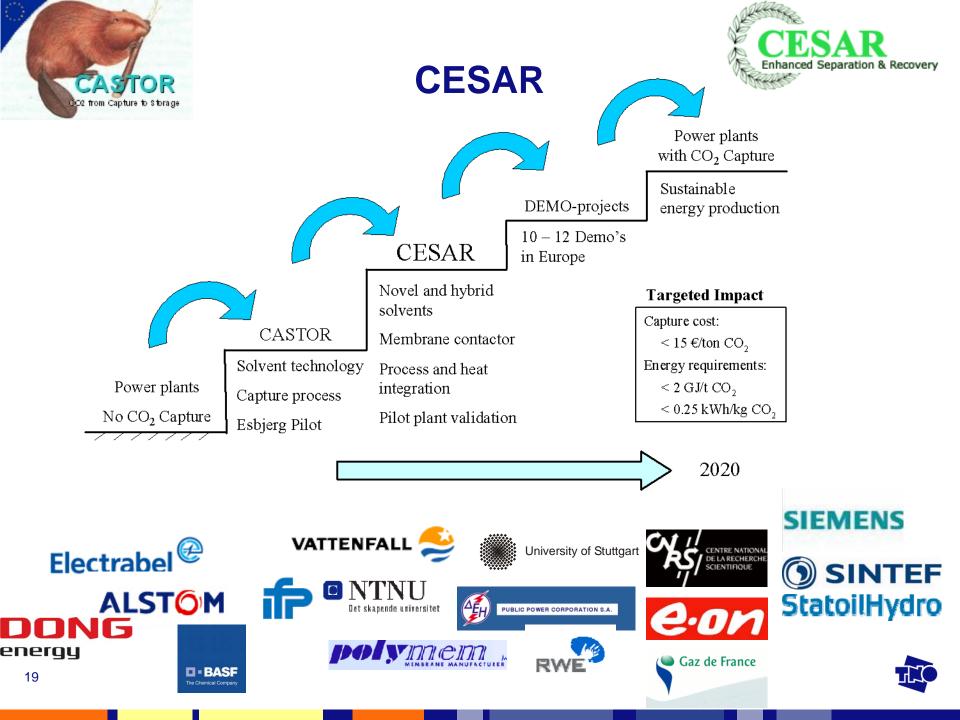
Capella Mebsouta GEMNN Castor Pollux

- CASTOR pilot-plant at DONG-Esbjerg
 - Presentation by DONG
- Four test runs:
 - MEA-1
 - MEA-2
 - CASTOR-1 solvent
 - CASTOR-2 solvent

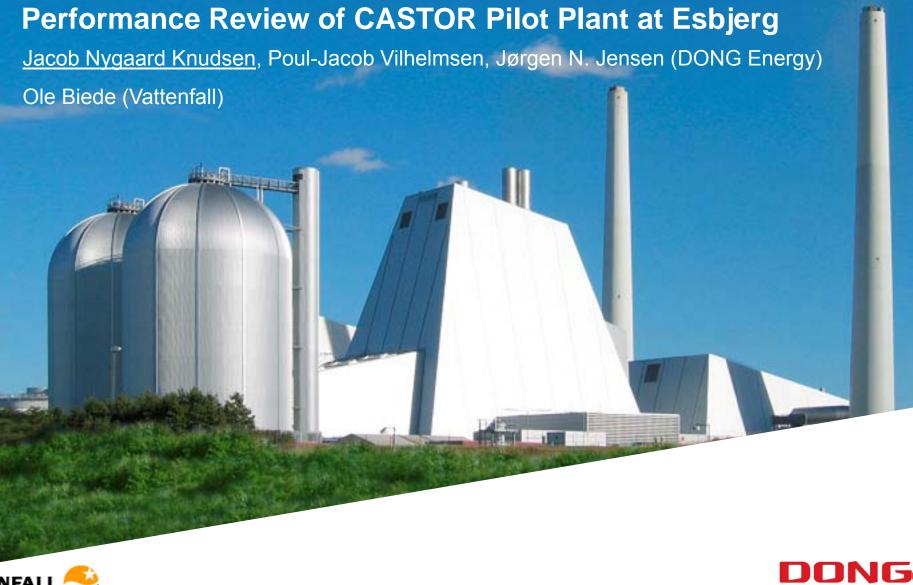
CASTOR-SP2: Conclusions - 1

- 1. Development of absorption liquids, with a thermal energy consumption of 2 GJ/tonne CO_2 at 90% recovery rates
 - Reference process: ~4GJ/tonne CO2
 - With CASTOR2 solvent: down to 3.5GJ/tonne CO2 (12%)
 - With integration: down to 3.2 GJ/tonne CO2 (20%)
- Resulting costs per tonne CO₂ avoided not higher than 20 to 30 €/tonne CO₂, depending on the type of fuel
 - Reference process: 40-50 €/tonne CO2
 - With MEA process optimization: 35-37 €/tonne CO2 (2005 ref)
- First steps to the ambitious goals are made

STOR


CASTOR-SP2: Conclusions - 2

- 3. European pilot plant tests showing the reliability and efficiency of the post-combustion capture process
 - Operational pilot plant
 - Validation procedures
 - Validation experience
 - Validation results
 - Environmental awareness
 - Queue of requests from industry
- CASTOR made validation basis for Post-Combustion-Capture development



IEA GHG – 11th Capture Network Meeting

20 – 21 May 2008, Vienna, Austria

CASTOR Pilot Plant Objectives

The test facility shall

- Prove long-term stable operation on coal flue gas
- Act as a test facility for dedicated tests (e.g. test of novel solvents)

Provide information about

- Operation costs
- Maintenance costs
- Reliability
- Operation flexibility
- Environmental issues
- Engineering experience

Esbjerg Power Station (ESV)

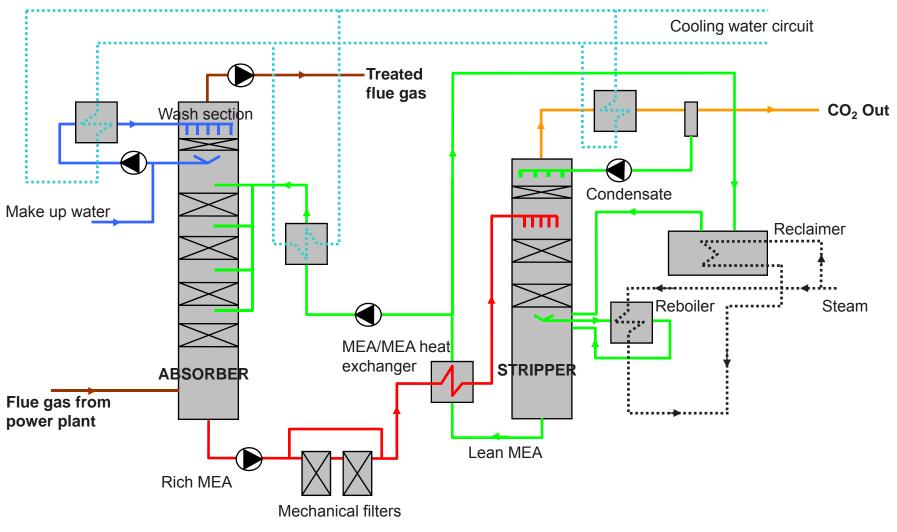
Esbjerg Power Station

- •400 MW_e pulverized bituminous coal
- •High dust SCR deNO_x plant
- 3 zones cold-sided ESP
- •Wet limestone FGD (saleable gypsum)

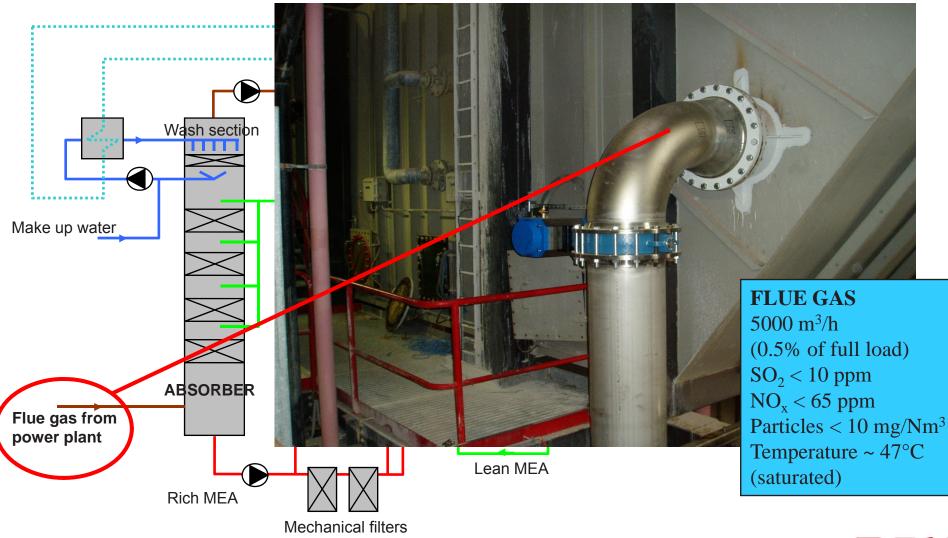
CASTOR Pilot Plant Specifications

- Pilot plant erected and commissioned during 2005
- Design of pilot plant based on a commercial CO₂ production plant (MEA)
- Pilot plant operates on a slip stream taken directly after the wet FGD
- Design flue gas conditions: ~47°C saturated, <10 ppm SO₂, <65 ppm NO_x, <10 mg/Nm³ dust

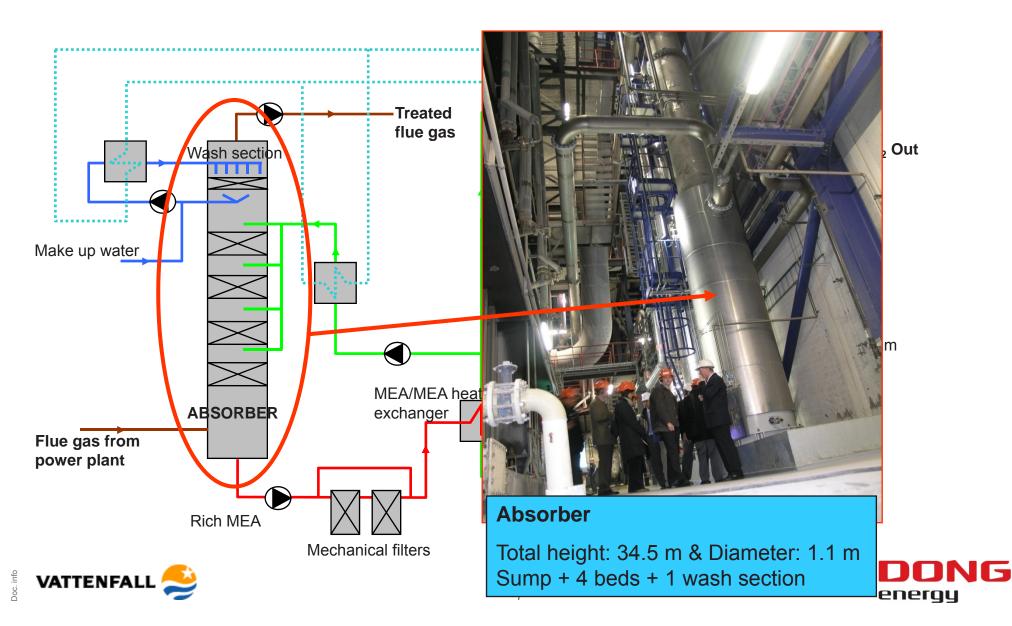
Key design parameters

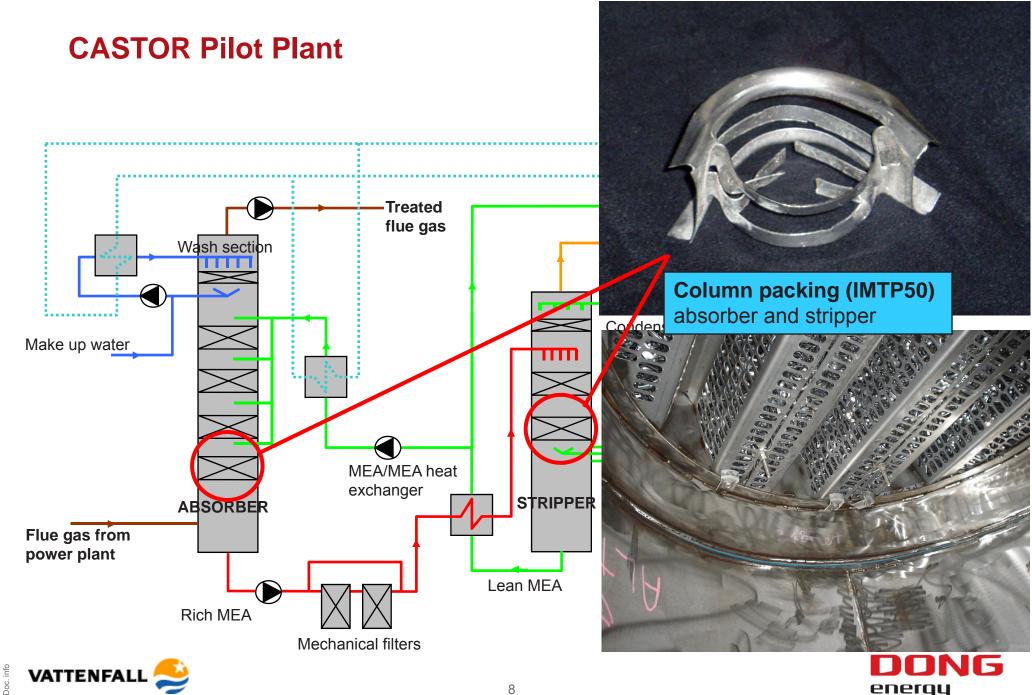

Parameter	Design value
Flue gas capacity	5000 Nm³/h
CO ₂ production (at 12% CO ₂)	1000 kg/h
Absorption degree	90%
Max solvent flow	40 m ³ /h
Max stripper pressure	2 bar _g
Max steam pressure	3.5 bar _g

CASTOR Pilot Plant Flow Diagram

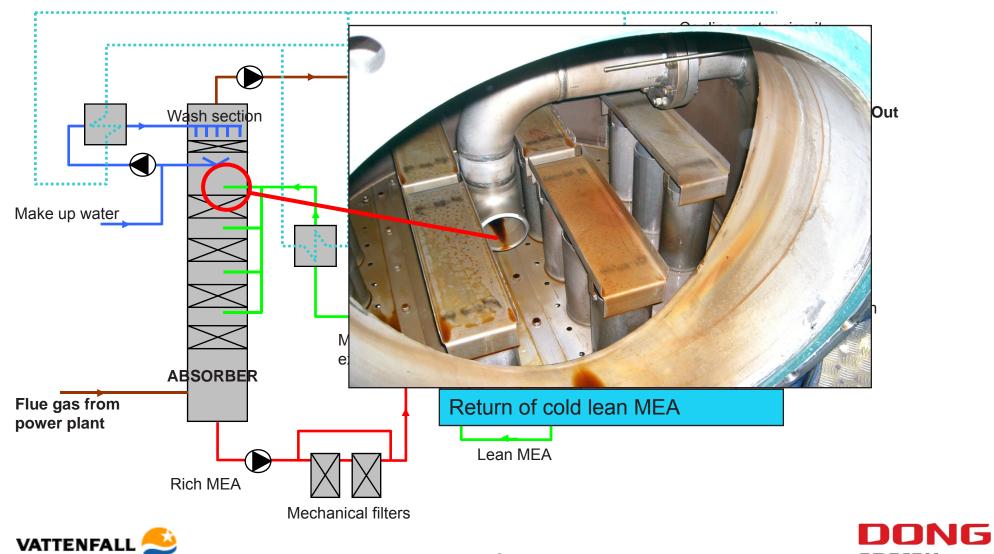


CASTOR Pilot Plant

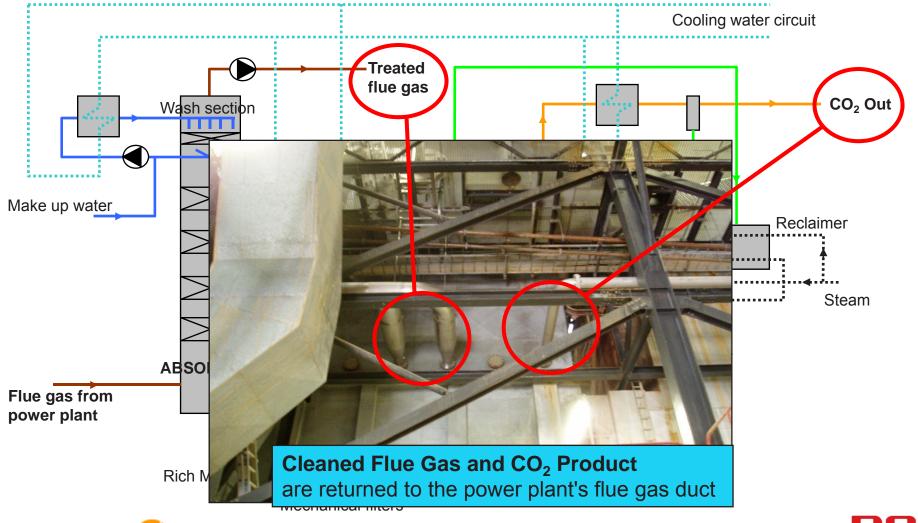



Doc. info

CASTOR Pilot Plant



energy


CASTOR Pilot Plant

9

CASTOR Pilot Plant

CASTOR Pilot Plant Test Programme

Four test campaigns have been conducted in CASTOR:

- 1000 hours using standard solvent "30%-wt. MEA" (Jan. Marts 2006)
- 1000 hours using standard solvent "30%-wt. MEA" (Dec. 2006 Feb. 2007)
- 1000 hours using novel solvent "CASTOR 1" (April June 2007)
- 1000 hours using novel solvent "CASTOR 2" (Sep. Dec. 2007)

Outline of Test Campaigns

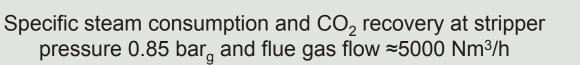
P

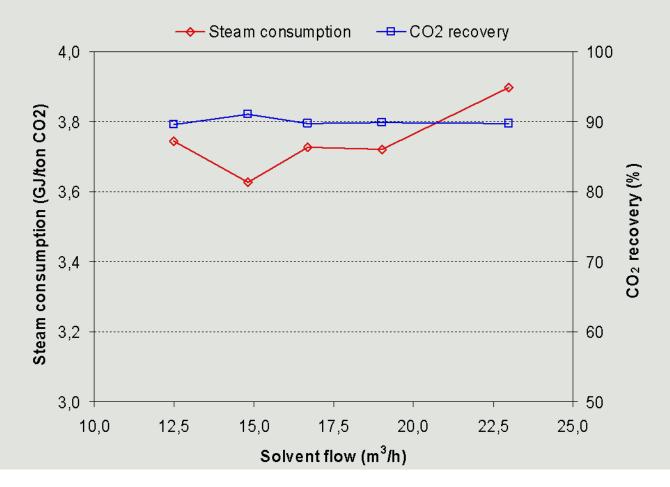
Test 1 – Parameter variation

- a) Optimisation of solvent flow rate (at 90% capture)
- b) Variation of reboiler steam input at optimum solvent flow
- c) Variation of stripper pressure (at 90% capture)

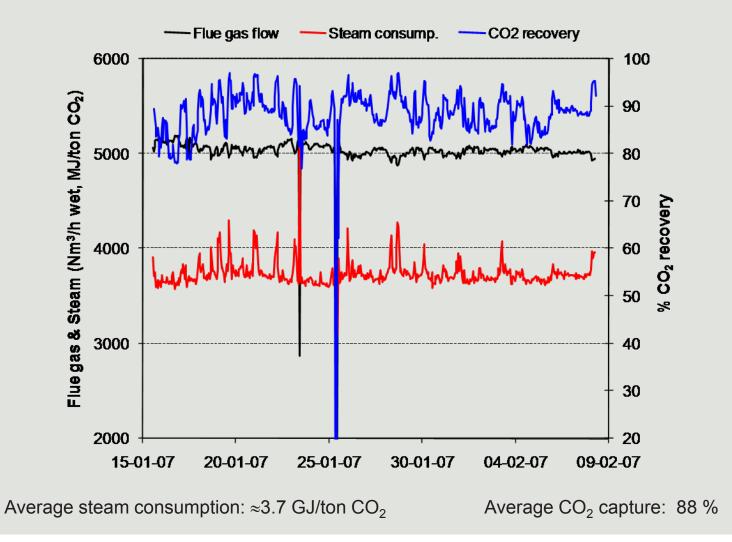
Test 2 – 500 hours of continuous operation

- Operation at "optimised" conditions
- Achieving 90% CO₂ capture (on average)
- Quantification of solvent consumption and degradation
- Characterisation of corrosion behaviour


Test 3 – Miscellaneous tests


- Absorber pressure drop measurements
- Emission measurements
- Etc.

2nd MEA Test: Solvent Flow Rate Optimisation


13

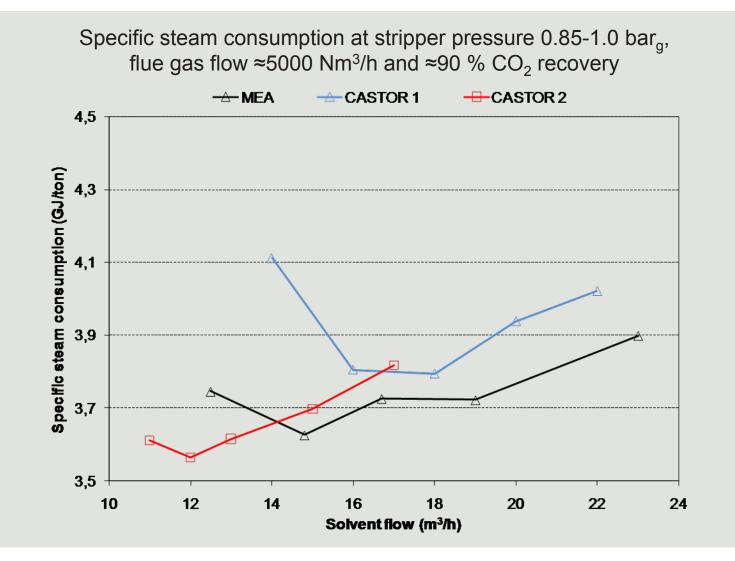
2nd MEA Test: 500 Hours of Continuous Operation

2nd MEA Test: Emission Measurements

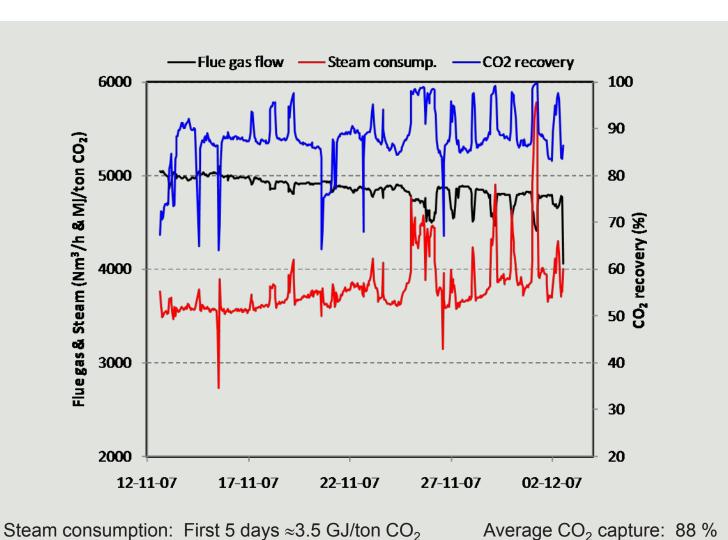
- Very low emission of MEA and other alkanolamines
- Detectable emissions of the more volatile degradation products: NH₃ (25 mg/Nm³), acetaldehyde, acetone, formaldehyde
- The water wash must be operated at temperatures similar to that of the flue gas in order to achieve a neutral water balance => difficult to remove volatile degradation products e.g. NH₃

General operating experience with CASTOR 1

- Initially, the operation with CASTOR 1 was complicated by foaming. The problems diminished when a proper antifoam agent was added
- Difficult to reach high CO₂ loadings of solvent because of relatively slow kinetics
- => Difficult to obtain 90% CO₂ recovery
- => No improvement in regeneration energy compared to MEA


General operating experience with CASTOR 2

- Stable operation (antifoam agent applied right from beginning)
- Possible to reach relatively high CO₂ loadings
- Small improvement in regeneration energy compared to MEA
- 90% CO₂ recovery can be reached
- Loss of solvent!

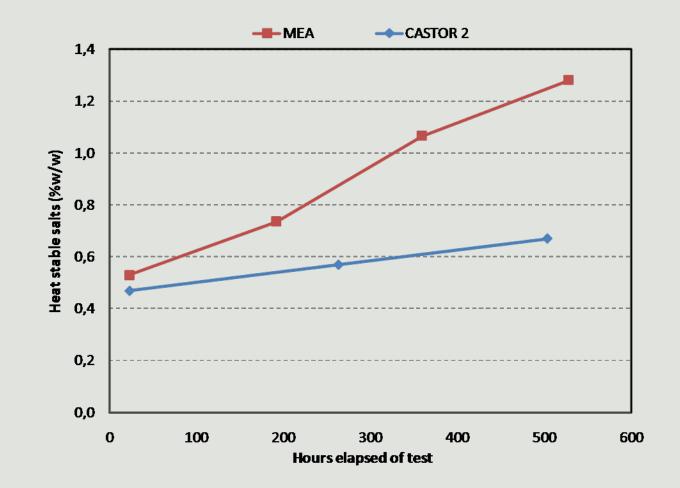

Comparison of Regeneration Energies with MEA, CASTOR 1 & 2

CASTOR 2 Test: 500 Hours of Continuous Operation

Flue gas impurities

- Typically, good balance between SO₂ input & sulphur uptake
- Fouling of packings and process equipment seems low
- 1–300 ppm: Cl, Ca, K, Mg, Na, P & Si
- I ppm: Cr, Cu, Hg, Mo, Ni, Pb & V

Corrosion studies


- MEA: High corrosion rate for carbon steel at regenerator, low with stainless. Low corrosion with carbon and stainless steels at absorber
- CASTOR 1 & 2: Low corrosion with carbon and stainless steels at all positions

Growth in Degradation Products during 500 hours Tests

Summary CASTOR 2 vs. MEA

Improvements with CASTOR 2 compared to MEA

- Decreased regeneration energy 3.7 => 3.5 GJ/ton CO₂ (further improvement is plausible)
- Increased CO₂ carrying capacity i.e. reduced pumping works
- Degradation rate significantly reduced
- Low corrosiveness

... and the drawbacks

- Possible loss of solvent by physical mechanisms (entrainment & evaporation)
- Cost of solvent

Conclusions

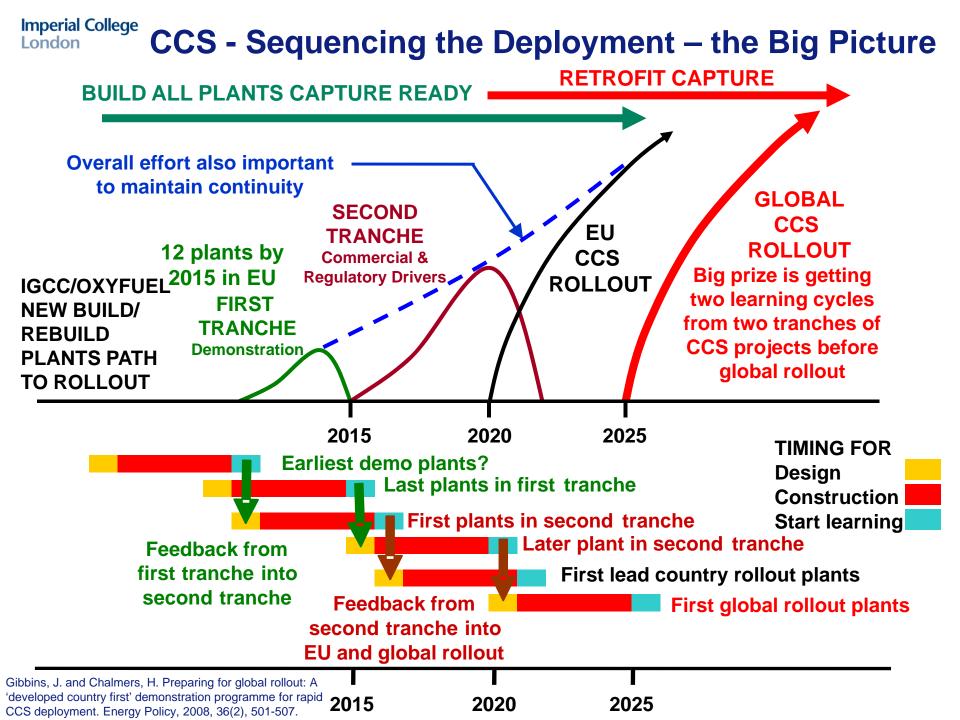
Four 1000 hours test campaigns with MEA and novel solvents have been conducted at the CASTOR pilot plant in Esbjerg. The campaigns have indicated that:

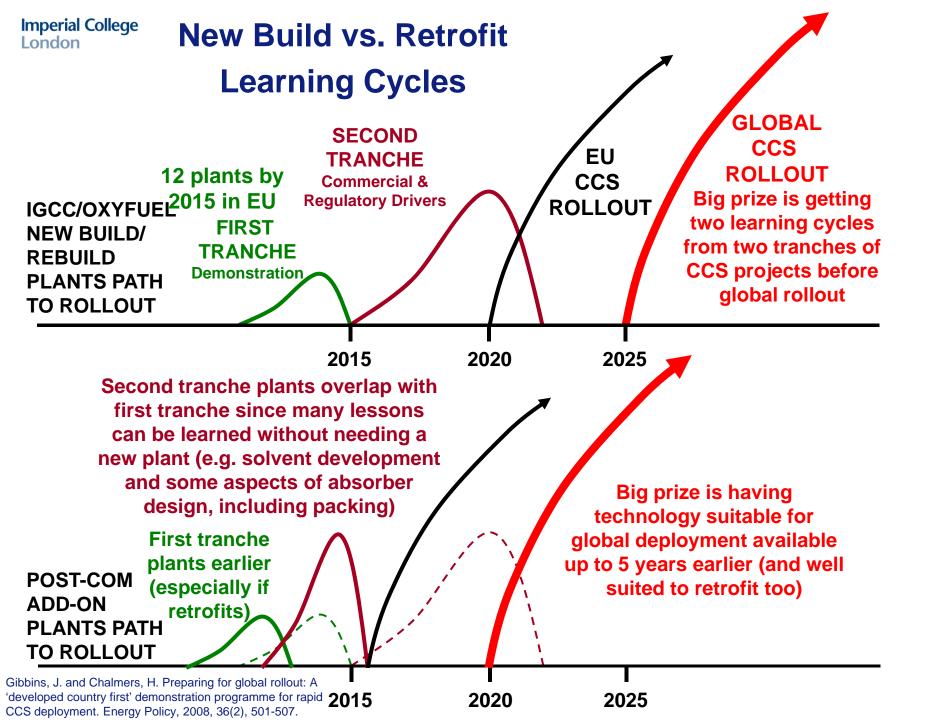
- Stable operation on coal-derived flue gas is possible
- The impact of flue gas impurities can be handled
- Regeneration energy with MEA: ≈3.7 GJ/ton CO₂ at 90 % CO₂ removal
- MEA emission very low, but detectable emissions of volatile degradation products (e.g. NH₃, acetaldehyde, acetone)
- Small improvement in regeneration energy with CASTOR 2: ≈3.5 GJ/ton CO₂ at 90 % CO₂ removal (further improvement plausible)

Implications for further work:

- Possible to develop solvents with greater chemical stability and that are less corrosive
- Possible to develop solvents with improved regeneration energy compared to MEA, however, difficult to obtain major improvements with solvent alone

Imperial College London

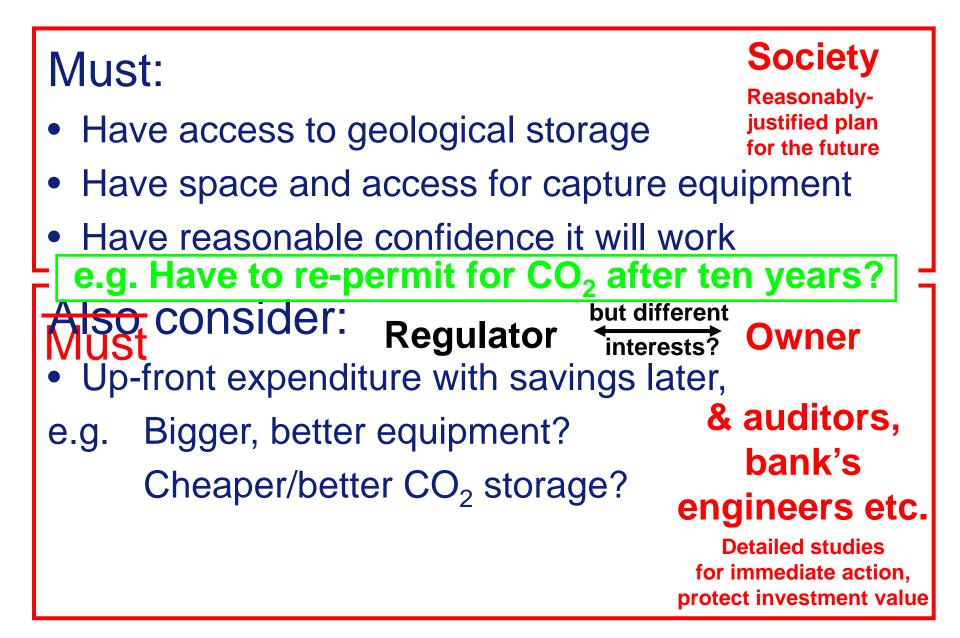

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK Date: 20th-21st May, 2008, Vienna, Austria Organised by IEA Greenhouse Gas R&D Programme, Hosted by EVN


Studies on the Concept of Capture Ready and its Application to Post Combustion Capture

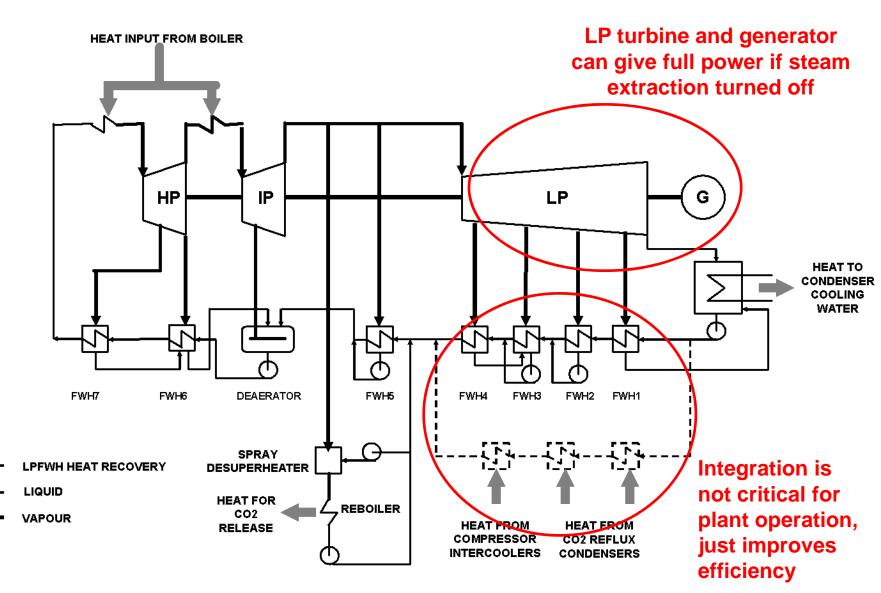
Jon Gibbins, Mathieu Lucquiaud & Hannah Chalmers

Energy Technology for Sustainable Development Group Mechanical Engineering Department Imperial College London, SW7 2AZ, UK

j.gibbins@imperial.ac.uk


Two actions to get ready for CCS rollout

- 1. Get through two learning cycles of CCS as quickly as possible – plus all the other support activities
- 2. Make all new fossil fuel plants capture ready – and move towards replacing fossil fuels in buildings and transport with electricity (or hydrogen)


Why to make plants capture-ready

- Not able to justify capture now
- May want to capture CO₂ in the future
- Society avoid carbon-lock in
- Owner cap carbon costs license to operate
- Regulator lowest cost for electricity now?
 and in the future?

London Responsibilities map onto hows:

Imperial College London

Post-combustion capture-ready designs

- Post-com capture must be demonstrated on coal & at scale
- Many future developments likely
- Should not lock in to known technology
- Likely common requirements, can be met at low cost:
 - Reasonable evidence for access to storage
 - Conceptual capture retrofit feasibility study
 - Space large volumes of gas to handle, building work
 - Clean and probably cool flue gas
 - Pressure drop
 - Provision for extra instrumentation and control, other services
 - Extra cooling (efficiency penalty)
 - Some electricity for capture/compression plant
 - Some steam for temperature swing solvents
 Steam pressure (saturation temperature) and flow rate?

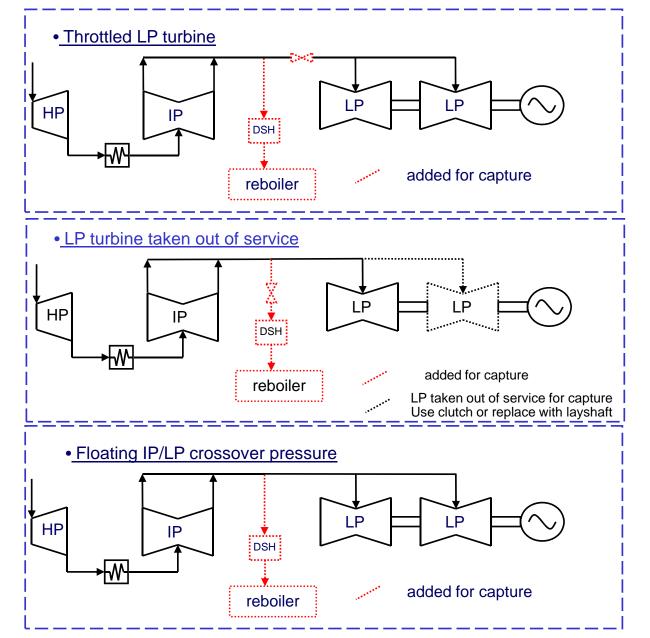
Imperial College London

CO₂ CAPTURE READY PLANTS

Technical Study

Report Number: 2007/4

Date: May 2007


E.ON Robin Irons

Doosan-Babcock G. Sekkappan

Imperial Mathieu Lucquiaud, Hannah Chalmers Jon Gibbins **Imperial College** Iondon

Capture-ready steam turbine designs

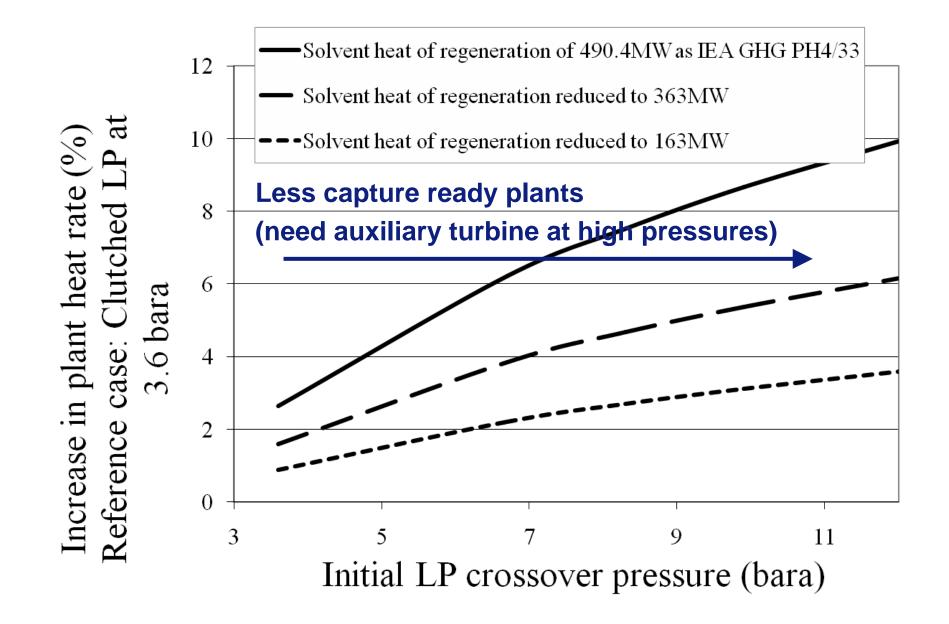
Lucquiaud & Gibbins, IEA GHG 2007-4

Simplest design, but losses in throttling valve. Initial pressure ~3.6 bar for amine, cannot be varied

Most efficient design, but cannot vary steam extraction flow. Initial pressure ~3.6 bar for amine, cannot be varied

Avoids all throttling losses at design extraction rate. **Extraction pressure** goes up with reduced flow rate 7 to 3.6 bar possible

Imperial College

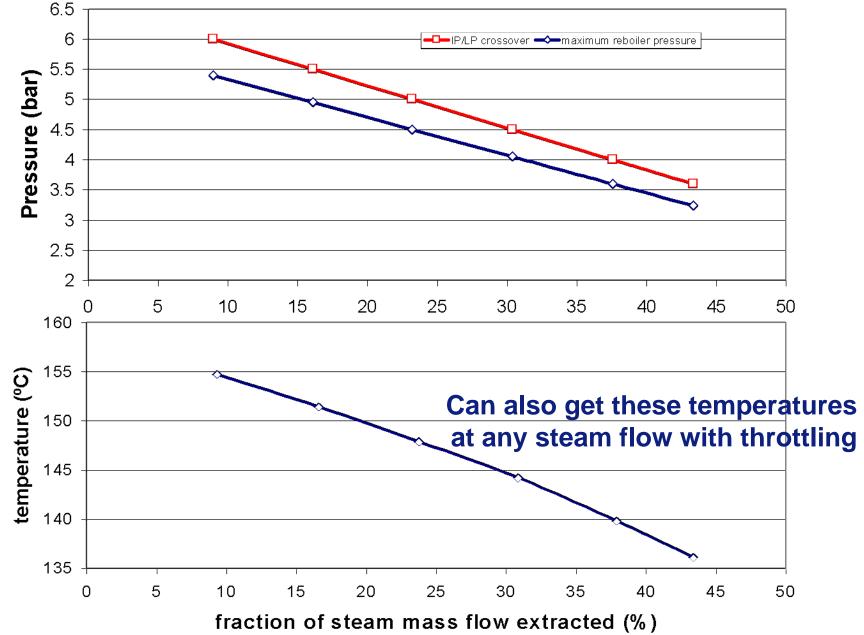

Comparison of steam turbine performance

	New Coal plant without CCS	New build coal plant with CCS	Clutched LP turbine retrofit	Throttled LP turbine retrofit	Floating IP/LP crossover pressure
Efficiency without CCS (LHV basis)	45.3%		45.3%	45.3%	45.3%
Efficiency with CCS (LHV basis)		35.9%	35.9%	35.0%	35.5%
Additional capital costs			High	Negligible	Negligible

BUT efficiency at the time of retrofit is not the only criterion that matters OPERABILITY => keep the light on when the capture plant trips FLEXIBILITY => vary level of CO2 capture to provide additional services to the grid UPGRADE => Maintain competitiveness with new CCS plants coming later online by upgrading the solvent

Imperial College London

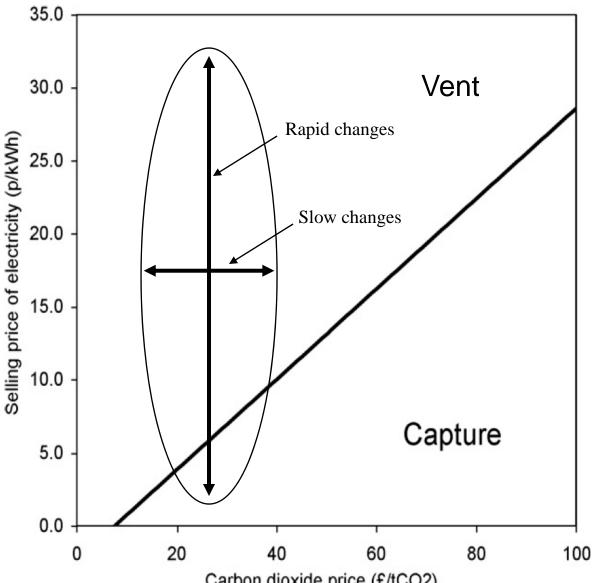
Penalty for throttling with elevated IP/LP pressures



Comparison of steam turbine performance

	New coal plant without CCS	New build coal plant with CCS	Clutched LP turbine retrofit	Throttled LP turbine retrofit	Floating IP/LP crossover pressure
Operation without capture			Difficult. Would have to re-clutch the turbine	Easy. Divert steam to low pressure turbine	Easy. Divert steam to low pressure turbine
Dynamic response	Baseline	Depends on steam turbine design	Same or slower	Very fast	Fast
Upgrade with next generation of solvents		POSSIBLE	NO	POSSIBLE	POSSIBLE

MAXIMUM PRESSURES AND TEMPERATURES FOR FLOATING IP/LP OPTION

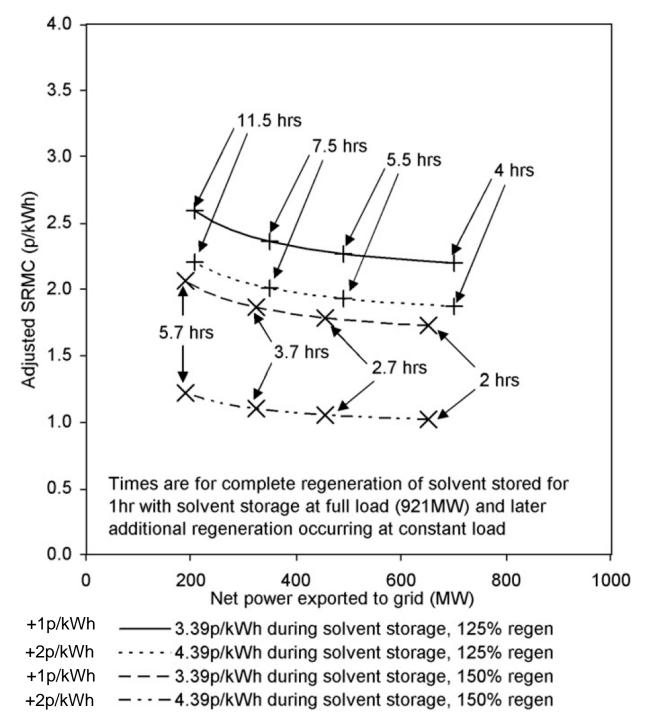


Imperial College London

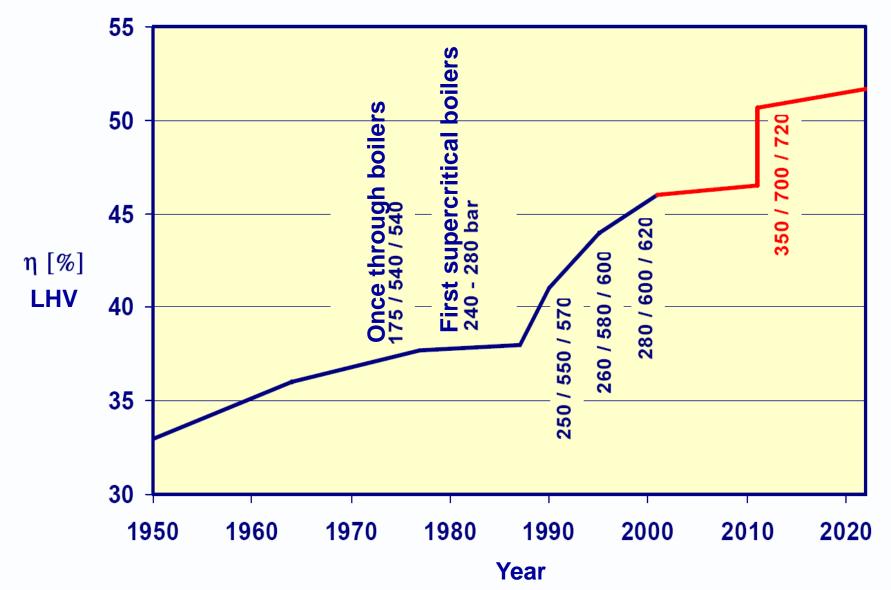
Steam flow rate (but not pressure) likely to vary anyway, for arbitrage between carbon and electricity prices for simply venting CO₂ to atmosphere

Plant output	750 MW
Coal price	£1.4/GJ
Carbon price	$£25/tCO_2$
CO ₂ transport	_
& storage	$\pm 5.5/tCO_2$

Chalmers H, Gibbins J, Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance, Fuel (2007) (in press)


Carbon dioxide price (£/tCO2)

Imperial College


Reduced output and short run marginal cost of generation for solvent storage generate more when prices high, less when prices low, improve load factor for capital recovery

Plant output	750 MW
Coal price	£1.4/GJ
Carbon price	£25/tCO2
CO ₂ transport	
& storage	£5.5/tCO2

Chalmers H, Gibbins J, Initial evaluation of the impact of post-combustion capture of carbon dioxide on supercritical pulverised coal power plant part load performance, Fuel (2007) (in press)

Developments in EU steam plant efficiency

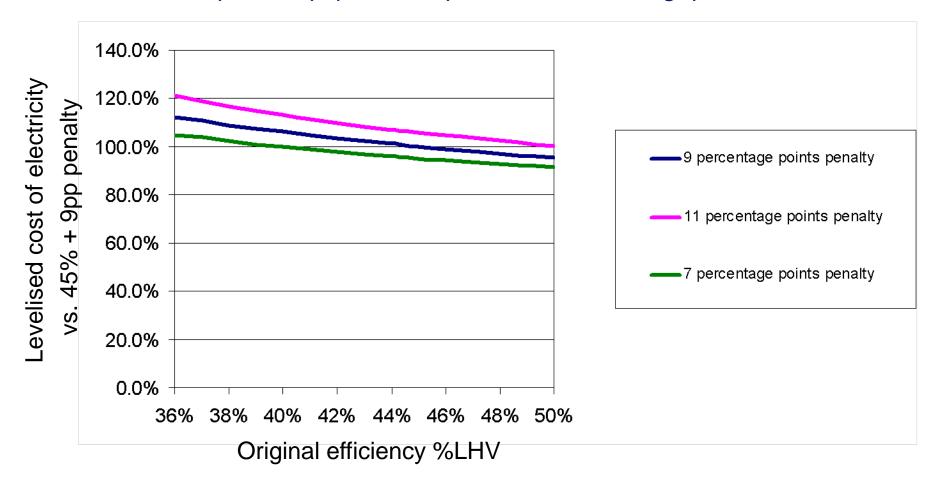
Imperial College

London

Epple, TU Darmstadt, http://www.dvv.uni-essen.de/download/pdf_30Fach/2004-11-12_DVV_Anlage7_Epple.pdf

Power plant efficiency for CR plants

Consequences for reduced CO₂ emissions

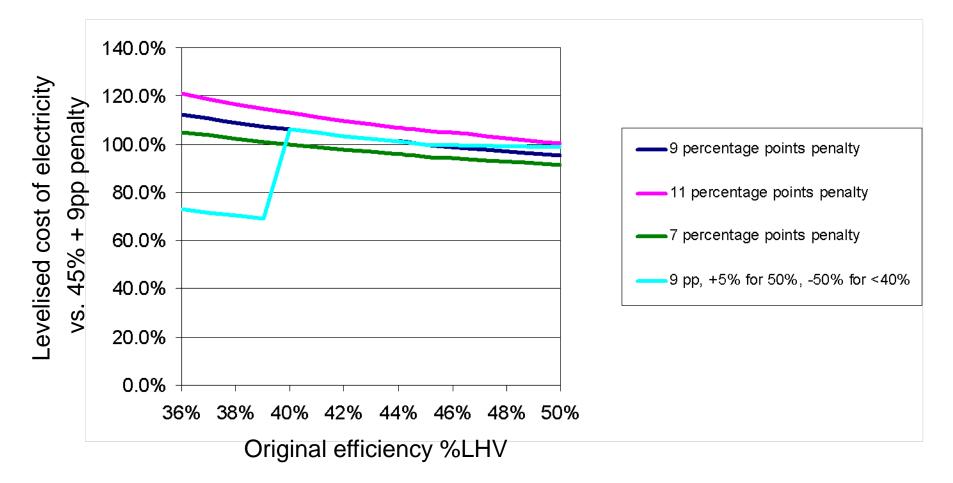

- Appears that overall coal sector efficiency or plant average efficiency (i.e. coal burned / electricity generated) is sometimes being compared with full load efficiency for new plants
- Part-load, start up etc. all reduce efficiency, but necessary
- Wind and other renewables plus nuclear need flexible plants to maintain continuous electricity supplies.
- Old, less efficient plants tend to run for less hours effect of replacement not easy to judge

Consequences for subsequently retrofitting capture

- Small effect of original efficiency on cost of electricity, even smaller on cost of CO₂ abated, negligible effect on cost of CO₂ captured
- Capture plant performance probably more important
- Cost of electricity likely to be much lower from paid-off PC plants than from new plants, new capital costs swamp efficiency effects

Preliminary estimates on the effect of original plant efficiency on the levelised cost of electricity with capture retrofit

All plants assumed to have same original COE, capture equipment capital costs \sim throughput^{0.8}



Imperial College

Preliminary estimates on the effect of original plant efficiency on the levelised cost of electricity with capture retrofit

Imperial College

-50% original COE for subcritical plant (<40%), assumed to be existing plants, + 5% COE for 50% LHV.

Nonnew coal without CCS – CR an excuse for doing nothing

Issue in UK (and elsewhere in developed world) now is not whether or not plants are capture ready, but when will they have capture fitted.

Different positions:

lobbying designed to stop coal (NGO and gas industry) gas performance standards – e.g. 500 kg/MWh in California timing not relevant – cap and market will force capture if needed planned transition by 2015 - 2025

Utilities appear ready to capture from power plants:

if costs can be recovered

if storage can be sorted out (beyond their direct control)

Oil companies appear to want bigger returns for 'turnkey' approach on projects they feel happy with.

If carbon market is not sufficient, government action needed: cost recovery mechanism for capture, transport & storage

strategic planning for pipelines (and cost recovery for these)

Danger in rigid rules e.g. 90% capture, that reduce design and operational flexibility inherent in the carbon market

Possible that UK CCS activity stopped if no new coal plants are built

False Hope - Why carbon capture and storage won't save the climate Greenpeace, May 2008

"Capture ready" power stations

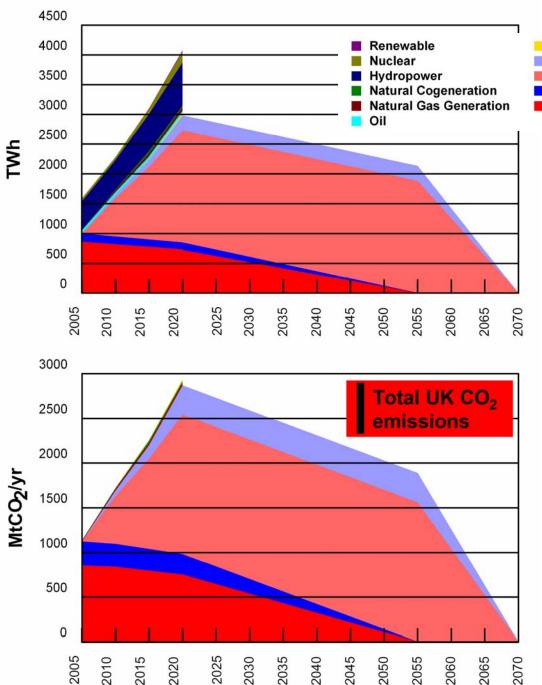
Proponents of CCS circumvent the fact that the technology is not ready, by proposing to build "capture ready" power stations. This term refers not to a particular type of technology but more a state of being for a power station. While there is no strict definition of "capture ready", the IEA describes a capture ready plant as "[one] which can be retrofitted with CO_2 capture when the necessary regulatory or economic drivers are in place."

This is sufficiently broad to make any station theoretically capture ready, and the term meaningless.

The concept of "capture ready" power stations allows new coal-fired power stations to be built today while providing no guarantee that emissions will be mitigated in the future. In lieu of delivering a concrete solution to fighting climate change, it banks on the promise of an unproven technology and risks locking us into an energy future that fails to protect the climate.

David Hawkins, NRDC - To say a power plant is 'capture-ready' is like saying you have a Ferrari-ready drive way on your house.

IEA GHG 2007/4 Summary of capture ready power plant considerations


IEA GHG and the study contractors have produced the following 'headline' summary of capture ready considerations for power plants:

<u>A CO₂ capture ready power plant is a plant which can include CO₂ capture when the necessary regulatory or economic drivers are in place. The aim of building plants that are capture ready is to reduce the risk of stranded assets and 'carbon lock-in'.</u>

Developers of capture ready plants should take responsibility for ensuring that all known factors in their control that would prevent installation and operation of CO_2 capture have been identified and eliminated. This might include:

- A study of options for CO2 capture retrofit and potential pre-investments
- Inclusion of sufficient space and access for the additional facilities that would be required
- Identification of reasonable route(s) to storage of CO₂

• Competent authorities involved in permitting power plants should be provided with sufficient information to be able to judge whether the developer has met these criteria.

Clean Coal Generation
 New Coal Fired Cogeneration to 2020
 New Coal to 2020
 Existing Coal Fired Cogeneration
 Existing Coal Generation

CHINA: EXAMPLE OF POTENTIAL 'CARBON LOCK-IN'

Guo Yuan and Zhou Dadi, Low emission options in China's electric power generation sector, ZETS Conference, Brisbane, Feb 2004.

Prof. Wang, NZEC Meeting, Beijing, 15 May 2008

NZEC – Near Zero Emissions from Coal project Work Package 3 (WP3) – Case studies for Carbon Dioxide Capture

WP3 Partners

www.nzec.info

GreenGen (GG) Institute of Engineering Thermophysics, Chinese Academy of Science (IET) State Key Laboratory of Chemical Engineering, Tsinghua University (DCE) Department of Thermal Engineering, Tsinghua University (DTE) BP Clean Energy Research & Education Centre, Tsinghua University (THCEC) Thermal Power Research Institute (TPRI) North China Electric Power University (NCEPU) Wuhan University (WHU) Zhejiang University (ZJU)

Imperial College (Imp) Alstom Power (Alstom) BP (BP) Univ. of Cambridge Doosan Babcock (DB) Shell (Shell)

NZEC - Description of tasks in WP3

Task 1: Initial Phase: Definition of basic conditions and reference basis

Task 2: Case Studies (similar scope to IEA GHG studies)

- Subtask 2.1: Oxyfuel
- a) OX1 Oxyfuel, new build Capture-Ready, (Doosan Babcock, AP + ZJU)
- b) OX2 Oxyfuel, capture retrofit to existing sub-critical plant combined with ASCBTR, (Doosan-Babcock)

Subtask 2.2: Post-combustion:

- a) PC1 Post-combustion capture, new build, (Alstom + DCE)
- b) PC2 Post-combustion capture, capture-ready, and retrofit (Alstom + DTE)
- c) PC3 Super-critical with post-combustion capture by chemical absorption and membrane contactor (ZJU)
- d) PC4 Possible post-combustion capture options for existing subcritical and supercritical power plants (i.e. Chinese power plant fleet in 10-20 years time) (NCEPU)
- (Plus other gasification, transport, technoeconomic comparison studies)

Imperial College BERR PROJECT: CHINESE ADVANCED POWER PLANT CARBON CAPTURE OPTIONS (CAPPCCO)

- Harbin Institute of Technology (Prof. Shaozeng Sun, Combustion Engineering Research Instititute – linked to MOST 863 project) Cambridge University (David Reiner, Judge Business School)
- 1. Carbon capture characteristics database for existing & planned plants
- 2. Develop and assess capture options for planned new PC plants
- 3. Develop and assess capture options for existing PC plants
- 4. Special issues for adding carbon capture to Chinese power plants e.g. water requirements, cooling requirements, coal properties, capture performance under variable Chinese climatic conditions including likely performance of next-generation pollutant control technologies
- 5. Financing capture ready and capture retrofit
- Project started end 2007, 3 years
- Translation of 2007/4 post-com sections
- Stakeholder consultation identify key questions

CO₂ Capture-Ready Ultra Mega Power Projects, India

The Government of India is developing nine Ultra Mega Power Projects (UMPPs), each of 4,000 MW capacity, through private competitive bidding. This report presents the results of an innovative study carried out by Mott MacDonald (MM) on behalf of the British Government*, combining new information available from three other first-of-kind studies, to identify and evaluate options for making the UMPPs "CO₂ Capture-Ready".

The report builds .. on two studies commissioned by the IEA Greenhouse Gas R&D Programme (IEA GHG) – on capture-ready plants globally and on CO2 storage opportunities in the Indian subcontinent.

For a UMPP with estimated initial capital costs of USD 5 billion, the additional capital expenditure for design of a capture-ready plant is limited to 1% of the initial cost i.e. USD 50 million. Retrofit of CCS to a UMPP of 4,000 MW gross capacity will capture18.8-19.5 Mt/year, at an 85% capture rate. The resulting abatement cost ... is calculated at approximately USD 33/tCO2.

http://www.defra.gov.uk/environment/climatechange/internat/devcountry/india.htm *Foreign and Commonwealth Office (FCO) under their Global Opportunities Fund Climate Change and Energy Programme Imperial College

Incentives to retrofit CCS – shadow carbon price?

When adding capture to a power plant

Financial penalties:

Lost electricity revenue (but note – not a constant electricity price) Additional CAPEX and OPEX

Financial gains: Avoided EUA purchase for carbon captured Additional payment per tonne of CO₂ stored Together these make up the shadow carbon price for CCS for this project

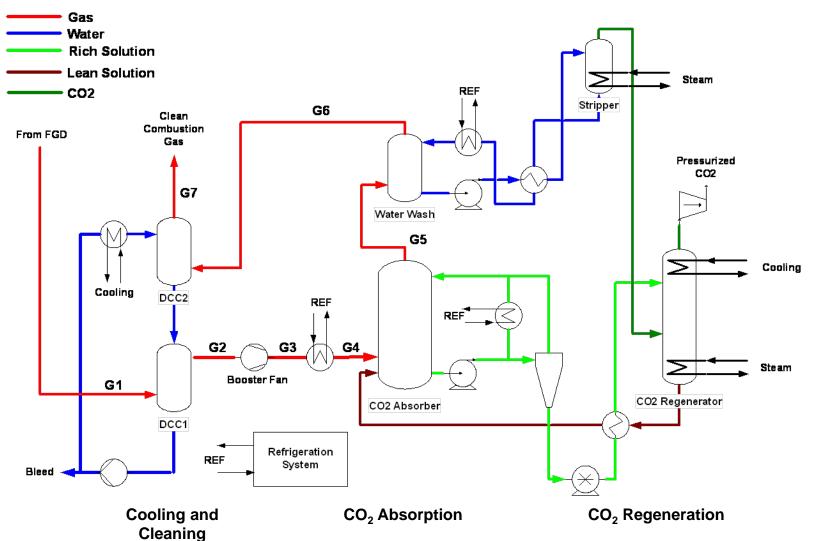
Example for 800MW pulverised coal power plant:

	Original	CCS	Difference
Electricity	800MW	630MW	- 170MW
CO_2 emitted	560 t/hr	56 t/hr	- 504 t/hr
CO ₂ /MWh	700kg	89 kg	
$\overline{\text{CO}_2}$ stored	0 t/hr	504 t/hr	+ 504 t/hr
CCS CAPEX			
& OPEX	0	??	+??

Imperial College London

Summary

- 1. Two learning cycles before CCS proven maybe 10 years meanwhile make all non-CCS fossil fuel plants capture ready
- 2. Very effective and low cost CR options exist for PC plants
- Electricity price varies drastically flexibility for CCS plant design and operation fairly essential – rigidity will increase costs and restrict development
- 4. Plant efficiency has small effect on electricity costs with capture
- 5. Timing when capture is retrofitted now critical factor for CR plants in EU/USA low cost CR for PC seen as an excuse
- 6. Carbon lock-in in China, India etc. still a very real risk, CR unlikely to increase number of plants built significantly but would help with subsequent retrofitting.
- 7. Additional payment per tonne CO2 captured and stored being considered, better than rigid performance standard

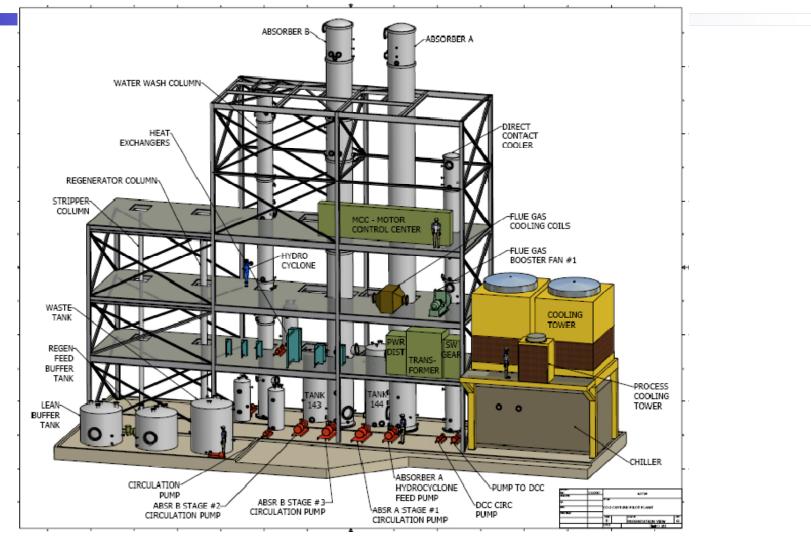


Chilled Ammonia Process Update

Brice Freeman – Project Manager (650) 855-1050 or <u>bfreeman@epri.com</u>

Schematic of the Chilled Ammonia Process

© 2006 Electric Power Research Institute, Inc. All rights reserved.


1.7 MW Chilled Ammonia CO₂ Capture

- 37 Executed pilot participant agreements
- Construction complete
- Commissioning underway
- May Plant outage
- Testing starting in June

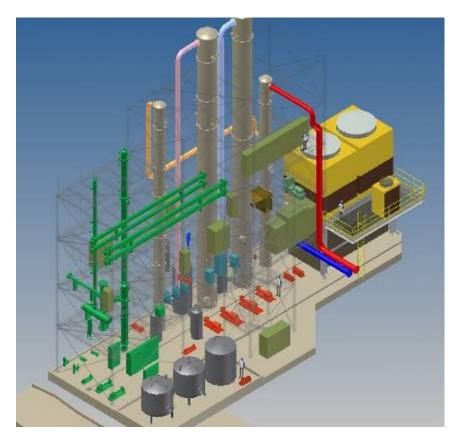

Courtesy of Alstom

Phase 3 - Field Pilot at We Energies 3-D View of Pilot

Courtesy of Alstom

Phase 3 - Field Pilot at We Energies Pilot Photos

Courtesy of Alstom


Overall EPRI Monitoring and Analysis at PPPP

Monitor pilot plant operations in sufficient detail to extrapolate the process to full scale (factor of ~400).

- Prepare material flow sheets (Process Characterization)
- Identify opportunities for thermal integration
 - Estimate process thermal requirements and the impact on the host power cycle
 - Estimate other utility and material operating costs
 - Estimate equipment requirements and capital costs
- Develop levelized costs (and uncertainties):
 - Process CO₂ removal costs (\$/tn CO₂)
 - Cost of electricity impact (\$/MWh)

Process Characterization Monitoring

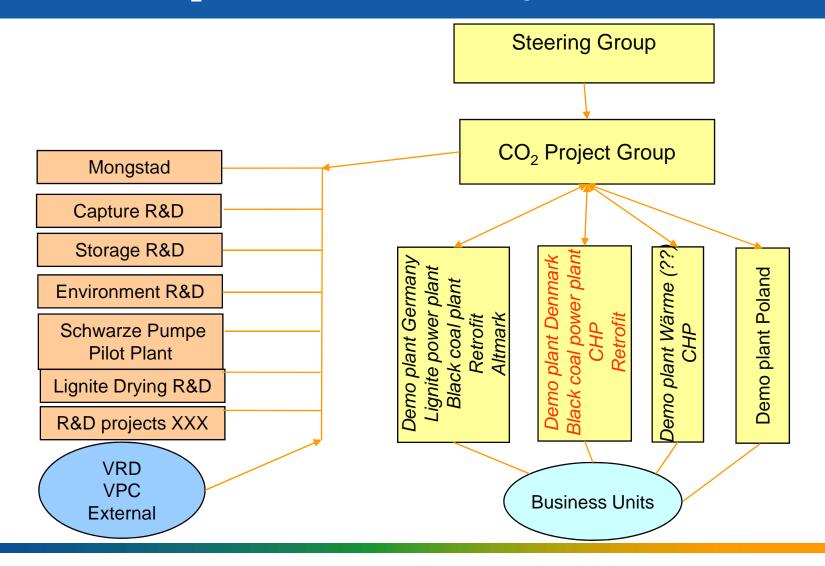
- Utilities Required
 - Cooling Water
 - Chilled Water
 - Steam
 - Auxiliary Power
- Ammonia loss/make-up
- Process water loss/make-up
- Product CO₂ purity
- Fate of SO₂/SO₃, NOx, PM, Hg, HAPs

Questions?

Dick Rhudy, Technical Executive 650-855-2421 / <u>rrhudy@epri.com</u>

IEA Greenhouse Gas R&D Programme

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria


Vattenfall's Demo project at Nordjyllandsværket Capture, Transport & Aquifer Storage of CO₂

Ole Biede Vattenfall A/S

© Vattenfall AB 2007 View Network 2008 View N

Vattenfall's CO₂ free Power Plant Project

VATTENFALL 叁

IEA Greenhouse Gas R&D Programme
 AB 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK
 20th-21st May, 2008, Vienna, Austria

© Vattenfall AB

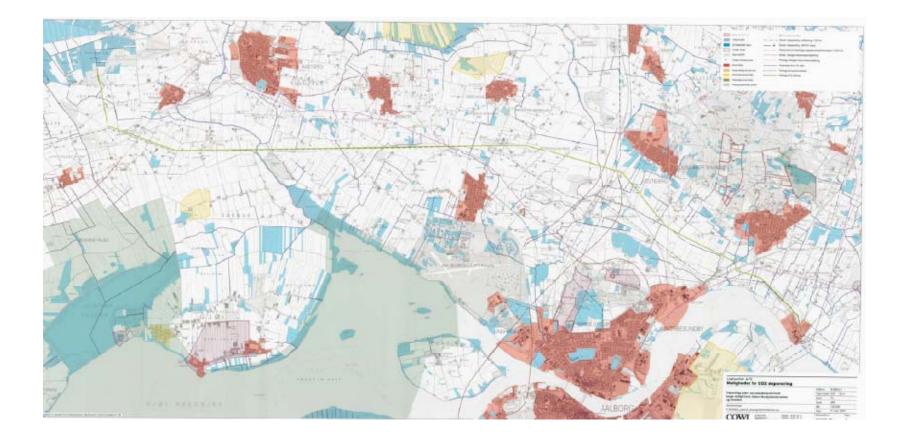
Vattenfall's CCS demo project at Nordjyllandsværket

Vedsted On-shore Structure

Transport by pipeline

On February 6, 2008 Vattenfall Nordic Thermal Power Generation announced the intention to develop a full-scale Carbon Capture & Storage (CCS) demonstration project

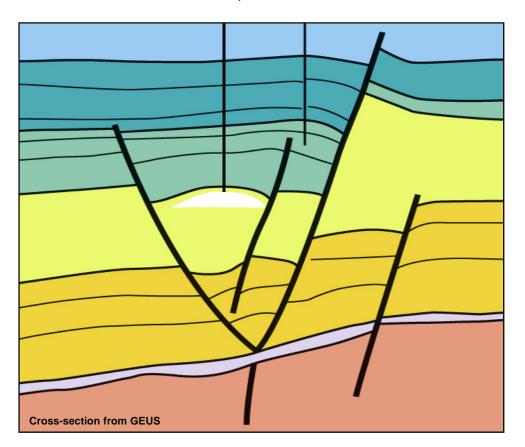
IEA Greenhouse Gas R&D Programme © Vattenfall AB 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria


The power plant - Nordjyllandsværket

High efficient 410 MW bituminous coal-fired power unit 1.8 million tonnes of CO₂ per annum

© Vattenfall AB Solution 2008, Vienna, Austria

Possible Pipeline Route ~ 30 km / Ø 400 mm

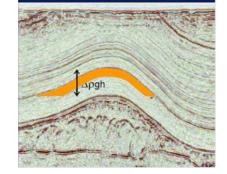


© Vattenfall AB IEA Greenhouse Gas R&D Programme 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria

The Vedsted geological structure

Old exploration wells

Geological storage structure has been investigated by two old oil exploration wells and regional seismic lines


- Anticlinal closure within fault block
- Several sandstone reservoirs of good quality at depths 1200 - 2000 m
- Several thick claystone caprock intervals above the reservoirs, plus thick chalk section close to surface
- Expected storage capacity above 100 mil tons

IEA Greenhouse Gas R&D Programme fall AB 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria

Geology to be investigated for Vedsted

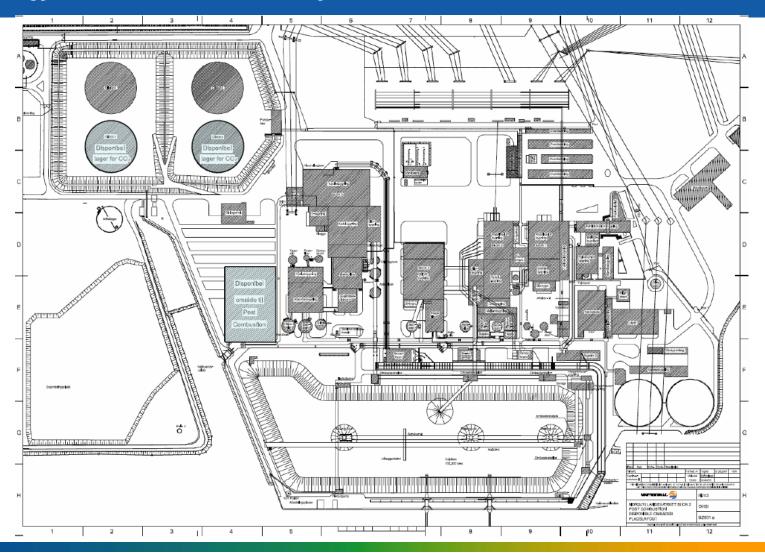
- The potential storage has to be investigated for
 - Structure (Is there a CO2 trap?)
 - Capacity
 - Possible injection rate
 - Tightness of cap rock
- The storage is proven in two steps
 - Seismic investigations (September 2008) to March 2009)
 - Test drillings (March 2009 to March 2010)

CO₂ trap

Seismic trucks. **Expected length of tests** 150 – 200 km

IEA Greenhouse Gas R&D Programme 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria

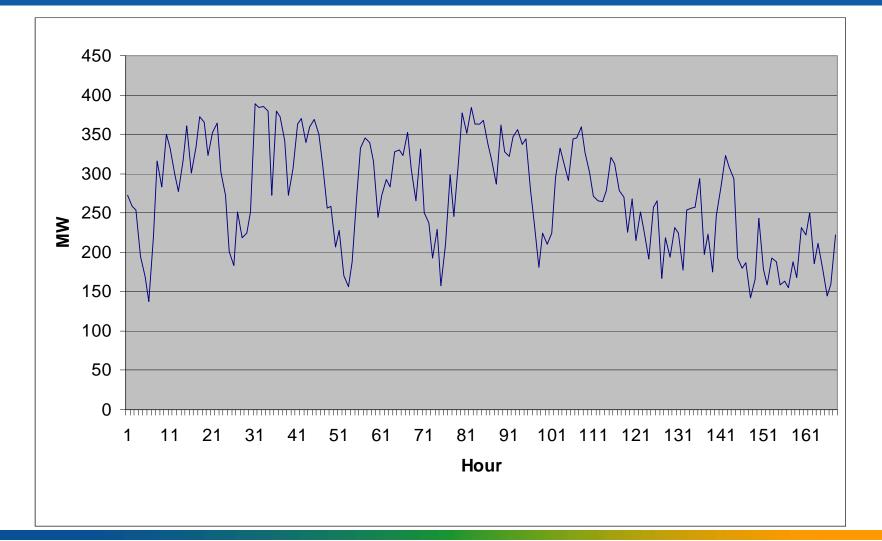
Nordjyllandsværket - Main Technical Data


- Electrical output gross: 410 MW
 Max. output of district heat: 420 MJ/s
 Total efficiency in back pressure mode: 91 %
 Efficiency in condensing mode: 47 %
- •Flue gas data before capture plant •CO2: •O2: •SOX: •NOX: •Temperature:

13 – 14 v-% 4.5 – 5 v-% 15 – 25 mg/Nm3 100 mg/Nm3 52°C

VATTENFALL 参

Nordjyllandsværket – layout



Capture plant - important performance issues

- Low energy and capacity loss
- •Ability to maintain same district heating capacity as today
- •High flexibility
 - -big operation range (35 100% load)
 - -high load change rate gradients (4% pr minute)
 - -possibility to shut of capture plant to produce more electricity at peak loads

Nordjyllandsværket Unit 3 - Load week 34 2007

© Vattenfall AB IEA Greenhouse Gas R&D Programme 11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK 20th-21st May, 2008, Vienna, Austria

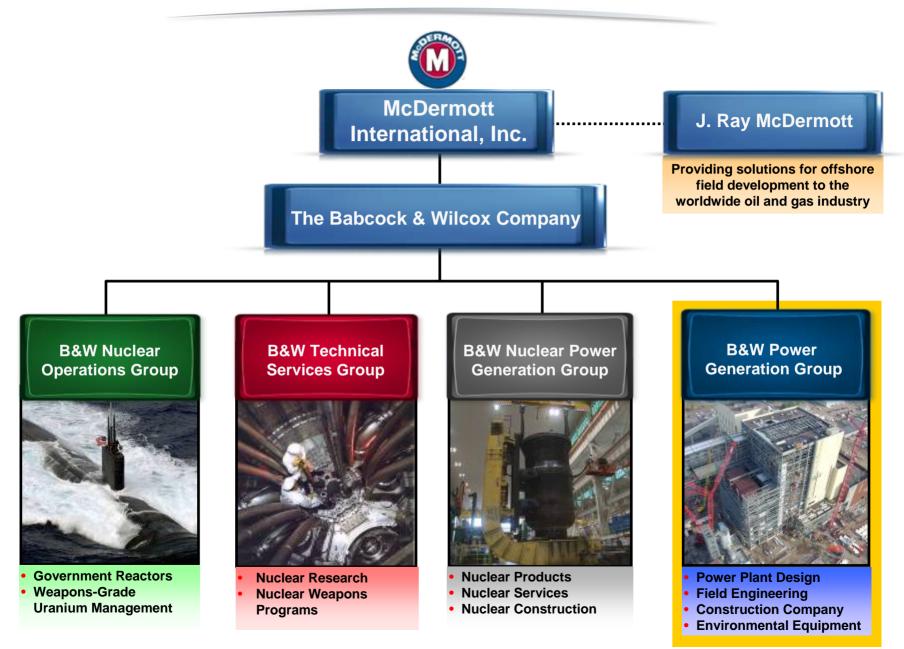
Timeline

- Seismic surveys 2008
- Test drilling 2009
- Capture project preparation 2008 2010
- Investment decision and Contract Award 2010
- Start of Operation late 2013

Thank you for the attention

© Vattenfall AB Solution 2008, Vienna, Austria

power generation group


11th Meeting International Post-Combustion CO₂ Capture Network

Vienna, Austria

2008 May 21


Lisa Rimpf Research Engineer Babcock & Wilcox Research Center

babcock & wilcox power generation group

Carbon Management Portfolio

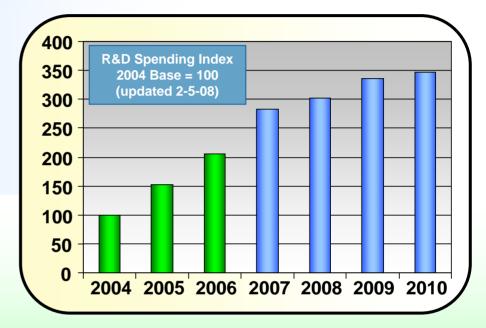
- Post-Combustion Capture
- Oxycoal Combustion
- Advanced Ultra-Supercritical Boilers

Oxycoal Combustion Demonstration

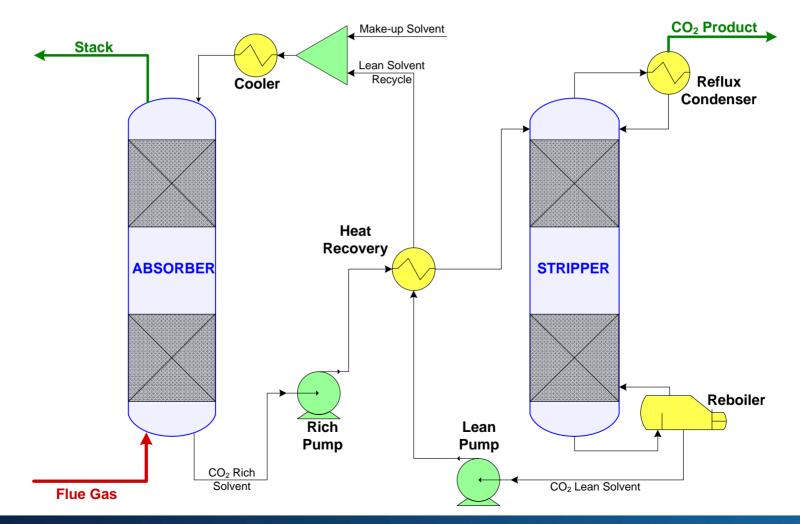
- Managed and funded by B&W, American Air Liquide, Inc. and Utility Advisory Group
- Clean Environment Development Facility: Alliance, Ohio

• 30 MW_t

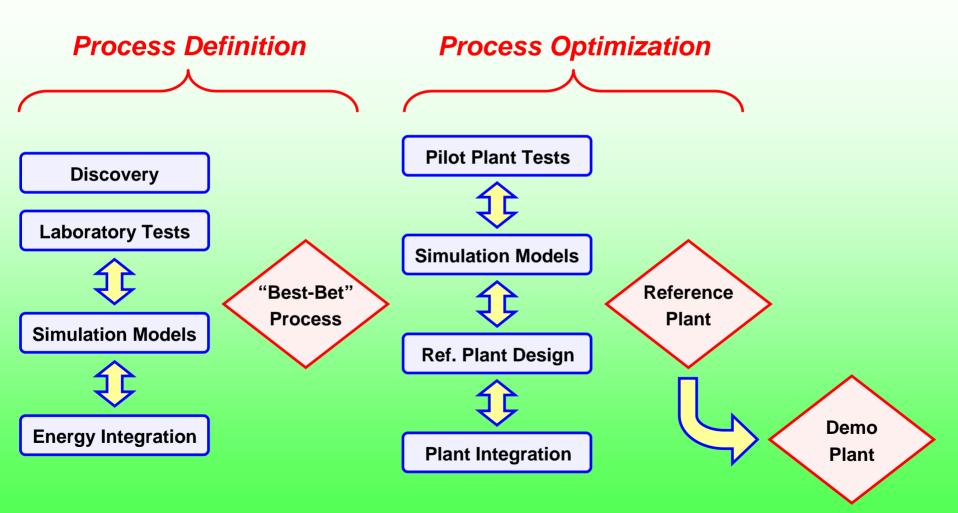
- Coal
 - Eastern Bituminous
 - Sub-Bituminous:
 Powder River Basin
 - Saskatchewan Lignite
- Ready for Deployment


New Research Center

Significant enhancement of capabilities to develop, verify and deploy new, utility-focused technologies

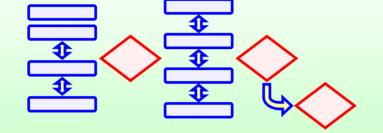

The Babcock & Wilcox Research Center Inaugurated on August 15, 2007

This facility is dedicated to all past, present and future employees of The Babcock & Wilcox Research Center. Their technological expertise, commitment and inventive spirit fuel the innovation furnaces of our company. Through their efforts, we generate powerful solutions to improve our world, now and in the future.

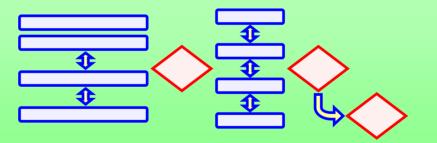


More than tripled research and development spending since 2004 to advance existing and novel technologies for <u>future</u> growth

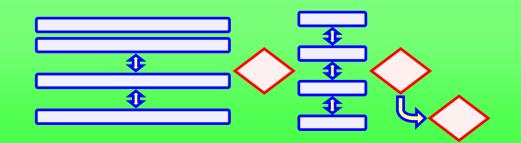
Regenerable Solvent Absorption Technology RSAT[™]


RSAT Development Logic

RSAT Development Progression


1st Generation

- Available solvents, promoters
- Process energy integration

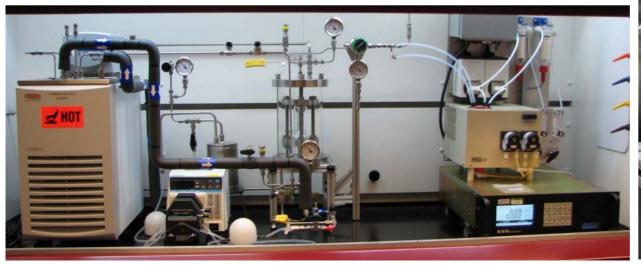

2nd Generation

Novel solvents, promoters, catalysts
Extensive process energy integration

3rd Generation

Optimized solvents, promoters, catalysts
Full power plant energy integration

CO₂ Control Lab: Wetted-Wall Column


Cylindrical Falling-Film Gas/Liquid Contactor

•Fundamental Evaluation:

Mass Transfer Chemical Kinetics

•Data for Aspen Plus® Modeling

Qualitative & Quantitative Comparison

CO₂ Control Lab: Glass Absorber/Regenerator

- Solvent Characterization
- Feasibility Studies
- Integrated Process
- Glass Columns: Modular Construction
 - 5cm Inner Diameter
 - 1.5m Height
 - Random or Structured Packing
- Flow Rates: Flexibility
 - ~ 0.9 kg/hour CO₂ Capture
 - ~ 0.3 liters/min Solvent

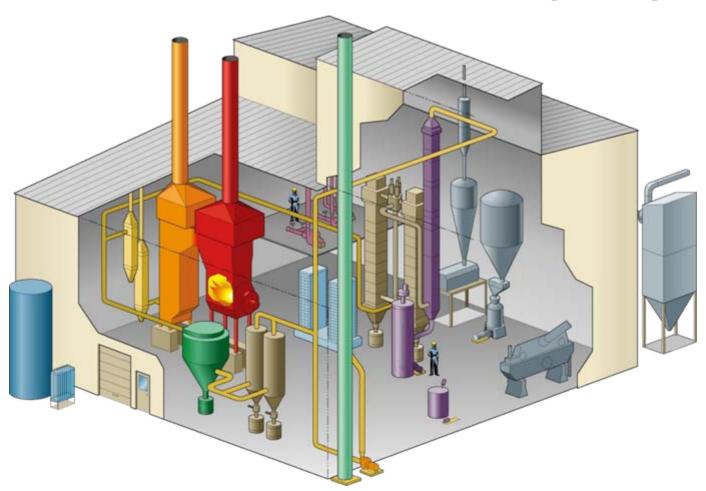
B&W RSAT Pilot Plant

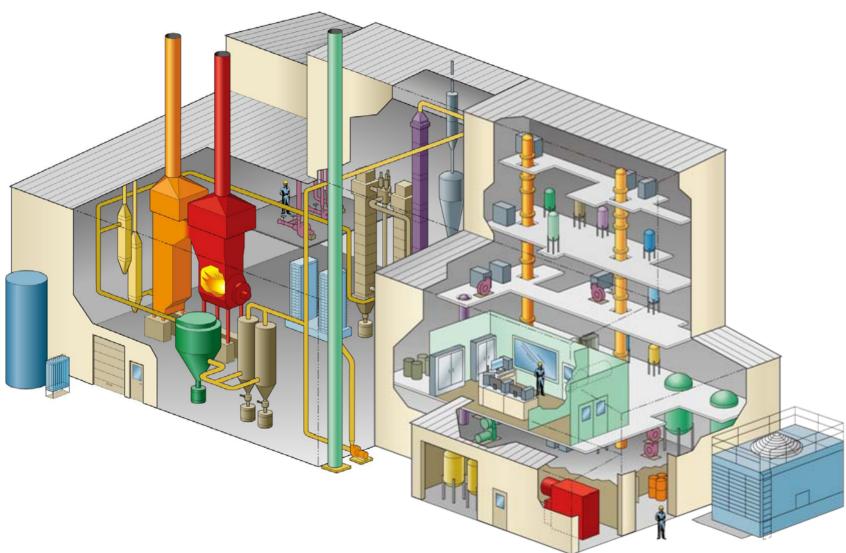
Features

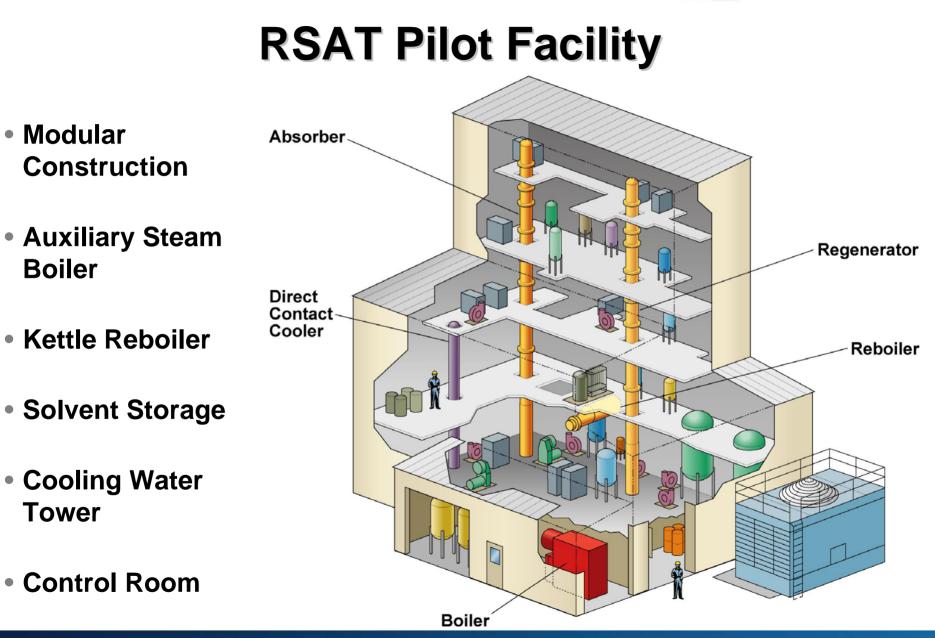
- Fully integrated RSAT process
 - Flexible
 - Well instrumented
- Significant scale: 7 tonnes/day CO₂ (~0.9 MW_t)
- Operation on coal, or synthetic, flue gas

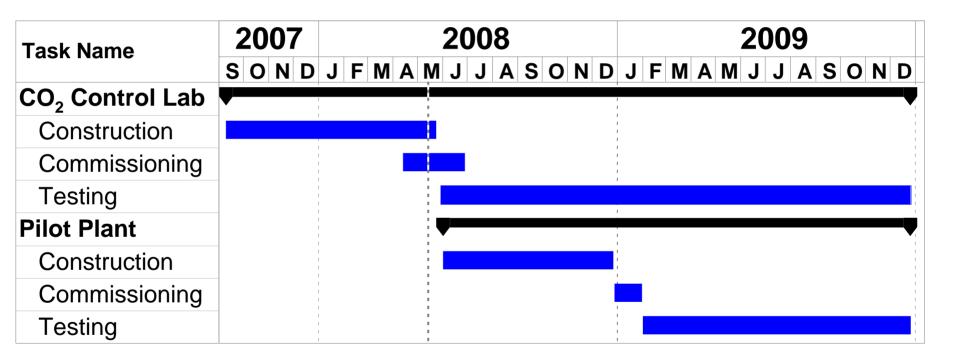
Absorber and Regenerator Columns

- 61 cm diameter x 20 m high
- Design pressure: 1.14 MPa @ 230 C
- Structured packing






Small Boiler Simulator (SBS)


Replicates an electric utility power plant from the coal pile to the stack.

Schedule

"We are passionate about innovation and technology leadership"

power generation group

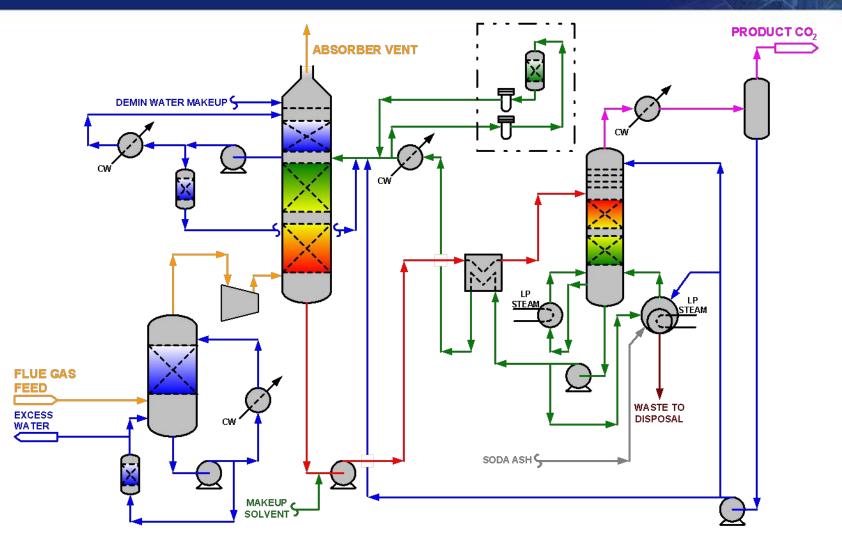
Econamine FG PlusSM Technology for Post-Combustion CO₂ Capture

Satish Reddy

Presented at: 11th Meeting of the International Post-Combustion CO2 Capture Network May 20th - 21th, 2008, Vienna, Austria

- Econamine FG+SM technology background
- Commercial plant experience
- ◆ Enhancements to Econamine FG PlusSM technology
- Strategies for CO₂ Capture from Large Power Plants

Econamine FG+SM Technology



Econamine FG+SM Technology Background

- ◆ Econamine FG+SM (EFG+) technology permits largescale CO₂ capture from low-pressure, oxygen containing streams, such as flue gases
- The EFG+ solvent is based on Monoethanolamine (MEA)
- Plant operating experience has shown that there is virtually no corrosion

Typical Econamine FG+ SM Flowsheet

Commercial Plant Experience

Commercial Experience

- World-wide licenses to date: 24 plants
- Plants/Licenses on order: 10
- CO₂ concentrations from 3% to 20% v/v
- O_2 Concentrations from 1 to 15% v/v
- Only process that has commercially demonstrated CO₂ recovery from a gas turbine exhaust (13 to 15% v/v O₂)
- Several units installed on boilers and steam reformers in Ammonia and Methanol plants

Reference Plant: Florida Power and Light

Project Profile

- Plant location: Bellingham, MA
- Capacity 330 t/d
- CO₂ Concentration: 3.5% v/v
- ♦ O₂ Concentration: 13 to 14% v/v
- 100% air cooled
- Product Usage: Food-grade CO₂

Bellingham Plant Ground View

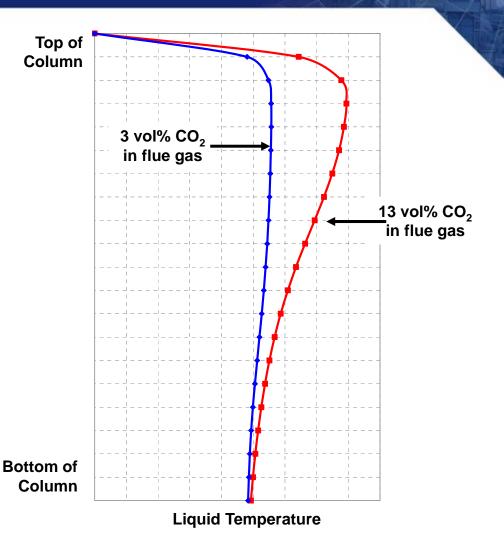
Process Enhancements: Econamine FG PlusSM Technology

Enhancements to Econamine FG PlusSM Technology

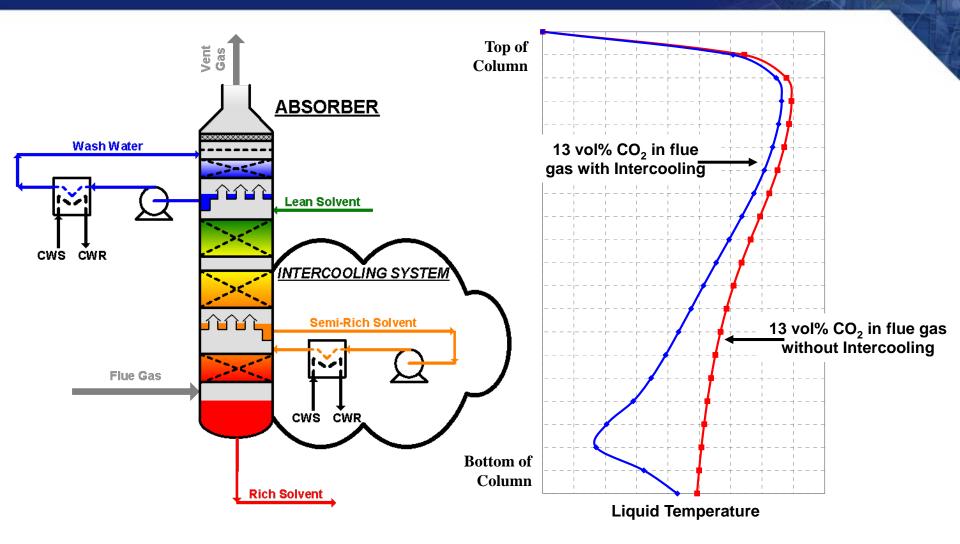
- Fluor is continuously improving the EFG+ process to has lower energy consumption and solvent losses
- Menu of advanced features are available to customize each project:
 - Enhanced solvent formulation
 - Fluegas Pre-Treatment
 - Absorber Intercooling
 - Lean vapor compression configuration
 - Advanced reclaiming technologies
 - Heat integration with the power plant

Improved Solvent Formulation

- Generic MEA based plants operate at low concentrations: 18-20 wt%
- Econamine FG operated with 30% MEA
- Econamine FG+ has an improved solvent designed with MEA concentration greater than 30 wt%
 - Increased reaction rates
 - Less absorber packing required
 - Lower capital cost
 - Higher solvent carrying capacity
 - Lower solvent circulation rates
 - Lower steam requirements
 - Lower capital cost on circulation equipment

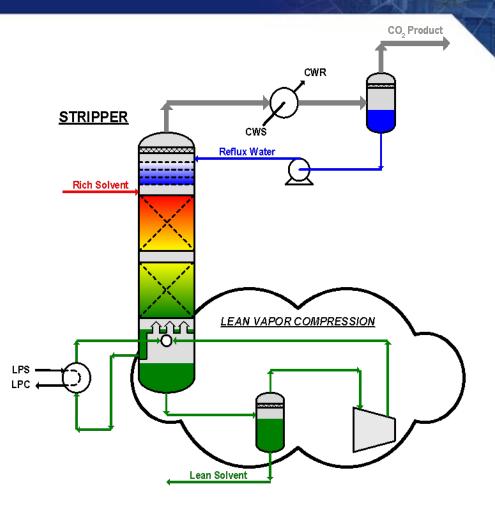


- Removal of SOx, NO₂ and particulate matter from fluegas is essential for minimizing solvent losses
- Fluor has developed SOx and NO₂ removal systems that are integrated with the Direct Contact Cooler (DCC)
 - Reduces capital cost
 - Minimizes plot Space
- A proprietary design of the DCC minimizes waste production by recovering combustion water


Absorber Intercooling

- Heat released in absorber due to heat of reaction
- Higher flue gas CO₂ concentrations lead to higher operating temperatures
 - Faster reaction kinetics
 - Lower solvent carrying capacity
- Optimum temperature profile
 - Higher temperature at top
 - Lower temperature at bottom

Absorber Intercooling


Absorber Intercooling Results

- Higher solvent carrying capacity at bottom of absorber
 - Lower solvent circulation rate
 - Lower steam consumption
 - Lower capital cost on circulation equipment
- Higher CO₂ absorption rate
 - Smaller absorber diameter
 - Lower capital cost
- Patent application pending

Lean Vapor Compression

- Lower steam consumption
- Lower cooling water requirement
- Patent application is pending

Advanced Reclaiming Technologies

- Previously, EFG plants were designed with a thermal reclaimer
 - Degradation of solvent occurred because of high temperature and residence time
- New processes for low temperature reclaiming have dramatically reduce solvent losses
 - Ion-exchange reclaiming efficiently regenerates solvent from heat stable salts
 - A low-residence time, atmospheric reclaiming process to remove heat stable salts and minor amounts of degradation products that could form

Integration with Power Plant

- Three potential strategies exist for power plant integration
 - Flue gas reboiler
 - Eliminate steam demand
 - Reduces both size and cooling load on DCC
 - Vacuum condensate heating or district heating
 - Improves heat rate of the combined facility and reduces the cooling load on the EFG+SM plant
 - Supplemental duct firing in Natural Gas Combined Cycle
 Power Plants (patent pending)
 - Raises steam for CO₂ Capture in the HRSG
 - Decreases flue gas O₂ concentration
 - Increases flue gas CO₂ concentration

Strategies for CO₂ Capture from Large Power Plants

Minimum Number of Process Trains

- Large-scale CO₂ sequestration projects often require multiple absorption trains, resulting in higher CAPEX and larger plot space
- Plot availability can also play a vital role in a project feasibility for retrofit application
- Fluor is focused on strategies to minimize the number of trains
 - Large diameter absorber design (20 m diameter)
 - 1000 MW coal based power plant requires two absorption trains
 - Plate and frame exchanger train minimization

Large Column Design

- Fluor has standardized the design of large absorbers to 20 meters in diameter. Experience from design of large vacuum columns (refining) has been applied.
- Gas and liquid distribution has been studied and optimized using Computational Fluid Dynamics (CFD)
- Optimum cross-sectional shape of the column for liquid distribution is circular
- Proprietary non-metallic construction has been developed and is being implemented in a demo plant
- The CAPEX of a non-metallic column is about 40% of the conventional absorber.
- Very rapid construction of the absorber is possible.

FLUOR_。

Fluegas Inlet: Design for Excellent Distribution

- Vapor mal-distribution should be avoided
- Primary considerations in the design of the absorber vapor inlet
 - Kinetic energy of incoming gas
 - Vertical clearance between vapor inlet and bottom absorption bed
- Ducting layout between Blower and Absorber plays key role

Large Reboiler Design

- Experience gained from designing reboilers in large refining and petrochemical applications
- Largest reboiler built by Fluor is used as a reference design
- Reference reboiler has a size in excess of 3000 m²/shell

Reboiler Reference Design

Summary

- EFG+ is a proven, cost effective process for the removal of CO₂ from low-pressure, oxygen containing flue gas streams
- The EFG+ technology has a menu of advanced features that resulting in:
 - Low energy consumption (Typical 1270 Btu/lb CO₂ for USC Coal-based power plant; Texas Location)
 - Low solvent and chemical costs
 - Friendly environmental signature
 - Reduced footprint
- Reference designs are available for:
 - Absorbers to 20 m diameter
 - Reboilers with size in excess of 3000 m²/shell

The Econamine FG+ technology is ready for full scale deployment in:

- Gas and Coal-fired Power plants
- In refineries and fertilizer plants on large furnaces

Contacts

 Dr. Satish Reddy Executive Director, Process Technology Fluor Corp, Aliso Viejo, CA +1 949-349-4959 satish.reddy@fluor.com

Any Questions?

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK

Post Combustion Systems

Coal Fired Pilot Plant and Multipollutant Control

🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Masaki lijima

20th -21st May, 2008 Vienna, Austria

CONTENTS

- **1.** MHI's Commercial Achievements
- 2. MHI's Long Term 10 t/d CO2 Capture Demonstration Tests from a Coal Fired Boiler
- 3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration
- 4. Phased Approach to Commercialization for Coal Application
- 5. MHI's Scope in a CCS Project
- 6. Conclusions

1. MHI's Commercial Achievements

MHI's Operating Commercial CO2 Capture Plants

Malaysia

Client: Petoronas Start-up: 1999~ CO2 Source: Nat. Gas Reformer Capacity: 200 t/d Product: Urea

India

Client: IFFCO Location: Aonla Start-up: Dec 2006~ CO2 Source: Nat. Gas Reformer Capacity: 450 t/d Product: Urea

Japan

Client: Chemical Co. Start-up: 2005~ CO2 Source: Nat. Gas Boiler Capacity: 330 t/d Product: General use

India

Client: IFFCO Location: Phulpur Start-up: Dec 2006~ CO2 Source: Nat. Gas Reformer Capacity: 450 t/d Product: Urea

1. MHI's Commercial Achievements

MHI's Recently Awarded Commercial Projects

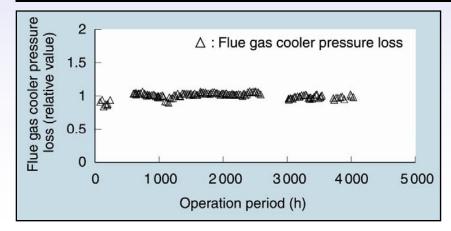
OTHER PROJECTS	Abu Dhabi	India	Bahrain	'Asia'	China
Project Status	Under Construction	Under Construction	Under Construction	Under Construction	FEED Complete
Flue Gas Source	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Boiler
Expected on stream	2009	2009	2010	2010	TBC
CO2 Capture Capacity (T/D)	400	450	450	340	800

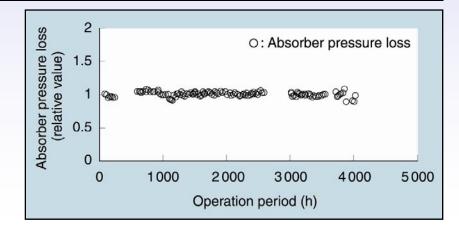
2. MHI's long term 10 t/d CO2 capture demonstration tests from a coal fired boiler

Coal Fired Long Term Demonstration Plant

Plant Outline

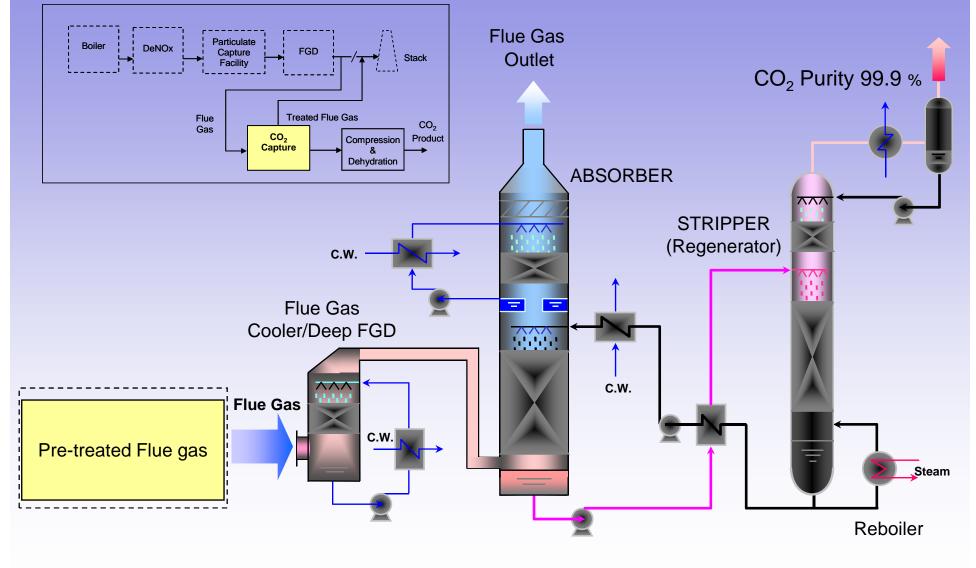
KS-1
10 T/D
Coal Fired Boiler (14.1 v% CO ₂)
July 2006
Nagasaki, Japan


Operational experiences


- Increased understanding of the effects of impurities on the system (dust, SOx, NOx, etc.)
- Identifying and incorporating countermeasures for each impurity
- □ >5,000 hours of operation and experience
- Test results exceeded expectations and will facilitate scale up CO2 capture for coal fired boilers
- Confirms that the MHI CO2 capture process can be applied to coal fired flue gas streams

2. MHI's long term 10 t/d CO2 capture demonstration tests from a coal fired boiler

Coal Fired Long Term Demonstration Plant - Results


Test Item	Result	
Achieve long term stable operation	 \checkmark >5000 hours of near continuous operation 	
Confirm effect of various impurities on CO2 capture process & equipment	 Advanced know-how of the impacts of dust, SO2 and NOx 	
 Achieve high CO2 purity performance 	 ✓ >99.9% achieved 	
Confirm heat consumption required for CO2 recovery	 ✓ 730-820 kcal/kg-CO2 (Improved process reduced by a further 15%) 	
Record pressure loss observed in the cooler and absorber	 No major pressure fluctuations 	
Confirm process can be applied to coal fired flue gas	 Yes - KM-CDR Process can be applied to coal fired power stations 	

3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration

Process Flow for Amine Absorption

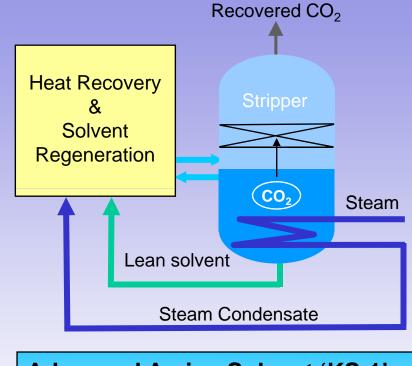
3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration

MHI's Flue Gas CO2 Recovery Improved Process

15% steam consumption reduction over MHI's conventional process

Advanced process demonstrated at MHI's Nanko Pilot Plant & Commercial Plants

Process Features Utilize lean solvent and steam condensate heat for regeneration inside the stripper

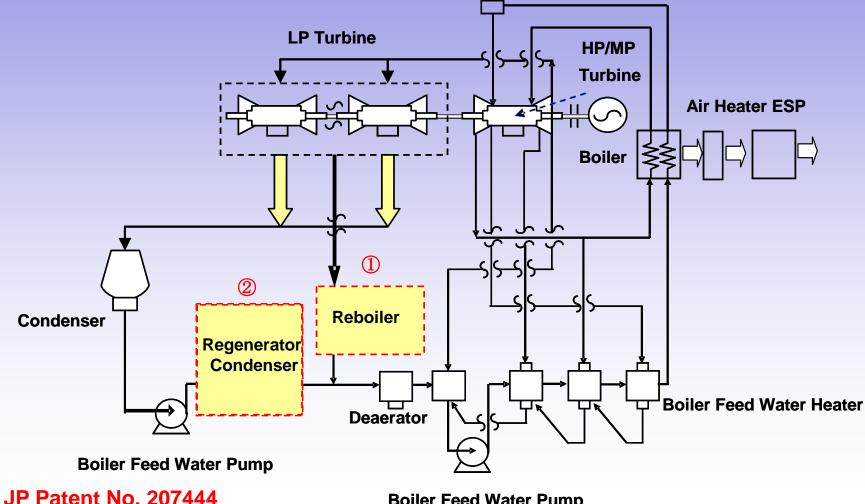

Performance

*Steam Consumption: 1.30 Ton Steam/ Ton CO2 (660 Kcal/ Kg CO2)

Note: Steam = 3 BarG Saturated

*Regeneration Energy less than 700 Kcal/ Kg CO2 can be guaranteed

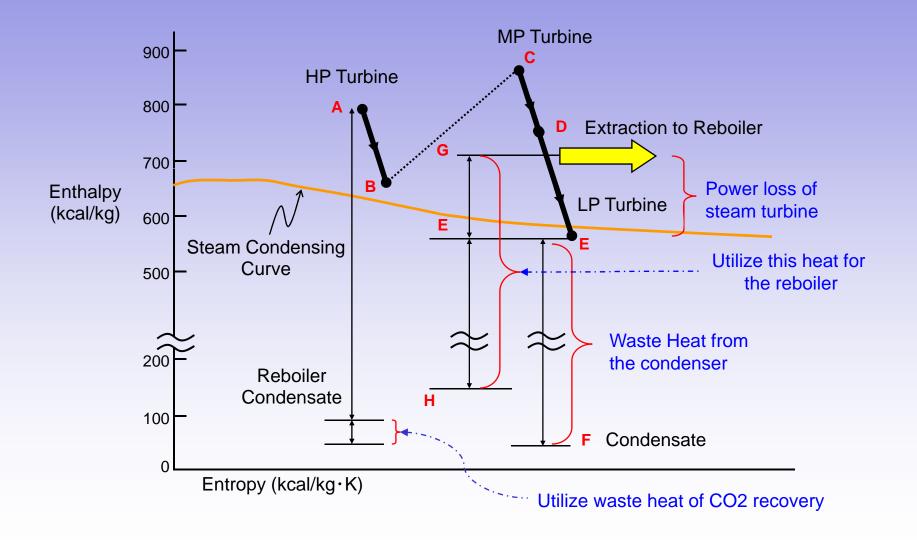
Patent Application submitted in various countries

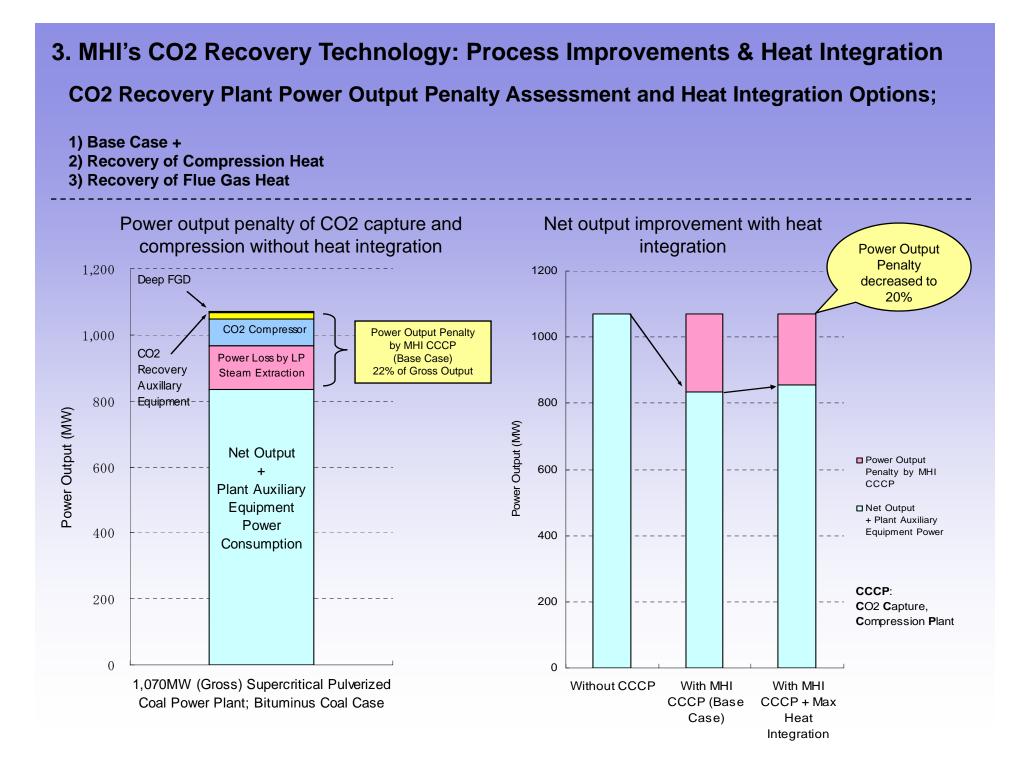

Advanced Amine Solvent 'KS-1'

- High CO2 Loading
- Low Solvent Degradation
- Low Corrosion
- No Corrosion Inhibitor

3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration

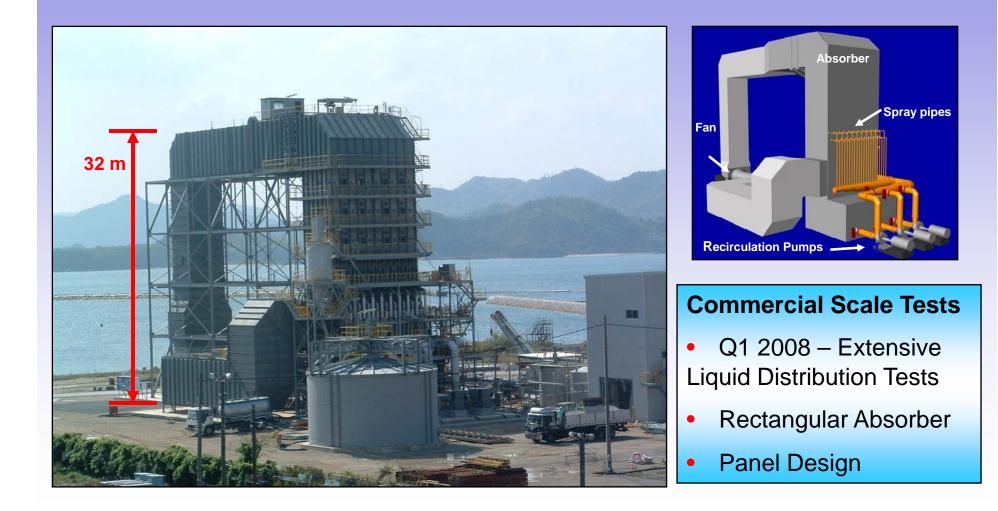
MHI Heat integration Concept (Base Case)

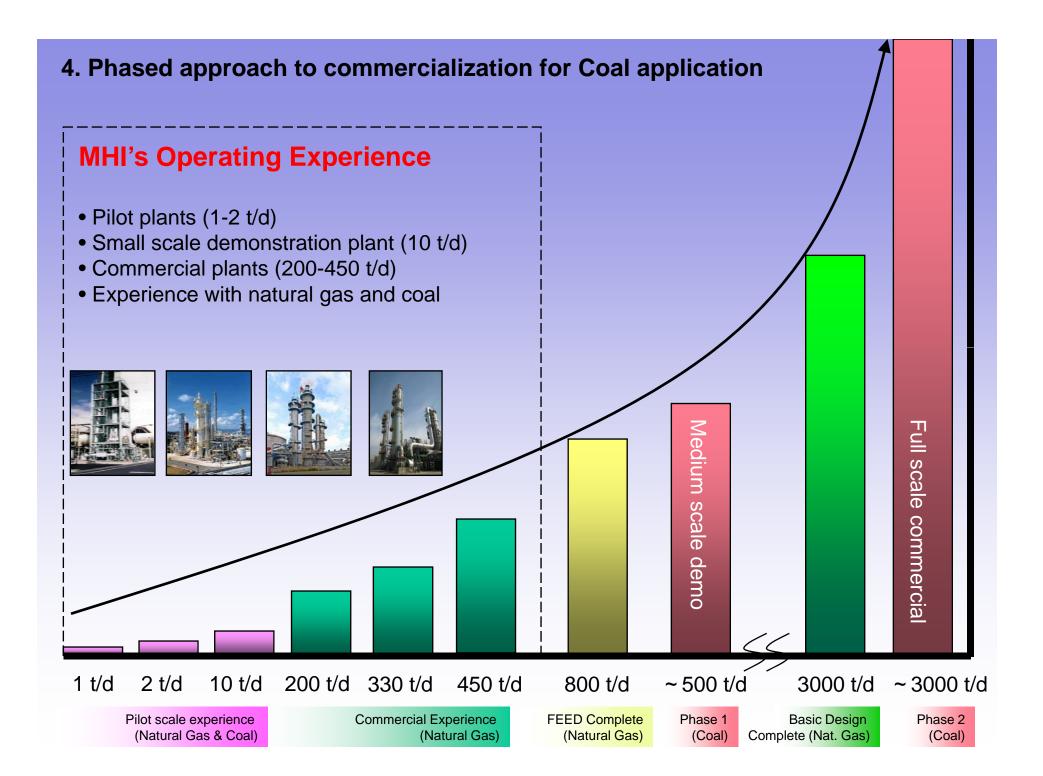

- LP Steam extraction from the LP Turbine (1)
- **Recovery of overhead condenser heat** 2



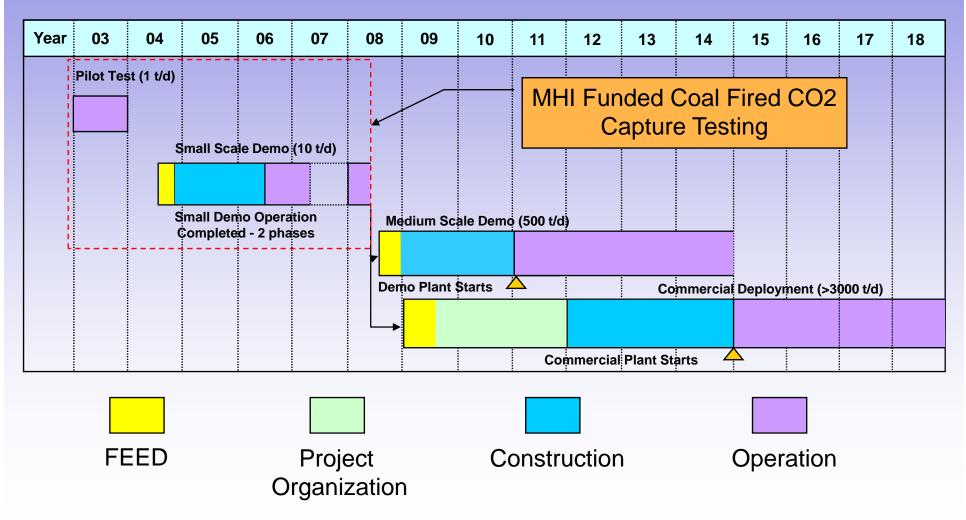
Boiler Feed Water Pump

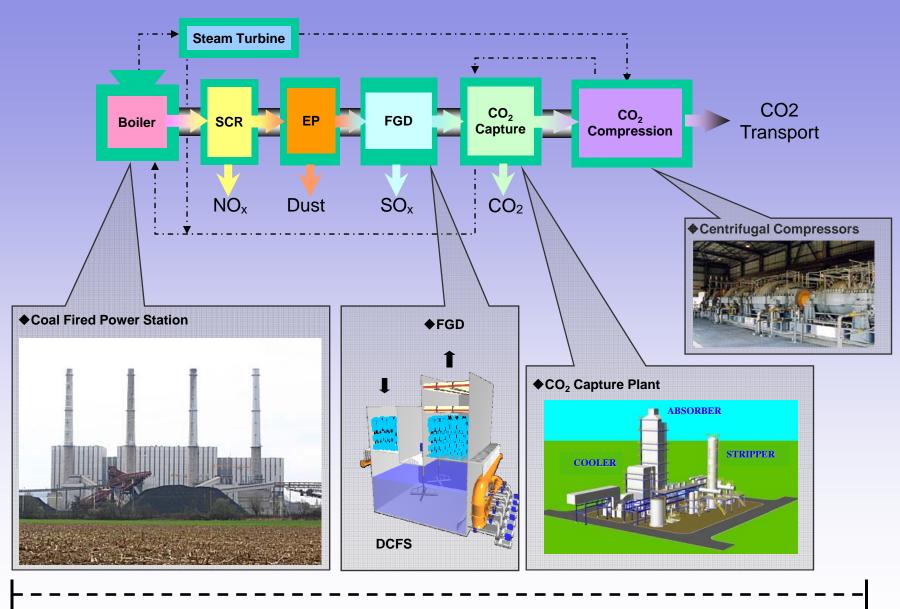
3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration


MHI Heat integration Concept



3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration


Multi-Pollutant Test Plant (FGD & CO2 Capture) Absorber 1 by 1 Scale Test Facility (400 MW equivalent)


4. Phased approach to commercialization for Coal application

MHI's Conceptual Schedule for a Medium – Large Scale Coal Fired CO2 Capture Demonstration Plant

Note: This schedule is a conceptual figure only and shows MHI's roadmap for the future commercialization of this technology for coal fired boilers

5. MHI's Scope in a CCS Project

MHI Can Supply All Technology – Efficient Integration

6. Conclusions

Need for Carbon Capture & Storage

- 1 Coal will remain a dominant fuel for electric power generation
- 2 Coal with CCS technology can play an important part in CO2 mitigation regulatory certainty and political support is needed
- ③ Governments must continue to support CCS and a 'suite' of carbon mitigation strategies
- Incentives for first stage commercial CCS plants are necessary to reduce technical and financial uncertainties
- ⑤ Post combustion CO2 capture technology offers many advantages and can be transferred to developing countries
- 6 Allows for future zero emission use of coal

Cansolv Activities & Technology Focus for CO₂ Capture

John Sarlis / Devin Shaw

Outline

- Company background
- Technology development strategy
- Technology developent status
 - Piloting Campaigns
- Next plans
 - Integrated SO₂ CO₂ Capture

Cansolv Technologies at a Glance

- Founded in 1997 as Union Carbide spin-off
- Located in Montreal, Canada and Shenzhen, P.R.C.
- Global leader in amine based regenerable scrubbing for SO₂ and CO₂
- Providing solutions for:
 - Oil & Gas applications : Sulfur plants, FCCs, Cokers
 - Industrial combustion applications: coal and bitumen boiler flue gas
 - Smelter applications (lead/zinc furnaces, copper anode furnaces)
 - Others: acid plant tail gas, incinerator off-gas

SO₂ Commercial Flue Gas Amine Plants Cansoly

Application	Location	Flow (Nm3/hr)	Size MW _{equiv}	SO ₂ Conc In	entration Out	Operation since
Incinerator Tail Gas	Belgium	12,000	3	1 %	<30 ppm	2002
SARP Acid Plant TG	US	40,000	10	5000 ppm	15 ppm	2002
FCCU CO Boiler Flue G	as US	740,000	180	800 ppm	25 ppm	2007
Coker CO Boiler Flue Ga	as US	430,000	120	2000 ppm	25 ppm	2006
Metallurgical Off-gas	India	33,700	8	0.1 to 12.5 %	150 ppm	2006
Claus plant tail gas	US	18,000	5	4%	200 ppm	2006
Anode Furnace Off-Gas	China	43,000	10	900 ppm-1.9%	100ppm	2007

1 unit in Commissioning

5 units in Engineering and Procurement

Technology Development Strategy

- SO₂ compatible
- Amine based
- Lower energy & degradation than benchmark
- Solvent,
 - stable
 - reasonable cost
 - easily sourced
 - good HS&EA properties

CO₂ Scrubbing - Comparison of Amines Cansoly

- Amines broadly used for selective absorption of H₂S/CO₂
 Cansolv pioneered use of amines in oxidative environments
- CANSOLV PROCESS
 » Diamine absorbent
 - » Tolerable to SO₂
 - » Stainless steel metallurgy
 - Corrosion allowance minimal
 - » No Fe S formation
 - Only source of solids is feed gas

- CONVENTIONAL AMINE » MEA, DEA, MDEA
 - » Prone to degradation in presence of SO₂
 - » Carbon steel metallurgy
 - » Corrosion allowance important
 - » Fe S formation
 - » Fe S precipitation and scaling₆ source of solids

Technology Development Plan

- Solvent screening in Lab
- Physical properties development; 1st Pass
- Piloting (actual commercial sites)
- Simulation development; A+, eNRTL, 1st Pass
- Cost Model; 1st Pass
- Intense physical/chemical properties & mass transfer development
- 2nd Pass Cost model
- Demonstration plant (integrated with SO₂ & Stand alone)
- Ongoing simulation model;
 - Rate based and Pilot plant validated

Over 5,000 hours of CO₂ Piloting

Application	Date	Site	CO ₂ in the gas	Removal
Natural Gas Fired boiler	March-June 2004	Paprican, Montreal, Canada	8%vol	75%
Coal fired Boiler	November 2004	Pulp Mill Boiler, US	11.5%vol	65%
Coal fired Power Plant	July – Sept 2006	Saskpower, Poplar River, Canada	12% vol	90%
Blast Furnace	April 2007 - 2008	Japan	22% vol	90%
Natural Gas Fired Boiler	May - Sept 2007	Shell-Statoil, Norway	4.5%vol	85%
Cement Kiln	Jan – Feb 2008	Cal Portland, California	20%vol	90% and 45%

CTI CO₂ Capture Solvent Development

- Cansolv Solvents, buffer at the appropriate pKa
 - » Cansolv DC101

- » Cansolv DC103
- » Cansolv DC103A
- » Cansolv DC103B
- Independent Testing Verification
- Third Party Assistance in Testing of Solvent Performance
- Baseline Comparison
 - » MEA reference vs. Cansolv Solvents
 - » Laboratory Experimentation
 - » Piloting Campaigns

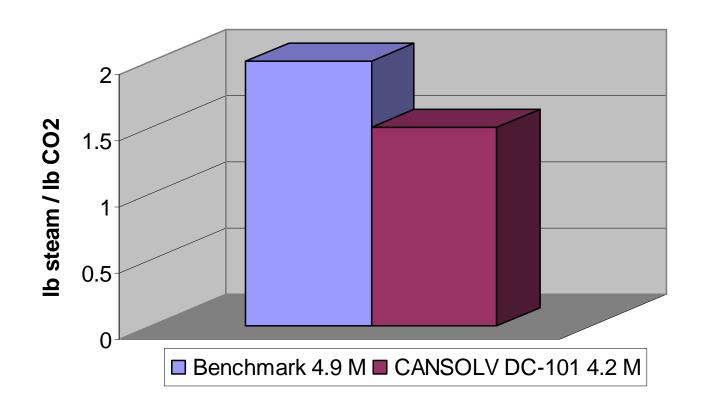
<u>Cansolv CO₂ Piloting Campaigns</u> Pilot Testing - Example #1

Application: Coal-fired Power Plant

Dates: July 2006 – Sept 2006

Project Description: Saskpower Site: Poplar River Power Plant, Canada Inlet Gas Temperature = $40 - 50^{\circ}$ C Inlet CO₂ concentration: 12 vol % (wet) CO₂ Removal = 90%

 O_2 inlet concentration = 6 vol %, SO_2 inlet concentration = 15 ppm Gas flow = 65 scfm or 110 Nm³/hr


Solvents tested: Benchmark (7 days) and CANSOLV DC101 (53 days)

Benchmark and DC-101 Optimal

Conditions

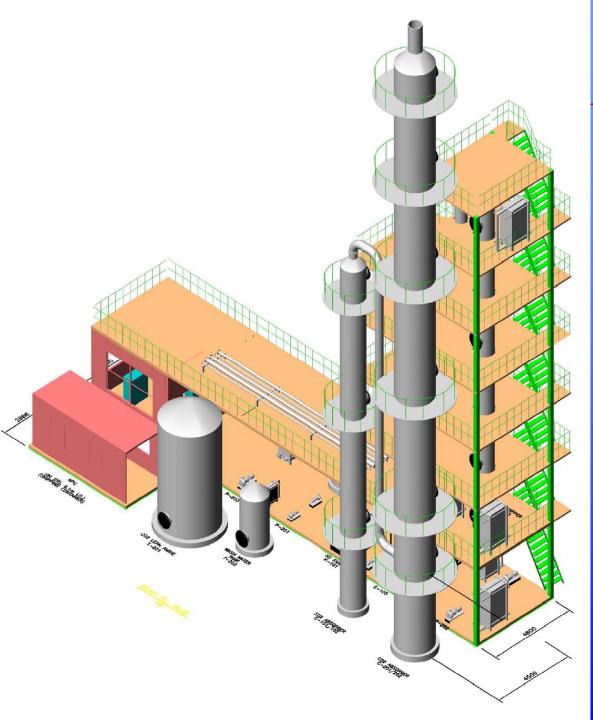
Specific Steam Consumption for 90% removal

<u>Cansolv CO₂ Piloting Campaigns</u> Pilot Testing - Example #2

Application: Natural Gas Fired Boiler

Dates: May - Sept 2007

Project Description: Shell – Statoil Site: Risavika Gas Center, Norway


> Inlet Gas Temperature ~ 50° C Inlet CO₂ Concentration = 4.5 vol % (wet) CO₂ Removal = 85 %

Solvents tested: DC-103 and DC-103A (100 days)

SOLVENT		CANSOLV DC-103	CANSOLV DC-103A-B
	Units		
CO ₂ Removal	%	84	85
Specific Steam Consumption, 2.5 Bar(g)	lb steam/lb CO ₂	1.34	1.55
Gas Flow	SCFM	120	140
Gas Residence Time	seconds	8.8	7.3

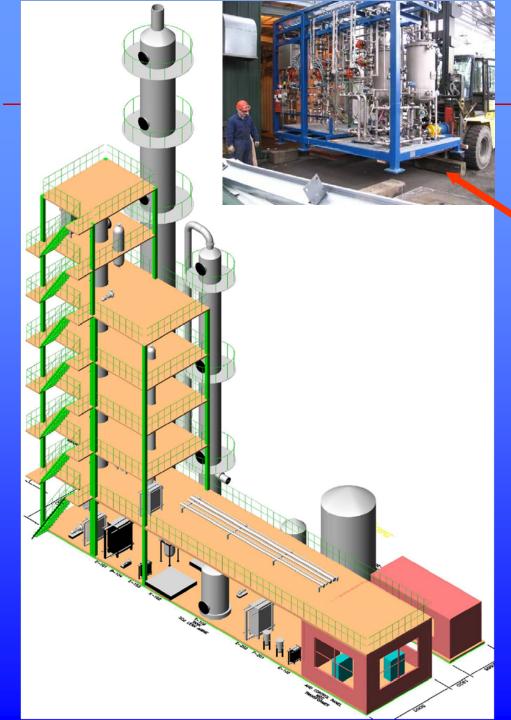
Minimization of regeneration steam requirement

CANSOLV Integrated SO₂ Control and CO₂ Capture 50 ton/day

Demonstration Plant

Amine Based SO₂ and CO₂ Capture

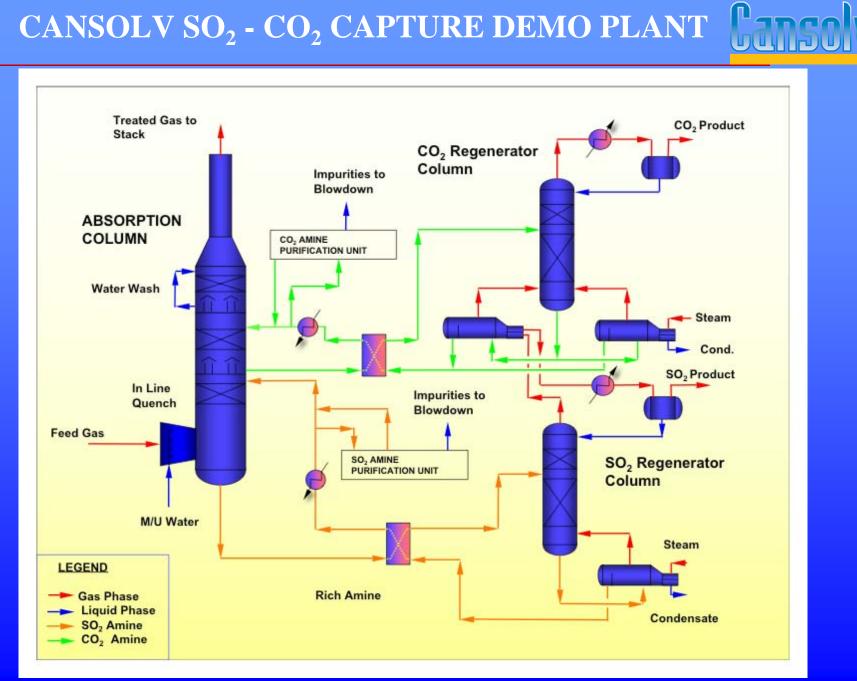
- CANSOLV SO₂ Control
 - » Diamine operating pH 4.5 to 5.5
 - » Regenerable ion HSO₃⁻
 - » Stripper overheads suitable for heat recovery
 - » Low degradation
 - » Heat stable salts removed by APU
 - » Slips 99.99% of CO₂


- CANSOLV CO₂ Capture
 - » Diamine operating pH 9 to 10
 - » Regenerable ion HCO₃⁻
 - » Stripper overheads unsuitable for heat recovery
 - » Low degradation
 - » Heat stable salts removed by APU
 - Captures 99% of residual SO₂

Process & Heat Integration Potential

SO₂ / CO₂ Capture Demonstration Plant

- 50 ton per day CO_2 capture capacity (3 MW)
- Currently in Engineering and Procurement Phase
- Heat integrated CANSOLV-SO₂ Control CANSOLV-CO₂ Capture Process
- <u>Objectives</u>:
 - confirm specific heat consumption
 - evaluate scale-up effects



Cansolv

CANSOLV – SO₂ CONTROL CO₂ CAPTURE DEMO PLANT

- Modular design (skid design experience)
- Sized for most road clearances
- Maximum pre-assembly
- MCC & control system on main skid
- Equipped for two mode heat recovery
- Modular design scalable to 400 tons / day

CANSOLV SO₂ - CO₂ CAPTURE DEMO PLANT

- Solvent designed for :
 - 1.3 tons steam per ton CO_2 (without heat integration)
 - 1.0 tons steam per ton CO_2 (with heat integration)
- Including Electricity and Capital costs 15% savings
- Two mode heat recovery capability
 »SO₂ overhead to CO₂ reboiler
 »Heat recycling internal to CANSOLV CO₂ Process
 - Instrumented for operating and capital cost optimization

CANSOLV CO2 Capture System – CNN News Press SON

Revease Revease Capture Project

March 20, 2008: 06:48 AM EST

LONDON -(Dow Jones)- RWE npower, the U.K. arm of German utility RWE (RWE.XE), said Thursday that it had formed a consortium with five other companies to build a carbon capture and storage power plant, ahead of entering a competition to get U.K. government funding for the project.

In addition to RWE npower, the consortium comprises of chemical and gas provider BOC Gases PLC (BOCGAS.LA), flue gas desulfurization and combustion technology provider Cansolv Technologies, marine

transportation company I.M. Skaugen AS (IMSK.OS), engineering and construction company The Shaw Group Inc. (SGR) and oil and gas exploration company Tullow Oil PLC (TQW.DB).

"RWE npower is currently developing proposals for entry by the end of March into the pre-qualification phase of the Government's CCS demonstration competition. The partnership structure will form part of its proposals," the company said.

-By Erica Herrero-Martinez, Dow Jones Newswires; +44 (0)20 7842 9353; erica.herrero-martinez@dowjones.com

• Thank You!!

• Questions ?

11th MEETING of the INTERNATIONAL POST-COMBUSTION CO2 CAPTURE NETWORK

Post Combustion Systems

Coal Fired Pilot Plant and Multipollutant Control

🙏 MITSUBISHI HEAVY INDUSTRIES, LTD.

Masaki lijima

20th -21st May, 2008 Vienna, Austria

CONTENTS

- **1.** MHI's Commercial Achievements
- 2. MHI's Long Term 10 t/d CO2 Capture Demonstration Tests from a Coal Fired Boiler
- 3. MHI's CO2 Recovery Technology: Process Improvements & Heat Integration
- 4. Phased Approach to Commercialization for Coal Application
- 5. MHI's Scope in a CCS Project
- 6. Conclusions

1. MHI's Commercial Achievements

MHI's Operating Commercial CO2 Capture Plants

Malaysia

Client: Petoronas Start-up: 1999~ CO2 Source: Nat. Gas Reformer Capacity: 200 t/d Product: Urea

India

Client: IFFCO Location: Aonla Start-up: Dec 2006~ CO2 Source: Nat. Gas Reformer Capacity: 450 t/d Product: Urea

Japan

Client: Chemical Co. Start-up: 2005~ CO2 Source: Nat. Gas Boiler Capacity: 330 t/d Product: General use

India

Client: IFFCO Location: Phulpur Start-up: Dec 2006~ CO2 Source: Nat. Gas Reformer Capacity: 450 t/d Product: Urea

1. MHI's Commercial Achievements

MHI's Recently Awarded Commercial Projects

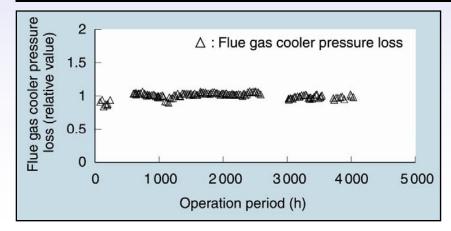
OTHER PROJECTS	Abu Dhabi	India	Bahrain	'Asia'	China
Project Status	Under Construction	Under Construction	Under Construction	Under Construction	FEED Complete
Flue Gas Source	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Reformer	Nat. Gas. Boiler
Expected on stream	2009	2009	2010	2010	TBC
CO2 Capture Capacity (T/D)	400	450	450	340	800

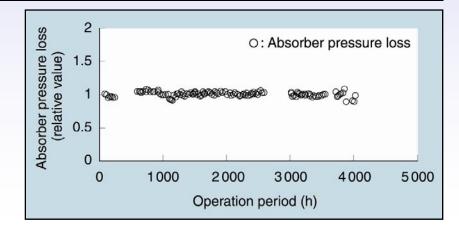
2. MHI's long term 10 t/d CO2 capture demonstration tests from a coal fired boiler

Coal Fired Long Term Demonstration Plant

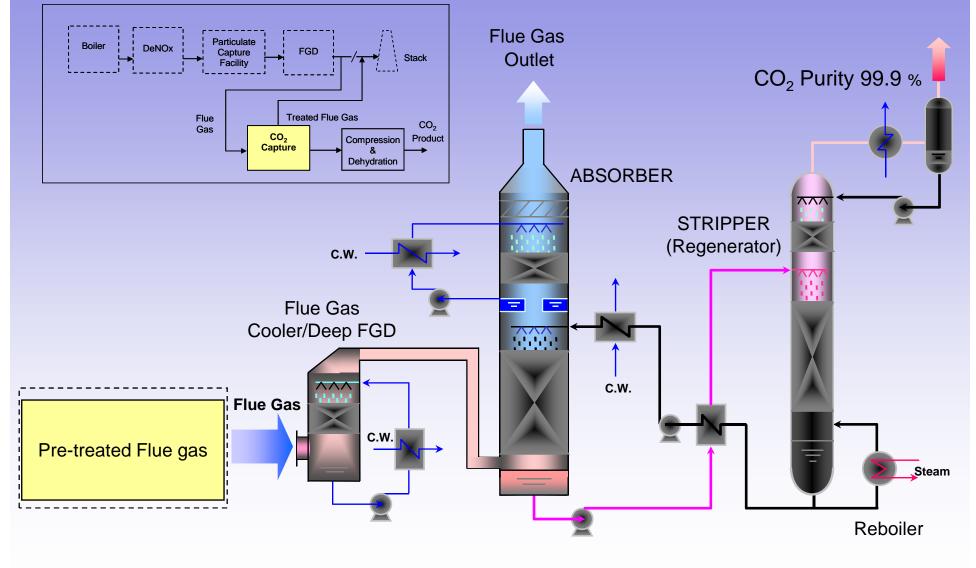
Plant Outline

KS-1
10 T/D
Coal Fired Boiler (14.1 v% CO ₂)
July 2006
Nagasaki, Japan


Operational experiences


- Increased understanding of the effects of impurities on the system (dust, SOx, NOx, etc.)
- Identifying and incorporating countermeasures for each impurity
- □ >5,000 hours of operation and experience
- Test results exceeded expectations and will facilitate scale up CO2 capture for coal fired boilers
- Confirms that the MHI CO2 capture process can be applied to coal fired flue gas streams

2. MHI's long term 10 t/d CO2 capture demonstration tests from a coal fired boiler


Coal Fired Long Term Demonstration Plant - Results

Test Item	Result
Achieve long term stable operation	 \checkmark >5000 hours of near continuous operation
Confirm effect of various impurities on CO2 capture process & equipment	 Advanced know-how of the impacts of dust, SO2 and NOx
 Achieve high CO2 purity performance 	 ✓ >99.9% achieved
Confirm heat consumption required for CO2 recovery	 ✓ 730-820 kcal/kg-CO2 (Improved process reduced by a further 15%)
Record pressure loss observed in the cooler and absorber	 No major pressure fluctuations
Confirm process can be applied to coal fired flue gas	 Yes - KM-CDR Process can be applied to coal fired power stations

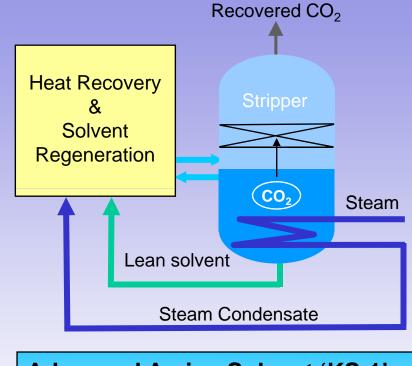
Process Flow for Amine Absorption

MHI's Flue Gas CO2 Recovery Improved Process

15% steam consumption reduction over MHI's conventional process

Advanced process demonstrated at MHI's Nanko Pilot Plant & Commercial Plants

Process Features Utilize lean solvent and steam condensate heat for regeneration inside the stripper

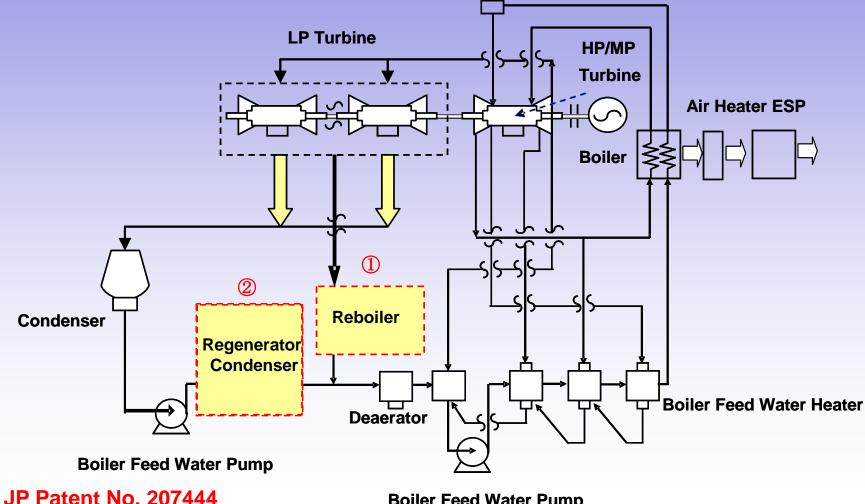

Performance

*Steam Consumption: 1.30 Ton Steam/ Ton CO2 (660 Kcal/ Kg CO2)

Note: Steam = 3 BarG Saturated

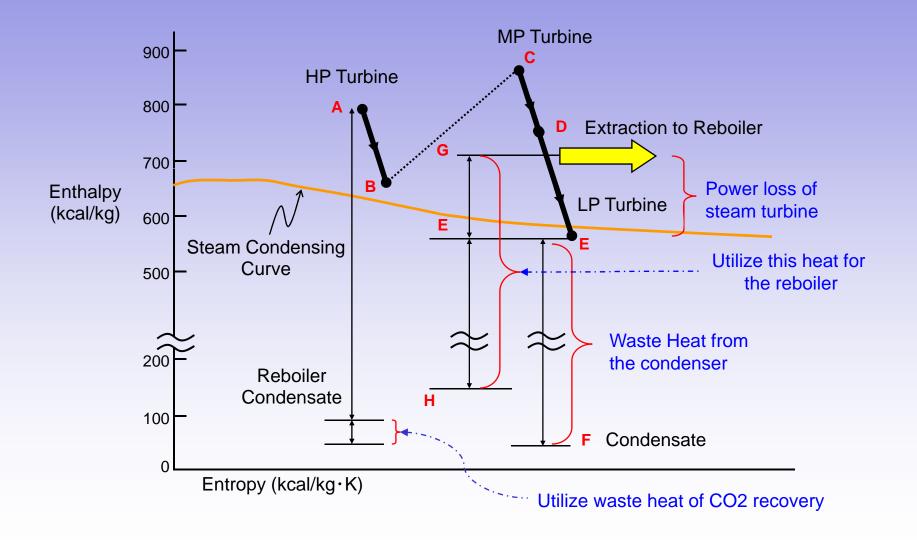
*Regeneration Energy less than 700 Kcal/ Kg CO2 can be guaranteed

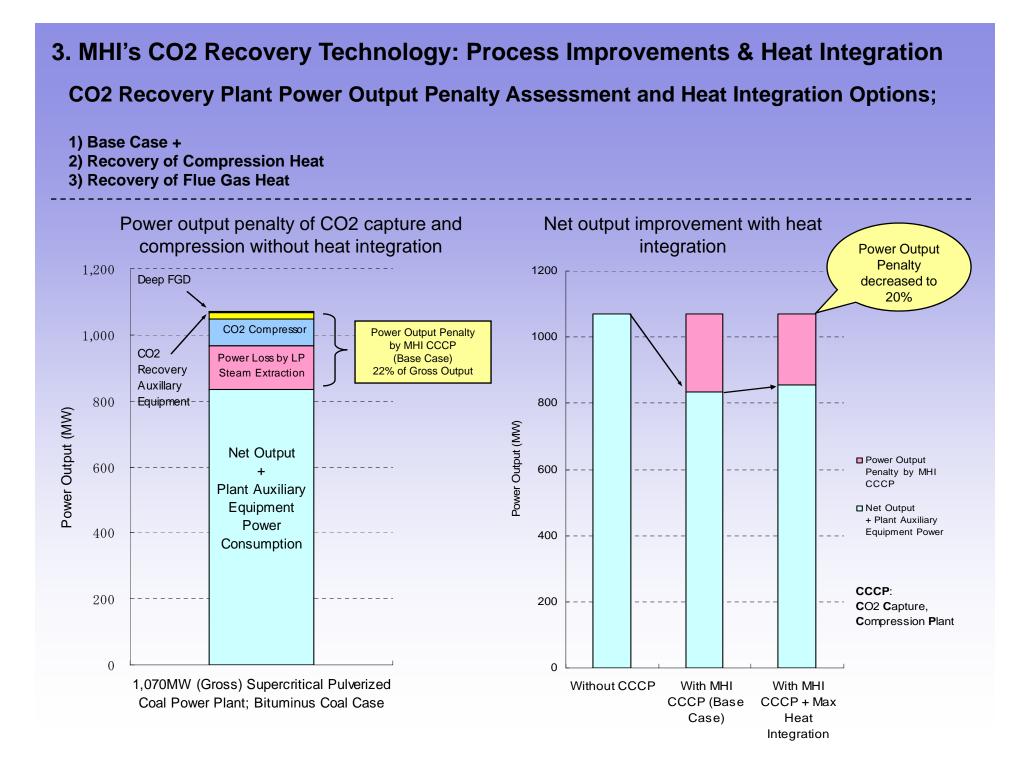
Patent Application submitted in various countries

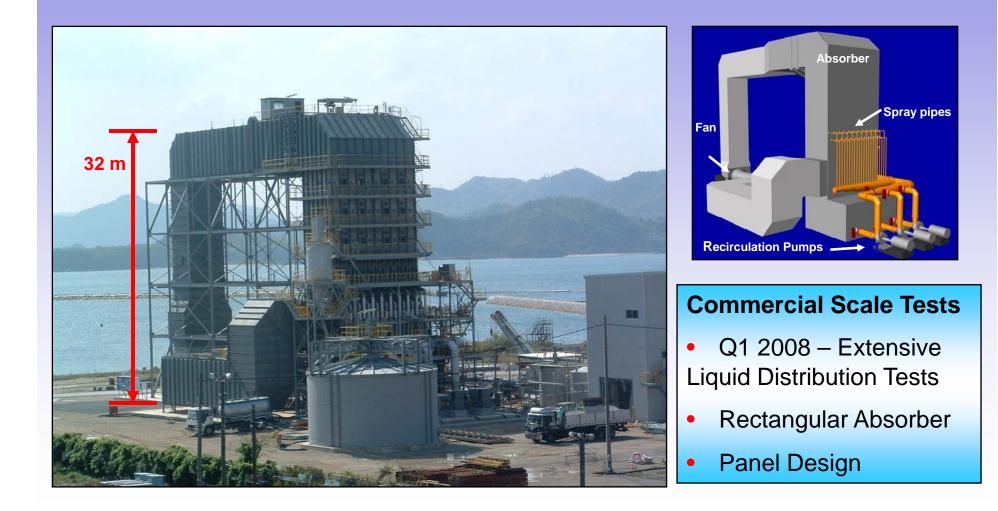


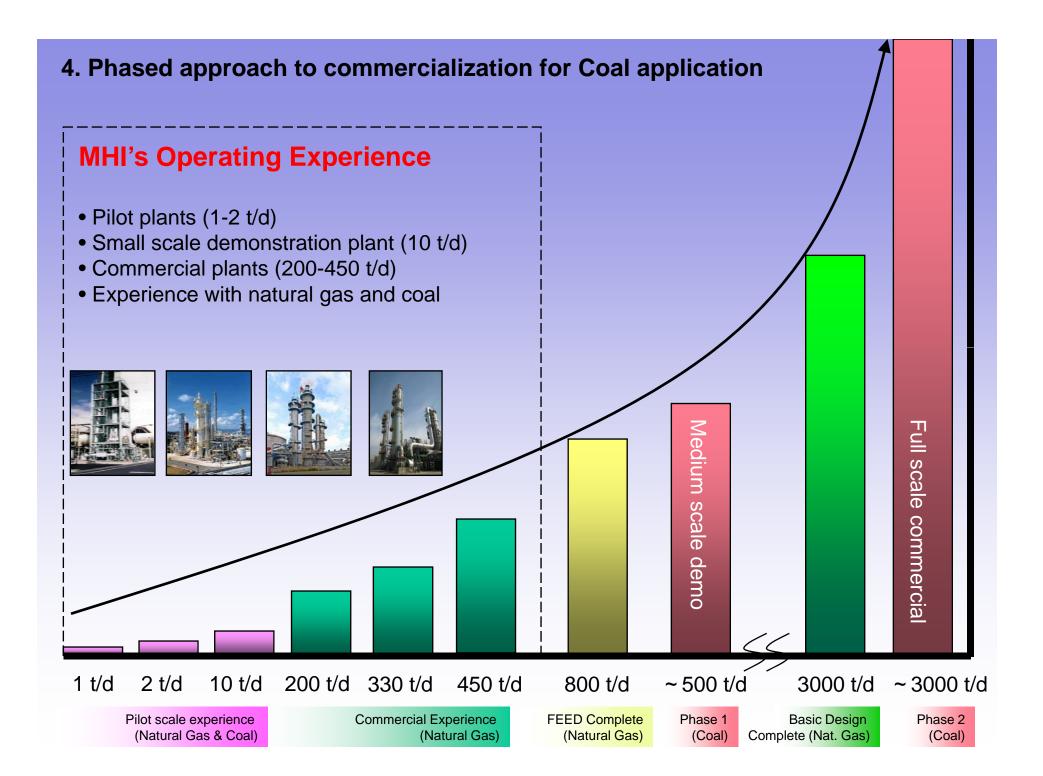
Advanced Amine Solvent 'KS-1'

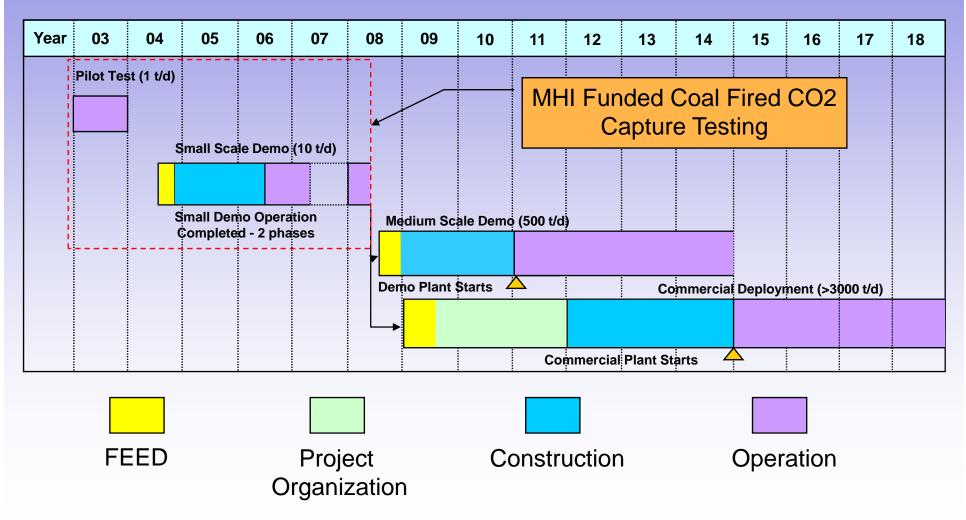
- High CO2 Loading
- Low Solvent Degradation
- Low Corrosion
- No Corrosion Inhibitor

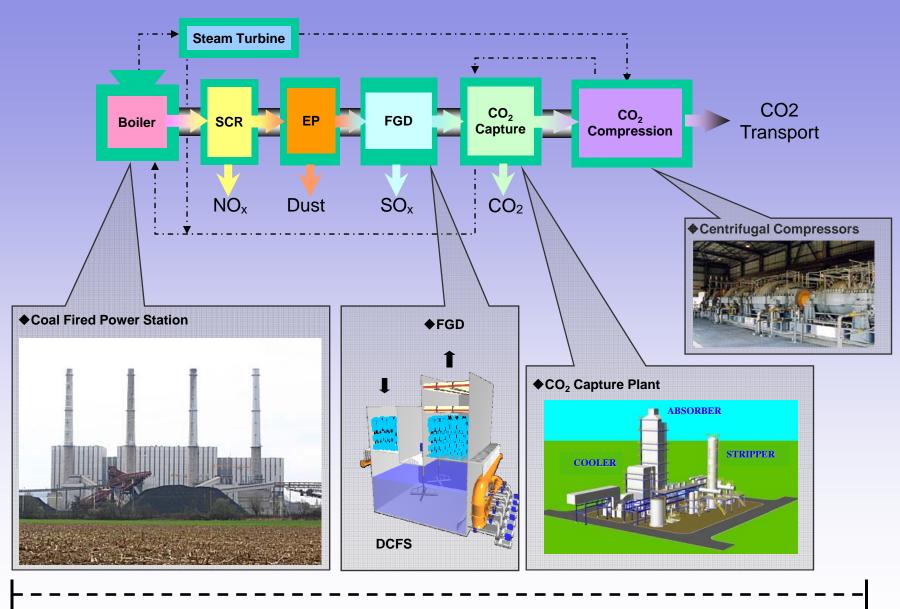

MHI Heat integration Concept (Base Case)


- LP Steam extraction from the LP Turbine (1)
- **Recovery of overhead condenser heat** (2)


Boiler Feed Water Pump


MHI Heat integration Concept


Multi-Pollutant Test Plant (FGD & CO2 Capture) Absorber 1 by 1 Scale Test Facility (400 MW equivalent)


4. Phased approach to commercialization for Coal application

MHI's Conceptual Schedule for a Medium – Large Scale Coal Fired CO2 Capture Demonstration Plant

Note: This schedule is a conceptual figure only and shows MHI's roadmap for the future commercialization of this technology for coal fired boilers

5. MHI's Scope in a CCS Project

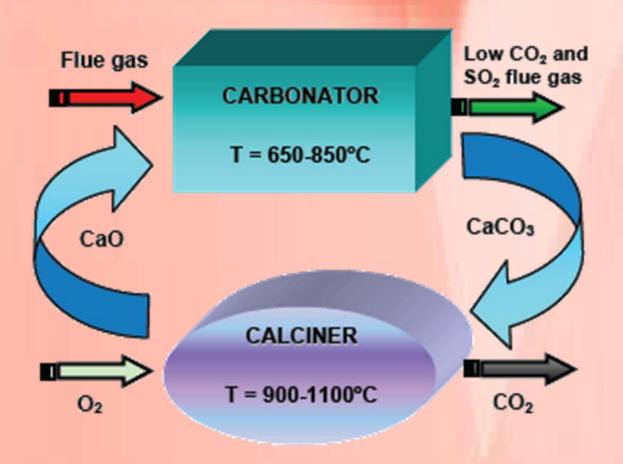
MHI Can Supply All Technology – Efficient Integration

6. Conclusions

Need for Carbon Capture & Storage

- 1 Coal will remain a dominant fuel for electric power generation
- 2 Coal with CCS technology can play an important part in CO2 mitigation regulatory certainty and political support is needed
- ③ Governments must continue to support CCS and a 'suite' of carbon mitigation strategies
- Incentives for first stage commercial CCS plants are necessary to reduce technical and financial uncertainties
- ⑤ Post combustion CO2 capture technology offers many advantages and can be transferred to developing countries
- 6 Allows for future zero emission use of coal

Potential CO₂ post-combustion capture systems

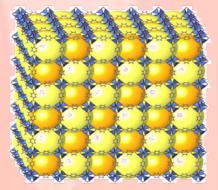

Robert Davidson robert@iea-coal.org.uk

International Test Network for CO₂ Capture: 11th workshop Maria Enzersdorf, Austria, 20-21 May 2008

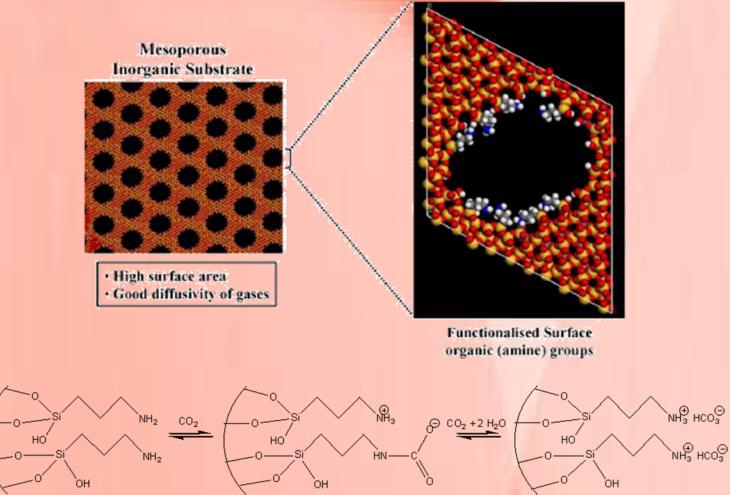
> www.iea-coal.org.uk www.coalonline.org

Calcination/carbonation loop

Alkali/alkaline earth compounds


- dolomites
- sodium carbonates
- potassium carbonates
- lithium compounds
- supported sorbents

Physical microporous adsorbents


molecular sieves

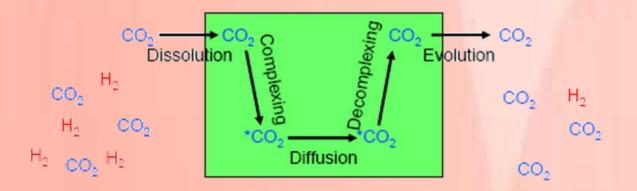
- activated carbon anthracite
- metal organic frameworks
- zeolites

CO₂ adsorption on immobilised amine adsorbents

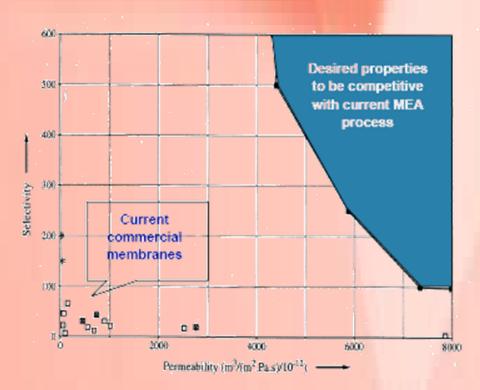
www.iea-coal.org.uk

Gas permeation membranes

- organic glassy polymers
- inorganic ceramic metallic


Polymeric membranes

- polyarylates
- polycarbonates
- polyimides
- polypyrrolones
- polysulphones
- copolymers and mixed polymers


Facilitated transport membranes

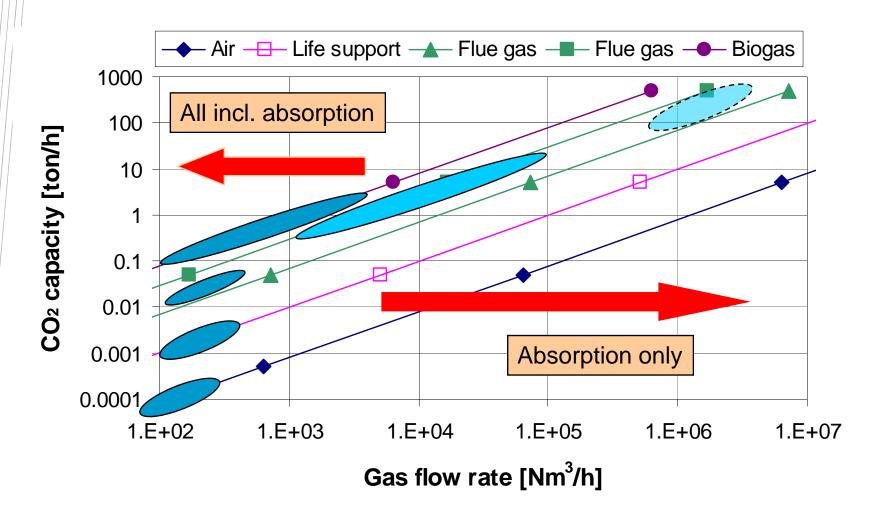
reversible reactions between CO₂ and carriers in the membrane inert gases such as N₂ do not react with the carriers

Membranes vs. MEA

Current economic performance of membrane separation process and its required quality to compete with current MEA processes (Chen et al., 2006)

Summary

- dry regenerable sorbents
- physical microporous adsorbents
- amine modified substrates
- gas permeation membranes
- ... and a few more
- hydrates
- cryogenics
- photosynthesis of microalgae
- accelerated weathering of limestone


What is the next best thing in PCC?

Energy Transformed Flagship

Paul Feron IEA GHG 11th Post Combustion CO₂ Capture Network Meeting Vienna, 20-21 May 2008

CO₂ separation at atmospheric pressure: Current technologies and markets

Novel PCC technologies

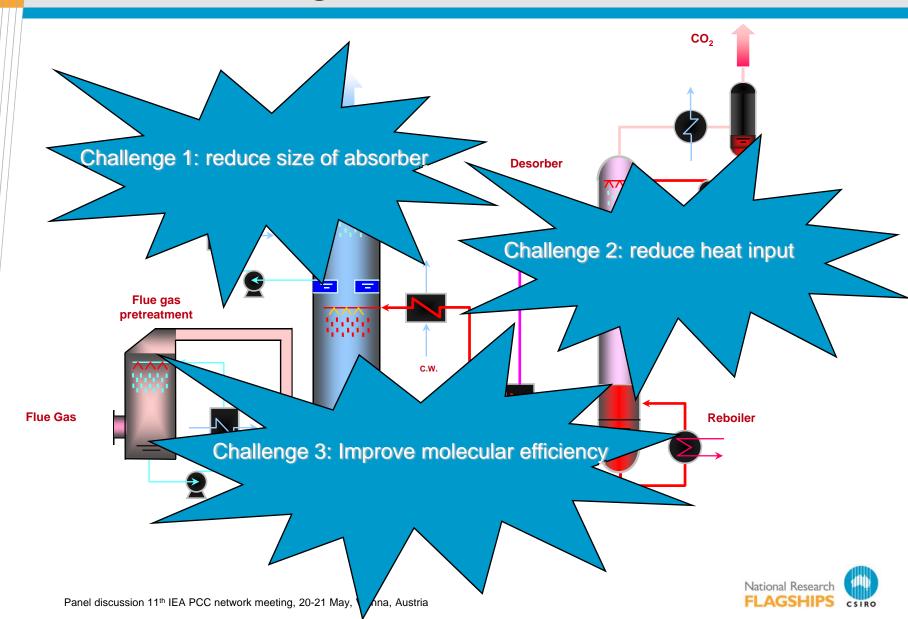
➢ Requirements

- Quickly deployable at large capacities
- Need to be a lot better than absorption processes

Adsorption processes

Use of circulating fluidised beds

>Membranes


- Engineering designs for large capacities
- Cryogenic technologies
 - Engineering designs for large capacities

≻General

- Less material science, more engineering & equipment design
- Absorption processes likely to be improved through R,D&D

Three main challenges for PCC

Go for innovation in absorption processes!

Advanced amines

• Formulated mixtures, multiple amine groups

➢Non-aqueous solvents

• Ionic liquids

Phase change solvents

• Slurries, emulsions

Modified process concepts

- Intercooling, heat exchange integration in stripper, integration of compression, split flow
- Novel process components
 - Membrane contactors, heat pumps
- Robust solvents
 - Ammonia, carbonates

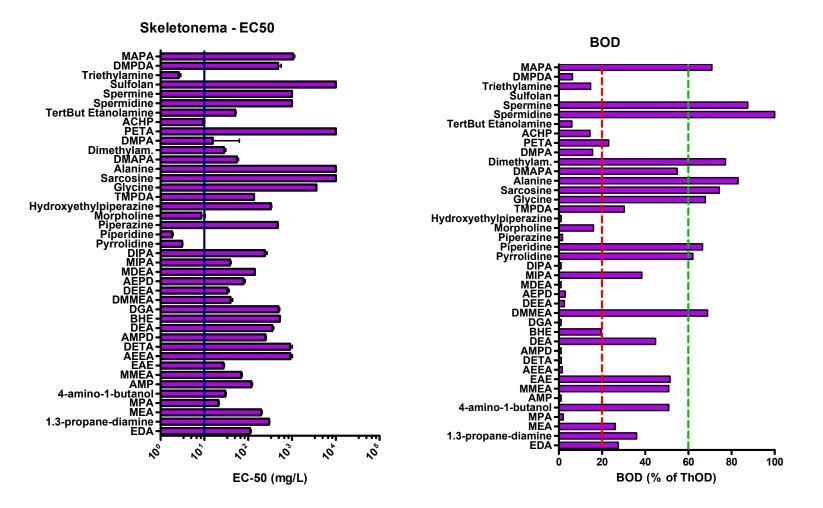
Biomimetic approaches

• Enzymes for solvent process improvements

Remarks on post combustion CO₂ capture systems

Ν	ΤN	U		
Norway				

1) Environmental concerns Categorization of chemicals OSPAR Convention


Category	Criteria – Ecotoxicity tests	Actions
Black	•Priority list (Stortingsmelding Nr. 25) •OSPAR List of Chemicals for Priority Action •Both low biodegradability and high bioaccumulation (BOD28 < 20 %, and Log $P_{OW} \ge 5$) •Low biodegradability and toxic (BOD28 < 20 %, and EC50 or LC50 ≤ 10 mg/L) •Compounds expected to be carcinogenic/mutagenic or harmful to reproduction	Not discharged
Red	•Inorganic chemicals with high toxicity (EC50 or LC50 \leq 1 mg/L) •Organic chemicals with low biodegradability (BOD28 < 20 %) •Organic chemicals or mixtures which meet 2 of the 3 following criteria: Biodegradability < 60 %, bioaccumulation potential (Log P _{ow} \geq 5), or toxicity of EC50 or LC50 \leq 10 mg/L	Phased out or replaced
Yellow	 Include compounds which based on their characteristics are not defined as RED or BLACK, and NOT included in the PLONOR list 	Accepted
Green	•Chemicals expected to have NO environmental effects •PLONOR list	Testing not required

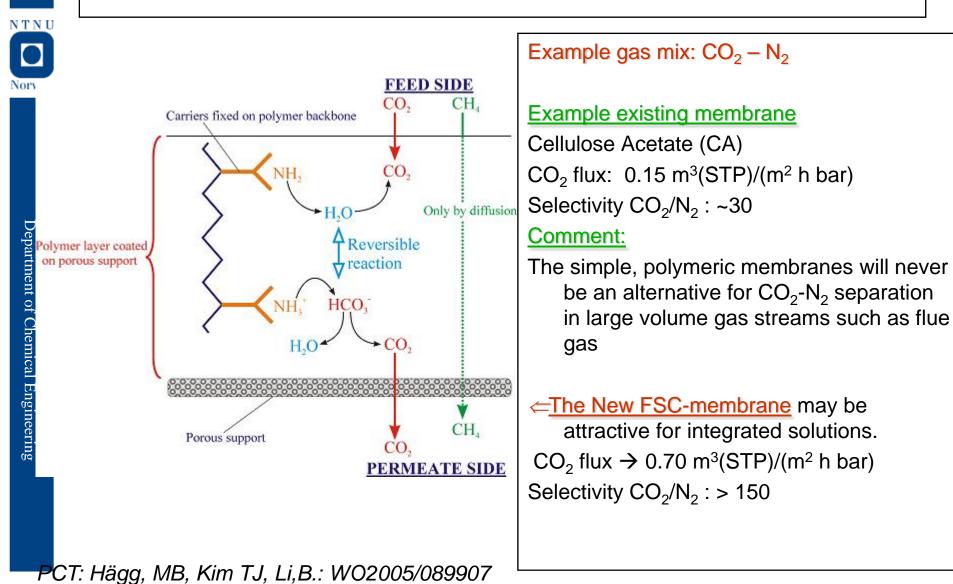
Example results

Ecotoxicity and biodegradability for <u>41</u> solvents.

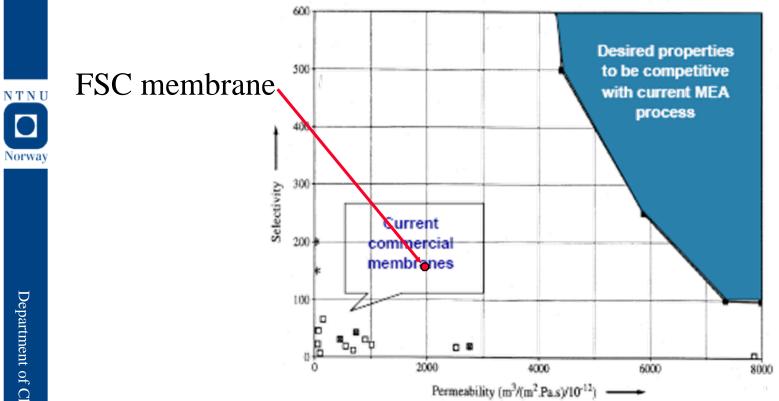
NTNU

Department of Chemical Engineering

Hallvard F. Svendsen, IEA GHG International Network Meeting 21 May 2008, Vienna, Austria


Precipitation:

Alstom Chilled AmmoniaPrecipitating amino acid systems


Two liquid phases:

•IFP process

Facilitated Transport by a "fixed-site-carrier" (FSC) membrane

Hallvard F. Svendsen, IEA GHG International Network Meeting 21 May 2008, Vienna, Austria

Other options: Dual action, liquid filled membranes

Hallvard F. Svendsen, IEA GHG International Network Meeting 21 May 2008, Vienna, Austria

Six rules for maximising the effectiveness of post combustion CO₂ capture systems

Jon Gibbins, Imperial College (GHGT7 paper, 2004)

1. Add heat to the steam cycle at as high a temperature as possible (i.e. be prepared to use best available steam conditions if commercially justified).

2. Reject heat from the steam cycle, in the steam extracted for solvent regeneration, at as low a temperature as possible.

3. Produce as much electricity as possible from any additional fuel used, consistent with rejecting heat at the required temperature for solvent regeneration.

4. Make use of waste heat from CO_2 capture and compression in the steam cycle.

5. Use the latest solvent developments.

6. Exploit the inherent flexibility of post-combustion capture.

Six rules for maximising the effectiveness of post combustion CO₂ capture systems

Jon Gibbins, Imperial College (GHGT7 paper, 2004)

1. Add heat to the steam cycle at as high a temperature as possible (i.e. be prepared to use best available steam conditions if commercially justified).

2. Reject heat from the steam cycle, in the steam extracted for solvent regeneration, at as low a temperature as possible.

3. Produce as much electricity as possible from any additional fuel used, consistent with rejecting heat at the required temperature for solvent regeneration.

4. Make use of waste heat from CO_2 capture and compression in the steam cycle.

- 5. Use the latest solvent developments.
- 6. Exploit the inherent flexibility of post-combustion capture.

2. Reject heat from the steam cycle, in the steam extracted for solvent regeneration, at as low a temperature as possible. Part load steam extraction issues Multiple steam tapping points? Auxiliary turbines?

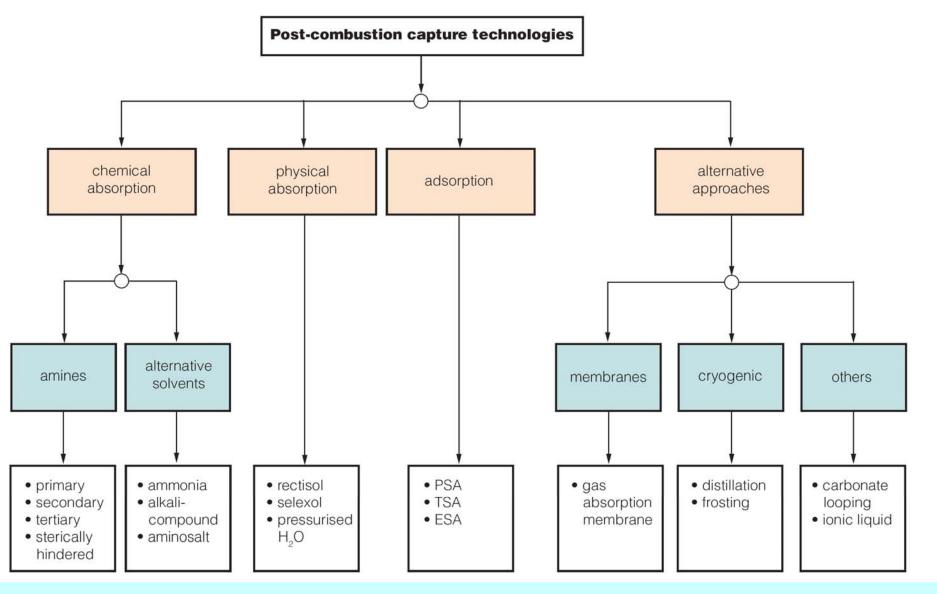
4. Make use of waste heat from CO₂ capture and compression in the steam cycle.
<u>Feed water quality issues</u>
Secondary heat recovery circuits?
Interaction with district heating

5. Use the latest solvent developments. Capital costs plus flexibility, appropriate construction approach Compatible upgraded solvents Troubleshooting solvent additives – maintaining performance

6. Exploit the inherent flexibility of post-combustion capture. Definite interest in this area now Solvent storage Compressor/pipeline interactions Dynamic modelling including revenue optimisation **Post-Combustion CO₂-capture**

Potential CO₂ post-combustion

capture systems


Challenges of future technology development

Alfons Kather

Technische Universität Hamburg-Harburg Institute of Energy Systems 11th Post Combustion Network Meeting Panel Session Vienna, 21st May 2008

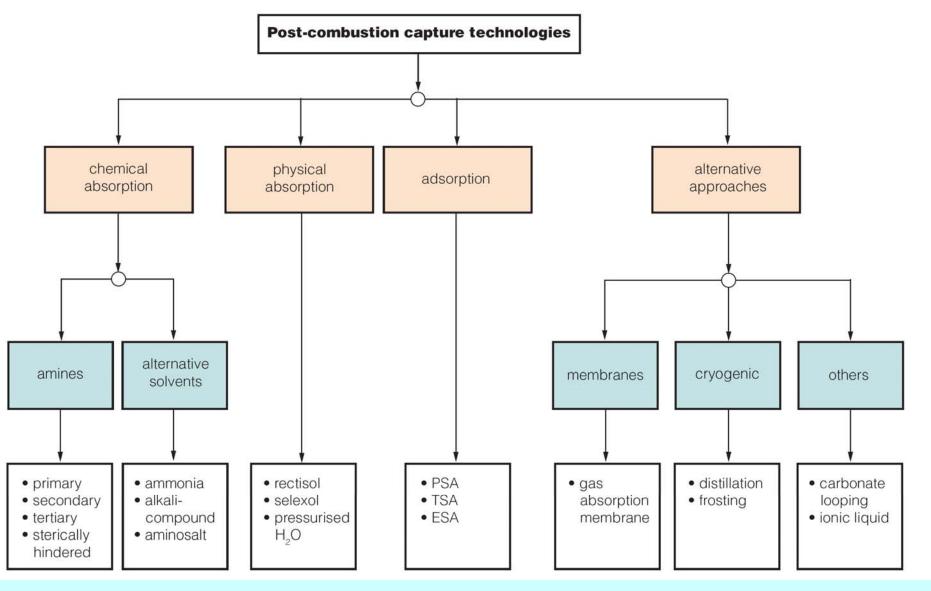
PCC Technologies

- PCC processes using wet chemical absorption compete for large scale deployment in the middle and long term with
 - alternative PCC technologies, and
 - Oxyfuel & IGCC-CCS technologies.

Summary

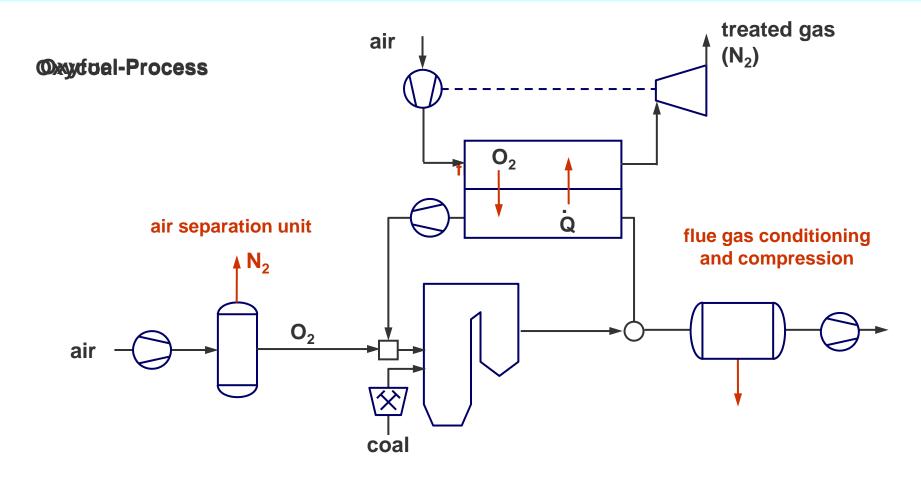
	SPP-PCC	IGCC	SPP-PCC- CCS	Oxyfuel	IGCC-CCS			
Availab./Reliability	+	-	+	•	-			
short-term								
Efficiency	46%	46%	34%→36%	37%	38%			
CO ₂ emissions (gCO ₂ /kW.h)	717	717	97→92	89	87			
Fuel consumption*	base	base	+35%→+28%	+24%	+21%			
long-term								
Efficiency	50%	51%	41%	42%	44%			
CO ₂ emissions (gCO ₂ /kW.h)	660	647	80	79	75			
Fuel consumption*	-8%	-10%	+12%	+10%	+5%			

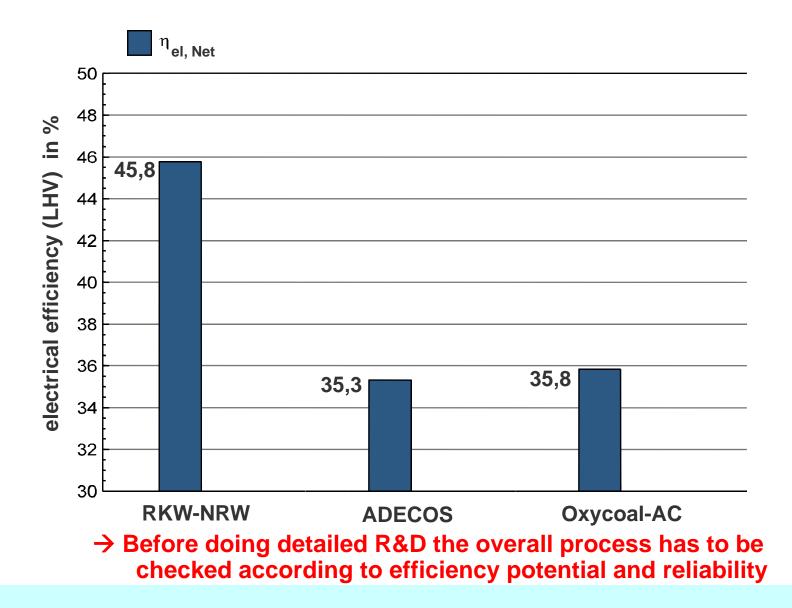
* relative to the reference plant (SPP-PCC with 46% efficiency)



- Of the three CCS technology paths, Post-Combustion CO₂capture (PCC) using wet chemical absorption currently
 - shows the largest efficiency decrease, and
 - has the potential of highest availability, reliability and flexibility.

► The integrated overall CO₂-capture process that shows the highest efficiency while offering acceptable levels of availability and reliability will prevail in this competition.


PCC Technologies


Oxyfuel vs. Oxycoal

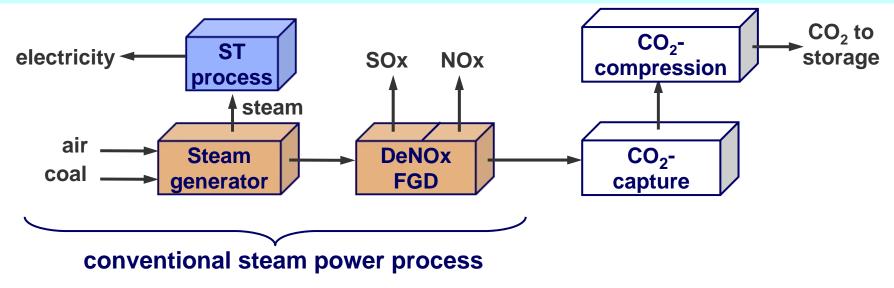
Comparison of efficiency and CO₂-emission

Conclusion

 The need for high efficiency and high levels of reliability and availability demands the consideration of the integrated overall process.

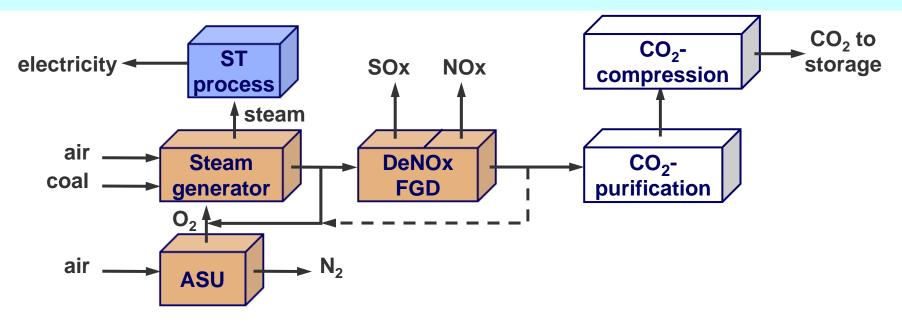
Continuous and seamless communication among

- Chemists


- Chemical engineers
- Mechanical engineers

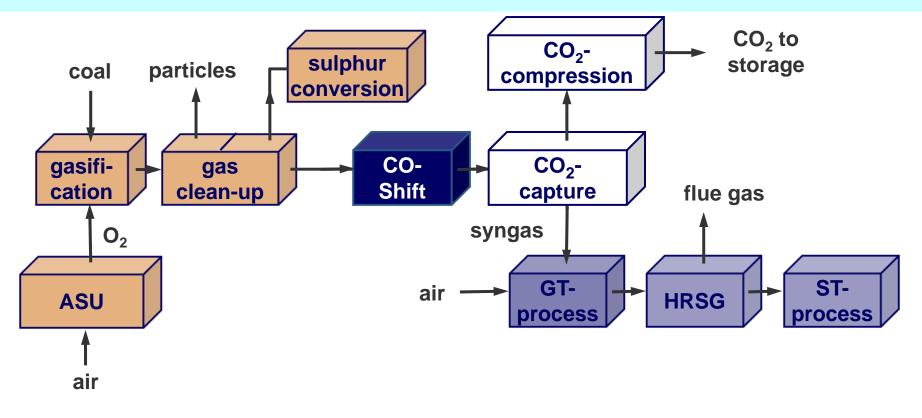
Thank you for your attention

Post-combustion capture (PCC) with chemical absorption



- + Commercial experience with chemical absorption from gas treating industry
- + Based upon proven steam power process → <u>reliability and</u> <u>availability</u>
- + Small degree of integration, high flexibility
- Highest efficiency decrease of the three CCS paths (~12%pts \rightarrow 10%)

Oxyfuel combustion



- + Possibly lower efficiency decrease than post-combustion capture (10.5%pts → 9%pts)
- O Based on proven steam power process but with many changes in the firing system
- Impurities could present a knock-out criterion depending on transport and storage specifications → distillation ?

Pre-combustion capture (IGCC-CCS)

- + Potential for smallest efficiency decrease (~8%pts)
- + Flexibility with respect to fuel and products (polygeneration)