

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Report: 2014/3

May 2014

INTERNATIONAL ENERGY AGENCY

The International Energy Agency (IEA) was established in 1974 within the framework of the Organisation for Economic Co-operation and Development (OECD) to implement an international energy programme. The IEA fosters co-operation amongst its 28 member countries and the European Commission, and with the other countries, in order to increase energy security by improved efficiency of energy use, development of alternative energy sources and research, development and demonstration on matters of energy supply and use. This is achieved through a series of collaborative activities, organised under more than 40 Implementing Agreements. These agreements cover more than 200 individual items of research, development and demonstration. IEAGHG is one of these Implementing Agreements.

DISCLAIMER

This report was prepared as an account of the work sponsored by IEAGHG. The views and opinions of the authors expressed herein do not necessarily reflect those of the IEAGHG, its members, the International Energy Agency, the organisations listed below, nor any employee or persons acting on behalf of any of them. In addition, none of these make any warranty, express or implied, assumes any liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product of process disclosed or represents that its use would not infringe privately owned rights, including any parties intellectual property rights. Reference herein to any commercial product, process, service or trade name, trade mark or manufacturer does not necessarily constitute or imply any endorsement, recommendation or any favouring of such products.

COPYRIGHT

Copyright © IEA Environmental Projects Ltd. (IEAGHG) 2014.

All rights reserved.

ACKNOWLEDGEMENTS AND CITATIONS

This report describes research sponsored by IEAGHG. This report was prepared by:

Foster Wheeler

The principal researchers were:

- Luca Mancuso
- Noemi Ferrari

To ensure the quality and technical integrity of the research undertaken by IEAGHG each study is managed by an appointed IEAGHG manager. The report is also reviewed by a panel of independent technical experts before its release.

The IEAGHG manager for this report was:

John Davison

The expert reviewers for this report were:

- George Booras EPRI
- Nick Booth E.ON UK
- Andy Brown Progressive Energy
- Howard Herzog MIT
- James Black NETL/DOE
- Kristin Gerdes NETL/DOE
- Morgan Summers NETL/DOE
- Vincent Chu NETL/Booz Allen Hamilton
- Arun Iyengar NETL/Booz Allen Hamilton
- Norma Kuehn NETL/Booz Allen Hamilton
- Kay Damen– Vattenfall
- Clas Ekström Vattenfall
- Richard Faber Vattenfall
- Alexander Gerhardt- Vattenfall
- Rainer Giering- Vattenfall
- Goran Lindgren- Vattenfall
- Nicklas Simonsson Vattenfall

The report should be cited in literature as follows:

'IEAGHG, "CO2 Capture at Coal Based Power and Hydrogen Plants, 2014/3, June, 2014.'

Further information or copies of the report can be obtained by contacting IEAGHG at:

IEAGHG, Pure Offices, Cheltenham Office Park, Hatherley Lane, Cheltenham, GLOS., GL51 6SH, UK

Tel: +44(0) 1242 680753

E-mail: <u>mail@ieaghg.org</u> Internet: <u>www.ieaghg.org</u>

CO2 CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Key Messages

- This study provides an up-to-date assessment of the performance and costs of coal-based power and hydrogen plants with and without CO₂ capture.
- The thermal efficiencies of power plants with CCS based on pulverised coal firing with oxy-combustion or post combustion capture, and IGCC with pre-combustion capture are all around 35% (LHV basis), which is around 9 percentage points lower than a reference pulverised coal plant without capture.
- The levelised cost of electricity is about 92 €/MWh for plants with oxy-combustion or
 post combustion capture and 115 €/MWh for IGCC plants with pre-combustion
 capture. This is about 75-125% higher than the reference pulverised coal plant without
 CCS.
- Costs of CO₂ emission avoidance compared to the reference plant are 60-100 €/t.
- The rate of CO₂ capture in oxy-combustion and IGCC plants could be increased from 90% to 98%, while reducing the cost per tonne of CO₂ emissions avoided by 3%.
- Net CO₂ emissions of a plant with post combustion capture could be reduced to zero by co-firing 10% biomass (on a carbon basis), without increasing the cost per tonne of CO₂ avoided, depending on the price of biomass.
- The raw water requirements of the pulverised coal power plants with CCS could be reduced to near zero by using seawater or air cooling. For the ambient conditions considered in this study this would have little impact on the efficiency (<1 percentage point) and capital cost (<2%).
- The efficiency of producing hydrogen by coal gasification with CCS would be 58% LHV basis (65% HHV basis) and the levelised cost of production would be 16.1 €/GJ LHV basis (13.6 €/GJ HHV basis).

Background to the Study

In recent years IEAGHG has undertaken a series of studies on the performance and costs of plants incorporating the three leading CO₂ capture technologies: post combustion, oxycombustion and pre-combustion capture. In the time since those studies were undertaken there have been significant technological advances and substantial increases in estimated plant costs. IEAGHG therefore decided to undertake a wholly new study on costs of capture at coal based plants producing the two leading low-carbon energy carriers, namely electricity

and hydrogen. This study provides a baseline for possible future studies on plants in other countries, plants using other capture processes and capture in industries other than power and hydrogen generation. The study was carried out for IEAGHG by Foster Wheeler.

It should be noted that the focus of this study is to provide an up-to-date technical and economical assessment of coal-fired power and hydrogen plants with CCS. The study does not aim to provide a definitive comparison of different technologies or technology suppliers because such comparisons are strongly influenced by specific local constraints and by market factors, which can be subject to rapid changes.

Scope of Work

Study cases

The study assesses the design, performance and costs of the following coal based power generation plants.

- Supercritical pulverised coal power plant without CO₂ capture (reference plant)
- Supercritical pulverised coal power plant with post combustion capture based on CANSOLV solvent scrubbing
- Supercritical pulverised coal power plant using oxy-combustion
- IGCC plant based on GE slurry feed, oxygen blown gasification and pre-combustion capture using Selexol solvent scrubbing
- IGCC plant based on Shell dry feed, oxygen blown gasification and pre-combustion capture using Selexol solvent scrubbing
- IGCC plant based on MHI dry feed, air blown gasification and pre-combustion capture using Selexol solvent scrubbing

The study also assesses the following hydrogen production plants, all based on GE oxygen blown gasification and Selexol solvent scrubbing:

- Plant with high net electricity co-production, including two 130MW_e E class gas turbines
- Plant with intermediate net electricity co-production, including two 77MW_e F class gas turbines
- Plant with low electricity co-production, including a PSA off-gas fired boiler.

All of these baseline plants have 90% CO₂ capture. This is expected to be adequate for early CCS plants but some overall energy system models have shown that in the longer term, when national and global emission limits will be tighter, the emissions of the residual non-captured CO₂ may be a significant constraint on the amount CCS, particularly coal-based CCS, that

can be accommodated in the overall energy system. If CCS plants emit significant amounts of CO₂ it will be necessary to apply even tighter emission controls to other areas of human activity, such as transport and agriculture, which could involve very high greenhouse gas abatement costs. This study assessed the technical feasibility and costs of achieving a higher level of CO₂ capture (around 98%) in oxy-combustion and IGCC plants. In the oxy-combustion case this was achieved by passing the vent gas from CO₂ purification through a membrane separation unit. For gasification based plants an additional MDEA solvent scrubbing stage was added after the Selexol scrubber.

An alternative way of achieving near-zero net emissions of CO₂ would be to co-fire some biomass, assuming that biomass that is produced in a sustainable way has near-zero net emissions of CO₂. Biomass could be used in post, pre and oxy-combustion capture plants. This study assesses a plant with 90% post combustion capture and sufficient co-firing of woody biomass to achieve zero net emissions.

Another possible constraint on the large scale application of CCS in some places may be water availability. To complement the base case plants which use natural draught cooling towers, sensitivity cases based on once-through sea water cooling and dry air cooling were assessed.

In addition to the sensitivities to percentage CO₂ avoidance and the type of cooling system, the study also assessed the sensitivities to various economic parameters, including the coal price, capacity factor, discount rate, plant life, CO₂ transport and storage cost and CO₂ emissions cost.

Technical and economic basis

The technical and economic basis for the study is described in detail in the main study report. The main base case assumptions are:

- Greenfield site, Netherlands coastal location
- 9C ambient temperature
- Natural draught cooling towers
- Eastern Australian internationally traded bituminous coal (0.86% sulphur a.r., 25.87 MJ/kg LHV)
- Coal price: €2.5/GJ LHV basis (equivalent to €2.39/GJ HHV basis)
- 2Q 2013 costs
- Discount rate: 8% (constant money values)
- Operating life: 25 years
- Construction time: Pulverised coal plants 3 years, Gasification plants 4 years
- Capacity factor: Pulverised coal plants 90%, Gasification plants 85%
- CO₂ transport and storage cost: €10/t stored

The pulverised coal plant without capture is based on a single boiler, a net output of around 1000MW_e and state-of-the-art steam conditions (27MPa, 600/620C) as used in new large

coal fired power plants in Europe and Japan. The pulverised coal plants with post combustion and oxy-combustion capture have the same coal feed rate but lower net power outputs of 820-840 MW $_{\rm e}$ due to the energy consumption for capture. The coal feed rate of the IGCC plants is determined by the fuel feed rate of the two gas turbines, which are state of the art 50Hz F-class turbines suitable for high hydrogen content gas. The net power outputs of the IGCC plants are in the range of 800-880MW $_{\rm e}$, i.e. similar to the pulverised coal plants with capture.

Cost definitions

Capital cost

The cost estimates were derived in general accordance with the White Paper "Toward a common method of cost estimation for CO₂ capture and storage at fossil fuel power plants", produced collaboratively by authors from IEAGHG, EPRI, USDOE/NETL, Carnegie Mellon University, IEA, the Global CCS Institute and Vattenfall¹.

The capital cost is presented as the Total Plant Cost (TPC) and the Total Capital Requirement (TCR).

TPC is defined as the installed cost of the plant, including project contingency. In the report TPC is broken down into:

- Direct materials
- Construction
- EPC services
- Other costs
- Contingency

TCR is defined as the sum of:

- Total plant cost (TPC)
- Interest during construction
- Owner's costs
- Spare parts cost
- Working capital
- Start-up costs

For each of the cases the TPC has been determined through a combination of licensor/vendor quotes, the use of Foster Wheeler's in-house database and the development of conceptual estimating models, based on the specific characteristics, materials and design conditions of each item of equipment in the plant. The other components of the TCR have been estimated mainly as percentages of other cost estimates in the plant. The overall estimate accuracy is in the range of +35/-15%.

¹ Toward a common method of cost estimation for CO₂ capture and storage at fossil fuel power plants, IEAGHG Technical Review 2013/TR2, March 2013.

Levelised cost of electricity

Levelised Cost of Electricity (LCOE) is widely recognised as a convenient tool for comparing the unit costs of different technologies over their economic lifetime. LCOE is defined as the price of electricity which enables the present value from all sales of electricity over the economic lifetime of the plant to equal the present value of all costs of building, maintaining and operating the plant over its lifetime. LCOE in this study was calculated assuming constant (in real terms) prices for fuel and other costs and constant operating capacity factors throughout the plant lifetime, apart from lower capacity factors in the first two years of operation.

The Levelised Cost of Hydrogen (LCOH) is calculated in the same way except that it is necessary to take into account the revenue from the sale of electricity co-product. It was assumed that the value of the electricity co-product is the cost of production in the IGCC plant that uses the same gasification and CO₂ capture technology as the hydrogen production plants, i.e. the GE gasification plant. If the lowest cost CCS power generation technology had been used to value the electricity output, the LCOH would have been higher.

Cost of CO₂ avoidance

Costs of CO₂ avoidance were calculated by comparing the CO₂ emissions per kWh and the levelised costs of electricity of plants with capture and a reference plant without capture.

$$CO_2$$
 avoidance cost (CAC) =
$$\frac{LCOE_{ccs} - LCOE_{Reference}}{CO_2 \text{ Emission}_{Reference} - CO_2 \text{ Emission}_{ccs}}$$

Where:

CAC is expressed in Euro per tonne of CO₂ LCOE is expressed in Euro per MWh CO₂ emission is expressed in tonnes of CO₂ per MWh

A pulverised coal plant without capture was used as the reference plant in all cases because the current power plant market indicates that this would in most cases be the preferred technology for coal fired plants without capture. The energy efficiency penalty for capture and the cost of CO_2 avoidance would be different if an alternative reference plant was used, for example an IGCC or a gas fired plant without capture.

Findings of the Study

Power generation plants

Plant performance

A summary of the performance of the baseline power plants with and without capture is given in Table 1.

Table 1 Power plant performance summary, pulverised coal plants

	Net	CO ₂	CO ₂	Effic	iency	Efficiency
	power output	captured	emissions	HHV	LHV	penalty for capture (LHV)
	MW	kg/MWh	kg/MWh	%	%	% points
Pulverised coal						
No capture (reference plant)	1030	-	746	42.2	44.1	
Post combustion capture	822	840	93	33.6	35.2	8.9
Oxy-combustion	833	823	92	34.1	35.7	8.4
IGCC						
Shell, oxygen-blown	804	837	93	33.9	35.5	8.6
GE, oxygen-blown	874	844	94	33.3	34.9	9.2
MHI, air-blown	863	842	104	33.2	34.8	9.3

The efficiencies and CO₂ emissions of the plants with capture are all broadly similar, the difference between the highest and lowest efficiency is less than 1 percentage point. Future technology improvements, such as development of improved solvents, air separation units and gas turbines, could change the relative efficiencies of the processes. For example, Cansolv reported that they have undertaken pilot plant tests with an improved solvent which is expected to achieve a 20% reduction in steam consumption compared to the figures they provided for use in this study and there would also be other cost improvements. They hope to commercialise this solvent in the near future.

The efficiency penalties for oxy-combustion and post combustion capture are towards the bottom of the range in published data², demonstrating the improvements in capture technologies and thermal integration. Most published studies compare the efficiencies of IGCC plants with capture against IGCC plants without capture, so the efficiency penalties in those studies are not comparable to those shown in table 1. However, the average efficiency of IGCCs with capture in this study is similar that of published studies².

CO₂ capture almost eliminates SOx emissions and also reduces NOx emissions, except for the post combustion capture case which has specific emissions about 25% higher than the reference plant, due to the lower thermal efficiency.

Capital cost

The capital costs of the plants are summarised in Table 2 and breakdowns of the total plant costs are given in Figures 1 and 2.

² Cost and performance of carbon dioxide capture from power generation. M. Finkenrath, IEA, 2011.

Table 2 Capital costs of electricity generation plants

	Total Plant Cost (TPC)	Total Capital Requirement (TCR)	TPC increase compared to the reference plant
	€kW	€kW	%
Pulverised coal plants			
No capture (reference plant)	1447	1887	
Post combustion capture	2771	3600	91
Oxy-combustion	2761	3583	91
IGCC plants			
Shell oxygen-blown	3157	4350	118
GE oxygen-blown	3074	4238	112
MHI air-blown	3046	4200	110

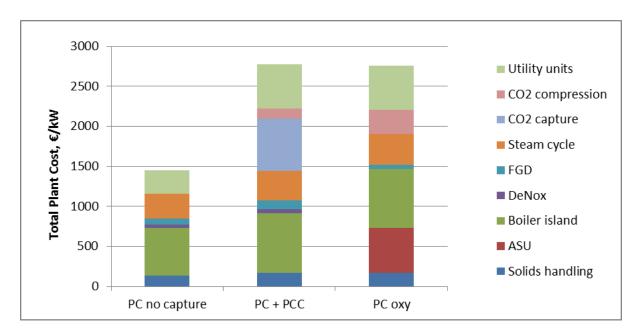


Figure 1 Specific Total Plant Cost of pulverised coal plants

Including capture increases the specific cost per kW_e of the pulverised coal cases by 91% compared to the pulverised coal reference plant. This cost increase is partly due to the cost of additional plant required for capture and partly due to the reduced net power output per unit of thermal capacity, e.g. boiler size. There is no significant difference between the specific capital costs of the post combustion capture (PCC) and oxy-combustion plants. The main cost of additional plant for oxy-combustion is the cost of the Air Separation Unit (ASU). The cost of the 'CO₂ compression' unit is higher in the oxy-combustion plant than in the post combustion plant because the volume of gas to be compressed is greater, due to the presence of impurities, and due to the cost of the CO₂ Processing Unit (CPU) which removes the

impurities. The CPU is included in the 'CO₂ compression' unit cost in Figure 1, although it could also be considered to be a type of 'CO₂ capture' unit.

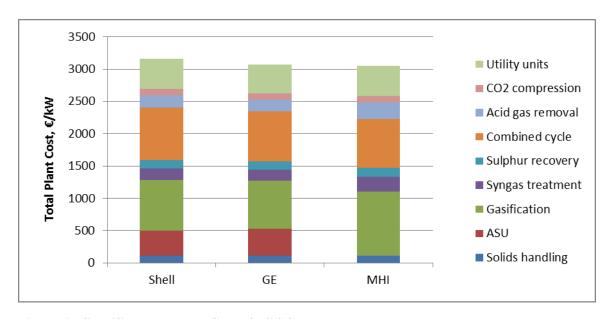


Figure 2 Specific Total Plant Cost of IGCC plants

The specific capital costs of the three IGCC plants with capture are similar and they are 110-118% higher than the cost of the pulverised coal reference plant, The MHI air blown gasifier plant has higher costs for gasification, syngas treating and acid gas removal (AGR), which is to be expected due to the higher volume of the fuel gas but it avoids the cost of a large ASU³.

Levelised costs of electricity and CO₂ avoidance cost

Levelised costs of electricity (LCOE) and CO₂ avoidance cost (CAC) are shown in Table 3 and Figure 3. The costs of the IGCC plants are higher than those of the pulverised coal combustion plants, mainly because of higher capital costs and higher fixed operating and maintenance (O+M) costs, particularly maintenance costs.

³ Note, the MHI gasifier plant includes a small ASU which provides nitrogen for coal feeding but the vendor included this in the cost of the gasification unit

Table 3 Levelised cost of electricity and CO₂ avoidance cost

	Levelised Cost of Electricity (LCOE)		CO ₂ Avoidance Cost (CAC)
	€MWh	% increase compared to the reference plant	€tonne
Pulverised coal plants			
No capture (reference plant)	52.0		
Post combustion capture	94.7	82	65.4
Oxy-combustion	91.6	76	60.8
IGCC plants			
Shell oxygen-blown	116.5	124	98.9
GE oxygen-blown	114.4	120	95.8
MHI air-blown	114.5	120	97.4

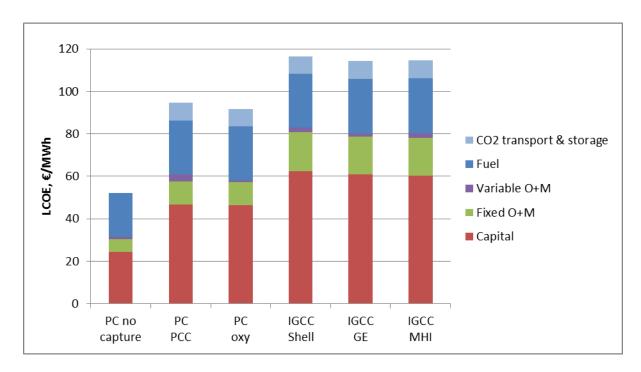


Figure 3 Levelised Costs of Electricity

Hydrogen plants

A summary of the performance of the baseline hydrogen plants with capture is given in Table 4. The plants co-produce electricity, to satisfy the plants' own consumption and they also provide some net output, as described earlier. The 'Net efficiency to hydrogen' in Table 4 is calculated by assuming that the net power output displaces electricity generated by a GE gasification IGCC plant with CO_2 capture. It should be noted that while the efficiencies of

coal fired power plants are higher on an LHV basis than on an HHV basis, hydrogen plants have a higher efficiency on an HHV basis.

Table 4 Hydrogen plant performance summary

	Hydrogen output	Net power output	Efficiency to hydrogen	Efficiency to net power		ciency to ogen
			LHV	LHV	HHV	LHV
	MW	MW	%	%	%	%
High electricity	659	448	26.3	17.8	60.9	53.8
Medium electricity	969	289	38.6	11.5	65.3	57.7
Low electricity	1390	37	55.4	1.5	65.5	57.9

Capital costs of the hydrogen production plants are shown in Table 5 and the levelised costs of hydrogen (LCOH) are given in Table 6. For the calculation of LCOH, the electricity coproduct is valued at 114.4 €MWh, i.e. the production cost of the corresponding IGCC case (GE gasifier). Similarly, the capital cost associated with electricity production in the IGCC plant is subtracted from the capital cost of the co-production plants to give the specific capital cost of hydrogen production.

Table 5 Capital costs of hydrogen plants

	Total Plant Cost (TPC)	Total Plant Cost (TPC)	Total Capital Requirement (TCR)
	M€	€ kW _H net	€ kW _H net
High electricity co-production	2461	1646	2272
Medium electricity co-production	2390	1549	2137
Low electricity co-production	2101	1430	1974

Table 6 Levelised cost of hydrogen

	Levelised Cost of Hydrogen (LCOH), €GJ	
	HHV basis	LHV basis
High electricity co-production	15.4	18.2
Medium electricity co-production	14.4	17.0
Low electricity co-production	13.6	16.1

The highest net efficiency to hydrogen and the lowest cost of hydrogen production are achieved by the plant with the lowest amount of electricity co-production, which is based on feeding the PSA off-gas to an on-site boiler.

Plant design sensitivity cases

Near-zero emission plants

The performance and costs of the plants with near-zero emissions are summarised in Table 7, which also shows the change in costs compared to plants with 90% capture. Increasing the percentage CO₂ abatement reduces the efficiency and increases the capital cost and LCOE. The largest increase in LCOE is for the biomass co-firing case and the lowest is for the oxycombustion case. The CO₂ abatement costs per tonne are lower for the near-zero emission cases than for the 90% capture cases. In the case of oxy-combustion this is because capturing CO₂ from the vent gas from the CO₂ purification unit is relatively simple and low cost. In the case of IGCC, the reasons for the cost reduction are more complex. The cost of CO₂ abatement comprises the cost of cost of capture (shift conversion, CO₂ separation etc.) and the higher cost of the core IGCC process without capture compared to a pulverised coal plant without capture. Although the cost of capturing each extra tonne of CO₂ in an IGCC may be higher in the near-zero emissions case than in the 90% capture case, the extra costs for the core IGCC units compared to a pulverised coal plant remain the same. This cost is spread over a greater number of tonnes of CO₂ captured, resulting in a lower specific cost.

Table 7 Near-zero emission plants

	Effic	iency	TI	PC	LC	OE	CA	AC
	%	% pt.	€kW	€kW	€MWh	€/MWh	€t	€t
		change		change		change		change
PCC+biomass	34.6	-0.6	2887	+115	100.5	+5.8	65.1	-0.3
(100% abatement)								
Oxy-combustion	35.3	-0.4	2823	+62	94.2	+2.6	58.3	-2.5
(97.6% capture)								
IGCC	34.1	-0.8	3203	+128	119.2	+4.8	92.5	-3.3
(98.6% capture)								

It should be noted that biomass could also be used in oxy-combustion and IGCC plants and greater proportions of biomass could be used, thereby achieving 'negative emissions'. However, availability of biomass fuel may be limited due to competition with other land uses such as food production and natural habitats. Also, biomass may have a higher value for abatement of CO₂ emissions in other sectors where other low-CO₂ options are more limited, such as production of biofuels for transport. This study has shown that even if biomass availability is a constraint, it would be possible to build CCS plants with near-zero emissions, if required, without increasing the specific cost of CO₂ abatement.

A near-zero emission variant of the hydrogen plant with low electricity co-production was also assessed. The net efficiency to hydrogen (LHV basis) was 0.9% points lower than the 90% capture case and the TPC was 4.4% higher.

Cooling system sensitivity

The net raw water requirements of the power plants with CCS are 22-28% higher than that of the reference plant without capture. However, alternative cooling systems can be used to reduce the net water requirement of power plants with CCS to near zero in the case of oxycombustion and post combustion capture and by around 70% in the case of IGCC. For the ambient conditions considered in this study, using once-though seawater cooling instead of natural draught cooling towers increases the thermal efficiency of plants with CCS by 0.5-0.7 percentage points and using air cooling reduces the efficiencies by 0.2-0.7 percentage points. This is mainly due to the effects on the turbine condenser pressure. Both of these cooling systems reduce the total plant cost by 1.5%. However, at higher ambient temperatures air cooling is expected to have a more negative impact.

Economic sensitivities

The costs of CCS depend on economic parameters which will vary over time and between different plant locations. It is important therefore to consider the sensitivity of costs to variations in parameters. The sensitivity to the coal price, economic discount rate, plant life, cost of CO₂ transport and storage, operating capacity factor and the cost penalty for non-captured CO₂ emissions were assessed. Sensitivities were assessed for all of the main study cases and the results for each parameter are presented in graphical format in the main report. As an example, sensitivities for the pulverised coal plant with post combustion capture are shown in Figure 4. The results would be similar for the oxy-combustion plant.

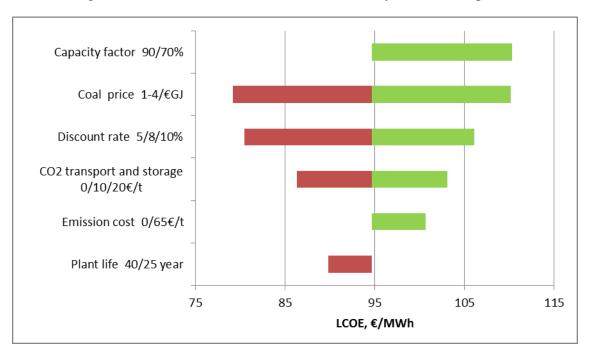


Figure 4 Sensitivities of Levelised Cost of Electricity (plant with post combustion capture)

Coal price can vary over a wide range due to local coal availability and mining costs and market variability. Varying the coal price by ± 1.5 \notin GJ from the base case of 2.5 \notin GJ changes the LCOE by ± 15.5 \notin MWh.

The operating capacity factor of the plant may be lower than the 90% base case assumption in this study, either because of poor reliability and availability of the plant or because of electricity system constraints, i.e. other power generators with lower marginal operating costs being operated in preference to CCS plants at times of low power demand. Reducing the capacity factor can have a substantial effect of the LCOE. Figure 4 shows that reducing the capacity factor from 90% to 70% would increase the LCOE by 15.6 €MWh. If the plant operates at a low capacity factor because of electricity system constraints the impacts on plant profitability and rate of return may be much less significant because the times when the plants are forced to not operate would by definition be times of low electricity prices. However, this is difficult to assess because electricity prices depend on the costs of the other generating plants in the overall electricity system.

Costs of CO_2 transport and storage are expected to vary considerably between different sites. At sites where CO_2 can be sold, for example for enhanced oil recovery, the net cost may be zero or even negative. If the CO_2 has to be transported a long distance in a relatively small pipeline for offshore storage the cost would be substantially greater than the $10 \mbox{ }\mbox{e}\mbox{t}$ base case scenario in this study. Sensitivities to costs in the range of zero to $20 \mbox{ }\mbox{e}\mbox{t}$ of CO_2 stored are shown in Figure 4 but the range of costs may be higher in some circumstances.

The main economic evaluation in this study does not include a cost for emitting non-captured CO_2 to the atmosphere. Including a cost that is equal to the cost of CO_2 abatement by CCS in this plant, i.e. 65 \notin t CO_2 , would increase the LCOE by 6 \notin MWh.

The LCOE is relatively insensitive to increasing the plant life from 25 to 40 years, because of the effects of economic discounting.

The sensitivities of CO₂ avoidance cost (CAC) to variations in the economic parameters are shown in Figure 5.

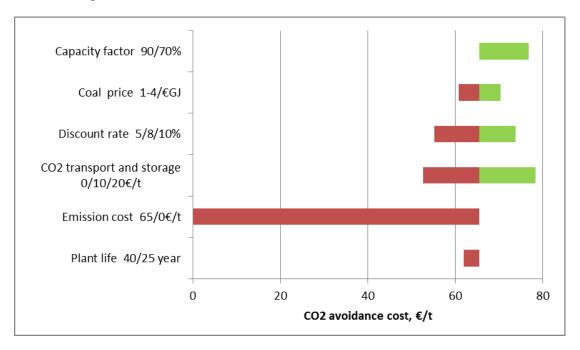


Figure 5 Sensitivities of CO₂ avoidance cost (plant with post combustion capture)

It can be seen that variations in the CO_2 emission cost, which has relatively little impact on the LCOE of the plant with capture, has by far the largest impact on the CO_2 avoidance cost, because it has a large impact on the LCOE of the reference plant. Conversely, the coal price, which has a relatively large impact on the LCOE of the plant with capture has a relatively small impact on the avoidance cost, because it has impacts on both plants, the only difference being due to the lower efficiency of the plant with capture. Apart from the emissions cost, the parameter which has the greatest impact on the avoidance cost, for the ranges considered in this study, is the CO_2 transport and storage cost, which obviously only affects the costs of the plant with capture.

Plot areas

Preliminary plot plans were produced for the baseline plants with and without capture. The area of the reference plant without capture is 20ha. The inclusion of CO₂ capture increases the area to 26ha for the boiler-based cases and 29ha for the IGCC cases.

Expert Review Comments

Comments on the draft report were received from reviewers at six organisations in the power industry, CCS project development and research. The contribution of the reviewers is gratefully acknowledged.

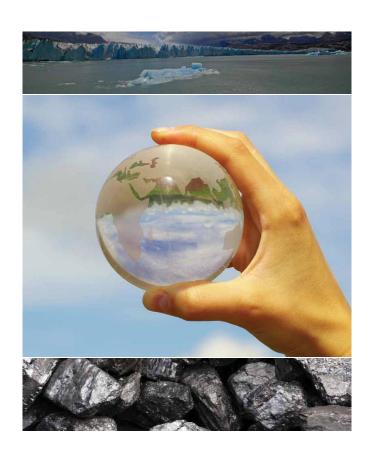
In general the reviewers thought the report was of a high standard. The contractor provided IEAGHG with responses to all of the comments and made appropriate modifications to the report.

The main critical comment was by a reviewer who said that if different gasifier designs had been selected for the IGCC and hydrogen cases, the results would have been more favourable. The choice of gasifiers for this study depended on the availability of licensors to support the study at the time it was carried out and the technology variants they wanted to offer. The CO₂ purity specification was also questioned but CO₂ purity is still a subject for debate. IEAGHG is currently undertaking a study to assess the effects of impurities on CO₂ transportation.

Conclusions

- The thermal efficiencies of power plants with CCS based on pulverised coal combustion with post combustion capture, oxy-combustion and IGCC with pre-combustion capture are 34.8 35.7% LHV basis, which is around 9 percentage points lower than a reference pulverised coal plant without capture.
- The levelised cost of base load electricity generation is about 92 €MWh for boiler-based plants with oxy-combustion or post combustion capture and 115 €MWh for IGCC plants

with pre-combustion capture. This is about 75-125% higher than the reference pulverised coal plant without CCS.


- Costs of CO₂ emission avoidance compared to the reference plant are 60-65 €t for boiler based plants with CCS and 95-100 €t for IGCC plants.
- Increasing the rate of CO₂ capture to 98% in oxy-combustion and IGCC plants would increase the cost of electricity by 3-5% but reduce the cost per tonne of CO₂ emissions avoided by 3%.
- Co-firing biomass can be used to reduce net CO₂ emissions of plants with CCS to zero, assuming biomass is regarded as a 'zero net CO₂' fuel. In a plant with post combustion capture this increases the cost of electricity by 6% and has no impact on the cost of CO₂ avoidance, but the cost depends strongly on the cost of biomass, which depends on its availability.
- The net efficiency of producing hydrogen by coal gasification with CCS is 57.8% on an LHV basis (65.5% HHV basis) and the levelised cost of hydrogen is 16.1 €GJ LHV basis (13.6 €GJ HHV).
- Alternative cooling systems could be used to reduce the water requirements of pulverised coal power plants with CCS to close to zero and reduce the requirement for IGCC with CCS by around 70%. For the ambient conditions of this study, using sea-water cooling instead of cooling towers increases the thermal efficiency by a maximum of 0.7 percentage points and using air cooling reduces the efficiency by a maximum of 0.7 percentage points. Both cooling systems reduce the capital cost by 1.5%. It is expected that air cooling would have more negative impacts at higher ambient temperatures.

Recommendations

- The performance and costs of plants with without CCS will depend on local conditions, such as ambient conditions, fuel analyses and costs, and plant construction and operating costs. This study which is based on a site in the Netherlands could be extended to assess plants at other sites world-wide, particularly in developing countries which are expected in future to account for a large proportion of the global stock of coal fired power plants.
- Various new capture technologies are currently being developed, offering the prospect of lower energy consumptions and costs. When sufficient information becomes available further studies should be undertaken to assess such processes on a consistent basis to this study.
- This study assesses the relative costs of producing electricity and hydrogen with CCS, on a consistent basis. This information could be used as an input to further studies to assess the optimum low carbon energy carriers for different energy consuming sectors.

IEA GREENHOUSE GAS R&D PROGRAMME

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

FINAL REPORT

January 2014

FWI Project # 1-BD-0681A

CO₂ Capture at Coal Based Power and Hydrogen Plants GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 1 of 16

CLIENT : IEA GHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : GENERAL TABLE OF CONTENT AND ABBREVIATION

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 2 of 16

TABLE OF CONTENT

CHAPTER A – EXECUTIVE SUMMARY

- 1. Introduction
- 2. Study cases
- 3. Main plant design bases
- 4. Performance summary
- 5. Cost summary
- 6. Financial analysis
 - 6.1. LCOE and LCOH
 - 6.2. CO_2 avoidance cost
 - 6.3. Macroeconomic bases
 - 6.4. Results
- 7. Sensitivity cases
- 8. Summary findings

CHAPTER B – GENERAL INFORMATION

- 1 Background and objectives of the study
- 2 Project Design Basis
 - 2.1 Location
 - 2.2 Climatic and Meteorological Information
 - 2.3 Feedstock specification
 - 2.4 Products and by-products
 - 2.5 Environmental limits
 - 2.6 SC-PC-based cases: key features
 - 2.7 Oxy SC PC-based cases: key features
 - 2.8 Gasification-based cases: key features
 - 2.9 Availability
 - 2.10 Cost estimating bases
 - 2.11 Operating and Maintenance costs
- 3 Basic Engineering Design Data
 - 3.1 Units of measurement
 - 3.2 Plant Battery Limits (main)
 - 3.3 Utility and service fluids characteristics/conditions
 - 3.4 Plant Life
 - 3.5 Codes and standards
 - 3.6 Software codes

Revision no.: Final **IEA GHG**

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS GENERAL TABLE OF CONTENT AND ABBREVIATION

January 2014

Date:

Sheet: 3 of 16

CHAPTER C -BASIC INFORMATION ON SC PC PLANT ALTERNATIVES

1	Introduction	
1	Introductio	n

- 2 Basic information of main process unit
 - Feedstock and solids handling 2.1
 - 2.2 Boiler island
 - 2.3 Flue Gas Denitrification (DeNOx)
 - Flue Gas Desulphurization (FGD) system 2.4
 - 2.5 Mercury removal systems
 - CO₂ capture unit (Case 2) 2.6
 - CO₂ compression and dehydration (Case 2) 2.7
 - Steam Cycle 2.8
 - Utility and Offsite units 2.9

CHAPTER C.1 – CASE 1: SC PC WITHOUT CCS

- 1 Introduction
 - Process unit arrangement 1.1
- **Process Description** 2
 - Overview 2.1
 - 2.2 Unit 1000 – Feedstock and solid handling
 - Unit 2000 Boiler Island 2.3
 - Unit 2100 Flue Gas Desulphurization 2.4
 - Unit 3000 Steam Cycle 2.5
 - Unit 6000 Utility Units 2.6
- **Process Flow Diagrams** 3
- 4 Heat and Material Balance
- 5 Utility and chemicals consumption
- Overall performance 6
- **Environmental Impact** 7
 - **Gaseous Emissions** 7.1
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- Preliminary plot plan
- **Equipment List** 9

CHAPTER C.2 – CASE 2: SC PC WITH CCS

- 1 Introduction
 - Process unit arrangement 1.1
- **Process Description** 2
 - Overview 2.1

CO₂ Capture at Coal Based Power and Hydrogen Plants GENERAL TABLE OF CONTENT AND ABBREVIATION ate: January 2014

Sheet: 4 of 16

- 2.2 Unit 1000 Feedstock and solid handling
- 2.3 Unit 2000 Boiler Island
- 2.4 Unit 2100 Flue Gas Desulphurization
- 2.5 Unit 3000 Steam Cycle
- 2.6 Unit 4000 CO₂ Amine Absorption
- 2.7 Unit 5000 CO₂ Compression and drying
- 2.8 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility and chemicals consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER C.3 – CASE 2.1: SC PC WITH CCS – BIOMASS COFIRING

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 1000 Feedstock and Solid Handling
 - 2.3 Unit 2000 Boiler Island
 - 2.4 Flue Gas Treatment (FGD and CO2 capture unit)
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility and chemicals consumption
- 6 Overall performance
- 7 Environmental Impact.
 - 7.1 Gaseous Emission
 - 7.2 Liquid effluents
 - 7.3 Solid effluents
- 8 Main equipment design changes

CHAPTER C.4 – CASE 1: SC PC WITHOUT CCS – COOLING SYSTEM SENSITIVITY

1 Introduction

CO₂ Capture at Coal Based Power and Hydrogen Plants

GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 5 of 16

- 2 Process Description
 - 2.1 Overview
 - 2.2 Impact on process units
 - 2.3 Unit 3000 Steam Cycle
 - 2.4 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Utility and chemicals consumption
- 5 Overall performance
- 6 Environmental Impact
 - 6.1 Gaseous Emission
 - 6.2 Liquid effluents
 - 6.3 Solid effluents
- 7 Main equipment design changes

CHAPTER C.5 – CASE 3: SC PC WITH CCS – COOLING SYSTEM SENSITIVITY

- 1 Introduction
- 2 Process Description
 - 2.1 Overview
 - 2.2 Impact on process units
 - 2.3 Unit 3000 Steam Cycle
 - 2.4 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Utility and chemicals consumption
- 5 Overall performance
- 6 Environmental Impact
 - 6.1 Gaseous Emission
 - 6.2 Liquid effluents
 - 6.3 Solid effluents
- 7 Main equipment design changes

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date:

January 2014

GENERAL TABLE OF CONTENT AND ABBREVIATION Sheet: 6 of 16

CHAPTER D – BASIC INFORMATION ON OXY-COMBUSTION SC PC PLANT

- 1 Introduction
- 2 Basic information of main process unit
 - 2.1 Feedstock and solids handling
 - 2.2 Boiler island
 - 2.3 Flue Gas Desulphurization (FGD) system
 - 2.4 Carbon dioxide compression and purification
 - 2.5 Air Separation Unit
 - 2.6 Steam Cycle
 - 2.7 Utility and Offsite units

CHAPTER D.1 – CASE 3: OXY-COMBUSTION SC PC WITH CCS

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Air Separation Unit
 - 2.3 Unit 1000 Feedstock and Solid Handling
 - 2.4 Unit 2000 Boiler Island
 - 2.5 Unit 2100 Flue Gas Desulphurization
 - 2.6 Unit 3000 Steam Cycle
 - 2.7 Unit 4000 CO₂ Compression and Purification
 - 2.8 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility and chemicals consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER D.2 – CASE 3.1: OXY-COMBUSTION SC PC WITH CCS – NEAR ZERO EMISSION

- 1 Introduction
 - 1.1 Process unit arrangement

CO₂ Capture at Coal Based Power and Hydrogen Plants

GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 7 of 16

- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 2000 Boiler Island
 - 2.3 Unit 4000 CO₂ Compression and Purification
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility and chemicals consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Main equipment design changes

CHAPTER D.3 – CASE 3: OXY-COMBUSTION SC PC WITH CCS – COOLING SYSTEM SENSITIVITY

- 1 Introduction
- 2 Process Description
 - 2.1 Overview
 - 2.2 Impact on process units
 - 2.3 Unit 3000 Steam Cycle
 - 2.4 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Utility and chemicals consumption
- 5 Overall performance
- 6 Environmental Impact
 - 6.1 Gaseous emissions
 - 6.2 Liquid effluents
 - 6.3 Solid effluents
- 7 Main equipment design changes

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS D

GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 8 of 16

CHAPTER E – BASIC INFORMATION ON IGCC PLANT ALTERNATIVES

4	-
	Introduction

- 2 Basic information of main process unit
 - 2.1 Feedstock and solids handling
 - 2.2 Gasification Island
 - 2.3 Air Separation Unit
 - 2.4 Syngas treatment and conditioning unit
 - 2.5 Acid Gas Removal
 - 2.6 Sour Water Stripper
 - 2.7 Sulphur Recovery Unit and Tail Gas Treatment
 - 2.8 Carbon dioxide compression and dehydration
 - 2.9 PSA unit (Hydrogen production cases)
 - 2.10 Combined Cycle
 - 2.11 Utility and Offsite units
- 3 Gasification
 - 3.1 Shell gasification
 - 3.2 GE Energy gasification
 - 3.3 Mitsubishi gasification

CHAPTER E.1 – CASE 4.1: IGCC WITH CCS – SHELL GASIFICATION

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Solid Handling & Storage
 - 2.3 Unit 1000 Gasification Island
 - 2.4 Unit 2100 Air Separation unit
 - 2.5 Unit 2200 Syngas Treatment and Conditioning line
 - 2.6 Unit 2300 Acid Gas Removal (AGR)
 - 2.7 Unit 2400 SRU and TGT
 - 2.8 Unit 2500 CO₂ Compression and Drying
 - 2.9 Unit 3000 Combined cycle
 - 2.10 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Sheet: 9 of 16

January 2014

GENERAL TABLE OF CONTENT AND ABBREVIATION

- 7.2 Liquid Effluent
- 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER E.2 – CASE 4.2: IGCC WITH CCS – GE GASIFICATION

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Coal Handling & Storage
 - 2.3 Unit 1000 Gasification Island
 - 2.4 Unit 2100 Air Separation unit
 - 2.5 Unit 2200 Syngas Treatment and Conditioning line
 - 2.6 Unit 2300 Acid Gas Removal (AGR)
 - 2.7 Unit 2400 SRU and TGT
 - 2.8 Unit 2500 CO₂ Compression and Drying
 - 2.9 Unit 3000 Combined cycle
 - 2.10 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER E.3 – CASE 4.3: IGCC WITH CCS – MHI GASIFICATION

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Coal Handling & Storage
 - 2.3 Unit 1000 Gasification Unit
 - 2.4 Unit 2200 Syngas Treatment and Conditioning line
 - 2.5 Unit 2300 Acid Gas Removal (AGR)
 - 2.6 Unit 2400 SRU and TGT

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Sheet: 10 of 16

Date:

January 2014

GENERAL TABLE OF CONTENT AND ABBREVIATION

- 2.7 Unit 2500 CO₂ Compression and Drying
- 2.8 Unit 3000 Combined cycle
- 2.9 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER E.4 – CASE 5.1: HYDROGEN AND POWER CO-PRODUCTION (Power Island: 2 x E-class Gas Turbine)

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Coal Handling & Storage
 - 2.3 Unit 1000 Gasification Island
 - 2.4 Unit 2100 Air Separation unit
 - 2.5 Unit 2200 Syngas Treatment and Conditioning line
 - 2.6 Unit 2300 Acid Gas Removal (AGR)
 - 2.7 Unit 2400 SRU and TGT
 - 2.8 Unit 2500 CO₂ Compression and Drying
 - 2.9 Unit 2600 Hydrogen Production Unit
 - 2.10 Unit 3000 Combined cycle
 - 2.11 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS
GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 11 of 16

CHAPTER E.5 – CASE 5.2: HYDROGEN AND POWER CO-PRODUCTION (Power Island: 2 x frame 6 equivalent Gas Turbine)

4	т. 1.
1	Introduction
1	muoduction

- 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Coal Handling & Storage
 - 2.3 Unit 1000 Gasification Island
 - 2.4 Unit 2100 Air Separation unit
 - 2.5 Unit 2200 Syngas Treatment and Conditioning line
 - 2.6 Unit 2300 Acid Gas Removal (AGR)
 - 2.7 Unit 2400 SRU and TGT
 - 2.8 Unit 2500 CO₂ Compression and Drying
 - 2.9 Unit 2600 Hydrogen Production Unit
 - 2.10 Unit 3000 Combined cycle
 - 2.11 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER E.6 – CASE 5.3: HYDROGEN PRODUCTION (Power Island: PSA off-gases fired boiler)

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 900 Coal Handling & Storage
 - 2.3 Unit 1000 Gasification Island
 - 2.4 Unit 2100 Air Separation unit
 - 2.5 Unit 2200 Syngas Treatment and Conditioning line
 - 2.6 Unit 2300 Acid Gas Removal (AGR)
 - 2.7 Unit 2400 SRU and TGT
 - 2.8 Unit 2500 CO₂ Compression and Drying

CO₂ Capture at Coal Based Power and Hydrogen Plants GENERAL TABLE OF CONTENT AND ABBREVIATION Date: January 2014

Sheet: 12 of 16

- 2.9 Unit 2600 Hydrogen Production Unit
- 2.10 Unit 3000 Power Island
- 2.11 Utility Units
- 3 Process Flow Diagrams
- 4 Heat and Material Balance
- 5 Utility consumption
- 6 Overall performance
- 7 Environmental Impact
 - 7.1 Gaseous Emissions
 - 7.2 Liquid Effluent
 - 7.3 Solid Effluent
- 8 Preliminary plot plan
- 9 Equipment List

CHAPTER E.7 – CASE 4.2: IGCC WITH CCS – GE GASIFICATION – COOLING SYSTEM SENSITIVITY

- 1 Introduction
- 2 Process Description
 - 2.1 Overview
 - 2.2 Impact on process units
 - 2.3 Unit 3000 Steam Cycle
 - 2.4 Unit 6000 Utility Units
- 3 Process Flow Diagrams
- 4 Utility consumption
- 5 Overall performance
- 6 Environmental Impact
 - 6.1 Gaseous emissions
 - 6.2 Liquid effluents
 - 6.3 Solid effluents
- 7 Main equipment design changes

CHAPTER E.8 – CASE 4.2.1: IGCC WITH CCS – GE GASIFICATION – NEAR ZERO EMISSION

- 1 Introduction
 - 1.1 Process unit arrangement
- 2 Process Description
 - 2.1 Overview
 - 2.2 Unit 2300 Acid Gas Removal (AGR)
 - 2.3 Unit 2500 CO₂ Compression and Drying
- 3 Process Flow Diagrams

Revision no.: Final **IEA GHG**

CO₂ Capture at Coal Based Power and Hydrogen Plants GENERAL TABLE OF CONTENT AND ABBREVIATION

Date:

January 2014 Sheet: 13 of 16

- 4 Heat and Material Balance
- 5 Utility consumption
- Overall performance 6
- **Environmental Impact** 7
 - **Gaseous Emissions** 9.1
 - 9.2 Liquid Effluent
 - Solid Effluent 9.3
- 8 Main equipment design changes

CHAPTER E.9 – CASE 5.3.1: HYDROGEN PRODUCTION – NEAR ZERO **EMISSION** (Power Island: PSA off-gases fired boiler)

- 1 Introduction
 - Process unit arrangement
- 2 **Process Description**
 - 2.1 Overview
 - 2.2 Unit 2200 - Syngas Treatment and Conditioning line
 - 2.3 Unit 2300 – Acid Gas Removal (AGR)
 - Unit 2500 CO₂ Compression and Drying 2.4
- Process Flow Diagrams
- 4 Heat and Material Balance
- Utility consumption 5
- Overall performance 6
- **Environmental Impact** 7
 - **Gaseous Emissions** 9.4
 - Liquid Effluent 9.5
 - 9.6 Solid Effluent
- 8 Main equipment design changes

CO₂ Capture at Coal Based Power and Hydrogen Plants GENERAL TABLE OF CONTENT AND ABBREVIATION Date: January 2014

Sheet: 14 of 16

CHAPTER F – ECONOMICS

- 1. Introduction
- 2. Capital cost
 - 2.1. Definitions
 - 2.2. Estimating methodology
 - 2.3. Total Plant Cost summary
- 3. Operating and Maintenance costs
 - 3.1. Variable costs
 - 3.2. Fixed costs
 - 3.3. Summary
- 4. Financial analysis
 - 4.1. Objective of the economic modelling
 - 4.2. Definitions
 - 4.3. Macroeconomic bases
 - 4.4. Financial analysis results
 - 4.5. Sensitivity analysis

CO₂ Capture at Coal Based Power and Hydrogen Plants

GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 15 of 16

ABBREVIATIONS

AGR Acid Gas Removal ASU Air Separation Unit

BEDD Basic Engineering Design Data

BFD Block Flow Diagram
BFW Boiler Feed Water
BL Battery Limits
BOP Balance Of Plant
CAC CO₂ Avoidance Cost
CC Combined Cycle

CCS Carbon Capture and Storage CPU Cryogenic Purification Unit

CT Cooling Tower
DC Direct Current
DR Discount Rate

ESP Electro Static Precipitator

FD Forced Draft

FGD Flue Gas Desulphurisation

FW Foster Wheeler

GEE General Electric Energy
GOX Gaseous Oxygen
GT Gas Turbine
H&M Heat and Mass
HP High Pressure

HRSG Heat Recovery Steam Generator

IGCC Integrated Gasification Combined Cycle

IP Intermediate Pressure

LCOE Levelized Cost Of Electricity LCOH Levelized Cost Of Hydrogen

LHV Low Heating Value
LIN Liquid Nitrogen
LOX Liquid Oxygen
LP Low Pressure

MAC Main Air Compressor
MEA Mono-Ethanol-Amine
MHI Mitsubishi Heavy Industries

MP Medium Pressure
MWe Mega Watt electrical
MWth Mega Watt thermal
NEE Net Electrical Efficiency
NPO Net Power Output

O&M Operating and Maintenance

PC Pulverised Coal

CO₂ Capture at Coal Based Power and Hydrogen Plants

GENERAL TABLE OF CONTENT AND ABBREVIATION

Date: January 2014

Sheet: 16 of 16

PI Power Island

PSA Pressure Swing Adsorption

PU Process Unit RH Re-Heated S/D Shutdown

SC PC Super Critical Pulverised Coal SCR Selective Catalytic Reduction

SH Super Heater

SRU Sulphur Recovery Unit

ST Steam Turbine

TCR Total Capital Requirement

TGT Tail Gas Treatment
TIC Total Investment Cost
TPC Total Plant Cost
U&O Utilities & Offsite
VLP Very Low Pressure
WWT Waste Water Treatment

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 1 of 25

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : EXECUTIVE SUMMARY

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter A - Executive summary Date: January 2014 Sheet: 2 of 25

TABLE OF CONTENT

1.	Introduction	3
2.	Study cases	5
3.	Main plant design bases	7
4.	Performance summary	8
5.	Cost summary	10
6.	Financial analysis	13
	6.1. LCOE and LCOH	13
	6.2. CO ₂ avoidance cost	13
	6.3. Macroeconomic bases	14
	6.4. Results	14
7.	Sensitivity cases	18
8.	Summary findings	23

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A – Executive summary Sheet: 3 of 25

1. Introduction

In the past years The International Energy Agency Greenhouse Gas R&D programme (IEAGHG) undertook a series of studies on the performance and costs of coal fired power and hydrogen plants with CO₂ capture, based on the three leading options, namely post-combustion capture and oxy-combustion for pulverised coal plants and pre-combustion capture in gasification plants.

Following the significant technological advances and the substantial increase of the plant costs, IEAGHG decided to undertake a wholly new study to provide an up-to-date assessment of the performance and costs of coal fired power and hydrogen plants, with and without capture of the generated CO₂.

With this premise, IEAGHG has contracted Foster Wheeler (FW) to perform a study that makes the technical and economical assessment of coal fired power and hydrogen plants with the leading CO₂ capture technologies.

This new study aims to provide a baseline for possible subsequent studies on other capture processes and capture in industries other than power and hydrogen generation from coal. It covers the following four plant types:

- Supercritical pulverised coal (SC-PC) power plant without CO₂ capture (reference plant for all the other cases);
- Supercritical pulverised coal power plant using oxy-combustion or with post combustion capture based on a high efficiency solvent washing process;
- Integrated Gasification Combined Cycle (IGCC) plant with pre-combustion capture using solvent scrubbing;
- Gasification for combined production of saleable hydrogen (99.5% purity, by means of PSA) and power (either by means of a combined cycle or using a conventional boiler-based unit), with pre-combustion capture via solvent scrubbing.

During the preparation of the study, FW has fruitfully cooperated with various technology suppliers and licensors, which provided an invaluable support for the success of the study. Therefore, FW and IEAGHG like to acknowledge the following companies, listed in alphabetical order:

- Air Products
- Alstom
- Cansolv
- Chiyoda Corporation
- Foster Wheeler Energie GmbH

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 4 of 25

- General Electric Energy
- IHI
- Johnson Matthey
- MHI
- Shell
- UOP.

It is noted that the comparison of either different technologies or technology suppliers was beyond the scope of the present study, which focused to provide an upto-date technical and economical assessment of coal-fired power and hydrogen plants. In fact, the direct comparison of the technologies is always strongly influenced by specific local constraints and by unpredictable market logics, usually subject to rapid changes.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary

2. Study cases

The study investigates alternative designs of power and hydrogen generation plants, as listed in the following table. Technology suppliers that provided technical or cost data are also shown in the table. Other unit or equipment performance and costs (e.g. SC PC boiler for air- and oxy-fired cases, ASU for oxy-combustion and IGCC cases, SRU, etc.) are based on a generic design, not provided from a specific supplier.

Sheet: 5 of 25

Table 1. Study cases

Type	Case	Plant type	CO ₂ capture target	Key technological features			
pa	Case 1 (reference)	SC PC	ı	Alstom Wet limestone scrubbing FGD			
Boiler-based	Case 2	SC PC w CCS	90%	Alstom Wet limestone scrubbing FGDCANSOLV solvent scrubbing (post-comb. capture)			
Boil	Case 3	Oxy-SC PC	90%	 FW Energie Circulating Fluid Bed Scrubber CFBS FGD technology Air Products' Cryogenic Purification Unit 			
sed	Case 4.1	IGCC	90%	 Shell Coal Gasification Process, with Syngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG) 			
IGCC-based	Case 4.2	IGCC	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG) 			
	Case 4.3	IGCC	90%	 MHI, Air-Blown two-stage entrained-bed gasifier UOP Selexol solvent scrubbing Two (2) MHI 701 F4 gas turbines 			
	Case 5.1	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) E-class gas turbines (~ 130 MWe eq. NG) 			
H ₂ & Power	Case 5.2	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) frame 6 (~ 77 MWe eq. NG) 			
\mathbf{H}_2	Case 5.3	Gasification + Boiler + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Off-gas based Boiler to mostly cover auxiliary power demand of the plant 			

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter A - Executive summary

Date: January 2014

Sheet: 6 of 25

The study includes also "sensitivity cases" to:

- Assess performance and costs of a pulverised coal plant with post combustion capture in which sufficient woody biomass is co-fired to achieve zero net emissions of CO₂ (considering biomass as zero carbon fuel).
- Assess the performance and costs variants of the oxy-combustion, IGCC and Hydrogen production plants with near-zero emissions of CO₂ (e.g. 98-99% overall CO₂ capture). Near zero emissions in the post combustion capture is expected to be not technically feasible at reasonable cost, so this is achieved co-firing some biomass (refer to the above bullet).
- Make sensitivity of performance and costs to two alternative types of cooling system (once-through sea water cooling and dry air cooling) for the reference plant and the three main plants with CO₂ capture for power production only.

Case Plant type CO₂ Key technological features capture target Case 2.1 SC PC w CCS 100 As Case 2 + woody biomass co-firing (zero CO₂ emission) Case 3.1 Oxy-SC PC 98-99% As Case 3 + Air Products' PRISM membranes (near zero CO₂ emission) Case 4.2.1 **IGCC** 98-99% As Case 4.2 + additional MDEA solvent scrubbing (near zero CO₂ emission) Case 5.3.1 IGCC + 98-99% As Case 5.2 + additional MDEA solvent scrubbing H_2 (PSA) (near zero CO₂ emission) Case 1(SW) SC PC As Case 1, with seawater cooling Case 1(AC) SC PC As Case 1, with air cooling Case 2(SW) SC PC w CCS 90% As Case 2, with seawater cooling SC PC w CCS 90% Case 2(AC) As Case 2, with air cooling Case 3(SW) Oxy-SC PC As Case 3, with seawater cooling 90% Case 3(AC) Oxy-SC PC 90% As Case 3, with air cooling Case 4.2 (SW) **IGCC** 90% As Case 4.2, with seawater cooling **IGCC** Case 4.2 (AC) 90% As Case 4.2, with air cooling

Table 2. - Sensitivity study cases

The technical and economic assessment of the above listed study cases are mostly based on technology and equipment that suppliers would be capable to offer on a commercial basis today. In some cases, near term efficiency improvements have been considered, as already anticipated by specialized Vendors (e.g. ASU).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 7 of 25

3. Main plant design bases

The main plant design bases, used as common bases for the design of the plant, are listed in the following:

- The site is a greenfield location on the North East coast of The Netherlands, at sea level and with an average reference ambient temperature of 9 °C.
- The reference coal is an Eastern Australian Bituminous internationally traded open-cast coal, delivered from a port to the plant site by unit trains. Its inherent moisture is 9.50% (AR), Sulphur content is 1.10% (DAF) and the heating value (AR) is 25.87 MJ/kg (LHV) / 27.06 MJ/kg (HHV).
- The pulverised coal plants are based on state-of-the-art steam conditions (27 MPa/600°C/620°C) as mostly used in recent large coal fired power plants in Europe and Japan.
- The IGCC plants of the main study cases use two (2) state-of-the-art F-class, 50 Hz gas turbines, commercially available for high hydrogen content gas.
- The net power output of the pulverised coal plant without capture is around 1,000 MWe. The pulverised coal plants with CO₂ capture are based on boilers with the same thermal capacity.
- CO₂ is delivered from the plant site to the pipeline at the following main conditions:

-	Pressure	11	MPa
-	Temperature	30	$^{\circ}\mathrm{C}$
-	Oxygen	100	ppm
-	H_2S	20	ppm
-	Water	50	ppm
-	Total non-condensable (max)	4	% (volume)

- The plant has access to sweet water, mainly used as make-up water for the cooling water system, this latter based on natural draft cooling tower.
- The overall gaseous emissions from the plant do not exceed the following limits:

	SC-PC based cases (1)	IGCC based cases (2)
NO _X (as NO ₂)	$\leq 150 \text{ mg/Nm}^3$	$\leq 50 \text{ mg/Nm}^3$
SO_X (as SO_2)	$\leq 150 \text{ mg/Nm}^3$	$\leq 10 \text{ mg/Nm}^3$

Notes: (1) @ 6% O_2 volume dry. Not applicable for oxy-combustion plant. Regulatory approach for this plant type not yet defined. (2) @ 15% O_2 volume dry.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 8 of 25

4. Performance summary

The main performance data of all study cases are shown in the following tables.

Table 3. – SC-PC-based cases: performance summary

		Case 1 SC-PC w/o CCS		Case 2 SC-PC with CCS		Case 3 Oxy SC-PC with CPU	
OVERALL PERFORMANCE							
Coal flowrate (A.R.)	t/h	32:	5.0	32.	5.0	32:	5.0
Thermal input ⁽¹⁾	MWth	23	35	2335		23	35
Auxiliary power demand (2)	MWe	47	' .1	13.	5.7	26	7.6
Net Electric Power Output	MWe	1029.6		822.4		833.4	
Net Electrical Efficiency (1)	%	44	l.1	35.2		35.7	
CO ₂ REMOVAL EFFICIENCY							
CO ₂ capture rate	%		-	90).1	90	0.0
CO ₂ to atmosphere	t/h	76	7.4	76.5		76	5.8
CO ₂ to storage	t/h	-	-	690.9		68:	5.9
GASEOUS EMISSIONS (3)		kg/MWh	mg/Nm ³ (6% O ₂)	kg/MWh	mg/Nm ³ (6% O ₂)	kg/MWh	g/h
CO ₂		745.8	1	93.0	-	92.2	-
NO_X		0.43	150	0.54	150	-	-
SO _X		0.43	150	0.01	<1ppm	-	-

Notes: (1): LHV basis.

Table 4. – IGCC study cases: performance summary

		Case 4.1 Shell with CCS	Case 4.2 GE with CCS	Case 4.3 MHI with CCS
OVERALL PERFORMANCE	-			
Coal flowrate (A.R.)	t/h	314.9	349.1	345.1
Thermal input ⁽¹⁾	MWth	2263	2509	2480
Thermal input to GT ⁽¹⁾	MWth	1600 (3)	1600 ⁽³⁾	1667 ⁽⁴⁾
Auxiliary power demand ⁽²⁾	MWe	259.2	266.4	229.6
Net Electric Power Output	MWe	804.0	874.3	863.0
Net Electrical Efficiency ⁽¹⁾	%	35.5	34.9	34.8
CO ₂ REMOVAL EFFICIENCY				
CO ₂ capture rate	%	90.1	90.1	89.0
CO ₂ to atmosphere	t/h	74.5	81.9	89.9
CO ₂ to storage	t/h	673.2	737.9	726.8

^{(2):} Including step-up transformer losses

^{(3):} Emission expressed in mg/Nm³ @6% O₂, dry basis, applicable to the air fired SC PC plants only; for the oxy-combustion based power plant this is not relevant, due to the very low flowrate of the inerts gas stream discharged to atmosphere.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 9 of 25

_	Case Shell wi	e 4.1 ith CCS		e 4.2 th CCS	Case MHI wi	
GASEOUS EMISSIONS	kg/MWh	mg/Nm ³ (15% O ₂)	kg/MWh	mg/Nm ³ (15% O ₂)	kg/MWh	mg/Nm ³ (15% O ₂)
CO ₂	92.6	-	93.7	-	104.1	-
NO_X	0.33	< 50	0.31	< 50	0.31	< 50
SO_X	0.01	<1	0.01	<1	0.01	<1

Notes: (1): LHV basis.

(2): Including step-up transformer losses.

(3): 2 x average F-class GT.

(4): 2 x MHI 701 F4 gas turbines

Table 5. – Power and hydrogen co-production cases: performance summary

			e 5.1 Class GTs		e 5.2 came 6 GTs		e 5.3 r (Off-gas)
OVERALL PERFORMANCES							
Coal flowrate for H ₂ (A.R.)	t/h	16	5.4	24	3.4	349	9.1
Coal flowrate for power (A.R.)	t/h	18	3.7	10	5.7	-	=
Thermal input ⁽¹⁾	MWth	25	09	25	09	25	09
Hydrogen production	Nm ³ /h	220	,600	324	,700	465.	,700
Hydrogen thermal capacity ⁽¹⁾	MWth	6.5	59	969		1390	
Auxiliary power demand ⁽³⁾	MWe	23	7.7	230.4		222.1	
Net Electric Power Output	Mwe	44	7.6	289.3		37.0	
CO ₂ REMOVAL EFFICIENCY							
CO ₂ capture rate	%	90).1	90.1		90.1	
CO ₂ to atmosphere	t/h	81	.9	81.9		81.9	
CO ₂ to storage	t/h	737.9		737.9		737.9	
GASEOUS EMISSIONS ⁽²⁾		kg/MWh	mg/Nm ³ (15% O ₂)	kg/MWh	mg/Nm ³ (15% O ₂)	kg/MWh	mg/Nm ³ (15% O ₂)
CO ₂		93.7	-	93.7	-	93.7	-
NO_X		0.16	< 50	0.11	< 50	0.04	< 50
SO _X		0.00	<1	0.00	<1	0.00	<1

Notes: (1): LHV basis.

(2): Referred to the net power production of Case 4.2.

(3): Including step-up transformer losses.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 10 of 25

5. Cost summary

The Total Plant Cost (TPC) and the Total Capital Requirement (TCR) are defined in general accordance with the White Paper "Toward a common method of cost estimation for CO_2 capture and storage at fossil fuel power plants" (March 2013), produced collaboratively by authors from EPRI, IEAGHG, Carnegie Mellon University, MIT, IEA, GCCSI and Vattenfall ⁽¹⁾.

The **Total Capital Requirement** (**TCR**) is defined as the sum of:

- Total Plant Cost (**TPC**)
- Interest during construction
- Spare parts cost
- Working capital
- Start-up costs
- Owner's costs.

The Total Plant Cost (TPC) is the installed cost of the plant, including project contingencies.

The TPC of the different study cases is presented in the overleaf pages, broken down into the main process units that compose the plant. Moreover, for each process unit, the TPC has been split into the following main items:

- Direct materials
- Construction
- EPC services
- Other costs
- Contingency.

For each case of the study, the total plant cost (TPC) has been determined through a combination of licensor/vendor quotes, the use of a Foster Wheeler (FW) in-house database and the development of conceptual estimating models, based on the specific characteristics, materials and design conditions of each equipment in the plant. The other components of the TCR have been mainly estimated as percentages of other cost estimates in the plant.

The estimate is in euro (\in), based on 2Q2013 price level. Overall estimate accuracy is in the range of +35%/-15% (AACE Class 4).

For each plant type, the TPC of the different study cases is shown in the overleaf graphs. Total Plant Cost and Total Capital Requirement figures for the different cases are also reported in the below table for summary purpose.

¹ IEAGHG report 2013/TR2, http://www.ieaghg.org/publications/technical-reports

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 11 of 25

For the power production cases, the specific costs, defined as the ratio between either the TPC or the TCR and the net power output, are also reported in the same table.

Table 6. TPC and TCR of study cases (2Q2013)

Type	Case	Total Plant Cost (TPC)	Total Capital Requirement (TCR) (M€)	Specific cost [TPC/Net Power] (€/kW)	Specific cost [TCR/Net Power] (€/kW)
Ł _	Case 1	1,490	1,943	1,447	1,887
Boiler- based	Case 2	2,279	2,961	2,771	3,600
В	Case 3	2,301	2,986	2,761	3,583
	Case 4.1	2,538	3,497	3,157	4,350
IGCC- based	Case 4.2	2,688	3,705	3,074	4,238
I o	Case 4.3	2,629	3,625	3,046	4,200
ľ	Case 5.1	2,461	3,394	N/A	N/A
H ₂ & Power	Case 5.2	2,390	3,297	N/A	N/A
Н	Case 5.3	2,101	2,901	N/A	N/A

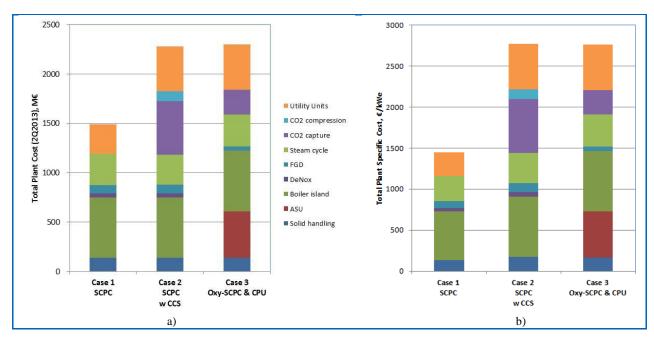


Figure 1: TPC (2Q2013) of Boiler-based cases: a) Total Plant cost, b) Specific Plant cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter A - Executive summary Sheet: 12 of 25

January 2014

Figure 2: TPC (2Q2013) of IGCC-based cases: a) Total Plant cost, b) Specific Plant cost

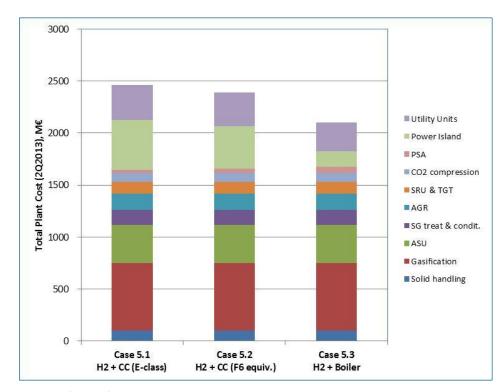


Figure 3: TPC (2Q2013) of Power and hydrogen co-production cases

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 13 of 25

6. Financial analysis

A simplified financial analysis has been performed to estimate, for each case, the Levelized Cost of Electricity (LCOE) and the CO₂ Avoidance Cost (CAC), based on a specific set of macroeconomic assumptions.

For the hydrogen and power co-production cases, the Levelized Cost of Hydrogen (LCOH) production has been also estimated.

The LCOE and the LCOH predictions are calculated under the assumption of obtaining a zero Net Present Value (NPV) for the project, corresponding to an Internal Rate of Return (IRR) equal to the Discount Rate (DR).

Therefore, the financial analysis is a high-level economical evaluation only, while the rigorous project profitability for the specific case is affected by project specific conditions and constraints.

6.1. LCOE and LCOH

The Cost of Electricity (COE) in power production plants is defined as the selling price at which electricity must be generated to reach the break even at the end of the plant lifetime for a targeted rate of return.

However, with the purpose of screening different technology alternatives, the levelized value of the cost of electricity (LCOE) is commonly preferred to the year-by-year data. The LCOE is defined as the uniform annual amount which returns the same net present value as the year-by-year amounts.

In this analysis, long-term inflation assumptions and price/cost variations throughout the project life-time were not considered and, therefore, the COE matches with the LCOE.

The same considerations apply to the hydrogen and power co-production cases, where the power selling price is valued at the cost of production of the base case with power production only (Case 4.2, GE-based IGCC).

6.2. CO_2 avoidance cost

For the power production cases, the CO₂ Avoidance Cost (CAC) is calculated by comparing the costs and specific emissions of a plant with CCS with those of the reference case without CCS. For a power generation plant, it is defined as follows:

$$CO_2 \text{ Avoidance Cost (CAC)} = \frac{LCOE_{CCS} - LCOE_{Reference}}{CO_2 \text{Emissions }_{Reference} - CO_2 \text{Emissions }_{CCS}}$$

where:

Cost of CO₂ avoidance is expressed in Euro per tonne of CO₂ LCOE is expressed in Euro per MWh

CO₂ emissions is expressed in tonnes of CO₂ per MWh.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 14 of 25

The selected reference case for the evaluation of the CAC is Case 1, i.e. the conventional SC-PC power plant without capture of the generated carbon dioxide.

6.3. Macroeconomic bases

The main financial bases assumed to run the economic model are reported in the below table.

ITEM DATA 2.5 €/GJ (LHV basis) Coal cost Discount Rate 8% 100% debt Financial leverage 1.5% (SC-PC based) Maintenance cost (% of TPC) 2.5% (IGCC-based) Capacity factor (SC-PC/Gasification based) 90% / 85% Plant life 25 years CO₂ transport & storage cost 10 €/t _{STORED} CO₂ emission cost 0 €/t EMITTED Constant Euro Inflation Rate Currency Euro reported in 2Q2013

Table 7. Main financial bases

6.4. Results

Figure 4 and Figure 5 report respectively the LCOE for the power production only cases and the LCOH for the hydrogen and power co-production cases.

LCOE and LCOH figures also show the relative weight of:

- Capital investment,
- Fixed O&M (Operating Labor costs, Overhead Charges, Maintenance costs),
- Variable O&M (Raw water make-up, Solvents, Catalysts, Chemicals),
- Fuel,
- CO₂ transportation & storage.

A summary of the economical modeling results is also reported in the following Table 8 and Table 9.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 15 of 25

Table 8. Financial results summary: LCOE and CO2 avoidance cost

Type	Case	Description	LCOE (€/MWh)	CAC (€/t)
	Case 1	SC-PC w/o CCS	52.0	-
ler- ed	Case 2	SC-PC w/CCS	94.7	65.4
Boiler- based	Case 3	OXY SC-PC	91.6	60.8
	Case 4.1	IGCC (Shell)	116.5	98.9
IGCC. based	Case 4.2	IGCC (GEE)	114.4	95.8
1	Case 4.3	IGCC (MHI)	114.5	97.4

Table 9. Financial result summary: LCOH⁽¹⁾

Type	Case	Description	LCOH ⁽¹⁾ (c€/Nm³)
u	Case 5.1	H ₂ &Power production: 2 x E-class GTs	19.5
Hydrogen & Power	Case 5.2	H ₂ &Power production: 2 x F-class (77MWe) GTs	18.3
Hyc & F	Case 5.3	H ₂ &Power production: 2 x Boiler	17.3

(1) Assuming power selling price: 114.4 €/MWh, as per Case 4.2 (power production only)

Figure 6 shows the results of the sensitivity financial analyses performed to estimate the LCOE, CAC and LCOH of the different study cases versus the variation of the Coal Cost and the Plant Load Factor.

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter A - Executive summary Date: January 2014 Sheet: 16 of 25

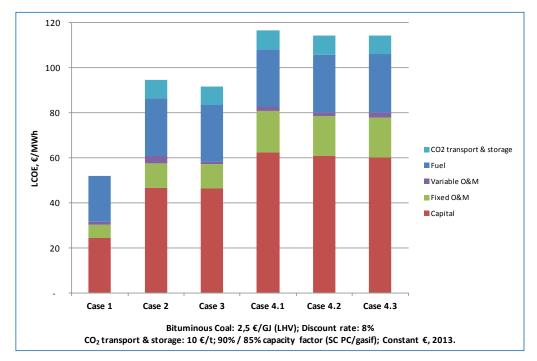


Figure 4. LCOE for all power production cases

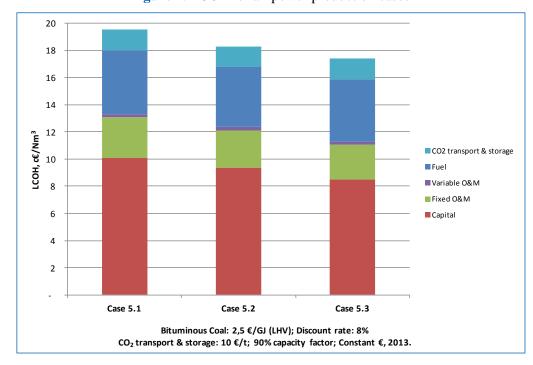


Figure 5. LCOH for all power and hydrogen co-production cases

IEAGHG

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter A - Executive summary

Revision no.: Final

Date: January 2014

Sheet: 17 of 25

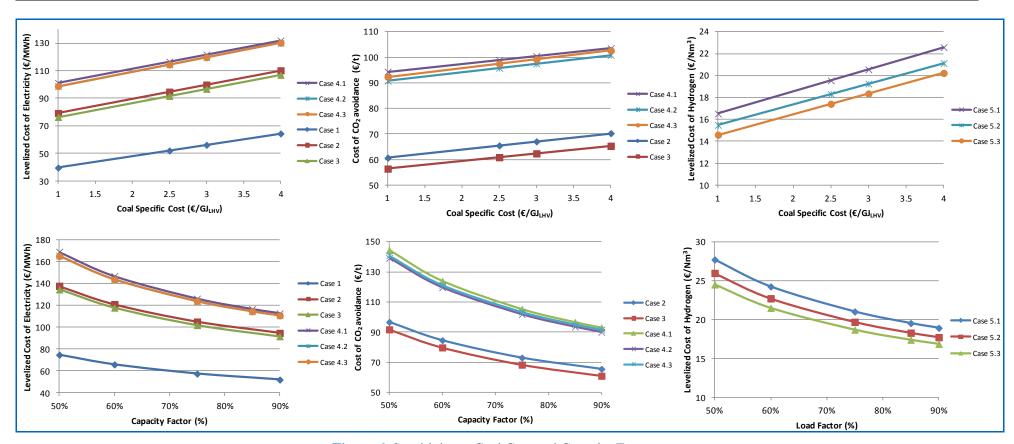
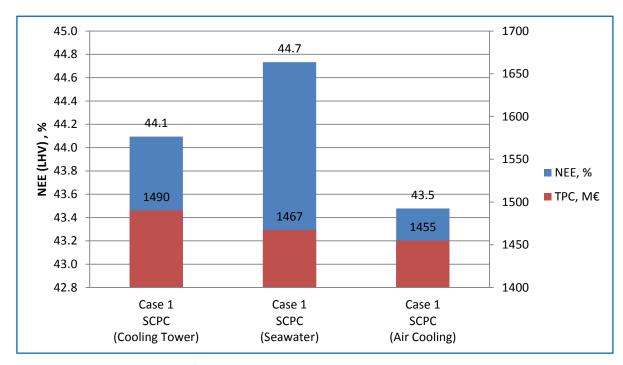


Figure 6. Sensitivity to Coal Cost and Capacity Factor


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 18 of 25

7. Sensitivity cases

The following graphs show the net electrical efficiency (NEE) and the Total Plant Cost (TPC) of the sensitivity cases, as follows:

- Figure 7 through Figure 10 show the sensitivity to two alternative types of cooling system (once-through sea water cooling and dry air cooling), for the reference plant (SC-PC) and the three main plants with CO₂ capture (pre-, post-and oxy-) for power production only. With respect to the 4.0 kPa of the reference case with cooling tower (CT), the once-through sea water (SW) cooling and dry air cooling (AC) systems allow to achieve a condensing pressure respectively of 3.0 kPa and 5.2 kPa, at the reference ambient temperature of the study.
- Figure 11 shows sensitivity of a pulverised coal plant with post combustion capture, in which sufficient woody biomass (7.5% LHV basis on thermal input) is co-fired to achieve zero net emissions of CO₂ (considering biomass as zero carbon fuel for accounting purpose).
- Figure 12 shows sensitivity of the oxy-combustion, IGCC and Hydrogen production plants with near-zero emissions of CO₂ (98% overall CO₂ capture). For these cases, also the results of the financial analysis are shown in Table 10 and Figure 13 and Figure 14.

Figure 7. SCPC – sensitivity to cooling type

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter A - Executive summary Date: January 2014 Sheet: 19 of 25

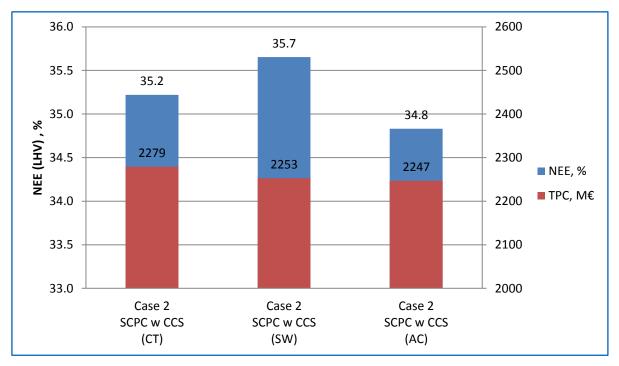


Figure 8. SCPC with CCS - sensitivity to cooling type

Figure 9. Oxy-SCPC with CPU - sensitivity to cooling type

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: Chapter A - Executive summary

Date: January 2014 Sheet: 20 of 25

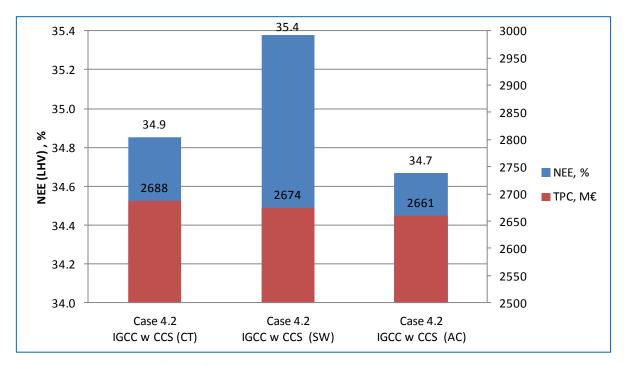


Figure 10. IGCC with CCS - sensitivity to cooling type

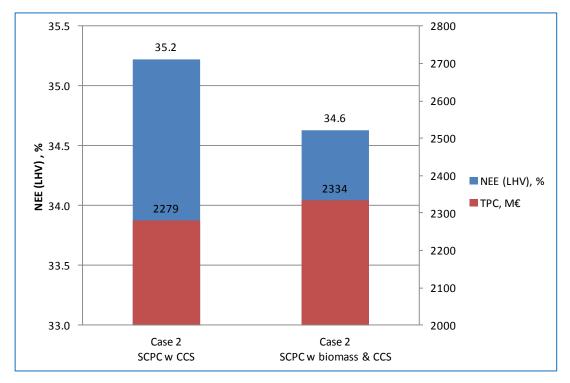


Figure 11. SCPC with CCS and biomass co-firing for zero net CO₂ emissions

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter A - Executive summary Sheet: 21 of 25

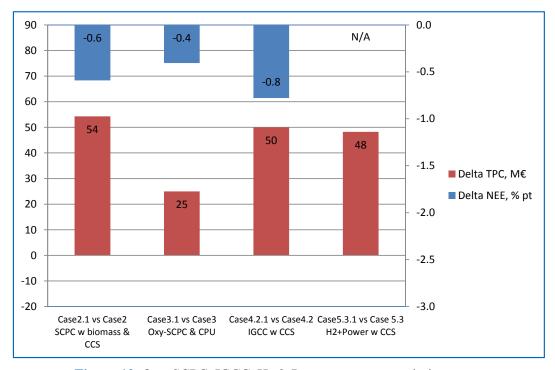


Figure 12. Oxy-SCPC, IGCC, H₂ & Power: near zero emission cases

Table 10. Financial analysis for near zero emission cases (reference's case data in gray)

Case	Description	LCOE (€/MWh)	CAC (€/t)
Case 2	SC-PC w/CCS	94.7	65.4
Case 2.1	SC-PC w/CCS near zero emission	100.5	65.1
Case 3	OXY SC-PC	91.6	60.8
Case 3.1	OXY SC-PC near zero emission		
Case 4.2	IGCC (GEE) 114.4		95.8
Case 4.2.1	IGCC (GEE) near zero emission 119.2		92.5
Case	$\begin{array}{c} \textbf{Description} & \begin{array}{c} \textbf{LCOH} \\ (c \not \in /Nm^3) \end{array}$		
Case 5.3	H ₂ &Power production: 2 x Boiler 17.3		
Case 5.3.1	H ₂ &Power production: 2 x Boiler near zero emission 18.1 ⁽¹⁾		

(1) Assuming power selling price: 114.4 €/MWh, as per Case 4.2 (power production only)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: Chapter A - Executive summary

Sheet: 22 of 25

January 2014

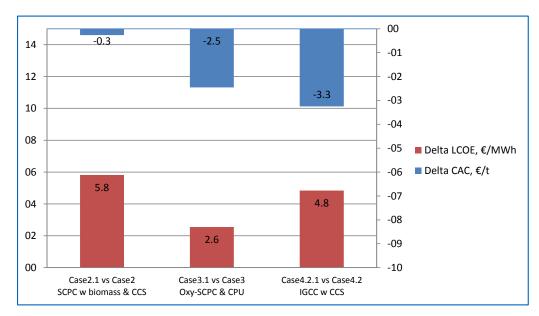


Figure 13. Biomass co-fired SCPC, Oxy-SCPC, IGCC: near zero emission cases

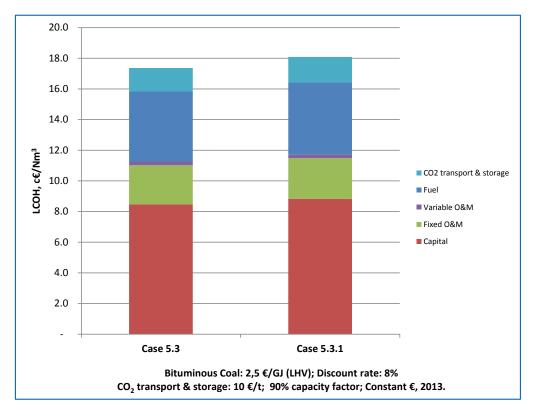


Figure 14. LCOH for near zero emission - power and hydrogen co-production case

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 23 of 25

8. Summary findings

The technical and economic assessments made in this study have generated a large amount of results for the coal fired power and hydrogen plants with the leading CO₂ capture technologies. The primary conclusions are given below.

SC-PC based cases (amine washing and oxy-combustion & CPU)

- For a Supercritical pulverized coal (SC-PC) power plant, using either oxycombustion or post-combustion CO₂ capture, the net electrical efficiency loss is about 8.4-8.9% points compared to the case without capture (power production only), corresponding to approximately 20% reduction of the overall value. This is lower than the range (from 9 to 12 % points) of literature data(1,2), demonstrating the improvements made from the capture technology and the thermal integration design of the plant.
- The effect of introducing CO₂ capture in SC-PC power plants, either via post-combustion or oxy-combustion, leads to an increase of the Specific Total Plant Cost of about 91% in both capture technologies. This value appears to fall in the upper range of some literature studies(²).
- The Levelized Cost of Electricity (LCOE) in boiler based plants with CO₂ capture is about 93 €/MWh (52 €/MWh is for the SC-PC power plant without CO₂ capture), while the CO₂ avoidance Cost (CAC) is about 63 €/t. Also these costs fall in the upper range of literature data(1,2), mainly because the transportation and storage cost is included, but also as a result of the up-to-date capital cost assessment made in this work.
- > The biomass co-firing in SC-PC boiler plants leads to a slightly worsening of both the performance and the costs of the plant, primarily due to the high biomass water content, resulting in an increased power requirement from the solid handling, milling and fan systems (higher flowrate).

IGCC based cases

The net electrical efficiency loss is about 9% points and the Specific Total Plant Cost increase is more than twice (both referenced against the SC-PC boiler plant without capture). With respect to literature data(1,2), the efficiency loss falls in the same range, while the specific TPC is higher. This latter data is mainly due to the up-to-date cost assessment of these plant types, which also

¹ EASAC policy report 20 (May 2013), collecting data from various sources: ZEP (2011), IEA (2005-2009), Global CCS Institute (2011), Alstom (2011).

² Cost and Performance of Carbon Dioxide Capture from Power Generation, IEA, Matthias Finkenrath, Working Paper (2011).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 24 of 25

reflect the latest experience of the U.S. IGCCs (Kemper County and Edwardsport), though it is pointed out that these plants have been considered as Nth of a kind costs. Public available data from Edwardsport and Kemper experiences have shown that IGCC plants are more expensive than generally predicted in the past years in literature data; however, they are first of kind costs and cannot be considered as representative of technologies that, in the very near term, will achieve, or in some cases have already achieved, an advanced and well developed level of maturity.

➤ The LCOE and the CAC are respectively about 115 €/MWh and 97 €/t. Again, these costs are higher than those of literature studies(1,2), due to the higher capital cost of the plant.

Hydrogen and power co-production cases

- ➤ Different hydrogen and power co-production cases have been assessed, based on various plant configurations designed to progressively reduce the net power production, while increasing the generation of high-purity hydrogen. In particular, with same coal thermal input, it has been possible to double the hydrogen production (from 220,600 Nm³/h to 465,000 Nm³/h), while reducing the net power export (from 440 MWe to 40 MWe).
- > The higher the hydrogen production, the lower the Total Plant Cost, mainly due to the lower size of the power island (TPC of the boiler-based case is approximately 15% lower than the largest combined cycle case).
- With an electric energy selling price same as the IGCC-case for power production only (114 €/MWh), the Levelized Cost of Hydrogen (LCOH) is lowest for the highest hydrogen production case, i.e. the higher capital is not refunded by the higher power production. The LCOH of the lower hydrogen production cases only starts to become lower than that of the high hydrogen case when the electricity price is above €127/MWh.

Near-zero emission plants

Near-zero emissions of CO₂ (about 98% overall CO₂ capture rate) is particularly favourable in oxy-combustion power plants, where the net electrical efficiency (NEE) reduction is 0.4% points and the Total Plant Cost increase is about 1%. On the other hand, both the NEE and the TPC penalties in IGCC plants are approximately twice. The same trend is also evident in the LCOE increase of the different near-zero emissions cases. This is mainly due to the use of the membrane technology in oxy-combustion plants, while a more energy demanding and more capital intensive solvent washing unit is required in gasification-based plants.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter A - Executive summary Sheet: 25 of 25

Other sensitivities

- ➤ The impact of cooling systems different from the natural draft cooling tower, namely once-through seawater cooling and dry air cooling, is respectively maximum +0.7% and -0.7% points on the net electrical efficiency of the plant, at the reference ambient temperature of the study (9°C). On the other hand, a reduction of the Total Plant Cost is generally noted for both alternative cooling systems, in the range of -1.5%. It is pointed out that for higher reference ambient temperatures the delta performance between water cooled and air cooled based cases increases, negatively impacting the economics of the project.
- With a fuel cost variation from 1 to 4 €/GJ, all cases of the study show a linear increase of either the LCOE and CAC (power production) or the LCOH (power and hydrogen co-production). The trend increase follows the weight of the capital cost component of the different cases.
- ➤ If the Plant Capacity Factor changes, all cases of the study show a substantial variation of the main economical parameters: at 90% capacity factor the LCOE and LCOH are 30% lower than those at 50%, while in power plants with CO₂ capture the CAC at 90% capacity factor is about 30-35% lower than that at 50%.

This study has provided an up-to-date assessment of the performance and costs of various coal fired power and hydrogen plants, with and without capture of the generated CO_2 . In general, the study has confirmed that any of the three leading capture technologies have made technological advances with respect to the past years, in particular the amine washing and the oxy-combustion in PC-based plants. On the other hand, the study has estimated that the CO_2 avoidance cost ranges from 60 to $100 \ \text{e/t}$ of CO_2 , which corresponds to the incentive scheme needed for an economically viable investment.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 1 of 36

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Fired Power Plants

DOCUMENT NAME : GENERAL INFORMATION

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : N. FERRARI
CHECKED BY : L. MANCUSO
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter B - General information

Sheet: 2 of 36

Date:

January 2014

TABLE OF CONTENT

1.	Bac	kground and objectives of the study	4
2.	Stu	dy cases	5
3.	Pro	ject Design Bases (PDB)	8
		Location	
	3.2.	Climatic and meteorological data	8
	3.3.	G	
		3.3.1. Coal	
		3.3.2. Natural Gas	
		3.3.3. Biomass	10
		3.3.4. Limestone	11
	3.4.	Products and by-products	12
		3.4.1. Electric Power	
		3.4.2. Carbon Dioxide	
		3.4.3. Sulphur (Gasification-based cases)	
		3.4.4. Hydrogen (Gasification for H ₂ production cases)	13
	3.5.	Environmental limits	13
		3.5.1. Gaseous emissions	
		3.5.2. Liquid effluent	
		3.5.3. Solid wastes	
		3.5.4. Noise	14
	3.6.	SC-PC-based cases: key features	14
		3.6.1. Capacity	
		3.6.2. Unit arrangement	
		3.6.3. Minimum turndown	
	3.7.	Oxy SC PC-based cases: key features	15
		3.7.1. Capacity	
		3.7.2. Unit Arrangement	
		3.7.3. Minimum turndown	
	3.8.	Gasification-based cases: key features	16
		3.8.1. Capacity	
		3.8.2. Unit Arrangement	
		3.8.3. Minimum turndown	
	3.9.	Availability	17
		. Cost estimating bases	
	~	· ~~~ ~~	

IEAGHG	Revision no.: Final
---------------	---------------------

 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Date: January 2014 Sheet: 3 of 36

Chapter B - General information

		3.10.1. Total Capital Requirement	18
		3.10.2. Total Plant Cost	18
		3.10.3. Estimate accuracy	18
		<i>3.10.4. Contingency</i>	18
		3.10.5. Design and construction period	18
		3.10.6. Financial leverage (debt / invested capital)	19
		3.10.7. Discount rate	19
		3.10.8. Interest during construction	
		3.10.9. Spare parts cost	
		3.10.10. Working capital	
		3.10.11. Start-up cost	
		3.10.12. Owner's cost	
		<i>3.10.13. Insurance cost</i>	
		3.10.14. Local taxes and fees	
		3.10.15. Decommissioning cost	
	3.11.	. Operating and Maintenance costs	20
		3.11.1. Variable costs	21
		3.11.2. Fixed costs	21
4.	Bas	ic Engineering Design Data (BEDD)	23
	4.1.	Units of measurement	26
	4.2.	Plant Battery Limits (main)	26
		4.2.1. Electric Power	
		4.2.2. Process and utility streams	
	4.3.	·	
	т	4.3.1. Cooling Water	
		4.3.2. Waters	
		4.3.3. Steam, Steam Condensate and BFW	
		4.3.4. Instrument and Plant Air	
		4.3.5. Nitrogen (Gasification-based cases)	
		4.3.6. Oxygen	
		4.3.7. Chemicals (main)	
		4.3.8. Electrical System	
	4.4.	Plant Life	35
	4.5.	Codes and standards	35

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 4 of 36

1. Background and objectives of the study

In the past years The International Energy Agency Greenhouse Gas R&D programme (IEAGHG) undertook a series of studies on the performance and costs of coal fired power and hydrogen plants with CO₂ capture, based on the three leading options, namely post-combustion capture and oxy-combustion for pulverised coal plants and pre-combustion capture in gasification plants.

Following the significant technological advances and the substantial increase of the plant costs, IEAGHG decided to undertake a wholly new study to provide an up-to-date assessment of the performance and costs of coal fired power and hydrogen plants, with and without capture of the generated CO₂.

With this premise, IEAGHG has contracted Foster Wheeler (FW) to perform a study that makes the technical and economical assessment of coal fired power and hydrogen plants with the leading CO₂ capture technologies.

This new study aims to provide a baseline for possible subsequent studies on other capture processes and capture in industries other than power and hydrogen generation from coal. It covers the following four plant types:

- Supercritical pulverised coal (SC-PC) power plant without CO₂ capture (reference plant for all the other cases);
- Supercritical pulverised coal power plant using oxy-combustion or with post combustion capture based on a high efficiency solvent washing process;
- Integrated Gasification Combined Cycle (IGCC) plant with pre-combustion capture using solvent scrubbing;
- Gasification for combined production of saleable hydrogen (99.5% purity, by means of PSA) and power (either by means of a combined cycle or using a conventional boiler-based unit), with pre-combustion capture via solvent scrubbing.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 5 of 36

2. Study cases

The study investigates alternative designs of power and hydrogen generation plants, as shown in the following table. Technology suppliers that provided technical or cost data are also shown in the table. Other unit or equipment performance and costs (e.g. SC PC boiler for air- and oxy-fired cases, ASU for oxy-combustion and IGCC cases, SRU, etc.) are based on a generic design, not provided from a specific supplier.

Table 1. Study cases

Туре	Case	Plant type	CO ₂ capture target	Key technological features
pa	Case 1 (reference)	SC PC	1	Alstom Wet limestone scrubbing FGD
Boiler-based	Case 2	SC PC w CCS	90%	Alstom Wet limestone scrubbing FGDCANSOLV solvent scrubbing (post-comb. capture)
Boil	Case 3	Oxy-SC PC	90%	 FW Energie Circulating Fluid Bed Scrubber CFBS FGD technology Air Products' Cryogenic Purification Unit
sed	Case 4.1	IGCC	90%	 Shell Coal Gasification Process, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG)
IGCC-based	Case 4.2	IGCC	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG)
	Case 4.3	IGCC	90%	 MHI, Air-Blown two-stage entrained-bed gasifier UOP Selexol solvent scrubbing Two (2) MHI 701 F4 gas turbines
	Case 5.1	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) E-class gas turbines (~ 130 MWe eq. NG)
H2 & Power	Case 5.2	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) frame 6 (~ 77 MWe eq. NG)
H_2	Case 5.3	Gasification + Boiler + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Off-gas based Boiler to mostly cover auxiliary power demand of the plant

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 6 of 36

The pulverised coal plants are based on state-of-the-art steam conditions (27 MPa/600°C/620°C) as used in new large coal fired power plants in Europe and Japan. The IGCC plants generally use two (2) state-of-the-art F-class 50Hz gas turbines, commercially available for firing high hydrogen content gas. The net output of the SCPC plant without capture is around 1,000 MW_e. The pulverised coal plants with capture are based on boilers with the same thermal capacity.

The technical and economic assessment of the above listed study cases are mostly based on technology and equipment that suppliers would be capable to offer on a commercial basis today. In some cases, near term efficiency improvements have been considered, as already anticipated by specialized Vendors (e.g. ASU).

The study includes also "sensitivity cases" to:

- Assess performance and costs of a pulverised coal plant with post combustion capture in which sufficient woody biomass is co-fired to achieve zero net emissions of CO₂ (considering biomass as zero carbon fuel).
- Assess the performance and costs variants of the oxy-combustion, IGCC and Hydrogen production plants with near-zero emissions of CO₂ (e.g. 98-99% overall CO₂ capture). Near zero emissions in the post combustion capture is expected to be not technically feasible at reasonable cost, so this is achieved co-firing some biomass (refer to the above bullet).
- Make sensitivity of performance and costs to two alternative types of cooling system (once-through sea water cooling and dry air cooling) for the reference plant and the three main plants with CO₂ capture for power production only.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter B - General information Sheet: 7 of 36

Table 2. - Sensitivity study cases

Case	Plant type	CO ₂ capture target	Key technological features	
Case 2.1	SC PC w CCS	100	As Case 2 + woody biomass co-firing (zero CO ₂ emission)	
Case 3.1	Oxy-SC PC	98-99%	As Case 3 + Air Products' PRISM membranes (near zero CO ₂ emission)	
Case 4.2.1	IGCC	98-99%	As Case 4.2 + additional MDEA solvent scrubbing (near zero CO ₂ emission)	
Case 5.3.1	IGCC + H ₂ (PSA)	98-99%	As Case 5.2 + additional MDEA solvent scrubbing (near zero CO ₂ emission)	
Case 1(SW)	SC PC	-	As Case 1, with seawater cooling	
Case 1(AC)	SC PC	-	As Case 1, with air cooling	
Case 2(SW)	SC PC w CCS	90%	As Case 2, with seawater cooling	
Case 2(AC)	SC PC w CCS	90%	As Case 2, with air cooling	
Case 3(SW)	Oxy-SC PC	90%	As Case 3, with seawater cooling	
Case 3(AC)	Oxy-SC PC	90%	As Case 3, with air cooling	
Case 4.2 (SW)	IGCC	90%	As Case 4.2, with seawater cooling	
Case 4.2 (AC)	IGCC	90%	As Case 4.2, with air cooling	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information

3. Project Design Bases (PDB)

This section describes the general plant design and cost estimating criteria, used as common basis for the design of the plant for the different study cases.

Sheet: 8 of 36

3.1. Location

The site is a Greenfield location on the North East coast of The Netherlands, with no major site preparation required. No restrictions on plant area and no special civil works or constraints on delivery of equipment are assumed. Rail lines, roads, fresh water supply and high voltage electricity transmission lines, high pressure natural gas pipeline are considered available at plant battery limits.

3.2. Climatic and meteorological data

Main climatic and meteorological data are listed in the following. Conditions marked (*) are considered reference conditions for plant performance evaluation.

•	Atmospheric pressure	101.3	kPa	(*)
•	Relative humidity	90	0/	(*)
	average	80	%	(*)
	maximum	95	%	
	minimum	40	%	
•	Ambient temperatures			
	minimum air temperature	-10	$^{\circ}\mathrm{C}$	
	maximum air temperature	30	$^{\circ}\mathrm{C}$	
	average air temperature	9	$^{\circ}\mathrm{C}$	(*)

3.3. Feedstock specification

3.3.1. Coal

The main fuel of the different plants is bituminous coal type, with the characteristics and properties as shown in the following Table 3.

The reference coal is an Eastern Australian internationally traded open-cast coal, assumed delivered from a port to the plant site by unit trains.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter B - General information Sheet: 9 of 36

Table 3. Bituminous Eastern Australian Coal characteristics

Proximate Analysis, wt% - As Received		
Inherent moisture	9.50	
Ash	12.20	
Coal (dry, ash free)	78.30	
Total	100.00	

Ultimate Analysis, wt% - Dry, ash free		
Carbon	82.50	
Hydrogen	5.60	
Oxygen	8.97	
Nitrogen	1.80	
Sulphur	1.10	
Chlorine	0.03	
Total	100.00	

Ash analysis, wt%	
SiO_2	50.0
Al_2O_3	30.0
Fe_2O_3	9.7
CaO	3.9
TiO_2	2.0
MgO	0.4
Na ₂ O	0.1
K_2O	0.1
P_2O_5	1.7
SO_3	1.7

HHV (As Received), MJ/kg (*)	27.06
LHV (As Received), MJ/kg (*)	25.87
Grindability, Hardgrove Index	45
Ash Fusion Temperature at reduced atm., °C	1350

^(*) based on Ultimate Analysis, but including inherent moisture and ash.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter B - General information

Date: January 2014

Sheet: 10 of 36

3.3.2. Natural Gas

Natural gas is used as start-up or plant back-up fuel and delivered to the plant battery limits from a high pressure pipeline.

The main characteristics of the natural gas are shown in the following Table 4.

Table 4. Natural Gas characteristics

Natural Gas analysis, vol%		
Methane	89.0	
Ethane	7.0	
Propane	1.0	
Butane	0.1	
Pentane	0.01	
CO_2	2.0	
Nitrogen	0.89	
Total	100.00	

HHV, MJ/kg	51.473
LHV, MJ/kg	46.502

Conditions at plant B.L.	
Pressure, MPa	7.0

3.3.3. <u>Biomass</u>

Wood chips biomass with the following characteristics is considered for Case 2.1, which makes co-firing of biomass and coal.

Table 5. Clean virgin wood, wood chips characteristics

Fuel As Received	
LHV, MJ/kg	7.3
Total moisture, % wt	50
Volatiles (Moisture and ash free basis), %wt	80
Bulk density, kg/m ³	250-350
Ash softening point (reducing conditions), °C	> 1100

Sheet: 11 of 36

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information

Dry solid analysis, wt%	
Carbon	50.0
Hydrogen	5.4
Oxygen	42.2
Nitrogen	0.3
Sulphur	0.05
Ash	2.0
Chlorine	0.02
Total	100.00

Ash analysis, wt%	
SiO_2	15 – 50
${ m TiO_2}$	0.1 - 0.4
Al_2O_3	4.0 - 10.0
Fe_2O_3	1.0 - 4.0
MgO	1.0 - 5.0
CaO	20 - 30
Na ₂ O	0.5 - 2.3
K ₂ O	1.0 - 6.5
P_2O_5	0.5 - 2.5
MnO	1.0 - 3.0
SO_3	0.5 - 2.0
Alkaline in ash (weak acid soluble)	
(Na + K)	≤ 4.5

3.3.4. <u>Limestone</u>

A reactive, amorphous limestone, whose composition is shown in the below table, is assumed for the design of Flue Gas Desulphurization based on wet scrubbing technology.

	% by weight
CaCO ₃	95.0
$MgCO_3$	1.5
Inerts	2.5
Moisture	1.0

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 12 of 36

3.4. Products and by-products

The main products and by-products of the study cases are listed here below, together with their main characteristics.

3.4.1. Electric Power

Grid Connection Voltage: 380 kV
Electricity Frequency: 50 Hz
Fault duty: 50 kA

3.4.2. Carbon Dioxide

Plants are generally designed for a capture rate not less than 90%.

CO₂ is delivered from the plant site to the pipeline at the following conditions and characteristics.

Table 6. CO₂ characteristics

CO ₂ conditions at plant B.L.	
Pressure, MPa	11
Maximum Temperature, °C	30

CO ₂ maximum impurities, vol. Basis ⁽⁰⁾	
H_2	4% (1,3)
N_2 / Ar	4% (2,3)
CO	0.2% (5)
H_2O	50 ppm ⁽⁴⁾
O_2	100 ppm ⁽⁶⁾
H_2S	20 ppm ⁽⁷⁾
SO_X	100 ppm ⁽⁵⁾
NO_X	100 ppm ⁽⁵⁾

Based on information available in 2012 on the requirements for CO₂ transportation and storage in saline aquifers

- Total non-condensable content $(N_2 + O_2 + H_2 + CH_4 + Ar)$: maximum 4% vol. Basis.
- Water specification is to ensure there is no free water and hydrate formation.
- (5) H₂S, SO₂, NO₂ and CO limits are set from a health and safety perspective.

Hydrogen concentration to be normally lower to limit loss of energy and economic value. Further investigation is required to understand hydrogen impact on supercritical CO₂ behaviour.

The limits on concentrations of inerts are to reduce the volume for compression, transport and storage and limit the increase in Minimum Miscibility Pressure (MMP) in Enhanced Oil Recovery (EOR).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information

O₂ limit is tentative in view of the lack of practical experience on effects of O₂ in underground reservoirs. EOR may require tighter specification.

Sheet: 13 of 36

(2)

 $_{2}^{(7)}$ H₂S specification is for a corrosion and pipeline integrity perspective.

3.4.3. Sulphur (Gasification-based cases)

Sulphur characteristics at IGCC plant B.L. are the following:

3.4.4. Hydrogen (Gasification for H_2 production cases)

Hydrogen characteristics are the following:

 $\begin{array}{ccc} H_2 & & 99.5 \ \% \ vol. \ (min) \\ CO + CO_2 & & 10 \ ppm \ max \\ CO & & 10 \ ppm \ max \end{array}$

 H_2S , HCl, COS, HCN, NH₃ free $N_2 + Ar$ balance

Pressure at B.L. about 50 barg

Temperature 40 °C

3.5. Environmental limits

The environmental limits set up for each case are outlined hereinafter.

3.5.1. Gaseous emissions

The overall gaseous emissions from the plant do not exceed the following limits, as per EU directives 2010/75/EU (Part 2 of Annex V):

	SC PC based cases (1)	IGCC based cases (2)
NO _X (as NO ₂)	$\leq 150 \text{ mg/Nm}^3$	$\leq 50 \text{ mg/Nm}^3$
SO_X (as SO_2)	$\leq 150 \text{ mg/Nm}^3$	$\leq 10 \text{ mg/Nm}^{3, (4)}$
CO	-	$\leq 100 \text{ mg/Nm}^3$
Particulate	$\leq 10 \text{ mg/Nm}^{3 (3)}$	$\leq 10 \text{ mg/Nm}^{3, (4)}$

Note: (1) Emission expressed in mg/Nm³ @6% O₂, dry basis, applicable to the air fired SC PC plants only; for the oxy-combustion based power plant this is not relevant, due to the very

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information

low flowrate of the inerts gas stream discharged to atmosphere. Regulatory approach for this plant type not yet defined.

Sheet: 14 of 36

(2) @ 15% O₂ volume dry

- (3) 20 mg/Nm³ for biomass
- (4) Not included in the EU directive as assumed negligible in gas turbine plants

3.5.2. <u>Liquid effluent</u>

Characteristics of waste water discharged from the plant comply with the standard limits included in the EU directives currently in force.

The main continuous liquid effluent is the blow-down from the cooling towers (base option). Effluent from the Waste Water Treatment is generally recovered and recycled back to the plant as process water, where possible, or discharged to the final receiver.

3.5.3. Solid wastes

The solid wastes of the gasification-based cases are:

- Slag, which is potentially saleable to the building industry
- Filter cake, which contains some toxic compounds.

The solid wastes of the SC PC-based cases are:

- Bottom ash
- Fly Ash.

Other potential solid wastes are typical industrial plant waste (e.g. sludge from Waste Water Treatment etc.).

3.5.4. <u>Noise</u>

All the equipment of the plant are designed to obtain a sound pressure level of 85 dB(A) at 1 meter from the equipment.

3.6. SC-PC-based cases: key features

3.6.1. <u>Capacity</u>

The nominal net power output of the reference SC PC plant (Case 1) without CO₂ capture is around 1,000 MWe, which is a typical size for new supercritical coal fired power plants.

The fuel thermal input of plant with CO_2 capture (Case 2) is same the reference case without capture.

3.6.2. *Unit arrangement*

Unit 1000 Feedstock and solid Storage and Handling

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 15 of 36

Chapter B - General information

Unit 2000 Boiler Island
Unit 2050 DeNOx Plant
Unit 2100 FGD and Gypsum Handling Plant
Unit 3000 Steam Cycle
Unit 4000 CO₂ Amine Absorption (Case 2 only)
Unit 5000 CO₂ compression and dehydration (Case 2 only)
Unit 6000 Utility and offsite

3.6.3. Minimum turndown

The general minimum stable operating load of the boiler is 30% as far as duty is concerned.

The minimum stable load of the Steam Turbine is around 20% as far as electrical generation is concerned. The Steam Turbine can stably maintain such load if the rated steam conditions are maintained.

The minimum stable operating load of the CO₂ capture plant is around 30% of the flue gases entering the unit.

Therefore, the expected overall plant minimum turndown is around 30%. No additional facilities or equipment are considered for further lowering this minimum turndown.

For further details on minimum plant turndown and plant capability to operate flexible and efficiently at part load reference shall be made to IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

3.7. Oxy SC PC-based cases: key features

3.7.1. Capacity

Boiler capacity is set in order to maintain same thermal input as the reference SC PC plant without capture (Case 1).

3.7.2. <u>Unit Arrangement</u>

Unit 900	Air Separation Unit
Unit 1000	Feedstock and solid Storage and Handling
Unit 2000	Boiler Island
Unit 2100	FGD and solid by-product Handling Plant
Unit 3000	Steam Cycle
Unit 4000	Cryogenic Purification and Compression Unit
Unit 6000	Utility and offsite

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 16 of 36

3.7.3. Minimum turndown

The general minimum stable operating load of the boiler is 30% as far as duty is concerned.

The minimum stable load of the Steam Turbine is around 20% as far as electrical generation is concerned. The Steam Turbine can stably maintain such load if the rated steam conditions are maintained.

The minimum stable operating load of the Cryogenic Purification Unit for CO₂ capture is expected to be around 30% on the basis of the flue gases inlet flowrate.

Therefore, the expected overall plant minimum turndown is around 30%. No additional facilities or equipment are considered for further lowering this minimum turndown.

For further details on minimum plant turndown and plant capability to operate flexible and efficiently at part load reference shall be made to IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

3.8. Gasification-based cases: key features

3.8.1. Capacity

The gasification capacity, i.e. the coal flow rate of the IGCC Complex is fixed to match the thermal requirements of two commercially available gas turbines (F-Class equivalent) in the combined cycle, at the reference ambient temperature of the study.

For the hydrogen and power co-production cases, the gasification capacity is left unchanged, while the combined cycle or the boiler island require lower amount of syngas (lower power production). In this case, excess syngas is used to generate high-purity hydrogen.

Air Separation Unit (ASU) capacity is defined by oxygen requirements of the IGCC Complex (mainly the gasifiers requirement plus the marginal consumption of Sulphur Recovery Unit). ASU is also requested to produce nitrogen at different levels of pressure to be supplied to the IGCC Complex.

Sulphur Recovery Unit consists of two trains at 100% capacity. The Tail Gas Treatment consists of a Hydrogenation step plus gas scrubbing sections and a dedicated compressor to recycle the stream back to the AGR Unit. This Unit is designed for 100% of the max tail gas production of the SRU.

3.8.2. Unit Arrangement

Unit 900 Feedstock and solid Storage and Handling

Unit 1000 Gasification

Unit 2100 Air Separation Unit (ASU)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 17 of 36

Unit 2200	Syngas Treatment and Conditioning Line
Unit 2300	Acid Gas Removal (AGR)
Unit 2400	Sulphur Recovery Unit (SRU) & Tail Gas Treatment (TGT)
Unit 2500	CO ₂ Compression and Dehydration
Unit 2600	PSA (hydrogen production cases)
Unit 3000	Combined Cycle (or Steam Cycle)
Unit 4000	Utility & offsite

3.8.3. Minimum turndown

The Gasification Unit is composed of two gasifiers, allowing to operate at low loads with respect to the IGCC design capacity, the minimum turndown of the single gasifier being 50%.

Most other Units are based on twin trains (50% capacity each) thus limiting the events causing the shutdown of the entire IGCC Complex or of the entire Gasification Island.

The minimum stable operating load of each Gas Turbine on syngas is 20% as far as electrical generation is concerned, thus corresponding to 10% of the IGCC capacity. In practice, the minimum load at which the Gas Turbine is able to operate, still meeting the environmental limits, in particular NOx and CO emissions, is around 60%. i.e. 30% of the overall IGCC capacity.

Therefore, the expected overall plant minimum turndown is around 30%. No additional facilities or equipment are considered for further lowering this minimum turndown.

For further details on minimum plant turndown and plant capability to operate flexible and efficiently at part load reference shall be made to IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

3.9. Availability

The table hereafter reports the expected maximum availability (average yearly load factor) assumed for each study case, along with the availability curve for the first years of operation.

Plant type	Year	Average Load factor
SC PC based	1 st year of operation	65%
	2 nd year of operation	85%
	3 rd – 25 th year of operation	90%
Gasification based	1 st year of operation	60%
	2 nd year of operation	80%
	3 rd – 25 th year of operation	85%

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 18 of 36

3.10. Cost estimating bases

The following sections describe the main cost estimating bases used to make the economic assessment of the various cases.

3.10.1. Total Capital Requirement

The Total Capital Requirement (TCR) includes:

- Total Plant Cost (TPC)
- Interest during construction
- Spare parts cost
- Working capital
- Start-up costs
- Owner's costs.

The estimate is in euro (€), based on 2Q2013 price level.

3.10.2. Total Plant Cost

The Total Plant Cost (TPC) is the installed cost of the plant including contingencies.

The TPC is broken down into the main process units and, for each unit, split into the following items:

- Direct materials
- Construction
- Other costs
- EPC services
- Contingency.

3.10.3. Estimate accuracy

Estimate accuracy is in the range of +35%/-15% (AACE Class 4).

3.10.4. Contingency

A project contingency is added to the capital cost to give a 50% probability of a cost over-run or under-run.

For the accuracy considered in this study, FW's view is that contingency should be in the range of 10-15% of the total plant cost. 10% is assumed for this study for all the different units of the plant, for consistency with the other IEAGHG studies.

3.10.5. Design and construction period

Plant design and construction period and curve of capital expenditure during construction depend on the plant type, as detailed in the following table.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 19 of 36

	SC PC cases	Gasification cases
Construction period (1)	3 years	4 years
Curve of capital expenditure		
<u>Year</u>	<u>Investment cost %</u>	
1	20	15
2	45	40
3	35	30
4	-	15

Note: (1) Starting from issue of Notice to Proceed to the EPC contractor

3.10.6. Financial leverage (debt / invested capital)

All capital requirements are treated as debt, i.e. financial leverage equal to 100%.

3.10.7. Discount rate

Discount cash flow calculations are expressed at a discount rate of 8%.

3.10.8. <u>Interest during construction</u>

Interest during construction is calculated from the plant construction schedule and interest rate is assumed same as the discount rate. Expenditure is assumed to take place at the end of each year and interest during construction payable in a year is calculated based on money owed at the end of the previous year.

3.10.9. Spare parts cost

0.5% of the TPC is assumed to cover spare part costs. It is assumed that spare parts have no value at the end of the plant life due to obsolescence.

3.10.10. Working capital

Working capital includes inventories of fuel and chemicals (materials held in storage outside of the process plants). Storage for 30 days at full load is considered for coal, chemicals and consumables.

It is assumed that cost of these materials is recovered at the end of the plant life.

3.10.11. <u>Start-up cost</u>

Start-up costs consist of:

- 2 percent of TPC, to cover modifications to equipment that needed to bring the unit up to full capacity.
- 25% of the full capacity fuel cost for one month, to cover inefficient operation that occurs during the start-up period.
- Three months of operating and maintenance labour costs, to include training.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 20 of 36

 One month of catalysts, chemicals and waste disposal and maintenance materials costs.

3.10.12. Owner's cost

7% of the TPC is assumed to cover the Owner's cost and fees.

Owner's costs cover the costs of feasibility studies, surveys, land purchase, construction or improvement to roads and railways, water supply etc. beyond the site boundary, owner's engineering staff costs, permitting and legal fees, arranging financing and other miscellaneous costs. Owner's costs are assumed to be all incurred in the first year of construction, allowing for the fact that some of the costs would be incurred before the start of construction.

3.10.13. Insurance cost

0.5% of the TPC is assumed to cover the insurance cost.

3.10.14. Local taxes and fees

0.5% of the TPC is assumed to cover the Local taxes and fees.

3.10.15. <u>Decommissioning cost</u>

For fossil fuel and CCS plants the salvage value of equipment and materials is normally assumed to be equal to the costs of dismantling and site restoration, resulting in a zero net cost of decommissioning.

3.11. Operating and Maintenance costs

Operating and Maintenance (O&M) costs include:

- Chemicals
- Catalysts
- Solvents
- Raw Water make-up
- Direct Operating labour
- Maintenance
- Overhead Charges.

O&M costs are generally allocated as variable and fixed costs.

<u>Variable costs</u> depend on the plant operating load. They can be expressed as ϵ /kWh or ϵ /h.

<u>Fixed operating costs</u> are essentially independent from the plant operating load. They can be expressed as ϵ/y .

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 21 of 36

3.11.1. Variable costs

Consumables are the principal components of variable O&M costs. These include feedstock, water, catalysts, chemicals, solid waste disposal and other.

Costs are calculated on the basis of standard coal prices. Reference values for coal and main consumables prices are summarised in the table below.

Item	Cost
Coal, €/GJ (LHV)	2.5
Biomass, €/t dry	100
Limestone, €/t	20
Lime, €/t	45
Raw process water, €/m ³	0.2
Ash, slag, gypsum and sulphur net disposal cost	0
CO ₂ transport and storage, €/t CO ₂ stored ⁽¹⁾	10
CO ₂ emission cost, €/t CO ₂ emitted	0

(1) Transport and storage cost as specified by IEAGHG, in accordance with the range of costs information in the European Zero Emissions platform's report "The costs of CO₂ capture, transport and storage", published in 2009. Sensitivity to transport and storage costs are assessed to cover lower or negative cost for EOR, due to the revenue for sale of CO₂, or higher cost, in case of off shore storage with long transport distances.

3.11.2. Fixed costs

The fixed costs of the different plants include the following items:

Direct labour

The yearly cost of the direct labour is calculated assuming, for each individual, an average cost equal to $60,000 \in /y$. The number of personnel engaged is estimated for each plant type, considering a 5 shift working pattern.

Administrative and support labour

All other company services not directly involved in the operation of the plant fall in this category, such as:

- Management
- Administration
- Personnel services
- Technical services

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 22 of 36

- Clerical staff.

These services vary widely from company to company and are also dependent on the type and complexity of the operation.

Administrative and support labour is assumed to be 30% of the direct labour and maintenance labour cost (see below).

Maintenance

A precise evaluation of the cost of maintenance would require a breakdown of the costs amongst the numerous components and packages of the plant. Since these costs are all strongly dependent on the type of equipment selected and statistical maintenance data provided by the selected supplier, this type of evaluation of the maintenance cost is premature at study level.

For this reason the annual maintenance cost of the plant is normally estimated as a percentage of the total plant cost of the facilities, as shown in the following:

SC PC based cases 1.5% Gasification based cases 2.5%

Maintenance labour is assumed to be 40% of the overall maintenance cost.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 23 of 36

4. Basic Engineering Design Data (BEDD)

Scope of the Basic Engineering Design Data is the definition of the common bases used for the design of the process and utility units of the different study cases, as listed in the following.

SC PC power plant with / without post-combustion capture

Process Units, including:

- Storage and Handling of solid materials, including:
 - Coal storage and handling
 - Ash and solid removal and handling
 - FGD sorbent storage and handling
 - FGD by-product storage and handling
- Boiler Island, including
 - Coal mills
 - ID fan
 - Particulate removal system (ESP)
 - Flue gas stack
- Flue Gas Desulphurisation, including gas-gas heat exchanger
- DeNOx plant
- CO₂ capture plant (only for case 2)
- CO₂ compression and drying (only for case 2)

Power Island, including:

- Steam Turbine and condenser;
- Preheating Line;
- Electrical Power Generation, including main power transformers.

Utility and Offsite Units, providing utility fluids to other units, including:

- Primary Cooling Water (cooling tower) and Machinery Cooling Water systems;
- Cooling Water/Machinery Cooling Water Systems;
- Demineralized, Condensate Recovery, Plant and Potable Water Systems;
- Back-up fuel system;
- Plant/Instrument Air Systems;
- Waste Water Treatment;
- Fire fighting System;
- Chemicals;
- Interconnecting (instrumentation, DCS, piping, electrical substations).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 24 of 36

SC PC oxy-combustion power plant

Process Units, including:

- Storage and Handling of solid materials, including:
 - Coal storage and handling
 - Ash and solid removal and handling
 - FGD sorbent storage and handling
 - FGD by-product storage and handling
- Boiler Island
 - Coal mills
 - Flue gas fans
 - Particulate removal system (ESP)
 - Heat Recovery system
- Air Separation Unit
- Flue Gas Desulphurisation
- CO₂ purification and compression

Power Island, including:

- Steam Turbine and condenser;
- Preheating Line;
- Electrical Power Generation, including main power transformers.

Utility and Offsite Units, providing utility fluids to other units, including:

- Primary Cooling Water (cooling tower) and Machinery Cooling Water systems;
- Demineralised, Condensate Recovery, Plant and Potable Water Systems;
- Back-up fuel system;
- Plant/Instrument Air Systems;
- Waste Water Treatment;
- Fire fighting System;
- Chemicals:
- Interconnecting (instrumentation, DCS, piping, electrical substations).

<u>Coal IGCC plant with pre-combustion capture (power only cases)</u>

Process Units, including:

- Coal Handling and Storage;
- Gasification Island, including coal milling and drying (if applicable);
- Air Separation Unit;
- Syngas Treatment and Conditioning Line;
- Acid Gas Removal Unit;
- Sulphur Recovery and Tail Gas Treatment;
- CO₂ Compression and Drying.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 25 of 36

Power Island, including:

- Gas Turbines;
- Heat Recovery Steam Generators;
- Steam Turbine;
- Electrical Power Generation, including main power transformers.

Utility and Offsite Units, providing utility fluids to other units, including:

- Primary Cooling Water (cooling tower) and Machinery Cooling Water systems;
- Demineralised, Condensate Recovery, Plant and Potable Water Systems;
- Back-up fuel system;
- Plant/Instrument Air Systems;
- Waste Water Treatment;
- Fire fighting System;
- Solid Handling;
- Sulphur Storage and Handling;
- Chemicals;
- Flare system
- Interconnecting (instrumentation, DCS, piping, electrical substations).

Coal gasification plant for power and hydrogen co-production

Process Units, including:

- Coal Handling and Storage;
- Gasification Island, including coal milling and drying (if applicable);
- Air Separation Unit;
- Syngas Treatment and Conditioning Line;
- Acid Gas Removal Unit;
- Pressure Swing Adsorption (PSA) unit
- Sulphur Recovery and Tail Gas Treatment;
- CO₂ Compression and Drying.

Power Island, including:

- Gas Turbines and Heat Recovery Steam Generators (combined cycle alternatives);
- PSA off-gas fired boilers (boiler alternative)
- Steam Turbine;
- Electrical Power Generation, including main power transformers.

Utility and Offsite Units, providing utility fluids to other units, including:

- Primary Cooling Water (cooling tower) and Machinery Cooling Water systems;
- Demineralised, Condensate Recovery, Plant and Potable Water Systems;
- Back-up fuel system;
- Plant/Instrument Air Systems;

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information

• Waste Water Treatment;

- Fire fighting System;
- Solid Handling;
- Sulphur Storage and Handling;
- Chemicals;
- Flare system
- Interconnecting (instrumentation, DCS, piping, electrical substations).

Sheet: 26 of 36

4.1. Units of measurement

The units of measurement are in SI units.

4.2. Plant Battery Limits (main)

4.2.1. Electric Power

High voltage grid connection: 380 kV Frequency: 50 Hz Fault duty: 50 kA

4.2.2. Process and utility streams

SC PC power plants with / without post-combustion capture

- Coal
- FGD sorbent/FGD by-product/ashes
- Natural gas
- Cooling tower make-up water
- Waste water streams, including cooling tower blow-down
- Plant/Raw/Potable water
- CO₂ rich stream (only in case 2).

SC PC oxy-combustion power plants

- Coal
- FGD sorbent/FGD by-product/ashes
- Natural gas
- Cooling tower make-up water
- Waste water streams, including cooling tower blow-down
- Plant/Raw/Potable water
- CO₂ rich stream.

Gasification plants with pre-combustion capture

- Coal
- Limestone (if applicable)
- Natural gas

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 27 of 36

- Cooling tower make-up water
- Waste Water streams, including cooling tower blow-down
- Gasification solid wastes
- Plant/Raw/Potable water
- Sulphur product
- CO₂ rich stream
- Hydrogen (hydrogen production cases).

4.3. Utility and service fluids characteristics/conditions

Following sections list main utilities and service fluids generated and distributed inside the plant.

4.3.1. <u>Cooling Water</u>

The cooling water system is based on natural draft cooling tower.

The cooling water system sensitivity analysis considers either once through seawater cooling system or dry air cooling system.

Main cases - Natural draft cooling tower

Cooling water approach to wet bulb temperature:	7 °C
Supply temperature	
- normal:	15 °C
- maximum:	36 °C

<u>Primary system</u>

,	Source	:	raw wate	er in closed	loop from	Natural Draft	t Cooling towers.

Service: for steam turbine condenser.

Operating pressure at condenser inlet:	3.0 bar
Mechanical design pressure:	6.0 bar
Maximum allowable ΔP for condenser:	0.5 bar
Mechanical design temperature:	50°C
Maximum temperature difference at condenser:	11°C
Turbine condenser minimum ΔT :	3°C
Turbine condenser conditions	
Temperature	29°C

Secondary system

Pressure

Source: raw water in closed loop from Natural Draft Cooling tower (same as

4 kPa

per condenser)

Service : for machinery cooling (different ΔP at users)

Operating pressure at User: 4.0 bar

FOSTERWHEELER Revision no.: Final **IEAGHG** January 2014 Date: CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Sheet: 28 of 36 Chapter B - General information Mechanical Design pressure: 7.0 bar Max allowable ΔP for Users: 1.5 bar Maximum temperature difference at users: 11°C Mechanical design temperature: 50°C **Seawater cooling (sensitivity cases)** Primary system Source : sea water in once through system Service : for steam turbine condenser and CO₂ compression unit. Type : clear filtered and chlorinated, without suspended solids and organic matter. Salinity: 22 g/l Supply temperature: average supply temperature (on yearly basis): 12°C max supply temperature (average summer): 14°C min supply temperature (average winter): 9°C max allowed sea water temperature increase: 7°C

Return temperature:

average return temperature: 19°C 21°C max return temperature: 50°C Design temperature: Operating pressure at condenser inlet: 0.5 barg Design pressure: 4.0 barg Max allowable ΔP for Users: 0.5 bar Turbine condenser minimum ΔT : 5°C Turbine condenser conditions **Temperature** 28°C Pressure 3.8 kPa

Secondary system

: demineralised water stabilized and conditioned – seawater cooled Source

: for machinery cooling and for all plant users other than steam turbine condenser and CO₂ compression exchangers

Supply temperature:

- Average supply temperature	19°C
- max supply temperature:	21°C
- max allowed temperature increase:	11°C
Design temperature:	50 °C
Operating pressure at Users:	3.0 barg

Revision no.: Final **IEAGHG**

Date: January 2014 CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter B - General information Sheet: 29 of 36

> Design pressure: 7.0 barg Max allowable ΔP for Users: 1.5 bar

Air Cooling System (sensitivity cases)

Primary system

No primary cooling water is available at all. Air only is used as primary cooling medium.

The temperature difference considered between the inlet condensing steam and the ambient air in the steam condenser is 25 °C.

The temperature difference between hot fluid exit temperature and ambient air for service other than steam condenser is 10°C.

Secondary system

: demineralised water stabilized and conditioned – air cooled Source

: for machinery cooling and for all plant users where air cooling is not Service applicable

Supply temperature:

38°C
18°C
8°C
50 °C
3.0 barg
7.0 barg
1.5 bar

4.3.2. **Waters**

Potable water

Source: from grid potable water Type

Operating pressure at grade (min): 0.8 barg Design pressure: 5.0 barg Operating temperature: **Ambient** Design temperature: 38°C

Raw water

Source: from grid raw water Type

Operating pressure at grade (min): 0.8 barg Design pressure: 5.0 barg

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 30 of 36

Chapter B - General information

Operating temperature:

Design temperature:

38°C

Plant water

Source: from storage tank of raw water

Type: raw water

Operating pressure at grade:3.5 bargDesign pressure:9.0 bargOperating temperature:AmbientDesign temperature:38°C

Demineralised water

Type : treated raw water

Operating pressure at grade (min):

Design pressure:

Operating temperature:

Design temperature:

38°C

Characteristics:

- pH		$6.5 \div 7.0$
- Total dissolved solids	mg/kg	0.1 max
- Conductance at 25°C	μS	0.15 max
- Iron	mg/kg as Fe	0.01 max
- Free CO ₂	mg/kg as CO ₂	0.01 max
- Silica	mg/kg as SiO ₂	0.015 max

4.3.3. <u>Steam, Steam Condensate and BFW</u>

SC PC-based cases

<u>Steam</u>

The main characteristics of the Steam at Boiler B.L. are shown in the following table.

 Table 7. SC PC cases: steam conditions

Main HP steam			
	Pressure	bar	270
	Temperature	°C	600
Cold reheat			
	Temperature	°C	363
Hot reheat			
	Pressure	bar	60
	Temperature	°C	620

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 31 of 36

Boiler Feed Water

The Boiler Feed Water is available at Boiler B.L. at 290°C.

Gasification-based cases

Steam

Steam conditions are highly dependent on the gasification technology, in particular HP steam generation level. Steam conditions summarised below refer to the Process Units. Inside Power Island the steam levels are different even if interconnected to the Process.

Table 8. Process Units steam conditions

	P	Pressure, barg		Temperature, °C	
	Max	Min	Design	Norm	Design
High Pressure (HP)	138	137	150	336	343
Nominal Pressure: 137 barg (GE)	130	137	130	330	343
High Pressure (HP)	135	130	145	332	340
Nominal Pressure: 130 barg (Shell)	155	130	143	332	340
Medium Pressure (MP)	43	40	47	256	270
Nominal Pressure: 40 barg	43	40	47	230	270
Low Pressure (LP)	8	6.5	12	175	250
Nominal Pressure: 6.5 barg	0	0.5	12	173	230

In the table above:

- The maximum value indicates the steam generation pressure of steam generators in the Process Units.
- The minimum pressure indicates the steam pressure available for steam users.
- The normal Temperature indicates the *saturation T* corresponding to the Max Pressure indicated.

Cold condensate

Type: condensate from Power Island (plus demineralised water make up)

Supply:

- Operating pressure at Users:	16 barg
- Design pressure:	22 barg
- Operating temperature:	21°C
- Design temperature:	50°C
- Fouling Factor:	$0.0001 \text{ h} ^{\circ}\text{C m}^{2}/\text{kcal}$

Return:

Operating pressure: 10 barg
Design pressure: 22.8 barg

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 32 of 36

Operating temperature: 95°C
 Design temperature: 130°C
 Fouling Factor: 0.0002 h °C m²/kcal

Steam condensate from process, utility and off site units

Steam condensate is flashed within process units whenever possible to recover steam and piped back to the condensate collection header.

The condensate collection header has the following characteristics:

Operating pressure for other Units B.L.:

Design pressure:

Operating temperature:

Design temperature:

250°C

Boiler Feed Water

The main characteristics of the Boiler Feed Water at Units B.L. are shown in the following table.

Table 9. Boiler Feed Water at units B.L.

		Pressure, barg Normal	Temperature, °C Normal
Boiler Feed Water,		15	160
Low Pressure	(BWL)	13	100
Boiler Feed Water,		60	160
Medium Pressure	(BWM)	00	100
Boiler Feed Water,		170	160
High Pressure	(BWH)	170	160

4.3.4. <u>Instrument and Plant Air</u>

Instrument air

Operating pressure

- normal:	7.0 barg
- minimum:	5.0 barg
Design pressure:	10.0 barg
Operating temperature (max):	40°C
Design temperature:	60°C
Dew point @ 7 barg:	-30°C

Plant air

Operating pressure:	7.0 barg
Design pressure:	10.0 barg
Operating temperature (max):	40°C
Design temperature:	60°C

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 33 of 36

4.3.5. Nitrogen (Gasification-based cases)

Low Pressure Nitrogen

Supply pressure:	6.5 barg
Design pressure:	11.5 barg
Supply temperature (min):	15°C
Design temperature:	70°C
Min Nitrogen content:	99.9 % vol

Medium Pressure Nitrogen (Syngas dilution)

Supply pressure:	30 barg
Design pressure:	35 barg
Supply temperature:	210°C
Design temperature:	240°C
Min Nitrogen content:	98 % vol

Medium Pressure Nitrogen (GT injection)

Supply pressure:	26 barg
Design pressure:	35 barg
Supply temperature:	210°C
Design temperature:	240°C
Min Nitrogen content:	98 % vol

High Pressure Nitrogen (Gasifier Transport System)

Supply pressure:	88 barg (*)
Design pressure:	93 barg (*)
Supply temperature:	80°C (*)
Design temperature:	110°C (*)
Min Nitrogen content:	99.99 % vol

(*) Assumed by FWI

4.3.6. <u>Oxygen</u>

Oxygen for the oxy-combustion boiler (Case 3)

Supply pressure:	0.6 barg
Design pressure:	3.5 barg
Supply temperature:	16°C
Design temperature:	50°C

Purity: 97.0% mol. O₂ min

2.0% mol Ar 1.0% mol N₂

 H_2O content: 1.0 ppm max CO_2 content: 1.0 ppm max

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 34 of 36

HC as CH₄ (number of times the content in ambient air): 5 max

Oxygen for the gasifier

Supply pressure: 46 barg (Shell)

75-80 bar (GE) (*)

Design pressure: 55 barg (Shell) (*)

99 barg (GE) (*)

Supply temperature: 25°C Design temperature: 70°C

Purity: 95.0% mol. O₂ min

3.5% mol Ar

1.5% mol N₂

 H_2O content: 1.0 ppm max CO_2 content: 1.0 ppm max HC as CH_4 (number of times the content in ambient air): 5 max

(*) Assumed by FWI

Oxygen for Sulphur plant

Supply pressure at IGCC BL: 5.0 barg Design pressure: 8.0 barg Supply temperature (min): 15° C Design temperature: 50°C Purity: 95% mol. O_2 min

4.3.7. Chemicals (main)

Caustic Soda

A concentrated (50% by wt) NaOH storage tank is foreseen and used to unload caustic from trucks.

Concentrated NaOH is then pumped and diluted with demineralised water to produce 20% by wt NaOH accumulated in a diluted NaOH storage tank.

The NaOH solution is distributed within plant with the following characteristics:

Supply pressure (at grade) at unit BL:3.5 bargDesign pressure:9.0 bargSupply temperature:AmbientDesign temperature:70°CSoda concentration:20% wt

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 35 of 36

Hydrochloric Acid

Two 20% by wt HCl storage vessels are foreseen and used to unload hydrochloric acid from trucks.

Concentrated HCl is pumped to users at following conditions:

Supply pressure (at grade) at unit BL:

Design pressure:

Supply temperature:

Design temperature:

Hydrochloric concentration:

2.5 barg

Ambient

70°C

20% wt

Chemical for DeNOx

Aqueous ammonia is used as reducing agent in this application with the following characteristics:

NH₄OH: with NH₃ concentration 25% by weight (commercial grade)

4.3.8. <u>Electrical System</u>

The voltage levels foreseen inside the plant area are as follows:

	Voltage level	Electric Frequenc		y Fault current	
	(V)	Wire	(Hz)	duty (kA)	
Primary distribution	$33000 \pm 5\%$	3	$50 \pm 0.2\%$	31.5 kA	
MV distribution and	$10000 \pm 5\%$	3	$50 \pm 0.2\%$	31.5 kA	
utilization	$6000 \pm 5\%$	3	$50 \pm 0.2\%$	25 kA	
LV distribution and	400/230V±5%	3+N	$50 \pm 0.2\%$	50 kA	
utilization					
Uninterruptible power	$230 \pm 1\%$ (from	2	$50 \pm 0.2\%$	12.5 kA	
supply	UPS)				
DC control services	110 + 10%-15%	2	-	-	
DC power services	220 + 10%-15%	2	-	-	

4.4. Plant Life

The Plant is designed for 25 years life.

4.5. Codes and standards

The design is of the process and utility units are in general accordance with the main International and EU Standard Codes.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter B - General information Sheet: 36 of 36

4.6. Software codes

For the design of the plant for the different study cases, three software codes have been mainly used:

- PROMAX v3.2 (by Bryan Research & Engineering Inc.): flue gas amine sweetening process for CO₂ removal.
- Gate Cycle v6.1 (by General Electric): Simulator of Power Island used for Steam Turbine and Preheating Line simulation.
- Aspen HYSYS v7.3 (by AspenTech): Process Simulator used for CO₂ compression and drying.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 1 of 49

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : BASIC INFORMATION ON SC PC PLANT ALTERNATIVES

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter C - Basic information on SC PC plant alternatives Date: January 2014

Sheet: 2 of 49

TABLE OF CONTENT

1.	Introduction				
2.	Bas	ic info	rmation of main process units	6	
	2.1.	Feedst	ock and solids handling	6	
		2.1.1.	Coal storage and handling		
		2.1.2.	Limestone storage and handling	6	
		2.1.3.	Fly and bottom ash collection and storage	7	
		2.1.4.	Gypsum storage and handling	7	
	2.2.	Boiler	Island	7	
	2.3.	Flue G	Gas Denitrification (DeNOx)	8	
	2.4.	Flue G	Sas Desulphurization (FGD) system	11	
		2.4.1.	Alstom's Wet Flue Gas Desulphurization (WFGD) system	12	
		2.4.2.	FWE Circulating Fluid Bed Scrubbing (CFBS) Technology	23	
		2.4.3.	Chiyoda Thoroughbred 121 (CT-201) Jet Bubbling Reactor process	:29	
		2.4.4.	High level assessment of FGD technology		
		2.4.5.	FGD technology for study cases development	33	
	2.5.	Mercu	ry removal systems	33	
	2.6.	CO ₂ ca	apture unit (Case 2)	36	
	2.7.	CO ₂ co	ompression and dehydration (Case 2)	38	
	2.8.	Steam	Cycle	39	
		2.8.1.	SC PC without CO ₂ capture (Case 1)	39	
		2.8.2.	SC PC with CO ₂ capture (Case 2)	41	
	2.9.	Utility	and Offsite units	43	
		2.9.1.	Cooling water		
		2.9.2.	Raw and Demineralised water		
		2.9.3.	Fire fighting system		
		2.9.4.	Instrument and plant air system		
		2.9.5.	Waste Water Treatment	44	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

 $Chapter \ C \ - \ Basic \ information \ on \ SC \ PC \ plant \ alternatives$

Date: January 2014

Sheet: 3 of 49

LIST OF ATTACHMENTS

ATTACHMENT A.1: Chiyoda Thoroughbred 121 (CT-201) process

ATTACHMENT A.2: Cansolv post-combustion capture technology

ATTACHMENT A.3: Cansolv SO₂ Scrubbing System

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter C - Basic information on SC PC plant alternatives

1. Introduction

The supercritical pulverised coal (SC PC) plant is a combination of several process units, different for each case of the study. Main process blocks of the plant are the following:

January 2014

Sheet: 4 of 49

- Feedstock and solids handling;
- Boiler island;
- Flue Gas Denitrification (DeNOx);
- Flue Gas Desulphurization (FGD);
- CO₂ capture unit;
- CO₂ compression and dehydration unit;
- Steam cycle.

Other ancillary utilities, such as cooling water, plant and instrument air, and demineralised water support the operation of these basic blocks.

The focus of this chapter C is to provide a general description of the major blocks of the SC PC power plant, which are generally common to the conventional air fired boiler-based cases of the study, while Chapters C.1 through C.5 of the report give basic engineering information for each alternative, with the support of specific heat and mass balances, utility consumption summaries, etc.

Table 1 lists the different air fired boiler-based cases, technically and economically assessed in this study. For some plant configurations, specific additional cases are developed to assess the performance and costs of biomass co-firing and near zero emission plants and to assess sensitivity to the cooling system; the list of these cases is shown in Table 2.

Case	Chapter	Description	Key features
Case 1 (reference)	C.1	SC PC boiler w/o CCS	 Generic state-of-art supercritical air-fired boiler Alstom wet limestone scrubbing FGD Primary cooling system: natural draft cooling tower
Case 2	C.2	SC PC boiler with CCS	 Generic state-of-art supercritical air-fired boiler Alstom wet limestone scrubbing FGD CANSOLV post-combustion capture Primary cooling system: natural draft cooling tower

Table 1. SC PC air fired boiler-based main study cases

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 5 of 49

Table 2. SC PC air fired boiler-based additional study cases

January 2014

Case	Chapter	Differences			
Case 2 – Biomass co-	Case 2 – Biomass co-firing				
2.1	C.3	Biomass co-firing (7.5% of fuel thermal input)			
Case 1 – Sensitivity to	Case 1 – Sensitivity to cooling water system				
1 - (SW)	C.4	Primary cooling system: sea water			
1 - (AC)		Primary cooling system: air cooling			
Case 2 – Sensitivity to cooling water system					
2 - (SW)	C.5	Primary cooling system: sea water			
2 - (AC)		Primary cooling system: air cooling			

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 6 of 49

2. Basic information of main process units

2.1. Feedstock and solids handling

2.1.1. Coal storage and handling

The scope of the feedstock receiving, handling and storage unit is to unload, convey, prepare, and store the coal delivered to the plant.

January 2014

The coal is delivered from a port to the plant site by train. The unloading is done by a wagon tipper that unloads the coal to the receiving equipment. Coal from each hopper is fed directly into a vibratory feeder and subsequently discharged onto a belt extractor. A conveyor and transfer tower system finally delivers the coal to the open stockyard (as-received coal).

The storage pile is designed to hold an inventory of 30 days of design consumption to allow the facility to hedge against delivery disruptions.

From the storage piles, the coal is discharged onto enclosed belt conveyors to two elevated feed hoppers, each sized for a capacity equivalent to two hours. Coal is discharged from the feed hoppers, at a controlled rate, and transported by belt feeders to two parallel crushers, each sized for 100% of the full capacity. The crushers are designed to break down big lumps and deliver a coal with lump size not exceeding 35 mm. Coal from the crushers is then transferred by enclosed belt conveyors to the day silos close to the boiler island (as-fired coal).

Two magnetic plate separators for removal of tramp iron and two sampling systems are supplied for both the as-received coal and the as-fired coal. The recovered iron from the separators is delivered to a reclaim pile, while data from the analyses are used to support the reliable and efficient operation of the plant.

Enclosed belt conveyors, storage hoppers and silos, flow control feeders and other equipment handling coal are potential sources of air pollution, due to dispersion of fine powder. To control the plant environment all these items of equipment are connected to bag filters and exhaust fans that permit the capture of any coal powder generated in the coal handling area.

2.1.2. <u>Limestone storage and handling</u>

Limestone is delivered to the plant site by train and stored in a rectangular stockyard building, equipped with stacking and reclaiming machines. The storage capacity is made to ensure the plant is capable of feeding at maximum capacity for approximately 30 days.

The limestone feeding system, from the storage building to the FGD unit, is of the same type as that employed for coal, with conveyors that bring limestone to the mills

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives Sheet: 7 of 49

for its pulverization and then to the FGD silos. The pulverization is useful to increase the surface area and consequently the sulphur removal efficiency of the FGD unit.

Date:

January 2014

2.1.3. Fly and bottom ash collection and storage

Fly ash is discharged from the collecting hoppers by star valves into a dense phase, pneumatic transport, which carries the fly ash to storage silos. From the silos, fly ash is loaded by gravity to trucks for transportation. Cyclones and exhaust filter bags are used to prevent air contamination.

The bottom ash is collected and crushed by a grinder to reduce the lump size, thus making handling and transportation easier with conveyors that bring ash to the storage.

2.1.4. Gypsum storage and handling

The gypsum (in paste form) is discharged onto belt conveyors and sent to the storage building, where it is distributed by a tripper. The minimum storage capacity is approximately 30 days.

The gypsum is reclaimed by a portal type reclaimer, able to cover the full length of the building, transported by belt conveyors and loaded onto trucks or rails through a continuous loader.

2.2. Boiler Island

The boiler technology considered in this study is a market based design pulverized coal fired supercritical boiler and it is treated as a package supplied by specialised vendors. SC-PC coal fired boilers of the size proposed for this study are commercially available and have reached significant operational experience in the past years.

The boiler is a single pass tower type supercritical boiler, with coal burners located in the lower portion of the furnace. Each burner is a low NOx type, with staging of the coal combustion to minimize NOx formation. Additional over-fire air is also introduced to cool rising combustion products to inhibit NOx formation.

Air from the forced draft fans is preheated by contact with exhaust gases through regenerative pre-heaters. Pre-heated primary air, in the temperature range of 55-90°C, conveys part of the coal from the pulveriser mills directly to the burners at the rate set by the combustion control. A portion of the primary air supply is routed around the air pre-heaters and used as tempering air in the coal pulverisers. Preheated primary air and tempering air are mixed at each pulveriser to obtain the desired pulveriser fuel-air mixture and transport the pulverized fuel to the coal burners.

Most of the air from the forced draft fans, after pre-heating against flue gases, is distributed to the wind boxes enclosing the burners. The air supplied to the burners is mixed with the pulverised coal in the throat of the burner, where coal is ignited and

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 8 of 49

burnt. The combustion process continues as the gases and unburned fuel move away from the burner up to the furnace shaft.

January 2014

Hot combustion products exit the furnace and pass through to the radiant and convective heating surfaces for steam generation and superheating, then to the regenerative heaters for air pre-heating and finally to the flue gas clean-up system, including ESP and FGD.

Feed water enters the economizer, recovers heat from the combustion gases and then passes to the water wall circuits enclosing the furnace. The fluid then passes through heating surface banks to convective primary superheat, radiant secondary superheat and then to convective final superheat. The steam finally exits the steam generator to flow to the HP steam turbine module. Returning cold reheat steam passes through the reheater and is returned to the MP steam turbine module.

The furnace bottom comprises hoppers with a clinker grinding system situated below it. Ash passes through the clinker grinder to the ash handling system. Fly ash is collected from the discharge hoppers on the economisers and the ESP.

2.3. Flue Gas Denitrification (DeNOx)

The combustion of fossil fuels produces nitrogen oxide (NO) and dioxide (NO₂), collectively called as NOx. The monoxide (NO) is the predominant specie. SCR is today the dominant technology for the control of NOx in power generation industry.

A SCR system is considered to reduce NO_X produced by the combustion below the emission limit of 150 mg/Nm^3 for Case 1 and to minimize the NOx content (less than 20 ppmv) at the inlet to the carbon capture unit for Case 2.

The SCR system is based on the selective reduction of nitrogen oxides with ammonia in the presence of a catalyst. The reducing agent is injected into the flue-gas upstream of the catalyst.

NOx conversion takes place on the catalyst surface at a temperature usually between 170 and 510 °C, by the following main reactions.

$$4 NO + 4 NH_3 + O_2 \leftrightarrow 4 N_2 + 6 H_2O$$

 $6 NO_2 + 8 NH_3 \leftrightarrow 7 N_2 + 12 H_2O$

The SCR system consists mainly of ammonia storage, evaporation and injection by means of a distribution grid and a SCR catalytic reactor, as schematically shown in Figure 1.

The honeycomb catalyst cells are contained in square catalytic baskets. The ceramic cells support the active catalyst components, V_2O_5 , TiO_2 and WO_3 . V_2O_5 is the most active but promotes also SO_2 oxidation to SO_3 and may be the cause of catalyst sintering at high temperature. Therefore, the catalyst formulation is different for different applications. As an alternative, plate-type catalysts can be used.

 $\mathrm{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 9 of 49

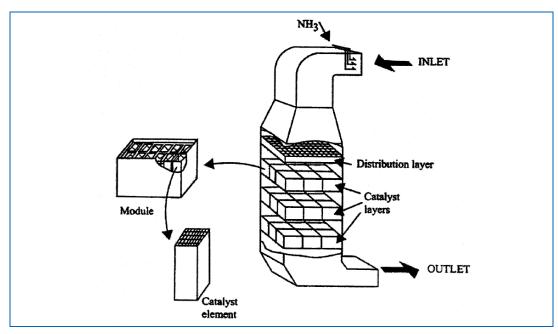


Figure 1 - SCR system

Cell size varies from 3 to 8 mm. Smaller cells are used in clean gas service; larger cells in dirty gas service. In the absence of SO₂, SCR can operate at low temperature, as low as 200°C. When SO₂ is present in the flue gas also SO₃ is present, in small quantities, but sufficient to react with excess NH₃ to form ammonium sulphate and bisulphate. The first is powdery but the second is sticky and can plug catalyst and equipment. The lower the temperature the higher the probability of sulphate/bisulphate formation. For this reason SCR in the presence of SO₂/SO₃ must operate at high temperature: minimum 300-310°C if SO₃ is less than 5 ppm; higher temperatures, 310-330°C for higher SO₃ concentration. To obtain these temperatures the SCR is normally located between the economizer and the air pre-heater (Figure 2).

In clean gas service the flue gas flow can be horizontal or vertical. In dirty gas service the flow is vertical downward and assisted by soot blowers between the catalyst layers to keep the catalyst clean.

As shown in Figure 2, catalyst temperature is kept under control at reduced capacities by by-passing a portion of the flue gas around the last economizer bank.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Eco. By-Pass
Duct
SCR
Reactor
Chamber

Date:

January 2014

Sheet: 10 of 49

Figure 2. SCR in conventional boilers

Two types of ammonia injection are in use. The first uses liquid ammonia, which is firstly vaporized, then mixed with air and fed to the distribution grid, inside the flue gas duct. The second system uses aqueous ammonia (25-30% NH₃), which is vaporised by means of steam, then mixed with air and heated up to 150°C into a dedicated steam heat exchanger or in a dedicated coil in the boiler duct. The diluted ammonia gas/air mixture is fed to the distribution grid. This second system is generally preferred because of the easier and safer handling and transportation of aqueous ammonia.

As an alternative, gaseous ammonia can be produced via the hydrolysis of urea (NH_2 CO NH_2) water solution by heating in a pressurised reactor (hydrolyser). Gases (NH_3 , CO_2 , and H_2O) exiting the hydrolyser are mixed with the hot conveying air, heated up to 150° C in a steam heat exchanger and then sent to the ammonia injection grid. Urea is a common fertilizer and can be transported and handled easily, being neither toxic nor explosive.

SCR systems are operated with a careful management of the catalyst and a close control of the NH₃ slip (excess NH₃). At start-up only 50-70% of the catalyst is loaded and NH₃ slip is kept at minimum (0.5 ppm) to meet the required NOx. With the aging of the catalyst the NH₃ slip is increased progressively up to a maximum, usually 1-3 ppm. At this point, normally 1-2 years after start-up, the remaining portion of the fresh catalyst is loaded and the NH₃ slip can go back to a minimum value and then be progressively increased to compensate for further catalyst aging until the end of the catalyst life.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 11 of 49

2.4. Flue Gas Desulphurization (FGD) system

A flue gas desulphurisation system is required downstream of the boiler in order to meet the environmental SOx limits of 150 mg/Nm^3 (6% volume O_2 , dry) for Case 1 and to reduce at the maximum extent the SO_X entering the carbon capture unit for Case 2, in order to minimize solvent degradation in the downstream absorber column.

Three different FGD systems were investigated during the course of the study, seeking the support of different specialized technology suppliers:

- Wet FGD, provided by Alstom;
- Wet bubbling FGD, provided by Chiyoda Corporation;
- Circulating fluid bed scrubbing FGD, provided by Foster Wheeler Energie GmbH (FWE).

Information received from each technology supplier is reported in the following sections 2.4.1, 2.4.2 and 2.4.3, limited to the information that suppliers have authorized for disclosure. A high level assessment of key features and the main advantages and disadvantages of each technology is also included in section 2.4.4.

It has to be noted that some differences may exist between figures in the vendors' information and those shown in the report of the specific study case. In fact, information in the attachments is based on preliminary stream properties and flowrates, as estimated during the early stages of the study; then, data have been slightly adjusted and optimised during study execution either by vendors or Foster Wheeler. Figures included in the report for each study case shall be considered as the final ones.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 12 of 49

2.4.1. Alstom's Wet Flue Gas Desulphurization (WFGD) system

Wet limestone scrubbers are the most widely used of all the FGD systems, accounting for about 80% of all the installed capacity. As a matter of fact, since putting into service the first full-scale wet flue gas desulfurization (WFGD) system in the U.S. in 1968, Alstom has installed or is constructing WFGD systems on nearly 60,000 MW of fossil-fired power generation facilities (over 90 plants) with sulphur content in the flue gas ranging from 0.2 to 4.5%.

The following sections provide an overview of Alstom's technology. Alstom decided to support the study by providing a specific set of information for two boiler-based cases, namely Case 1 (SC-PC without CO₂ capture) and Case 2 (SC-PC with CO₂ capture).

Process description

The unit description makes reference to the simplified scheme reported in Figure 3 and the preliminary process flow diagram shown in Figure 4.

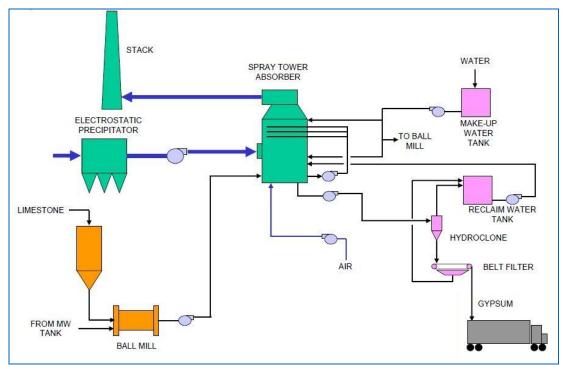


Figure 3. Wet FGD process diagram

Ground limestone reagent is used to react with SO_2 in the flue gas producing a gypsum (calcium sulphate dehydrate) by-product. Limestone is readily available in large quantities in most locations and can either be ground on site or provided preground (as in this case). Gypsum is widely used in the construction industry in the

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 13 of 49

form of gypsum board (wallboard) and in concrete mixtures. In the event that a market for gypsum does not exist in a particular location, the material can safely be land filled.

A spray tower absorber is used to accomplish the intimate gas/liquid contact necessary to achieve high removal efficiencies. Spray towers have high inherent reliability, low plugging potential and low pressure drop.

Flue gas enters the absorber where it passes upward through multiple levels of spray in a counter-current fashion. SO₂ and other acid gases (e.g. HCl, HF) are absorbed into the scrubbing slurry, which falls into the lower section of the vessel known as the reaction tank. Here finely ground limestone is added to neutralize and regenerate the scrubbing slurry. Oxygen in the form of compressed air is injected completing the scrubbing reaction and forming gypsum.

Gypsum slurry is discharged from the reaction tank to the primary and secondary dewatering equipment where the moisture content is reduced to levels required for land filling or commercial grade gypsum. The free flowing gypsum is then available for land filling or for shipment to end users.

In a wet limestone scrubbing system, a complex series of kinetic and equilibrium controlled reactions occur in the gas, liquid and solid phases. These reactions may be stated in an overall expression as:

$$CaCO_3 + SO_2 + 2 H_2O + 1/2 O_2 \rightarrow CaSO_4 \cdot 2H_2O + CO_2$$

 $(limestone) + (sulphur dioxide) + (water) + (oxygen) \rightarrow (gypsum) + (carbon dioxide)$

Absorption

The flue gas enters the spray tower near the bottom through an inlet zone of nickel alloy material that resists the corrosion that can take place at the wet/dry interface. Once in the absorber, the hot flue gas is immediately quenched as it travels upward counter-current to a continuous spray of process (recycle) slurry produced by multiple spray banks. The recycle slurry (a 15% concentration slurry of calcium sulphate, calcium sulphite, un-reacted alkali, inert materials, fly ash, and various dissolved materials) extracts the sulphur dioxide from the flue gas. Once in the liquid phase, the sulphur dioxide reacts with the dissolved alkali (calcium carbonate) to form dissolved calcium sulphite.

The quantity of recycle slurry needed to effectively remove the specified amount of SO₂ is determined by a parameter known as the liquid-to-gas ratio (L/G). The design L/G is provided by multiple spray levels, with each level being fed by a dedicated recycle pump, or one common pump, depending on the size of the absorber. The recycle pump feeds into a dedicated discharge pipe, from where the slurry is transported into the spray zone. Fixed speed pumps are used since in Alstom's configuration the flow-rate of each spray level is fixed. Each spray zone level

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 14 of 49

consists of a spray header containing nitride-bonded silicon carbide spray nozzles designed to provide the proper sized droplets for optimum SO_2 absorption. The nozzles are arranged to ensure uniform and complete spray coverage for proper gasto-liquid contact in the absorber. CFD modelling is used to optimize the nozzle positioning to ensure complete and uniform coverage. Two recycle levels for Case 1 and three recycle levels for Case 2 are foreseen in operation.

Reaction tank

The recycle slurry falls from the spray zone into the reaction tank that can be integral to the base of the absorber vessel, or it can be a separate tank below the absorber. This tank is sized to provide sufficient residence time (both liquid, for slurry desaturation and solids, for crystal growth) for all of the FGD chemical reactions to occur. Fresh limestone slurry is added to the reaction tank where it reaches equilibrium with the bulk of the recycle slurry prior to being returned to the spray banks via the recycle pumps. The reaction tank is equipped with side entry agitators to keep the slurry suspended and homogeneously stirred; agitators are designed to keep solid suspended even with one of them is out of operation and with any combination of recycle pumps in operation. Water lances are provided to free agitator's blades in the unlikely event of a complete and prolonged power failure resulting in slurry sedimentation into the tank.

Mist Elimination

Two-stage high efficiency chevron type mist eliminators of the roof type design made of polypropylene are provided. The first and second stages are washed in segments on a continuous basis from the front and back sides. The mist eliminator wash rates and pressures have been designed to provide effective rinsing of solids and chemically reactive liquids while keeping the carry-over to the minimum. Two mist eliminator wash pumps (one operating and one stand-by) are used to supply mist eliminator wash water.

Forced oxidation

To produce the fully oxidized by-product (at least 99% sulphite oxidation), single stage centrifugal blowers supply air to a sparging system in the reaction tank. The oxygen in the air converts the dissolved calcium sulphite (CaSO₃) to calcium sulphate (CaSO₄), which then crystallizes as CaSO₄·2H₂O, gypsum.

Alstom's oxidation air injection system utilizes lances located below the operating liquid level in the reaction tank. The oxidation air is quenched and saturated with a stream of water prior to discharge into the tank in order to prevent build-up in the lances. The oxidation lances are located in front of each agitator to ensure a complete and uniform air distribution into the slurry. The air header to the lances (after the water quench has been added) is FRP. Inside of the tank the lances are fabricated of duplex SS or FRP.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 15 of 49

Limestone receiving, storage and slurry preparation

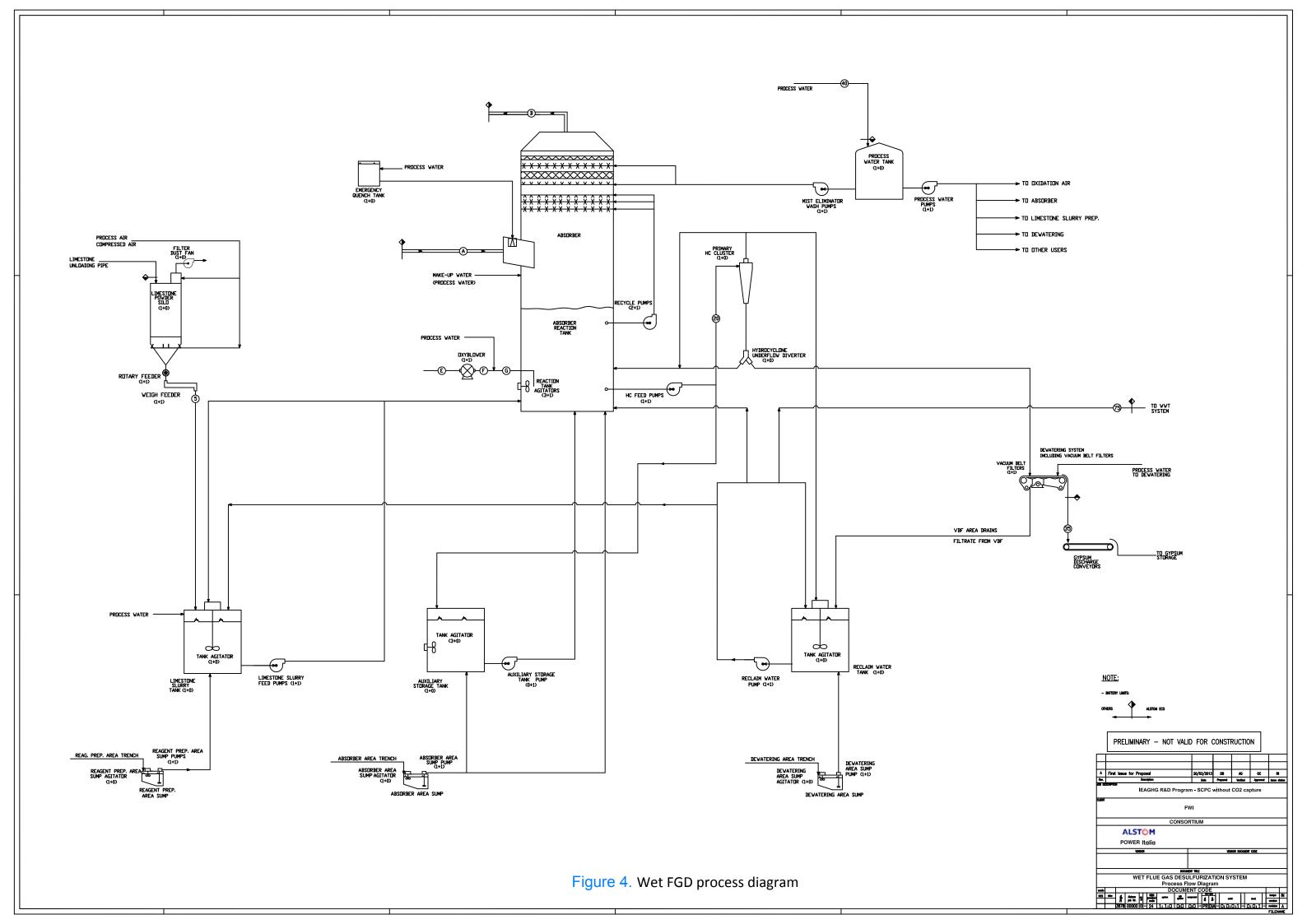
The limestone is stored in one cylindrical steel silo with a conical bottom. The silo discharges limestone to the reagent slurry preparation system via a rotary feeder and a weigh belt feeder through two separated hoppers (one discharging way is available as a spare).

January 2014

The system prepares limestone slurry, about 30% solid, to be fed to the absorber. Limestone is fed to a limestone slurry preparation tank. Reclaim water and/or process water is added to produce the required density of the slurry.

Reagent slurry is transported from the storage tank to the absorber through the use of one dedicated pump (spared). Reagent slurry is added to the reaction tank, at the base of the absorber, in response to local measurement of the pH.

The flow of reagent slurry to the reaction tank is controlled by a feed forward flow control loop based on flue gas flow at the absorber inlet (or boiler operating load) that is trimmed by a feedback control loop based on the reaction tank pH. The flue gas flow is indicative of the incoming SO₂ load that has to be removed and provides the coarse adjustment of the reagent flow control valve.


This allows the system to respond to sudden load changes quickly and with limited fluctuations. The pH signal provides the fine-tuning of the reagent flow control valve to keep the pH at the desired level during steady state operation.

Dewatering and gypsum handling

Gypsum slurry is extracted from the reaction tank and pumped to a cluster of hydro cyclone classifiers. The slurry is split into a low-density stream of fines (the overflow) and a high-density stream of coarse crystals (the underflow). In so doing, the hydro cyclones also classify the slurry chemically. Un-reacted limestone is relatively fine and end up in the overflow.

The product gypsum is a coarse material and follows the underflow. The hydro cyclone underflow product flows by gravity to the vacuum belt filters. The overflow is partially sent to a reclaim water tank (collecting a mixture of this stream with the filtrate from the vacuum belt filters) and partially recycled back to the absorber. A portion of the reclaim water is blown down from the system to limit the chloride content in the recycle slurry to the required value and also to avoid fines accumulation in the system.

The hydro cyclone underflow product is routed to vacuum belt filters that further dewater the product slurry to approximately 90% solids. A liquid ring vacuum pump provides the suction needed at the filter cloth. Extracted filtrate is routed to the reclaim water tank. The produced gypsum is discharged by the filter to the battery limits. Two vacuum filter systems are provided (one operating and one in stand-by).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives

nte: January 2014

Sheet: 17 of 49

Case 1 (SC-PC without CO₂ capture) data

Preliminary mass balance at WFGD battery limits

The following tables report the preliminary mass balance at WFGD battery limits for Case 1 (SC-PC without CO_2 capture), making reference to the process flow diagram shown in Figure 4.

		Stream A	Stream B	Stream E	Stream F	Stream G
		Raw Flue Gas To Absorbers	Clean Flue Gas From Absorbers	Air to Oxidation Blowers	Air from Oxidation Blowers	Quenched Oxidation Air to Absorber
Volum. Flow (wet) Mass Flow	[Nm ³ /h] [kg/h]	2.703.445 3.585.000	2.794.135 3.658.945	6.870 8.460	6.870 8.460	7.177 8.460
Volum. Flow (wet)	[Am ³ /h]	3.682.879	3.397.071	8.460	5.163	4.443
Temperature	[°C]	90	47	35	124	54
N2	[kg/h] [% vol.]	2.485.531 73,562	2.491.920 71,358	6.389 74,414	6.389 74,414	6.389 71,232
O2	[kg/h] [% vol.]	127.017 3,291 3,581	127.726 3,202 3,593	1.958 19,961	1.958 19,961	1.958 19,108
CO2	[% vol.]dry [kg/h] [% vol.]	748.990 14,110	752.512 13,716	4 0,031	4 0,031	4 0,030
Ar	[kg/h] [% vol.]	41.967 0,871	42.076 0,845	109 0,890	109 0,890	109 0,852
H2O	[kg/h] [% vol.]	175.896 8,095	244.249 10,876	260 4,703	260 4,703	506 8,777
SO2	[kg/h] [mg/Nm³, dry, 6% O₂]	5.347 1.852	322 111	0	0	0
SO3	[kg/h] [mg/Nm³, dry, 6% O ₂]	174 60	139 48	0	0	0
SOx	[mg/Nm ³ , dry, 6% O ₂]	1,900	150	0	0	0
HCI	[kg/h] [mg/Nm³, dry, 6% O ₂]	77 27	1 0	0	0	0
HF	[kg/h] [mg/Nm³, dry, 6% O ₂]	0	0	0	0	0
Particulate	[kg/h]	29	17	0	0	0
Entrained Moisture (kg/h)	[mg/Nm ³ , dry, 6% O ₂] [kg/h]	10	6 145	0	0	0
	[mg/Nm ³ , dry, 6% O ₂]	0	50	0	0	0

		Stream 05	Stream 20	Stream 35	Stream 40	Stream 75
		Dry Reagent Feed	Absorber Bleed to Hydrocyclone	Filter Cake from Belt Filter	Process Water Supply	Reclaim Water to WWT
Mass Flow (kg/h) Mass Flow Liquid (kg/h) Mass Flow Solids (kg/h) Volumetric Flow (m³/h)	[kg/h] [kg/h] [kg/h] [m³/h]	8.672 0 8.672	110.080 93.568 16.512 100	15.615 1.561 14.053	80.145 80.145 0 80	7.844 7.649 195 8
CaSO ₄ ·2H₂O	[kg/h]	0	15.073	13.378	0	134
CaSO ₃ ½H ₂ O	[kg/h]	0	57	50	0	1
CaCO ₃ (kg/h)	[kg/h]	8.239	330	232	0	8
CaO (kg/h)	[kg/h]	0	0	0	0	0
Ca(OH) ₂ (kg/h)	[kg/h]	0	0	0	0	0
CaF2 (kg/h)	[kg/h]	0	0	0	0	0
Alkali Inerts (kg/h)	[kg/h]	434	1.027	383	0	0
Flyash (kg/h)	[kg/h]	0	25	10	0	0
CaCl2 (kg/h, aq) H2O (kg/h)	[kg/h] [kg/h]	0	1.757 92.003	2 1.560	25 80.135	139 7.526
Suspended Solids Content Cl- Concentr. (mg/kg aqueous)	[%] [mg/kg]aqueous	100	15 12.000	90 900	0 200	11.608
Density	[kg/m³]	9	1,100	2	997	1.016
Expected pH range	[rig/iii]	_	5 to 6		6 to 8.5	6 to 8.5
Expected temperature range	[°C]	-18 - 38	47	31 - 47	4 - 32	39 - 47

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter ${\sf C}$ - Basic information on SC PC plant alternatives

Date: January 2014

Q1 . 10 C.4

Sheet: 18 of 49

Expected emission

SO_2	$111 \text{ mg/Nm}^3 \text{ (dry, 6\% O}_2\text{)}$
SO_X	$150 \text{ mg/Nm}^3 \text{ (dry, 6\% O}_2\text{)}$

The WFGD plant is designed to achieve a SO_x removal efficiency of 92.1%, corresponding to approx. 94% SO_2 removal efficiency.

Expected consumption

Power consumption	2,800 kWh/h
Limestone consumption (100% purity)	8,300 kg/h
Make-up water consumption	$85 \text{ m}^3/\text{h}$
Cooling water flowrate	NA (1)

⁽¹⁾ Air-cooled motor drives are assumed

Expected gypsum production and composition

Gypsum production (10% residual water)	15,650 kg/h
pH	5 – 9
Gypsum composition	
Moisture	10 %
CaSO ₄ ·2 H ₂ O	95 %
CaSO ₃ ·¹⁄ ₂ H ₂ O	0.5 %
Cl	100 ppm

Expected liquid effluent and composition

Chloride purge flowrate	10 m ³ /h
Composition	
TSS	1 - 3 %
C1	12,000 - 15,000 ppm
COD	100 – 150 ppm (2)

⁽²⁾ Typical range

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 19 of 49

January 2014

Case 2 (SC-PC with CO₂ capture) data

Preliminary mass balance at WFGD battery limits

The following tables report the preliminary mass balance at WFGD battery limits for Case 2 (SC-PC with CO_2 capture), making reference to the process flow diagram shown in Figure 4.

		Stream A	Stream B	Stream E	Stream F	Stream G
		Raw Flue Gas To Absorbers	Clean Flue Gas From Absorbers	Air to Oxidation Blowers	Air from Oxidation Blowers	Quenched Oxidation Air to Absorber
Volum. Flow (wet)	[Nm ³ /h]	2.703.445	2.794.444	7.202	7.202	7.523
Mass Flow	[kg/h]	3.585.000	3.659.246	8.869	8.869	8.869
Volum. Flow (wet)	[Am ³ /h]	3.682.879	3.397.449	8.436	5.413	4.657
Temperature	[°C]	90	47	35	124	54
N2	[kg/h]	2.485.531	2.492.229	6.698	6.698	6.698
	[% vol.]	73,562	71,359	74,414	74,414	71,232
O2	[kg/h]	127.017	127.760	2.052	2.052	2.052
	[% vol.]	3,291	3,202	19,961	19,961	19,108
	[% vol.]dry	3,581	3,593	100	-	27
CO2	[kg/h]	748.990	752.679	4	4	4
	[% vol.]	14,110	13,718	0,031	0,031	0,030
Ar	[kg/h]	41.967	42.082	114	114	114
	[% vol.]	0,871	0,845	0,890	0,890	0,852
H2O	[kg/h]	175.896	244.277	272	272	531
	[% vol.]	8,095	10,876	4,703	4,703	8,777
SO2	[kg/h]	5.347	79	0	0	0
	[mg/Nm3, dry, 6% O2]	1.852	27	0	0	0
SO3	[kg/h]	174	139	0	0	0
	[mg/Nm ³ , dry, 6% O ₂]	60	48	0	0	0
SOx	[mg/Nm3, dry, 6% O2]	1.900	66	0	0	0
HCI	[kg/h]	77	1	0	0	0
	[mg/Nm3, dry, 6% O2]	27	0	0	0	0
HF	[kg/h]	0	0	0	0	0
	[mg/Nm³, dry, 6% O ₂]	0	0	0	0	0
Particulate	[kg/h]	29	17	0	0	0
	[mg/Nm ³ , dry, 6% O ₂]	10	6	0	0	0
Entrained Moisture (kg/h)	[kg/h]	0	145	0	0	0
('3.')	[mg/Nm ³ , dry, 6% O ₂]	0	50	0	0	0

		Stream 05	Stream 20	Stream 35	Stream 40	Stream 75
		Dry Reagent Feed	Absorber Bleed to Hydrocyclone	Filter Cake from Belt Filter	Process Water Supply	Reclaim Water to WWT
Mass Flow (kg/h) Mass Flow Liquid (kg/h) Mass Flow Solids (kg/h) Volumetric Flow (m³/h)	[kg/h] [kg/h] [kg/h] [m³/h]	9.083 0 9.083	115.432 98.117 17.315 105	16.374 1.637 14.737	80.373 80.373 0 81	7.844 7.649 194 8
CaSO ₄ ·2H ₂ O	[kg/h]	0	15.802	14.027	0	134
CaSO ₃ ½H ₂ O	[kg/h]	0	59	53	0	1
CaCO ₃ (kg/h)	[kg/h]	8.629	347	244	0	8
CaO (kg/h)	[kg/h]	0	0	0	0	0
Ca(OH) ₂ (kg/h)	[kg/h]	0	0	0	0	0
CaF2 (kg/h)	[kg/h]	0	0	0	0	0
Alkali Inerts (kg/h)	[kg/h]	454	1.082	403	0	0
Flyash (kg/h)	[kg/h]	0	25	11	0	0
CaCl2 (kg/h, aq) H2O (kg/h)	[kg/h] [kg/h]	0	1.843 96.477	2 1.635	25 80.363	139 7.526
Suspended Solids Content Cl- Concentr. (mg/kg aqueous)	[%] [mg/kg]aqueous	100	15 12.000	90 900	0 200	11.608
Density	[kg/m ³]		1.100	- 50	997	1.016
Expected pH range	[kg/m]	5	5 to 6	5	6 to 8.5	6 to 8.5
Expected pri range Expected temperature range	[°C]	-18 - 38	47	31 - 47	4 - 32	39 - 47

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives Sheet: 20 of 49

January 2014

Date:

Expected emission

SO ₂	10 ppmv (dry, 6% O ₂)
SO_3	13 ppmv (dry, 6% O ₂)

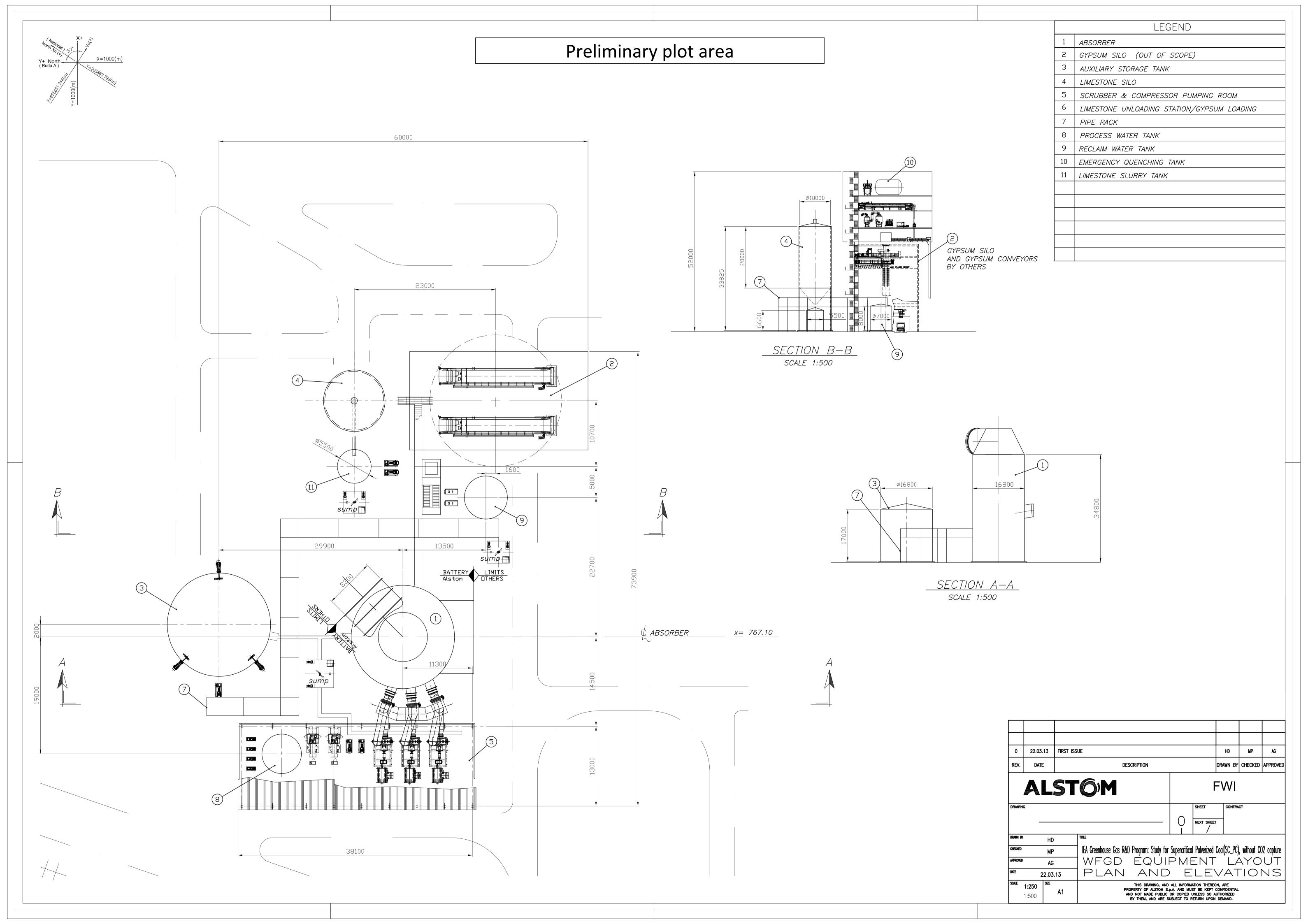
The WFGD plant is designed to achieve a SO₂ removal efficiency of approximately 98.5%, resulting in 10 ppmv (dry, 6%O₂) of SO₂ emission and about 13 ppmv (dry, 6%O₂) of SO₃ due to the high content at WFGD inlet. To reduce the SO₃ content, the following options may be considered in combination with the WFGD plant:

- Installation of a condenser operated with NaOH at the absorber outlet,
- Installation of a WESP at the absorber outlet,
- Installation of a hydrated lime dry injection system downstream of the WFGD plant.

Expected consumption

Power consumption	3,900 kWh/h
Limestone consumption (100% purity)	9,100 kg/h
Make-up water consumption	$85 \text{ m}^3/\text{h}$
Cooling water flowrate	NA ⁽³⁾

Air-cooled motor drives are assumed


Expected gypsum production and composition

Gypsum production (10% residual water)	16,400 kg/h
pН	5 - 9
Gypsum composition	
Moisture	10 %
CaSO ₄ ·2 H ₂ O	95 %
CaSO ₃ ·½ H ₂ O	0.5 %
Cl	100 ppm

Expected liquid effluent and composition

Chloride purge flowrate	$10 \text{ m}^3/\text{h}$
Composition	
TSS	1 - 3 %
Cl	12,000 - 15,000 ppm
COD	100 – 150 ppm ⁽⁴⁾

(4) Typical range

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 22 of 49

Capital investment costs

Indicative prices for the engineering, supply, delivery DDU (Incoterms 2000), erection/erection supervisions, testing, commissioning/commissioning supervisions and training for the project considered in this study are shown below for the two cases of the study.

January 2014

Case	Cost, MM€
Case 1 - SC-PC without CO ₂ capture	55.30
Case 2 - SC-PC with CO ₂ capture	56.81

The indicative prices stated above are based on the scope of supply included within the battery limits identified in the WFGD system process flow diagram (Figure 4).

Following major items are excluded from mentioned quotation:

- foundations and civil works,
- electrical system supply and installation,
- DCS/PLC for WFGD plant control,
- control rooms and control room equipment,
- buildings,
- auxiliary sub-systems like waste water treatment plant, fire fighting and fire detection, HVAC, lighting, lightning protection.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 23 of 49

2.4.2. FWE Circulating Fluid Bed Scrubbing (CFBS) Technology

FosterWheeler Energie GmbH (FWE) proposed for the IEAGHG study cases its Circulating Fluid Bed Scrubber (CFBS) system with hydrated lime injection and fabric filter, including product recirculation.

The following sections provide an overview of the CFBS technology, including the specific set of information for two boiler based cases, namely Case 1 (SC-PC without CO₂ capture) and Case 2 (SC-PC with CO₂ capture), as provided by FWE to support the study.

Process description

This flue gas desulphurization system is a Circulating Fluid Bed Scrubber (CFBS) system with water and absorbent injection, with a downstream fabric filter that includes recirculation of product from filter hoppers to CFBS. The typical design of the system is shown in Figure 5.

The flue gas cleaning concept consists mainly of:

- Flue gas ducts (for raw and clean gas) with dampers
- One Circulating Fluid Bed Scrubber (CFBS)
- Internal scrubber equipment
- One fabric filter with recirculating system
- ID-fan
- Air blowers and compressors
- Silo for absorbent
- Product silo for residue
- Water storage tank
- Water injection system for CFBS
- Electrical instrumentation & control (EIC).

The flue gas from the boiler fired by coal enters the Circulating Fluid Bed Scrubber (CFBS) and then passes to the bag house for final de-dusting, before the flue gas passes the ID-fan to the stack (or to the post-combustion plant).

Within the CFBS, pollutants such as SO_2 , SO_3 , HCl, HF and others will be removed by different chemical reactions as described. The following reactions typically take place in the dry desulphurization process in the temperature range 75 - 110 °C:

$$Ca(OH)_2 + SO_2 \rightarrow CaSO_3 + H_2O$$

 $Ca(OH)_2 + SO_3 \rightarrow CaSO_4 + H_2O$

$$CaSO_3 + \frac{1}{2}O_2 \rightarrow CaSO_4$$

$$Ca(OH)_2 + 2 HCl \rightarrow CaCl_2 + 2 H_2O$$

$$Ca(OH)_2 + 2 HF \rightarrow CaF_2 + 2 H_2O$$

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS D

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 24 of 49

The residue from the bag house is transported into the product silo by pneumatic equipment.

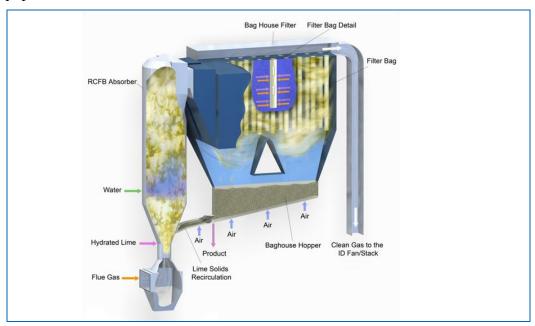


Figure 5. Typical Design FGD

Main components of the FGD

Scrubber design

The flue gas from the boiler enters the CFBS centrally from the bottom section of the absorber and move through venturi nozzles in turbulent flow with the hydrated lime feed and recirculated lime reaction products to the top section of the absorber. A turbulator wall surface ensures high mixing and capture efficiency of multiple pollutants. Water nozzles cool down the temperature to an efficient temperature for the removal process. The height of the scrubber assures a long gas and solid mixing time for high pollutant capture and maximum lime utilization.

Water route and water spraying installation

The flue gas is cooled by evaporation of finely sprayed water injection into the CFBS. The spraying rate is automatically adjusted according to the set process temperature. The water is sprayed through return-flow nozzles.

The water required for the desulphurization process is taken from the FGD water storage. High-pressure pumps are used for spraying the water evenly into the scrubber. The required water quantity, depending on the gas outlet temperature, is continuously controlled by electro-pneumatic valves in the back flow of the nozzles. The water system will be located on a floor below the water lances.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 25 of 49

Fabric Filter

The bag house consists of separate compartments, each lockable on the flue gas sides for maintenance purposes. It is possible to shut down one compartment for maintenance while running the remaining compartment with reduced flue gas flow.

The bag house filter is a pulse-jet online cleaning type with differential pressure control. The dust containing gases enter the inlet hoods and are led into the lower area of the bag house. The dust is collected on the bags' outside surfaces. The bags are connected to the tube sheet, which fits securely into the tube sheet holes. To prevent collapse during filtering, each bag is equipped with a wire cage. Bags are cleaned by short pulses of dry compressed air, delivered at the top of the bags in the reverse direction of gas flow. These pulses cause bag motions that combine with the back-flushing action to dislodge the dust cake, which falls into the hoppers.

According to the emission values of the clean gas the dust cake which is collected in the filter hopper will be partly transferred back to the scrubber again. The transport takes place by means of a recirculation system until the absorption capacity of the absorbent is reached. This procedure reduces the amount of used absorbent and accumulated residue.

A large proportion of the material in the hoppers which act as temporary storage bins is fed into the solids recycling system by means of a control valve and flows via fluid slides back into the RCFB scrubber.

After a certain retention time in the recirculation system the by-product is discharged from the insulated filter hoppers by means of a control valve into an external product silo for further disposal.

Auxiliary equipment

Silos

The FGD unit needs a silo for the sorbent and a product silo for the residue. The size of the hydrated lime silo is based on the consumption of the hydrated lime for the dry desulphurization process and a selected storage time. The hydrated lime silo should be placed near to the scrubber and at a place where it is easy to fill in the hydrated lime via truck.

The design of residue silo includes that a truck can drive under it to be filled with product. The size of the product silo is based on the arising amount of product and a selected storage time.

Hydrated lime conveying system

For the FGD process the hydrated lime must be transported from the hydrated lime silo to the CFBS. For the hydrated lime transportation a speed controlled rotary valve with double flap, motor, feed ejector and blower are used. The rotary valve will be used for dosing the required amount of the absorbent.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 26 of 49

The blower air transports the added absorbent via a piping system to the scrubber.

Product conveying system

The accruing product must be transported from the filter hoppers to the product silo. The equipment for product transport consists of the same components as for the hydrated lime conveying system: speed controlled rotary valve with double flap, motor, feed ejector and blower.

Recirculation

A part of the product is transported from the filter hoppers back to the CFBS. This solid transport consists for each compartment of one fluid slide including expansion joint, shut off gate and flow control gate. The fluidization air will be produced by blowers and the control valve regulates the solid flow into the scrubber.

Silo fluidization

For better transportation and handling conditions the cone of the hydrated lime silo and the cone of the product silo are fluidized with air. The needed fluidization air for silo cones is delivered from compressed air station or rotary piston blowers.

Compressed air

A compressed air station is necessary for pulsing air (cleaning of filter bags) and instrumentation air. The station mainly consists of the compressors and each compressor is equipped with one warm regenerated dryer.

ID-Fan

For the flue gas flow through the scrubber and the bag house the FGD is equipped with one variable speed regulated ID-Fan (typically shown in Figure 6). The speed regulation is done by a frequency converter.

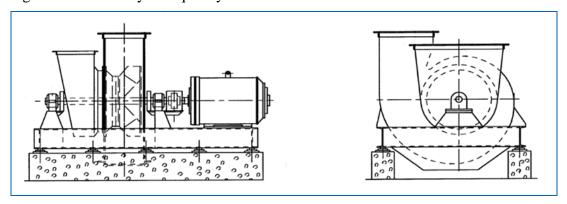


Figure 6. Drawing of an ID-Fan (Source: Rotamill)

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 27 of 49

FGD performance

The performance provided by FWE for Cases 1 and 2 refers to the following characteristics and conditions of the flue gas entering the FGD unit.

Flue gas condition	
Flue gas flow rate, t/h	3,585
Flue gas flow rate, Nm ³ /h ⁽¹⁾	2,885,000
Temperature, °C	90-100 (2)
Flue gas composition	(%vol)
Ar	0.871
N_2	73.562
O_2	3.291
CO_2	14.110
H_2O	8.095
SO_2 / SO_3 (3)	0.071
HCl	27 mg/Nm ^{3 (1)}
NOx	130 mg/Nm ^{3 (1)}
Particulate	10,000 mg/Nm ^{3 (1) (4)}

^{(1) 6%} oxygen, dry

 $^{^{(4)}}$ Corresponding to around 29-30 t/h of fly ash from coal combustion (12.2% of coal ash content).

		SCPC without CO ₂	SCPC with
		capture	CO ₂ capture
Gas Flow	Nm³/h dry	2,888,702	2,888,702
Gas Flow	Nm³/h dry, act. O ₂	2,486,843	2,486,843
Gas Flow	Nm³/h wet, act. O ₂	2,703,090	2,703,090
H_2O	%	8.00	8.00
O_2	% wet	3.29	3.29
O_2	% dry	3.58	3.58
O_2	Oxygen reference	6.00	6.00
CO_2	% wet	14.10	14.10
CO_2	% dry	15.33	15.33
Emission limits			
SO_2	mg/Nm³ dry	150	29
SO_3	mg/Nm³ dry	< 5	< 5
<u>Pollutants</u>			
SO_2	mg/Nm³ dry	2020	2020
SO ₃	mg/Nm³ dry	54	54

⁽²⁾ Please consider the temperature required to exit at 80-85°C to avoid gas-gas heater installation or preheat the decarbonised flue gas. Please advise if temperature shall exceed the specified range.

⁽³⁾ Assumed SO₂ to SO₃ conversion equal to 2.6%

 ${\rm CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 28 of 49

Main consumption data

		SCPC without CO ₂ capture	SCPC with CO ₂ capture
Clean gas temperature	°C	75-80	75-80
Water consumption FGD	m³/h	30	30
Compressed Air consumption	m³/h	1500	1500
ID-Fan (in case of 0mbar at battery limit and a foreseen pressure drop of FGD of 42mbar)	kW	6100	6100
Pump and Other	kW	4000	4000
Sum of electrical consumption	kW	10100	10100
Hydrated lime consumption (purity 100%)	kg/h	10000	11200
Lime consumption (purity 100%)	kg/h	7600	8500
Product	kg/h	16000	17600
Product composition according to design data			
CaSO ₃	%	40 - 70	40 - 70
CaSO ₄	%	10 - 30	10 - 30
CaCO ₃	%	8 - 28	8 - 28
Ca(OH) ₂	%	0 - 15	0 - 15

Requirements for FGD water quality

Max. content of solid matter	< 100	[ppm]
Max. content of abrasive components	< 10	[ppm]
Max. grain size of suspended matter	< 50	[microns]

Minimum required quality for soft burnt lime

Residue on mesh 0.09 mm	< 5	[%]
Particle size (d50**)	< 20	[µm]
Lime reactivity (T60*)	< 2	[min]
Purity (CaO content)	> 95	[%]
Moisture	≤ 1	[%]

Delivered hydrated lime minimum requirements

Particle size (d ₅₀ **)	≤ 5	[µm]
Hydrated Lime reactivity (BET) specific surface area	>18	$[m^2/g]$

^{*)} T60 means temperature expansion from 20°C to 60°C at defined conditions.

**) d₅₀ mean average particle size, the 50% weight fracture.

Plot area requirements

	SCPC without CO ₂ capture	SCPC with CO ₂ capture
Plot area	Approx. 65m x 30m	Approx. 65m x 30m

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 29 of 49

2.4.3. Chiyoda Thoroughbred 121 (CT-201) Jet Bubbling Reactor process

Chiyoda is the technology provider of the limestone forced oxidation flue gas desulfurization technology, named Chiyoda Thoroughbred 121 (CT-201) process, based on the simultaneous SO_2 absorption, oxidation, neutralization and crystallization in the Jet Bubbling Reactor (JBR).

An overview of the CT-201 process is attached to this section, including the specific set of information for two boiler based cases, namely Case 1 (SC-PC without CO_2 capture) and Case 2 (SC-PC with CO_2 capture) provided by Chiyoda to support the study.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 30 of 49

2.4.4. <u>High level assessment of FGD technology</u>

The FGD technologies shown in the previous sections differ in the following main aspects:

- Flue gas treatment configuration
- FGD reagent and by-product
- Operating experience
- Water consumption
- Sulphur removal efficiency.

This section presents a high level assessment of these key features, for each technology. It is noted that this section is not aimed at making a detailed comparison of the different FGD technologies, which would require technical and economic information at a level of detail that is well beyond that of a feasibility study.

Flue gas treatment configuration

The selection of the optimum flue gas treatment configuration is highly dependent on the Flue Gas Desulphurisation (FGD) technology.

Figure 7 shows the typical flue gas treatment configuration of a wet FGD (i.e. Alstom wet scrubber technology or Chiyoda Jet Bubbling reactor) for Case 1 (no CCS) and Case 2 (CCS).

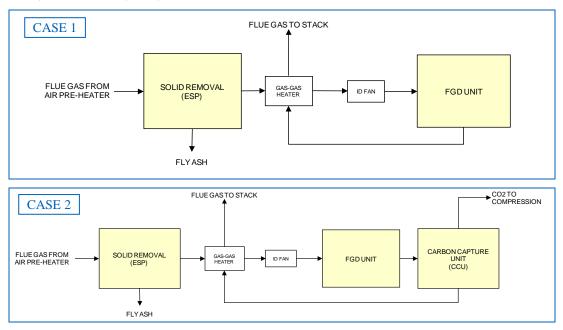


Figure 7. Flue gas treatment configuration with wet FGD for cases 1 and 2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 31 of 49

Flue gases exit the air pre-heater and flow to the electrostatic precipitator (ESP) that lowers the solid content down to 10 mg/Nm³. A gas-gas heater is considered to preheat the desulphurised flue gases, before discharge from the stack, against solid-free flue gases from the ESP. The gas-gas heater is designed to discharge the flue gas around 30°C above the saturation temperature, with the limit of a minimum inlet temperature to the FGD system of around 90-100°C. The flue gas ID fan is installed preferably upstream of the FGD system, as the cost increase due to the higher volume flowrate is lower than the higher cost related to the material required if it were downstream the FGD, due to the higher corrosion problem (flue gas conditions close to the water dew point). For Case 2, the flue gases from the FGD are sent to the capture unit and finally heated-up in the gas-gas heater.

Figure 8 shows the flue gas treatment configuration for the FWE Circulating Fluid Bed Scrubber (CFBS) technology.

The main difference is that, for Case 1, the installation of the CFBS would avoid the need for the gas-gas heater, as the flue gases from the FGD are not saturated with water, making also available duty for condensate preheating and potentially saving steam in the power island. In addition, the fabric filter included in the CFBS for product recirculation is able to remove also the fly ash from the boiler, still meeting 10 mg/Nm³ for particulate emission; this avoids the installation of the ESP upstream of the unit. In this case, the preferred location for the ID fan is downstream of the FGD system, as flue gases are solid-free and above the water dew point. For Case 2 the gas-gas heater is required to heat-up the decarbonised flue gases exiting the carbon capture unit because they are saturated with water.

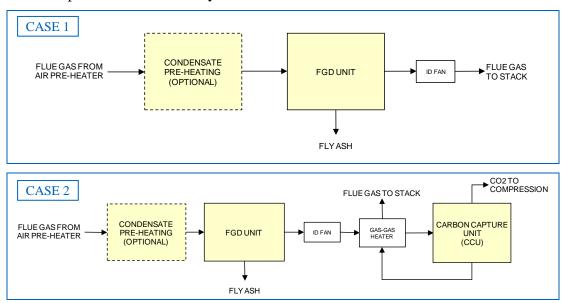


Figure 8. Flue gas treatment configuration with CFBS FGD for cases 1 and 2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 32 of 49

FGD reagent and by-product

Wet Flue Gas Desulphurisation systems (i.e. Alstom wet scrubber technology or Chiyoda Jet Bubbling reactor) use limestone reagent as sorbent for SO₂ removal, as it is available in large amounts in many countries and is cheaper to process than other sorbents. By-products are either gypsum or a mixture of calcium sulphate/sulphite, depending on the oxidation mode. Saleable gypsum by-product is produced with both Alstom and Chiyoda technologies, potentially improving the economics of the project.

On the other hand, the CFBS uses higher cost lime as reactant with SOx and solid by-product is not sealable and must be disposed of, resulting in higher operating costs.

Operating experience

Wet scrubbers, especially the limestone-gypsum processes, are the leading FGD technologies. They have about 80 % of the market share and are used in large utility boilers. In particular, Alstom is a world leader in the flue gas desulphurisation technology, with more than 52,000 MWe of wet FGD delivered worldwide.

Since 1978, Chiyoda has designed more than 80 commercial CT-121 FGD plants, processing flue gas gases from coal boiler power stations, up to 950 MWe plants size.

On the other hand, since 1989, FWE have installed around 40 commercial FGD systems, processing flue gas from small industrial boilers to large coal power plants with capacities as high as 500 MWe.

Water consumption

Wet FGD technology requires a significant amount of make-up water, in particular for flue gas saturation and slurry preparation. On the other hand, in the CFBS technology, water is injected and evaporated in the absorber to reduce and control the flue gas temperature, resulting in a lower water demand.

Sulphur removal efficiency

The wet limestone FGD technology (i.e. Alstom wet scrubber or Chiyoda Jet Bubbling reactor) is able to achieve high SO₂ removal efficiency (around 99%), required for the post-combustion capture study case. The main limit of the wet limestone technology is that it is not generally able to remove more than 30% of SO₃. However, this does not represent a stringent limitation to the use of the wet FGD technology, in particular it does not affect the capability to meet the environmental emission limit of 150 mg/Nm³ as required for Case 1.

On the contrary, it is not possible to meet the lower SOx specification of 10 ppm total SOx required by the post-combustion alternative (Case 2). As a caustic injection solution is anyhow required in the downstream CO₂ capture unit in order to reduce to

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 33 of 49

the maximum extent possible solvent degradation, the more stringent SOx concentration upstream the absorber can be met, with a marginal higher operating cost.

On the other hand, the hydrated lime-based FWE Circulating Fluid Bed Scrubber technology is capable of removing nearly 99% of both SO₂ and SO₃ in the flue gases, meeting the strict specification of total SOx required by the downstream carbon capture unit.

2.4.5. FGD technology for study cases development

As shown in the previous sections, all FGD technologies meet the environmental requirements of the plant. Moreover, being at study level it is not possible to give a firm recommendation on the best technology for sulphur removal. Therefore, preliminary selection only is made in this study, on the basis of generic and high-level criteria, with the sole purpose of completing the technical and economical assessment of the cases.

More specifically, for the air fired boiler-based alternatives of the study it is proposed to utilize the Alstom wet scrubbing technology (WFGD), mainly because it is the most referenced technology supplier of FGD systems, accounting for about 80% of all the installed capacity. The same technology is considered for both cases without and with carbon capture for a better evaluation of the impact of capturing the CO₂ in these plant types.

2.5. Mercury removal systems

Nowadays, yet no emission limits have been defined for mercury emission from coal fired power plants in Europe.

Reduction of mercury emissions from coal-fired boilers is currently performed via existing controls used to remove particulate matter (PM), sulphur dioxide (SO₂) and nitrogen oxides (NOx). This includes capture of Hg_p in particulate matter control equipment (ESP or fabric filters) and soluble Hg^{2+} compounds in wet flue gas desulfurization (FGD) systems. Available data also reflect that use of selective catalytic reduction (SCR) for NOx control enhances oxidation of Hg^0 in flue gas and results in increased mercury removal in wet FGD.

In addition, in pulverised coal plant the fly ash has the capability to partially remove the mercury from the flue gas due to its residual carbon content. As for that, additional mercury removal facilities from the flue gas are not foreseen in the SC PC boiler based cases of this study.

A qualitative description of the effectiveness of flue gas treatment technologies in mercury removal and of the available technology dedicated to mercury removal is given in the below paragraph for possible future consideration in these power plants.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 34 of 49

Hg formation in coal fired power plant

During combustion, the mercury in coal is volatilized and converted to elemental mercury (Hg^0) vapor in the high temperature regions of coal-fired boilers. As the flue gas is cooled, Hg^0 produces ionic mercury (Hg^{2+}) compounds and/or Hg compounds (Hg_p) that are in the solid-phase at the flue gas cleaning temperatures. The relative amount of the three species is highly dependent on coal type and has a considerable influence on selection and effectiveness of mercury control approaches. In general, the majority of gaseous mercury in bituminous coal-fired boilers is Hg^{2+} , while the majority of gaseous mercury in sub-bituminous/lignite-fired boilers is Hg^0 .

January 2014

Flue gas treatment technologies to reduce Hg emissions

Factors that enhance mercury control are the low temperature in the control device system (less than 150 °C), the presence of effective mercury sorbent and the application of a method to collect the sorbent.

In general, high levels of carbon in the fly ash enhance mercury (Hg_p) adsorption onto particulate matter, which is subsequently removed by the **particulate matter control device**. Electrostatic precipitators and fabric filters are commonly used to remove particulate matter from flue-gases. Even if characterised by the same overall removal efficiency (>99.9), fabric filter shows better performance in controlling fine particulate matter, i.e. the size range in which particles enriched with metal elements might be found. In addition, the Hg removal efficiency depends strongly on the fuel properties (e.g. Cl). In fact, the presence of hydrogen chloride (HCl) can results in the formation of mercury chloride, which is readily adsorbed onto carbon-containing particulate matter.

Conversely, sulphur dioxide (SO₂) in flue-gas can act as a reducing agent to convert oxidised mercury to elemental mercury, which is more difficult to collect.

Gaseous compounds of Hg^{2+} are generally water-soluble and can absorb in the aqueous slurry of a **wet FGD system**. The Hg^{2+} adsorberd in the liquid slurry reacts with dissolved sulphites to form mercuric sulphide, which precipitates and it is removed as sludge. On the other hand, gaseous Hg^0 is insoluble in water and therefore does not absorb in such slurries. The capture of Hg in units equipped with wet FGD scrubbers is dependent on the relative amount of Hg^{2+} . The increase in mercury oxidation across **SCR systems** favoured Hg capture in the downstream FGD systems as increase the relative amount of more effective removable Hg^{2+} with respect to elemental Hg^0 .

The Hg removal in **spray dry systems** is only dependent on the presence of a particulate removal system within the FGD system. Activated carbon technology has been applied in the US to increase Hg removal in spray dry scrubber/ESP systems.

Mercury removal rate up to 98% are achieved in bituminous coal fired boiler, due to the higher amount of removable Hg²⁺, while maximum 70% is achieved in subbituminous fired boiler.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 35 of 49

Hg reduction by systems designed for metal removal

Dedicated method for mercury removal consists in:

- Activated carbon injection (ACI) in the flue gas. ACI has the potential to achieve moderate to high levels of Hg control, depending on the activated carbon physical and chemical characteristics

January 2014

- Activated carbon of coke filters
- Sulphur-impregnated adsorbent in packed bed
- Selenium impregnated filter. The filter relies on the strong affinity of Hg to Se, with which it combines to form mercury selenide (HgSe), a highly stable compound.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 36 of 49

2.6. CO₂ capture unit (Case 2)

Whilst there is a large number of theoretical technology suppliers that could provide chemical-based solvents for CO₂ capture, there are in practice few that are capable to offer a technology that is reliable for large scale operation, since not many commercial applications processing large volumetric flows, as in boiler-based plants, have been fully developed yet.

The most quoted companies that could offer chemical solvents for CO₂ capture from flue gases are, in alphabetical order, the following:

• **AKER**: it offers, through its subsidiary Aker Clean Carbon, an

amine-based solvent for CO2 capture from various flue

gases types.

• ALSTOM: it is the only referenced company that is developing an

ammonia-based solvent process, using a solution containing

ammonium carbonate (Chilled Ammonia Process, CAP).

• CANSOLV: it offers a combined SO₂/CO₂ scrubbing process, using 2

different amine-based solvents in a thermally integrated system. Cansolv is a subsidiary of Shell Global Solutions

group.

• **CB&I**: ABB Lummus offered a MEA scrubbing technology on the

original Kerr Mc Gee process. This technology, which was the first used on a coal flue gas, was then acquired by Chicago Bridge & Iron Co. (CB&I) in November 2007. CB&I and Lummus together now offer various processes

for cleaning of hydrocarbon gases, including CO₂ capture.

• **FLUOR**: it offers the Econamine FG Plus (EFG+) process. This is a

development of the MEA based ECONOAMINE process

developed by Dow and acquired by Fluor.

• **HTC Energy**: it offers the Purenergy CCS Capture SystemTM, which is a

pre-engineered, pre-built and modularly constructed unit, using a technology developed in the University of Regina,

based on an amine solvent.

• MHI: Mitsubishi Heavy Industries (MHI) offers the KS-1 process,

based on a formulation of sterically hindered amines, which is a joint development between MHI and the Kansai Electric

Power Company (KEPCO).

• **SIEMENS**: it is the only referenced company that is developing an

aminoacid salt solution process for the chemical absorption

of the carbon dioxide.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 37 of 49

Some of the above-listed suppliers were asked to support the study; amongst them, Cansolv has provided specific data to develop Case 2 of the study, as reported in the following sections, only for the information that the supplier has authorized for disclosure.

An overview of the Cansolv post-combustion capture technology is attached to this chapter, including the specific set of performances provided by Cansolv to develop Case 2 (SC-PC with CO₂ capture) of the study. The technology overview of the Cansolv flue gas desulphurisation process is also attached to this chapter.

It has to be noted that some differences may exist between figures in the Cansolv's information and those shown in the report of the specific study case. In fact, information in the attachments is based on preliminary stream properties and flowrates, as estimated during the early stages of the study; then, data have been slightly adjusted and optimised during study execution either by either Cansolv or Foster Wheeler. Figures included in the report for each study case shall be considered as the final ones.

Data are covered by a secrecy agreement and the information included in this section and in the relevant attachment is limited to the information that Cansolv have authorized for disclosure.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 38 of 49

2.7. CO₂ compression and dehydration (Case 2)

The compression and dehydration unit consists of two parallel trains, including compressor, separation drums, coolers, dehydration system and final pump.

Carbon dioxide from the stripper of the CO₂ capture unit is compressed to a pressure of 75 bar by means of a four stage integrally geared centrifugal compressor. The compression includes inter-stage cooling and knockout drums to remove and collect condensed water. At each stage outlet, part of the heat is recovered to pre-heat the condensate from the steam cycle. The CO₂ compression package consists of electrically driven multi-stage compression trains. The system includes anti-surge control, vent, inter-coolers, knockout drums and condensate draining facilities as appropriate.

The incoming stream from the AGR requires treatment for water removal down to a specific level. Therefore, CO_2 from the third compression stage is routed to the dehydration unit, where humidity water is removed and CO_2 is dried. The system is designed to produce CO_2 product with a final dew point temperature of $-40^{\circ}C$. The dehydration is carried out via a solid desiccant, like Activated Alumina and Molecular Sieves. The dehydration unit is composed of two beds for each parallel train of the unit. In normal operation one bed is used for drying, while the water-saturated bed is regenerated using a small part (ca.10%) of the dry product gas.

Final compression stages downstream of the driers increase the CO_2 pressure above the critical point of the fluid. The presence of non-condensable gases affects the behaviour of CO_2 resulting in an increased pressure requirement for the condensation of CO_2 . However, due to the almost negligible presence of non-condensable gases in the CO_2 leaving the top of the stripper, the final compression pressure is very close to the critical pressure of pure CO_2 .

After being cooled, dried CO_2 in dense phase is finally pumped and delivered the to the battery limits of the plant at a pipeline pressure of 110 bar.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 39 of 49

2.8. Steam Cycle

The steam cycle is mainly composed of the Steam Turbine Generator (STG) and the water pre-heating line. It consists basically of one supercritical steam turbine, equipped with one water cooled steam condenser, with multiple extractions for the pre-heating of the condensate and boiler feed water.

2.8.1. SC PC without CO₂ capture (Case 1)

The following description makes reference to the simplified process flow diagram of the steam cycle, attached to the end of this section.

The turbine consists of a HP, MP and LP sections all connected to the generator with a common shaft.

Supercritical steam from the boiler is sent to the steam turbine through the stop valves and control valves. Steam from the exhaust of the HP turbine, except the flow extracted for the heating of the boiler feed water, is returned to the boiler gas path for reheating, and then throttled into the double flow MP turbine. Boiler and turbine interface data are as follows:

HP turbine inlet: 270 bar; 600°C MP turbine inlet: 60 bar; 620°C

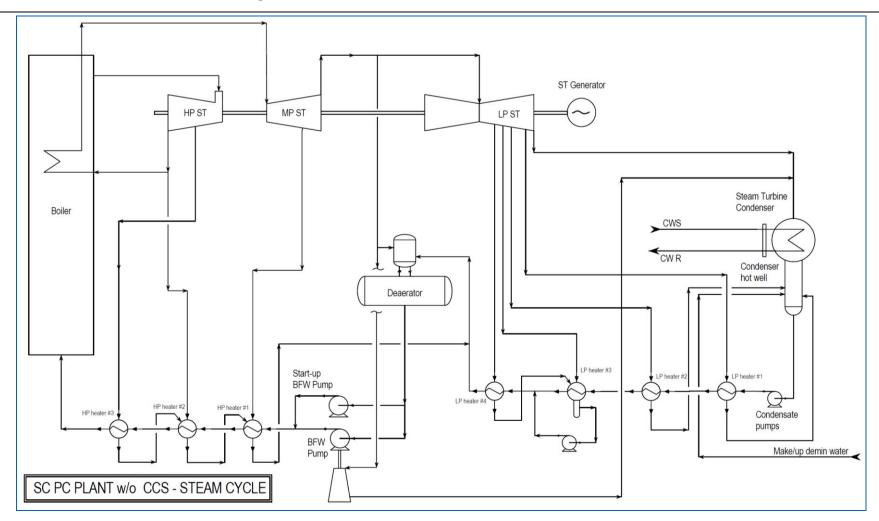
Exhaust steam from the MP turbines then flows into the double flow LP turbine system and finally downward into the water-cooled condenser at 4.0 kPa, corresponding to 29°C.

Recycled vacuum condensate from the condenser hot well is pumped by the condensate pumps and preheated in a bank of four condensate heaters, using extraction steam from the LP turbines. Steam condensate from the first two preheaters is recovered back to the condenser. Steam condensate from both the third and the fourth pre-heaters is mixed with the condensate downstream of the third exchanger.

The preheated condensate stream is then sent to the deaerator. Exhaust steam from the MP ST section is used to provide the steam necessary for the degassing of the condensate and the make-up demineralised water. Part of the MP ST exhaust steam is fed to a turbine to provide the power required by the HP boiler feed water pumps.

After the deaerator a further bank of pre-heaters preheats the feed water to 290°C prior to the boiler. These heaters are heated by MP turbine extraction steam and finally by an HP steam stream extracted from the turbine. Steam condensate recovered into the boiler feed water heaters is sent back to the deaerator.

Chemical injection for control of the water quality is made by dedicated packages on the suction of the boiler feed water pumps and at the inlet of the boilers.



CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 40 of 49

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives

Sheet: 41 of 49

2.8.2. SC PC with CO₂ capture (Case 2)

The following description makes reference to the simplified process flow diagram of the steam cycle, attached to the end of this section.

January 2014

Analogously to Case 1, the turbine consists of HP, MP and LP sections all connected to the generator with a common shaft. Also the HP and MP boiler and turbine interface data are the same as in Case 1, while the LP turbine conditions change to allow the extraction of steam from the MP turbine outlet at the required minimum pressure of the amine stripper reboiler. The extraction pressure is regulated via a dedicated pressure controller, acting on the admission valves of the steam turbine LP module.

Furthermore, recycled vacuum condensate from the condenser hot well is pumped by the condensate pumps to the carbon dioxide capture plant and preheated in the amine stripper overhead condenser and the carbon dioxide compressor intercoolers. Heat recovered in the carbon capture unit allows a reduction of the LP steam extraction in the preheat train. Only the two final pre-heaters upstream of the deaerator require steam from the steam turbine.

The preheated condensate stream is then sent to the deaerator. From this point on, the configuration of the steam cycle is same as in Case 1.

 ${\rm CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 42 of 49

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 43 of 49

2.9. Utility and Offsite units

2.9.1. Cooling water

The cooling water system consists of raw water in a closed loop, with a natural draft evaporative cooling tower. There are two circulation systems, depending on the pressure profile through the circuit. The primary system is used for the steam turbine condenser, while the secondary system is used for machinery cooling and other users. Each circulation system is equipped with single-stage vertical water pumps.

January 2014

The maximum allowed cooling water temperature increase is 11°C. The blow-down is used to prevent the concentration of dissolved solids increasing to the point where they may precipitate and scale-up heat exchangers and the cooling tower fill. The design concentrations cycles (CC) is 4.0.

Number and size of the cooling towers differs from the case with and without carbon capture. Case-specific details on the cooling tower design are included in the relevant chapter of the report. Each concrete tower will be equipped with two distribution systems, one primary distribution system supplying water from a concrete duct, and one secondary system from PVC pipes equipped with sprayers, connected to the concrete ducts. Tower filling, with vertical channels, increases the cooling and thermal efficiency, allowing pollutants to be easily washed through. Drift eliminators guarantee a low drift rate and low pressure drop. To avoid freezing in winter ambient conditions, the fill pack is divided into zones to allow step by step reduction of cooling capacity while maintaining an excellent water distribution and spray sprinklers are installed to create a warm water screen on the air inlets to preheat the ambient air when freezing ambient conditions occurs.

2.9.2. Raw and Demineralised water

Raw water is generally used as make-up water for the power plant, in particular as make-up of the cooling tower and of the FGD unit. Raw water is also used to produce demineralised water. Raw water from an adequate storage tank is pumped to the demineralised water package that supplies make-up water with adequate physical-chemical characteristics to the thermal cycle.

The treatment system includes the following:

- Filtering through a multimedia filter to remove solids.
- Removal of dissolved solids: filtered water passes through the Reverse Osmosis (RO) cartridge filter to remove dissolved CO₂ and then to a reverse osmosis system to remove dissolved solids.
- <u>Demineralised water production</u>: an electro de-ionization system is used for final polishing of the water to further remove trace ionic salts of the Reverse Osmosis (RO) permeate.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C - Basic information on SC PC plant alternatives Sheet: 44 of 49

Adequate demineralised water storage is provided by means of a dedicated demineralised water tank.

January 2014

The demineralised water make-up supplies the make-up water to the thermal cycle, whilst the demineralised water distribution pump supplies demineralised water to the other plant users or to the plant circuits for first filling.

2.9.3. Fire fighting system

This system consists of all the facilities able to locate possible fire and all the equipment necessary for its extinction. The fire detection and extinguishing system essentially includes the automatic and manual fire detection facilities, as well as the detection devices with relevant alarm system. An appropriate fire detection and suppression system is considered in each fire hazard area according to the applicable protection requirements. The fire fighting water is supplied by a water pumping station via a looping piping network consisting of a perimetrical circuit fed by water pumped from the cooling tower basin.

2.9.4. Instrument and plant air system

The air compression system supplies air to the different process and instrumentation users of the plant.

The system consists mainly of:

- Air compressors, one in operation, one in stand-by.
- Compressed air receiver drum.
- Compressed air dryer for the instrument air.

The ambient air compressed by means of the air compressor is stored in the air receiver in order to guarantee the hold-up required for emergency shutdown.

Plant air is directly taken from the air receiver, while air for instrumentation is sent to the air dryer where air is dried up to reach an adequate dew point, to ensure the proper operation of the instrumentation.

2.9.5. Waste Water Treatment

All the liquid effluents generated in the plant are treated in the wastewater treatment system in order to be discharged in accordance with the current local regulations.

The following description gives an overview of the waste water treatment configuration, generally adopted in similarly designed power plants; it includes a preliminary identification of the operations necessary to treat the different waste water streams generated in the power plant.

The Waste Water Treatment unit is designed to treat the following main waste water streams:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: Chapter C - Basic information on SC PC plant alternatives

Date: January 2014

Sheet: 45 of 49

- Blow-down from Wet Flue Gas Desulphurization Unit
- Potentially oil-contaminated rain water
- Potentially dust-contaminated rain water
- Clean rain water
- Sanitary waste water.

Mainly, the above streams are collected and routed to the waste water treatment in different systems according to their quality and final treatment destination.

The WWT system is equipped mainly with the following treatment sections:

- Treatment facilities for the FGD blow-down
- Treatment facilities for the potentially oily contaminated water
- Treatment facilities for the potentially dust contaminated water
- Treatment facilities for not contaminated water
- Treatment facilities for the sanitary wastewater.

FGD Blowdown

The blow-down from the flue gas desulphurization, with a high content of dissolved salts (TSS 1-3%wt, Cl⁻ = 12,000-15,000 ppm) is treated in a dedicated section consisting of a double Sludge settling (with the addition of polyelectrolyte) and a Sludge Treatment that separates the final sludge to disposal. Water from the Chemical Sludge settling (free from solids) is sent to a dedicated Reverse Osmosis (R.O.) in order to lower its high Cl⁻ content. The brine from the R.O. is evaporated and crystallized to separate clean water from salts. The liquid effluents from the RO and evaporation are recycled to the FGD unit, while the remaining sludge and solids are sent to disposal.

Potentially Dust Contaminated Water Treatment

Rain water and washing water from areas subject to potential dust contamination is treated in apposite water treatment systems prior to be sent to the "potentially oil contaminated" treatment system.

In particular, they are collected in a dedicated sewer, sent to a lamination tank and then to a chemical/physical treatment to remove the substances that are dissolved and suspended.

The system includes also a neutralization system to modify potential acidity and/or alkalinity of washing water used for the air pre-heaters.

Potentially Oil-Contaminated Water Treatment

Potentially oil-contaminated waters are:

- Washing water from areas where there is equipment containing oil.
- Rain water from areas where there is equipment containing oil.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives

Sheet: 46 of 49

After being mixed with treated water coming from "potentially dust contaminated" system, water is treated in a flotation and filtration system, where emulsified oil and suspended solids are respectively separated.

Treated effluent water will have the characteristics to respect the local regulations so that it can be consequently discharged.

Not Contaminated Water Treatment

Rainwater fallen on clean areas of the plant, such as roads, parking areas, building roofs, areas for warehouse/services/laboratory etc. where there is no risk of contamination, will be collected and disposed directly to the water discharge system.

A coarse solids trap is installed upstream the discharge point in order to retain coarse solids that may be carried together with the discharge water.

Sanitary Water Treatment

The sanitary waste water streams discharged from the different sanitary stations of the plant will be collected in a dedicated sewage and destined to the Sanitary Water Treatment system. This section generally involves the following main water treatment operations:

- Primary sedimentation for coarse solids removal.
- Biological treatment for BOD removal.
- Filtration for residual organic matter and suspended solids separation.
- Disinfection for bacteria inhibition.

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 47 of 49

ATTACHMENT A.1: Chiyoda Thoroughbred 121 (CT-201) process

CT-121 FGD Study Results

<u>for</u>

IEAGHG CO2 Capture at Coal Fired Power Plants

June 25, 2013

CHIYODA CORPORATION

Chiyoda Corporation

Chiyoda Global Headquarters Minato Mirai Grand Central Tower 4-6-2, MinatoMirai, Nishi-ku, Yokohama 220-8765, Japan www.chiyoda-corp.com/en

Contents

1.	Introduction	3
	Process Design Basis	
	Process Description	
	Process Flow Diagram	
	Overall Material and Heat Balance	
	Preliminary plot area requirement	
	Estimated utility and chemical consumptions	
	Waste Water Quality	
9.	Budget Capital Cost	6
	Attachments	

www.chiyoda-corp.com/en

1. Introduction

This document has been prepared by Chiyoda Corporation ("Chiyoda") as the technology provider of the wet Limestone/ Gypsum CT-121 FGD process, based on the FDI's request by

e-mail dated February 6th, 2013.

All numeric information, conclusions, volumes, prices and/or costs in this Study Results are for your reference purpose only. Nothing in this Study Results shall create proposal, offer and/or any

commitments. This Study Results shall not be construed as granting a license under any intellectual

property rights.

2. Process Design Basis

Process design basis for the following three different cases is shown in Attachment 1.1, 1.2 and

1.3, respectively.

Case 1: SC-PC without CO2 Capture

Case 2: SC-PC with CO2 Capture

Case-3: Oxy-Boiler

3. Process Description

The CT-121 FGD process is composed of three sections such as SO₂ Scrubbing Section,

Limestone Grinding Section and Gypsum Dewatering Section.

SO₂ Scrubbing Section

Flue gas boosted up by FGD Booster Fan is introduced to Gas Cooler. In Gas Cooler, flue gas is

quenched and saturated by contacting with continuously sprayed gypsum slurry which is

pumped up. Quenched flue gas is introduced to the JBR and is injected into absorbent slurry

through Sparger Tubes to remove SO₂. SO₂ absorbed from flue gas is oxidized with oxidation air,

neutralized with limestone and is transformed to gypsum. A portion of gypsum slurry in the JBR

is discharged to Gypsum Dewatering Section by Absorber Bleed Pump and the slurry

concentration in the JBR is maintained around 20 wt %.

Treated flue gas leaving the JBR is introduced to Mist Eliminator to remove entrained mist from

treated flue gas. The treated flue gas leaving the Mist Eliminator is directed to the chimney /

CCS Section.

Limestone Grinding Section

Limestone pebbles with a size of <25 mm are stored in Limestone Silo. The limestone is

transferred from Limestone Silo by Weigh Belt Feeder to Wet Ball Mill for grinding. Filtrate

water is added at the feed chute in proportion to the feed rate of the limestone. The slurry

www.chivoda-corp.com/en

discharged from Wet Ball Mill is sent to Ball Mill Classifier by Classifier Feed Pump. The overflow slurry with fine limestone is stored in Reagent Storage Tank and the underflow slurry with coarse limestone is returned to Wet Ball Mill for further grinding. The water balance is maintained to provide 30 wt% suspended limestone solids in the Reagent Storage Tank.

The limestone slurry is pumped from Reagent Storage Tank to the JBR to keep the absorbent slurry pH in the JBR.

Gypsum Dewatering Section

Gypsum slurry discharged from the JBR is directed to Gypsum Hydrocyclone and separated into solid rich underflow slurry and liquid rich overflow slurry.

The underflow slurry is sent to Vacuum Belt Filter and is dewatered to produce gypsum cake with free moisture of less than 10 wt%. The filter belt is washed with the collected Vacuum Pump seal water / makeup water to remove solids retained on the belt after the cake has been discharged. This water is collected in Filter Cloth Wash Water Tank and reused to wash the filter cake.

The gypsum cake from Vacuum Belt Filter is stored in Gypsum Storage Shed for shipping.

The overflow of Gypsum Hydrocyclone is collected in Hydrocyclone Overflow Tank and is bled from FGD system through Hydrocyclone Overflow Blowdown Pump to keep the concentration of chlorides and soluble salts at a proper level.

The filtrate from Belt Filter and a part of Hydrocyclone Overflow Tank liquid are collected in Reclaim Water Tank. A part of reclaim water is transferred to Wet Ball Mill for limestone slurry preparation. The rest of reclaim water is transferred from Reclaim Water Tank to the JBR.

4. Process Flow Diagram

Process flow diagram is shown in Attachment 2.

5. Overall Material and Heat Balance

Overall material and heat balance for the following three different cases is shown in Attachment 3.1, 3.2 and 3.3, respectively.

Case 1: SC-PC without CO2 Capture

Case 2: SC-PC with CO2 Capture

Case-3: Oxy-Boiler

Yokohama 220-8765, Japan www.chiyoda-corp.com/en

6. Preliminary Plot Area Requirement

Preliminary plot area requirements for the following three different cases are shown below.

Case 1: SC-PC without CO2 Capture

Total area requirement: 12,400 m2

Breakdown:

Area requirement for SO2 removal section: 6,600 m2 (55 m x 120 m)

Area requirement for limestone preparation and gypsum dewatering sections: 5,800 m2

Case 2: SC-PC with CO2 Capture

Total area requirement: 12,400 m2

Breakdown;

Area requirement for SO2 removal section: 6,600 m2 (55 m x 120 m)

Area requirement for limestone preparation and gypsum dewatering sections: 5,800 m²

Case-3: Oxy-Boiler

Total area requirement: 7,200 m2

Breakdown;

Area requirement for SO2 removal section: 4,050 m2 (45 m x 90 m)

Area requirement for limestone preparation and gypsum dewatering sections: 3,150 m²

7. Estimated Utility and Chemical Consumptions

Estimated utility and chemical consumptions for each case are estimated as follows;

Case 1: SC-PC without CO2 Capture

Power Consumption : 6,500 kW Process Water Consumption : 98 m3/h

Limestone Consumption : 8.7 Ton/h (dry) as 95% purity limestone

Case 2: SC-PC with CO2 Capture

Power Consumption : 7,800 kW Process Water Consumption : 100 m3/h

Limestone Consumption : 9.3 Ton/h (dry) as 95% purity limestone

Case 3: Oxy Boiler

Power Consumption : 1,850 kW Process Water Consumption : 53 m3/h

Limestone Consumption : 4.1 Ton/h (dry) as 95% purity limestone

Chiyoda Global Headquarters Minato Mirai Grand Central Tower 4-6-2, MinatoMirai, Nishi-ku, Yokohama 220-8765, Japan www.chiyoda-corp.com/en

8. Waste Water Quality

Waste water bleed rate for each case and typical waste water quality are shown below.

Waste water bleed rate

Case 1: SC-PC without CO2 Capture

4.3 m3/h

Case 2: SC-PC with CO2 Capture

4.3 m3/h

Case 3: Oxy-Boiler

 $0.5 \, \text{m}3/\text{h}$

Typical waste water quality

pH : 5.5-7.5 Total suspended solids : 3 wt%

Cl conc. : 20,000 ppm

9. Budget Capital Cost

Budget capital cost for each case is estimated based on the following conditions:

- ✓ Engineering, procurement and construction are done in Japan
- ✓ Exchange rate is JPY125 / €

Case 1: SC-PC without CO2 Capture

€62,000,000

Case 2: SC-PC with CO2 Capture

€64,000,000

Case 3: Oxy-Boiler

€24,000,000

Including basic & detail design, procurement, erection and commissioning for the following facilities:

- -SO2Scrubbing Section
- -Limestone Slurry Preparation Section
- -Gypsum Dewatering Section

but excluding flue gas by-pass ducts, dampers, chimney, civil and architectural works.

Chiyoda Corporation

Chiyoda Global Headquarters Minato Mirai Grand Central Tower 4-6-2, MinatoMirai, Nishi-ku, Yokohama 220-8765, Japan www.chiyoda-corp.com/en

10. Attachments

Attachment - 1.1, 1.2 & 1.3 : Process Design Basis
Attachment - 2 : Process Flow Diagram

Attachment - 3.1, 3.2 & 3.3 : Overall Material and Heat Balance

===== End of the Document ======

CASE 1: SC-PC without CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(1) Generating Unit and Fuel Conditions			
Generating Unit			
Heat Output		MW	
Electric Output		MW	
Steam Flow		Ton/h	
Turn-down ratio		%/min	
Operating hour		hr/yr	
Fuel			
Type of Fuel	Coal		
Heating Value		KJ/Kg	
Composition			
C		wt%	
Н		wt%	
N		wt%	
S (Maximum)		wt%	
S (Normal)		wt%	
S (Minimum)		wt%	
0 '		wt%	
CI		wt%	
F		wt%	
H2O		wt%	
Ash		wt%	
(Ash Composition)			
SiO2		wt%	
Al2O3		wt%	
CaO		wt%	
MgO		wt%	
TiO2		wt%	
Fe2O3		wt%	
SO3		wt%	
Na2O		wt%	
K2O		wt%	
Ambient Conditions			
Atmospheric pressure	101.3	kPa	Email dated 02/6/2013
Relative humidity, Ave. / Max. / Min.	80 / 95 / 40	%	Email dated 02/6/2013
Ambient temperature, Ave. / Max. / Min.	9/30/-10	deg. C	Email dated 02/6/2013

CASE 1: SC-PC without CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(2) ECD Inlet Flue Coo and Utility Conditions			
(2) FGD Inlet Flue Gas and Utility Conditions Inlet Flue Gas to FGD			
Flow rate Volumetric Flow	3,170,000	Nm3/h (wet)	Calculated by Chiyoda
Mass Flow	3,170,000	t/h	Email dated 02/6/2013
Temperature	100	deg. C	Email dated 02/0/2013
Pressure at FGD inlet	0	mmwg	Assumed by Chiyoda
Flue gas composition	O O	iiiiiwg	Assumed by Onlyoda
Ar	0.871	% Vol. (wet)	Email dated 02/6/2013
N_2	73.562	% Vol. (wet)	Email dated 02/6/2013
O ₂	3.291	% Vol. (wet)	Email dated 02/6/2013
CO ₂	14.110	% Vol. (wet)	Email dated 02/6/2013
H2O	8.095	% Vol. (wet)	Email dated 02/6/2013
SO ₂ / SO ₃ Note 1)	0.071	% Vol. (wet)	Email dated 02/6/2013
HCI	27	mg/Nm3 (dry, 6% O2)	Email dated 02/6/2013
NO _X	130	mg/Nm3 (dry, 6% O2)	Email dated 02/6/2013
Particulate	<10	1	Email dated 02/6/2013
		(3.7)	
Limestone Reagent			
CaCO ₃	95	wt%	Email dated 02/6/2013
MgCO ₃	1.5	wt%	Email dated 02/6/2013
Inerts	2.5	wt%	Email dated 02/6/2013
Moisture	1.0	wt%	Email dated 02/6/2013
Grind size	4-25	mm	Email dated 02/6/2013
Make-up Water			
CI	50	ppm	Assumed by Chiyoda
Alkalinity	00	PP···	riodaniod by Onlydda
SS	30	mg/L	Assumed
Operating pressure at grade	3.5	barg	Email dated 02/6/2013
Design pressure	9.0	barg	Email dated 02/6/2013
Operating temperature at grade	9.0	deg. C (Ambient temp)	
Design temperature	38	deg. C	Email dated 02/6/2013
Cooling Water			
Operating pressure	5.0	barg	Email dated 02/6/2013
Mechanical design pressure	8.0	barg	Email dated 02/6/2013
Maximum Users pressure drop	1.5	bar	Email dated 02/6/2013
Supply temperature	15	deg. C (Normal)	Email dated 02/6/2013
	36	deg. C (Maximum)	Email dated 02/6/2013
Mechanical design temperature	50	deg. C	Email dated 02/6/2013
Maximum temperature difference at Users	11	deg. C	Email dated 02/6/2013
Power			
LV distribution and utilization	40 / 230	V ± 5%-50Hz	Email dated 02/6/2013
MV distribution and utilization	6,000	$V \pm 5\%$ -50Hz	Email dated 02/6/2013
(Motors rated 200kW or above)	10,000	$V \pm 5\%$ -50Hz	Email dated 02/6/2013
,	,		

FOR FEASIBILITY STUDY

CASE 1: SC-PC without CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(3) FGD Outlet Flue Gas Conditions and Bypro			
FGD Performance			
SO _x removal efficiency in JBR	92.1	%	Email dated 02/6/2013
Outlet SO _x	53	ppmv (dry, 6% O2)	Email dated 02/6/2013
Particulate emission		mg/Nm3-dry	
Limestone utilization			
Gas Temperature at FGD outlet		deg.C	
Gas Pressure at FGD outlet	0	mmwg	Assumed by Chiyoda
Byproduct Solids			
CaSO ₄ -2H ₂ O		% dry weight	
Free Moisture	10	%	Assumed by Chiyoda
FGD Waste Water			
CI	≤ 20,000	ppm	Assumed by Chiyoda
Total suspended solids	3	wt%	Assumed by Chiyoda

Note *1) Assumed SO2 to SO3 conversion equal to 5%

CASE 2: SC-PC with CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(1) Generating Unit and Fuel Conditions			
Generating Unit			
Heat Output		MW	
Electric Output		MW	
Steam Flow		Ton/h	
Turn-down ratio		%/min	
Operating hour		hr/yr	
Fuel			
Type of Fuel	Coal		
Heating Value		KJ/Kg	
Composition			
C		wt%	
Н		wt%	
N		wt%	
S (Maximum)		wt%	
S (Normal)		wt%	
S (Minimum)		wt%	
0 '		wt%	
CI		wt%	
F		wt%	
H2O		wt%	
Ash		wt%	
(Ash Composition)			
SiO2		wt%	
Al2O3		wt%	
CaO		wt%	
MgO		wt%	
TiO2		wt%	
Fe2O3		wt%	
SO3		wt%	
Na2O		wt%	
K2O		wt%	
Ambient Conditions			
Atmospheric pressure	101.3	kPa	Email dated 02/6/2013
Relative humidity, Ave. / Max. / Min.	80 / 95 / 40	%	Email dated 02/6/2013
Ambient temperature, Ave. / Max. / Min.	9/30/-10	deg. C	Email dated 02/6/2013

CASE 2: SC-PC with CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(2) FGD Inlet Flue Gas and Utility Conditions			
Inlet Flue Gas to FGD			
Flow rate Volumetric Flow	3,170,000	Nm3/h (wet)	Calculated by Chiyoda
Mass Flow	3,585	t/h	Email dated 02/6/2013
Temperature	100	deg. C	Email dated 02/12/2013
Pressure at FGD inlet	0	mmwg	Assumed by Chiyoda
Flue gas composition			
Ar	0.871	% Vol. (wet)	Email dated 02/6/2013
N ₂	73.562	% Vol. (wet)	Email dated 02/6/2013
O ₂	3.291	% Vol. (wet)	Email dated 02/6/2013
CO ₂	14.110	% Vol. (wet)	Email dated 02/6/2013
H2O SO ₂ / SO ₃ ^{Note -1)}	8.095 0.071	% Vol. (wet) % Vol. (wet)	Email dated 02/6/2013 Email dated 02/6/2013
HCI	27	mg/Nm3 (dry, 6% O2)	Email dated 02/6/2013
NO _X	130	mg/Nm3 (dry, 6% O2)	Email dated 02/6/2013
Particulate	<10	mg/Nm3 (dry, 6% O2)	Email dated 02/6/2013
Limestone Reagent			
CaCO ₃	95	wt%	Email dated 02/6/2013
MgCO₃	1.5	wt%	Email dated 02/6/2013
Inerts	2.5	wt%	Email dated 02/6/2013
Moisture	1.0	wt%	Email dated 02/6/2013
Grind size	4-25	mm	Email dated 02/6/2013
Make-up Water			
CI	50	ppm	Assumed by Chiyoda
Alkalinity			
SS	30	mg/L	Assumed by Chiyoda
Operating pressure at grade	3.5	barg	Email dated 02/6/2013
Design pressure	9.0	barg	Email dated 02/6/2013
Operating temperature at grade	9.0	deg. C (Ambient temp)	Email dated 02/6/2013
Design temperature	38	deg. C	Email dated 02/6/2013
Cooling Water			
Operating pressure	5.0	barg	Email dated 02/6/2013
Mechanical design pressure	8.0	barg	Email dated 02/6/2013
Maximum Users pressure drop	1.5	bar	Email dated 02/6/2013
Supply temperature	15	deg. C (Normal)	Email dated 02/6/2013
Machaniaal dagiga tampayatuya	36	deg. C (Maximum)	Email dated 02/6/2013
Mechanical design temperature	50 11	deg. C	Email dated 02/6/2013
Maximum temperature difference at Users	11	deg. C	Email dated 02/6/2013
Power			
LV distribution and utilization	40 / 230	V ± 5%-50Hz	Email dated 02/6/2013
MV distribution and utilization	6,000	V ± 5%-50Hz	Email dated 02/6/2013 Email dated 02/6/2013
(Motors rated 200kW or above)	10,000	V ± 5%-50Hz	Email dated 02/6/2013

FOR FEASIBILITY STUDY

CASE 2: SC-PC with CO2 Capture

Design Conditions

Parameter	Design		Source/Note
(3) FGD Outlet Flue Gas Conditions and Bypr	oduct Solids		
FGD Performance			
SO _x removal efficiency in JBR	98.5	%	Email dated 02/6/2013
Outlet SO _x	10	ppmv (dry, 6% O2)	Email dated 02/6/2013
Particulate emission		mg/Nm3-dry	
Limestone utilization			
Gas Temperature at FGD outlet		deg.C	
Gas Pressure at FGD outlet	0	mmwg	Assumed by Chiyoda
Byproduct Solids			
CaSO ₄ ·2H ₂ O		% dry weight	
Free Moisture	10	%	Assumed by Chiyoda
FGD Waste Water			+
CI	≤ 20,000	ppm	Assumed by Chiyoda
Total suspended solids	3	wt%	Assumed by Chiyoda

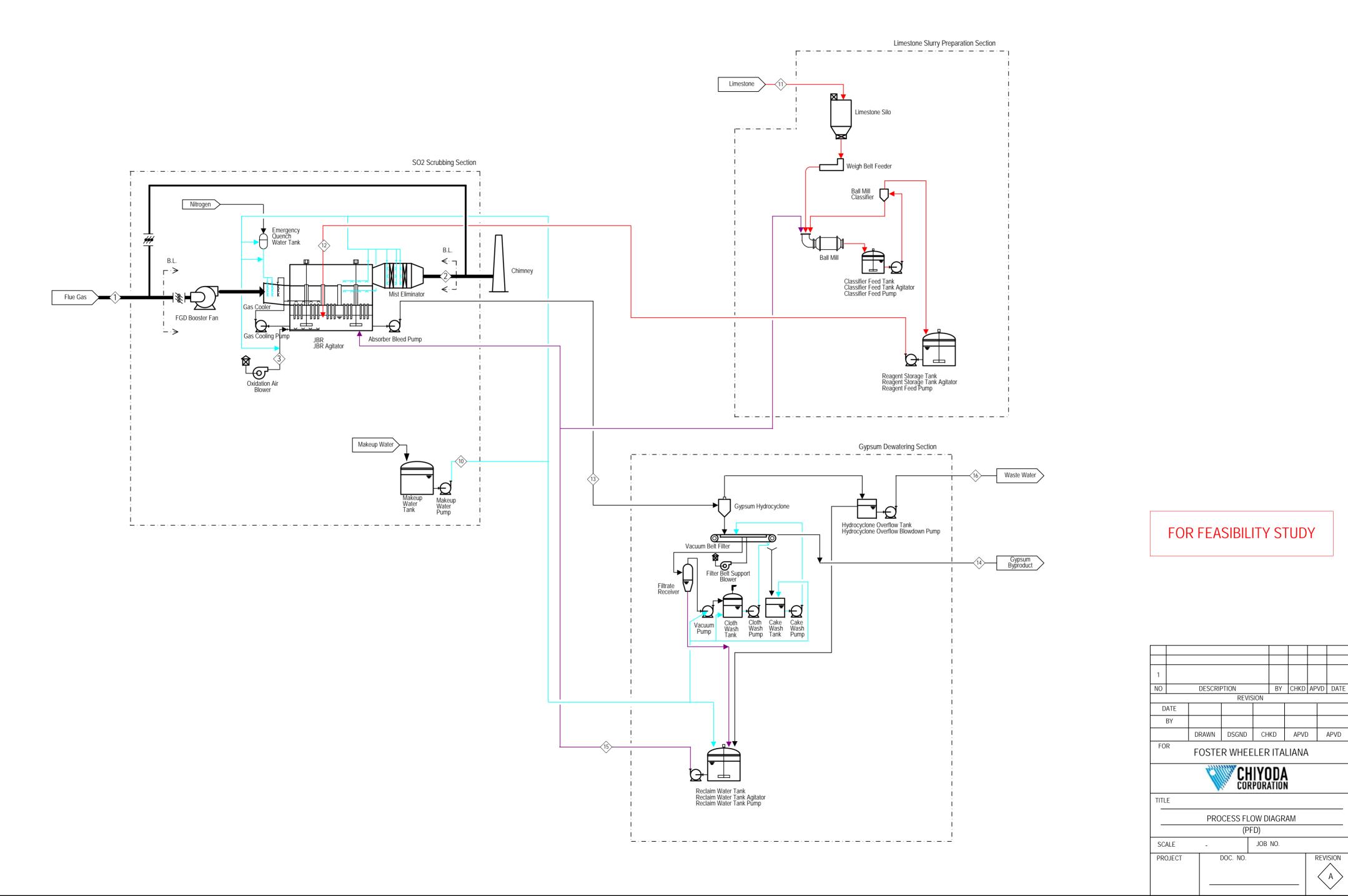
Note *1) Assumed SO2 to SO3 conversion equal to 5%

CASE 3: Oxy-Boiler Design Conditions

Parameter	Design		Source/Note
(1) Generating Unit and Fuel Conditions			
Generating Unit			
Heat Output		MW	
Electric Output		MW	
Steam Flow		Ton/h	
Turn-down ratio		%/min	
Operating hour		hr/yr	
Fuel			
Type of Fuel	Coal		
Heating Value		KJ/Kg	
Composition			
С		wt%	
Н		wt%	
N		wt%	
S (Maximum)		wt%	
S (Normal)		wt%	
S (Minimum)		wt%	
0		wt%	
CI		wt%	
F		wt%	
H2O		wt%	
Ash		wt%	
(Ash Composition)			
SiO2		wt%	
Al2O3		wt%	
CaO		wt%	
MgO		wt%	
TiO2		wt%	
Fe2O3		wt%	
SO3		wt%	
Na2O		wt%	
K2O		wt%	
Ambient Conditions			
Atmospheric pressure	101.3	kPa	Email dated 02/6/2013
Relative humidity, Ave. / Max. / Min.	80 / 95 / 40	%	Email dated 02/6/2013
Ambient temperature, Ave. / Max. / Min.	9/30/-10	deg. C	Email dated 02/6/2013

CASE 3: Oxy-Boiler Design Conditions

Parameter	Design		Source/Note
(2) FGD Inlet Flue Gas and Utility Conditions			
Inlet Flue Gas to FGD			
Flow rate Volumetric Flow	802,000	Nm3/h (wet)	Calculated by Chiyoda
Mass Flow	1,300	t/h	Email dated 02/6/2013
Temperature	150	deg. C	Email dated 02/12/2013
Pressure at FGD inlet	0	mmwg	Assumed by Chiyoda
Flue gas composition			
Ar	1.553	% Vol. (wet)	Email dated 02/8/2013
N_2	11.809	% Vol. (wet)	Email dated 02/8/2013
O_2	5.374	% Vol. (wet)	Email dated 02/8/2013
CO ₂	63.820	% Vol. (wet)	Email dated 02/8/2013
H2O	17.234	% Vol. (wet)	Email dated 02/8/2013
SO ₂ / SO ₃ Note ~1)	0.170	% Vol. (wet)	Email dated 02/8/2013
HCI	0.04	mg/Nm3 (dry, 6% O2)	
NO _X	0.04	% Vol. (wet)	Email dated 02/8/2013
Particulate	<10	mg/Nm3 (dry, 6% O2)	Email dated 02/8/2013
Limestone Reagent			
CaCO ₃	95	wt%	Email dated 02/6/2013
MgCO ₃	1.5	wt%	Email dated 02/6/2013
Inerts	2.5	wt%	Email dated 02/6/2013
Moisture	1.0	wt%	Email dated 02/6/2013
Grind size	4-25	mm	Email dated 02/6/2013
Make-up Water			
CI	50	ppm	Assumed by Chiyoda
Alkalinity			
SS	30	mg/L	Assumed by Chiyoda
Operating pressure at grade	3.5	barg	Email dated 02/6/2013
Design pressure	9.0	barg	Email dated 02/6/2013
Operating temperature at grade	9.0	degC (Ambient temp)	Email dated 02/6/2013
Design temperature	38	degC	Email dated 02/6/2013
Cooling Water			
Operating pressure	5.0	barg	Email dated 02/6/2013
Mechanical design pressure	8.0	barg	Email dated 02/6/2013
Maximum Users pressure drop	1.5	bar	Email dated 02/6/2013
Supply temperature	15	deg. C (Normal)	Email dated 02/6/2013
	36	deg. C (Maximum)	Email dated 02/6/2013
Mechanical design temperature	50	deg. C	Email dated 02/6/2013
Maximum temperature difference at Users	11	deg. C	Email dated 02/6/2013
_			
Power	40 / 000	V 1 50/ 50/1	
LV distribution and utilization	40 / 230	V ± 5%-50Hz	Email dated 02/6/2013
MV distribution and utilization	6,000	$V \pm 5\%$ -50Hz	Email dated 02/6/2013
(Motors rated 200kW or above)	10,000	$V \pm 5\%$ -50Hz	Email dated 02/6/2013



CASE 3: Oxy-Boiler Design Conditions

Parameter	Design		Source/Note
(3) FGD Outlet Flue Gas Conditions and Byprod			
FGD Performance			
SO _x removal efficiency in JBR	60	%	Email dated 02/6/2013
Outlet SO _x	820	ppm (dry, 6% O2)	
Particulate emission		mg/Nm3-dry	
Limestone utilization			
Gas Temperature at FGD outlet		deg.C	
Gas Pressure at FGD outlet	0	mmwg	Assumed by Chiyoda
Byproduct Solids			
CaSO₄·2H₂O		% dry weight	
Free Moisture	10	%	Assumed by Chiyoda
FGD Waste Water			
CI	≤ 20,000	ppm	Assumed by Chiyoda
Total suspended solids	3	wt%	Assumed by Chiyoda

Note *1) Assumed SO2 to SO3 conversion equal to 5%

REVISION

 $\langle A \rangle$

GAS STREAM

MATERIAL AND HEAT BALANCE

ISSUE DATE: Feb 14, 2013

CUSTOMER:

FOSTER WHEELER ITALIANA

JOB NAME:

JOB NO.: DOCUMENT:

SHEET NO.: 1 OF 1

STREAM NO.			1		2			3		
STREAM NAME		FLUE GAS		FGD OUTLET GAS			OXIDATION AIR (at Blower Discharge)			
COMPONENT	MW	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%
H2O	18.02	177,958	221,000		267,000	332,000	11.7	124	155	0.9
SOx	64.06	5,548	1,941	710ppm	431	151	53ppm	-	-	-
O2	32.00	128,506	90,014		132,393	92,738	3.3			
CO2	44.01	757,770	385,929	14.1	761,342	387,749	13.7			
HCl	36.46	79	48	18ppm	0	0	0ppm	1	-	-
DRY GAS		3,407,042	2,514,000	91.9	3,426,000	2,507,000	88.3	22,180	17,230	99.1
TOTAL		3,585,000	2,735,000	100.0	3,693,000	2,838,000	100.0	22,310	17,380	100.0
DUST			29	kg/h	<29 kg/h		- -			
(DUST-DRY B	ASE)		12	mg/Nm3, dry	<12 mg/Nm3, dry				-	
TEMPERATURE			100	deg C	49 deg C				56 (leg C
PRESSURE			0	mmH2O	0 mmH2O			4,800 mmH2O		
ACTUAL GAS FLOV	W RATE		3,737,000		3,350,000 m3/h			14,300 m3/h		m3/h
REMARKS		SOx	1900	mg/Nm3, dry 6% O2	SOx	149	mg/Nm3, dry 6% O2			
			665	ppmv, dry 6% O2		52	ppmv, dry 6% O2			
		Particulate	10	mg/Nm3, dry 6% O2	Particulate	<10	mg/Nm3, dry 6% O2			

Case-1: SC-PC without CO2 capture

FOR FEASIBILITY STUDY

LIQUID & SOLID STREAM

STREAM NO.		1	10	1	1	1	12]	13	1	4	1	15	16	
STREAM NAME		MAKE U	P WATER	LIMES	STONE	LIMESTON	IE SLURRY	GYPSUM	I SLURRY	BYPRODUC	CT GYPSUM	RECLAIN	M WATER	WASTE	WATER
COMPONENT	MW	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%
H2O	18.02	96,710	100	90	1	20,480	66	60,610	76	1,560	10	56,640	92	3,940	92
Cl	35.45	5	50ppm	-	-	-	-	1,240	19,400ppm	0	0	1,160	19,400ppm	80	19,400ppm
CaCO3	100.09	-	-	8,270	95	8,280	27	-	-	-	-	-	-	-	-
MgCO3	84.32	-	-	290	2	290	0	-	-	-	-	1	-	-	-
CaSO4 2H2O	172.17	-	-	-	-	-	-	15,400	19	13,490	87	1,780	3	120	3
OTHERS	-	10	0	220	3	1,880	7	2,860	3	550	4	2,160	4	160	4
TOTAL		96,720	100	8,700	100	30,930	100	80,110	100	15,600	100	61,740	100.0	4,300	100.0
		98	m3/h			25	m3/h	72	m3/h			61	m3/h	4.3	m3/h
TEMPERATURE			-	-			-		-		-		-		-
pH				-			-		-	-	-		-		-
REMARKS				Purity	96.0%	30%	Slurry	20%	Slurry	Purity	96.1%			TSS	3.0%

CHIYODA	
MATERIAL AND	HEAT BALANCE

Feb 12, 2013 CUSTOMER: FOSTER WHEELER ITALIANA

JOB NAME:

JOB NO.:

Case-2: SC-PC with CO2 capture

DOCUMENT:

ISSUE DATE:

SHEET NO.: 1 OF 1

STREAM N	O.		1			2			3			
STREAM NAME			FLUE GAS		FGI	O OUTLET GA	AS	OXIDATION AIR (at Blower Discharge)				
COMPONENT	MW	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%		
H2O	18.02	177,958	221,000	8.1	269,000	334,000	11.8	132	164	0.9		
SOx	64.06	5,548	1,941	710ppm	72	25	9ppm	-	-	-		
O2	32.00	128,506	90,014	3.3	132,610	92,889	3.3					
CO2	44.01	757,770	385,929	14.1	761,590	387,875	13.6					
HCl	36.46	79	48	18ppm	0	0	0ppm	-	-	-		
DRY GAS		3,407,042	2,514,000	91.9	3,427,000	2,508,000	88.2	23,500	18,250	99.1		
TOTAL		3,585,000	2,735,000	100.0	3,696,000	2,842,000	100.0	23,630	18,410	100.0		
DUST			29	kg/h		<29	kg/h		-			
(DUST-DRY B	ASE)		12	mg/Nm3, dry		<12 mg/Nm3, dry			-			
TEMPERATURE			100	deg C		49	deg C	49 deg C				
PRESSURE			0	mmH2O		0 :	mmH2O		3,985 r	nmH2O		
ACTUAL GAS FLOW RATE			3,737,000	m3/h		3,356,000	m3/h		15,700 r	n3/h		
REMARKS		SOx	665	ppmv, dry 6% O2	SOx	9	ppmv, dry 6% O2					
		Particulate	10	mg/Nm3, dry	Particulate	<10	mg/Nm3, dry					

FOR FEASIBILITY STUDY

LIQUID & SOLID STREAM

GAS STREAM

STREAM NO.		1	10	1	1	1	2	1	13	1	4	1	15	16	
STREAM NAME		MAKE U	P WATER	LIMES	STONE	LIMESTON	IE SLURRY	GYPSUM	I SLURRY	BYPRODUC	CT GYPSUM	RECLAIN	M WATER	WASTE	E WATER
COMPONENT	MW	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%
H2O	18.02	99,180	100	90	1	21,870	66	64,790	76	1,670	10	60,820	92	3,940	92
Cl	35.45	5	50ppm	-	-	-	-	1,330	19,400ppm	0	0	1,250	19,400ppm	80	19,400ppm
CaCO3	100.09	-	-	8,840	95	8,850	27	-	-	-	-	-	-	-	-
MgCO3	84.32	-	-	310	2	310	0	-	-	-	-	-	-	-	-
CaSO4 2H2O	172.17	-	-	-	-	-	-	16,490	19	14,450	87	1,910	3	120	3
OTHERS	-	10	0	230	3	2,050	7	3,170	3	590	4	2,430	4	160	4
TOTAL		99,190	100	9,300	100	33,080	100	85,780	100	16,710	100	66,410	100.0	4,300	100.0
		100	m3/h			27	m3/h	77	m3/h		3"	66	m3/h	4.3	m3/h
TEMPERATURE			-	-			-		-		-		-		-
pH				-			-		-		-		-		-
REMARKS				Purity	96.0%	30%	Slurry	20%	Slurry	Purity	96.1%			TSS	3.0%

CHIYODA	
MATERIAL AND	D HEAT BALANC

ISSUE DATE : Feb 12, 2013

CUSTOMER: FOSTER WHEELER ITALIANA

JOB NAME:

JOB NO.: DOCUMENT:

SHEET NO.: 1 OF 1

GAS STREAM

STREAM NO	O.		1			2			3			
STREAM NA	STREAM NAME		FLUE GAS		FG	D OUTLET GA	AS	OXIDATION AIR (at Blower Discharge)				
COMPONENT	MW	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%	kg/h	Nm3/h	Vol.%		
H2O	18.02	111,066	138,000	17.2	160,000	199,000	23.2	58	73	0.9		
SOx	64.06	3,898	1,364	1,701ppm	1,466	513	598ppm	-	-	-		
O2	32.00	61,514	43,089	5.4	63,335	44,364	5.2					
CO2	44.01	1,004,749	511,714	63.8	1,006,424	512,568	59.7					
HCl	36.46	0	0	0ppm	0	0	0ppm	-	-	-		
DRY GAS		1,188,934	664,000	82.8	1,198,000	659,000	76.8	10,430	8,100	99.1		
TOTAL		1,300,000	802,000	100.0	1,358,000	858,000	100.0	10,490	8,170	100.0		
DUST			0	kg/h		<0	kg/h		-			
(DUST-DRY BA	ASE)		0	mg/Nm3, dry		<0 mg/Nm3, dry			-			
TEMPERATURE			150	deg C		64 deg C			42 deg C			
PRESSURE			0	mmH2O		0	mmH2O		3,205 1	mmH2O		
ACTUAL GAS FLOW RATE			1,242,000	m3/h		1,058,000	m3/h		7,200 1	m3/h		
REMARKS		SOx	2,125	ppmv, dry 6% O2	SOx	818	ppmv, dry 6% O2					

Case 3: Oxy-Boiler

FOR FEASIBILITY STUDY

LIQUID & SOLID STREAM

STREAM NO.		1	10	1	1	1	2	1	.3	1	4	15			16
STREAM NAME		MAKE U	P WATER	LIMES	STONE	LIMESTON	IMESTONE SLURRY GYPSUM SLURRY		BYPRODUCT GYPSUM		RECLAIM WATER		WASTE WATER		
COMPONENT	MW	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%	kg/h	wt%
H2O	18.02	51,600	100	40	1	9,020	62	27,170	71	750	10	26,730	86	430	86
Cl	35.45	3	50ppm	-	-	-	-	160	5,100ppm	0	0	150	5,100ppm	0	5,100ppm
CaCO3	100.09	-	-	3,880	95	3,880	27	-	-	-	-	-	-	-	-
MgCO3	84.32	-	-	130	2	140	0	-	-	-	-	-	-	-	-
CaSO4 2H2O	172.17	-	-	-	-	-	-	7,370	19	6,460	87	900	3	10	3
OTHERS	-	0	0	100	3	1,470	11	3,570	9	240	3	3,260	11	60	11
TOTAL		51,600	100	4,080	100	14,510	100	38,270	100	7,450	100	31,040	100.0	500	100.0
		52	m3/h			12	m3/h	34	m3/h			31	m3/h	0.5	m3/h
TEMPERATURE		•	-	1			-		-		-		-		-
pН				ı			-		-		-		-		-
REMARKS				Purity	96.0%	30%	Slurry	20%	Slurry	Purity	96.3%			TSS	3.0%

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 48 of 49

ATTACHMENT A.2: Cansolv post-combustion capture technology

Cansolv CO₂ Capture System

Technical Study

Presented to:

Foster Wheeler


Submitted by:

Cansolv Technologies Inc.

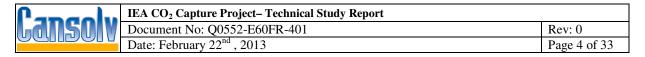
February 22nd, 2013 Revision 0

REVISION PROCESS								
Prepared By	MG/MN							
Reviewed By	AS							
Verified By	KS							
Approved By	IS							

TABLE OF CONTENTS

1.		INTRODUCTION	3
2.]	BUSINESS PROFILE	4
	2.1	CANSOLV TECHNOLOGIES	4
	2.2		
3.	:	SAMPLE COMMERCIAL EXPERIENCE	
		CANSOLV CO ₂ SCRUBBING COMMERCIAL EXPERIENCE	
	3.1 3.2		
4.		PROCESS DESCRIPTION - PROPOSED PROCESS ARRANGEMENT	
	4.1		12
	4.2		
	4.3 4.4	<u> </u>	
	4.4 4.5		
	4.6		
	4.7	· · ·	
5.]	PROJECT DESIGN BASIS	
	5.1	PROCESS LINE-UP AND BATTERY LIMITS	16
	5.2		
	5.3	INLET GAS SPECIFICATION	19
	5.4	<u>u</u>	
	5.5	AVAILABLE UTILITIES	20
6.		CO ₂ CAPTURE SYSTEM SPECIFICATIONS	21
	6.1	HEAT AND MATERIAL BALANCES	21
	6.2		
	6.3		
	6.4	=	
	6.5	u	
	6.6	CANSOLV CO ₂ ABSORBENT SUMMARY	24
7.		OPTIONS FOR INTERNAL HEAT RECOVERY	25
ΑF	PE	ENDIX I: PROCESS FLOW DIAGRAM	26
ΑF	PE	ENDIX II: PRELIMINARY HEAT & MATERIAL BALANCE	27
ΑF	PE	ENDIX III: SIZED EQUIPMENT LIST	28
ΑF	PE	ENDIX IV: UTILITY CONSUMPTION TABLE	29
ΑF	PE	ENDIX V: ROUGH ESTIMATED LAYOUT / PLOT PLAN	30
A E	DE	ENDLY VI. EUTUDE INNOVATION AND DEVELODMENT	21

Canach	IEA CO ₂ Capture Project- Technical Study Report	
I-MISIMY	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 22 nd , 2013	Page 3 of 33


1. INTRODUCTION

1.1 Project Scope

Cansolv Technologies Inc (CTI) is pleased to present to Foster Wheeler (FW) this technical study. FW is interested in evaluating the application of Cansolv CO₂ capture technology for the purposes of capturing CO₂ from a Coal Fired Power Plant.

The table to follow will guide you to the location of the specific deliverables as specified in the Request for Information (RfI):

Item	Section
Unit process description	4
Simplified Process Diagram	Appendix I
Boundary Heat and Material Balances	Appendix II
Emissions and effluents summary	6.3
Utility consumption	6.3 / Appendix IV
Solvent make-up rate	6.6
Solvent initial inventory	6.6
Plot area requirement	Appendix V
Technical barriers	5
Advantages of Lean Vapour Re-compression	4.5 / 6 / 7
Economic information	NA
Overview of technology	3
Reference plants	3
Track records on availability	3
Main literature papers on the technology	2

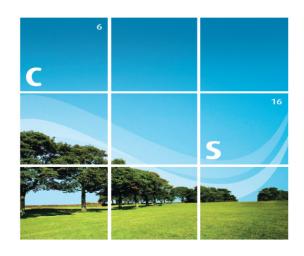
2. BUSINESS PROFILE

2.1 Cansolv Technologies

Cansolv Technologies Inc. (CTI) was formed in 1997 to commercialize the Cansolv SO₂ Scrubbing System. At this time nine commercial Cansolv Scrubbing Systems are in operation and several more are in the detailed engineering, construction or procurement phase. Driving from its expertise in regenerable amine technologies, Cansolv has developed an ingenious CO₂ Capture process. One Cansolv CO₂ Capture unit has recently successfully started and numerous Cansolv CO₂ Capture units are currently being engineered. Cansolv CO₂ Capture process is well positioned to serve the evolving Greenhouse Gas abatement market.

On November 30th of 2008, *Shell Global Solutions International B.V. (SGSI)* purchased 100% of the shares of CTI. The company now operates as a wholly owned subsidiary of SGSI.

It is CTI's mission to be a leading global provider of high efficiency air pollution control and capture solutions. We want our patented technology to serve as the benchmark for stationary source air emission abatement around the world. Our commitment is to providing custom designed economic solutions to our clients' environmental problems.


Cansolv is an innovative, technology-centered company. The company continues to leverage its knowledge base to develop new and enhance existing applications for specific pollution abatement based on the Cansolv System platform. Through strategic partnerships and R&D, Cansolv strives to expand its product and service offering in the following areas:

- Multi-emission technology for control of SO_x and or CO₂.
- Valuable material recovery from emission control processes.

The benefits of the Cansolv Absorbent include:

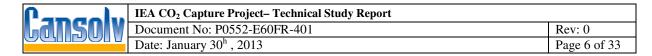
- The elimination of the high cost of consumable absorbents and associated transportation costs;
- No environmental legacy obligations and costs;
- Reduced capital costs due to its high capacity and selectivity reduce; and minimal emission of effluents from the process.

Learn more at <u>www.cansolv.com</u>. At the website also literature papers are available describing the offered technological portfolio in more detail.

Canach	EA CO ₂ Capture Project- Technical Study Report							
1-4M5MMV	Document No: Q0552-E60FR-401	Rev: 0						
	Date: February 22 nd , 2013	Page 5 of 33						

2.2 Royal Dutch Shell

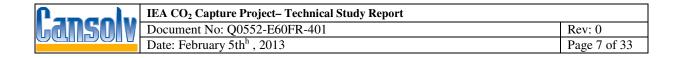
Royal Dutch Shell, owner of Shell Global Solutions International and Cansolv Technologies Inc., is a global group of energy and petrochemical companies.


The aim of the Shell Group is to meet the energy needs of society in ways that are economically, socially and environmentally viable, now and in the future. We are active in more than 130 countries and territories and employ about 90,000 people worldwide. Royal Dutch Shell consists of the upstream businesses of Exploration & Production and Integrated Gas and the downstream businesses of Oil Products and Chemicals. We also have interests in other industry segments such as Renewables, Hydrogen, Bio-fuels and CO₂. Shell Global Solutions provides business and operational consultancy, technical services and research and development expertise to the energy and processing industries worldwide.

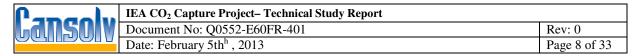
The scale of support can range from the provision of innovative - but field-tested - technologies including catalysts, through to assistance with the implementation of management practices and long-term strategic support in areas such as emissions management.

Within Shell Global Solutions International, more than 5000 staff across an extensive network of offices around the world are supported by primary commercial and world-class technical centres operating in the USA, Europe and Asia Pacific.

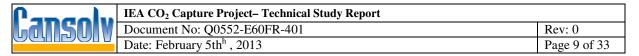
Shell has been audited and been awarded ISO 9001:2000 certification. Various internal quality procedures are in place covering solid project delivery and engineering.



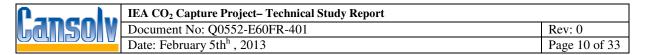
3. SAMPLE COMMERCIAL EXPERIENCE

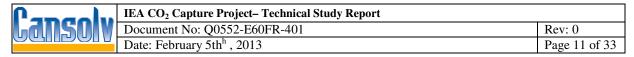

3.1 Cansolv CO₂ Scrubbing Commercial Experience

Location	Status	Application	Gas flow (Nm3/hr)	Feed Gas CO ₂ Content	CO ₂ Capture rate	Description
South Africa	Fabrication phase, and start-up in 2013	CO ₂ capture	44,900	9%	170 tpd	This CANSOLV® unit will capture CO ₂ for use at chrome chemicals production facility in Newcastle. Lanxess CISA is investing in a facility which will be burning Sasol's fuel gas to produce steam and generate a stream of flue gas from which CO ₂ will be captured and used for the dichromate process.
Wales	Operating since Jan 2013	Coal Fired Power Plant	10,200	12%	50 tpd	This CANSOLV® unit will treat flue gas from a coal fired power plant station. The flue gas from the boiler is routed to a prescrubber, followed by a CANSOLV SO ₂ Scrubbing System and then a CANSOLV CO ₂ Capture System. The CO ₂ Capture system targets a removal of 90% of the CO ₂ in the feed gas.
Canada	Engineering phase. Start-up in 2013.	Coal Fired Power Plant Off-Gas	650,000	12%	2750 tpd	This CANSOLV® unit will treat flue gas from a 150 MW coal fired power plant boiler. The flue gas from the boiler is routed to a prescrubber, followed by a CANSOLV SO ₂ Scrubbing System and then a CANSOLV CO ₂ Capture System. The CO ₂ Capture system targets a removal of 90% of the CO ₂ in the feed gas. Recovered SO ₂ is sent to a sulfuric acid plant and CO ₂ is sent to a compressor and discharged to a product pipeline, where it travels to an offsite location where it is used for EOR.



3.2 Cansolv SO2 Scrubbing Commercial Experience


Location	Status	Application	Gas flow (Nm3/hr)	Feed Gas SO ₂ Content	SO ₂ Emission Specifications	Description
Belgium	Operating since 2002	Sulfur Recovery Unit Tail Gas	12,000	0.6 - 1.0 %	<50 ppmv	Located at a Belgian chemical facility. Tail gas from a sulfur recovery unit is burned with high sulfur content tars in an incinerator. The off-gas containing 0.6 - 1% SO ₂ is quenched and cooled before entering the CANSOLV [®] unit which absorbs as much as 99.9% of the SO ₂ leaving less than 50 ppmv residual SO ₂ in the gas. Recovered SO ₂ is recycled to the Claus unit.
Canada	Operating since 2002	Zinc Smelter Off-Gas	4,000	7 - 10 %	<100 ppmv	The process recovers SO ₂ from a 7% to 10% SO ₂ gas from a metallurgical roaster. The recovered SO ₂ is absorbed to maximum loading in CANSOLV Absorbent DM [™] (CANSOLV® SO ₂ SAFE [™] process) and shipped by truck to a second site where the absorbent is regenerated and product SO ₂ is used in a copper smelting process. The unit has a capacity of 33 tpd of SO ₂ and emissions are maintained well below design values.
CA, USA	Operating since 2002	Sulfuric Acid Plant Tail Gas	40,000	0.35 - 0.50 %	<20 ppmv	Located at an oil refinery, this unit treats tail gas from a sulfuric acid plant. As the acid plant catalyst ages, the content of SO ₂ in the acid plant tail gas increases. The Cansolv unit is designed to meet emissions of less than 20 ppmv to the atmosphere throughout the catalyst lifetime.
India	Operating since 2005	Lead Smelter Off-Gas	35,000	0.1 - 12 %	<150 ppmv	Located in Rajasthan, India, this unit captures offgas from a batch lead smelter. Concentration of SO ₂ varies one hundred fold during the process cycle (from 12% at peak down to 1,000 ppmv). The CANSOLV® unit is designed to dampen these


						surges in SO ₂ feed rates through a load levelling solvent management protocol. The result is a steady flow of SO ₂ product that allows the downstream acid plant to operate in exothermal mode through the entire range of operation of the batch smelter.
WA, USA	Operating since 2006	Sulfur Recovery Unit Tail Gas	20,000	4 %	<140 ppmv	The CANSOLV® unit is designed to treat tail gas from a 2-stage sulfur recovery unit at a US refinery. Part of the refinery acid gas bypasses the SRU and fuels an incinerator to oxidize the tail gas. After waste heat recovery, CANSOLV SO ₂ Scrubbing System captures the SO ₂ down to less than 60 ppmv by modulating heat input and circulation. Pure SO ₂ is recycled to the thermal stage of the SRU, reducing both the duty of the thermal stage and the air input (and corresponding inter load). The SRU capacity increases by 12.5% with this strategy (without oxygen enrichment). Furthermore, zero COS and CS2 emissions are be achieved without any special catalysts.
DE, USA	Operating since 2006	Fluid Coker Off-Gas	430,000	2,000 ppmv	<25 ppmv	This unit removes SO ₂ from refinery fluid coking unit (FCU) off-gas. Outlet concentration requirement is 25 ppmv, but emissions are maintained near zero by a caustic polishing section in the CANSOLV® absorber. Captured SO ₂ is fed to the refinery sulfur unit and converted to sulfur. The unit run-length design basis is 3 years between shutdowns.
DE, USA	Operating since 2006	Fluid Cat Cracker Off- Gas	740,000	800 ppmv	<25 ppmv	This unit removes SO ₂ from refinery catalytic cracking unit (FCCU) off-gas. Outlet concentration requirement is 25 ppmv, but emissions are maintained near zero by a caustic polishing section in the CANSOLV® absorber. Captured SO ₂ is fed to the refinery sulfur unit and converted to sulfur. The unit is designed to run 5 years without interruption between scheduled shutdowns. This

						unit has the largest single CANSOLV SO ₂ absorber in service to date, which is 11 meters in diameter.
Canada	Operated 2008-2009 (facility shutdown)	Spent Catalyst Roaster Off- Gas	50,000	9,000 ppmv	<150 ppmv	Located near Edmonton, Alberta, Canada. This roaster regenerates spent catalyst from oil and gas processing facilities. The CANSOLV® unit treats the SO ₂ offgas from the roaster down to < 150 ppmv. The energy requirements of the CANSOLV® unit are supplied by pressurized hot water from a process gas heat recovery system. The product SO ₂ is sold in the Edmonton area as dry liquid SO ₂ .
China	Operating since 2009	Coal Fired Boiler Off-Gas	960,000	4,000 ppmv	<140 ppmv	Located in the Guizhou province, China, these four CANSOLV® scrubbers treat a combined flow of 960,000 Nm3/hr (600,000 SCFM) containing up to 4,000 ppmv SO ₂ . The recovered SO ₂ from the scrubbers will produce 130,000 tons per year of commercial grade (98%) sulfuric acid.
China	Operating since 2009	Sinter Machine Off- Gas	550,000	2,200 ppmv	<50 ppmv	Fumes from a 265 m ² sinter machine are collected, pre-cleaned and fed to the CANSOLV SO ₂ Scrubbing system for SO ₂ removal. Captured SO ₂ is directed to the onsite sulfuric acid facility.
China	Operating since 2010	Lead Smelter and Acid Plant Tail Gas	60,000	0.1 - 10 %	<140 ppmv	Located in Yunnan province, China, this unit captures SO ₂ from the offgas of a batch lead smelter as well as from the tail gas of an acid plant. The gas flowrate and SO ₂ concentration of the smelter offgas varies with the smelter cycle. A constant flowrate of the smelter offgas is sent directly to an acid plant. The CANSOLV® unit treats the remainder of the smelter offgas. In order to level the SO ₂ concentration in the gas feed to the acid plant, the CANSOLV® unit varies the regeneration rate of SO ₂ as a function of the SO ₂ concentration in the smelter offgas. The advantage of this application is that the acid plant size is minimised and operates under steady conditions, whereas the CANSOLV®

China	Operating since 2010	Ferric Ball Sinter Machine Off- Gas	300,000	2,400 ppmv	<140 ppmv	unit handles the varying SO ₂ load while meeting emission requirements. Furthermore, heat integration by use of a double effect split flow regeneration configuration results in >25% steam savings compared to a conventional process line-up. Off-gas from the sinter machine are collected, pretreated, and fed to the CANSOLV SO ₂ Scrubbing System for SO ₂ removal. Captured SO ₂ is directed to the onsite sulfuric acid facility.
LA, USA	Operating since 2011	Single Absorption Sulfuric Acid Plant Tail Gas	130,000	3,500 ppmv	<75 ppmv	This CANSOLV® unit was built and supplied as a modularized unit. The unit captures the SO ₂ from the tail gas of a single absorption sulfuric acid plant. The unit is designed for outlet SO ₂ concentration of 75 ppmv. The recovered SO ₂ is routed to the front end of the acid plant.
CA, USA	Operating since 2011	Fluid Coker and Fluid Cat Cracking Unit Off-Gas	575,000	1,200 ppmv	<10 ppmv	This unit removes SO ₂ from the combined off gas from a refinery's fluid coking unit (FCU) and fluid cat cracking unit (FCCU). The outlet SO ₂ concentration requirement is 10 ppmv. Captured SO ₂ is fed to the refinery sulfur unit and converted to sulfur. The unit run-length design basis is 6 years between shutdowns.
China	Engineering phase. Start-up in 2012.	Tin Smelter and Acid Plant Tail Gas	150,000	0.6 - 1.0 %	<140 ppmv	This unit will treat the combined flue gas from a tin smelter, 2 roasters, 2 furnaces, and an acid plant in a single train CANSOLV unit. The unit is designed for various turndown and turnup conditions, while targeting to meet at 140 ppmv SO ₂ emission requirement. The product SO ₂ will be converted to sulfuric acid.
China	Engineering phase. Start-up in 2012.	Coal Fired Power Plant Off-Gas	5,200,000	4,000 ppmv	<140 ppmv	This CANSOLV® unit will treat flue gas from two 660 MW coal fired power plant boilers. The flue gas is treated in two parallel trains processing 2,600,000 Nm3/hr each. The SO ₂ produced is sent to a sulfuric acid plant for conversion.

India	Construction phase. Start-up in 2012.	Resid Fuel Fired Utility Boiler Off-Gas	1,550,000	3,000 ppmv	<150 ppmv	Flue gas from multiple refinery boilers are directed into two parallel trains of CANSOLV SO ₂ Scrubbing Systems. Each CANSOLV® unit treats 775,000 Nm3/hr of flue gas. SO ₂ is directed to the refinery SRU.
Canada	Engineering phase. Start-up in 2013.	Coal Fired Power Plant Off-Gas	650,000	900 ppmv	<5 ppmv	This CANSOLV® unit will treat flue gas from a 150 MW coal fired power plant boiler. The flue gas from the boiler is routed to a prescrubber, followed by a CANSOLV SO ₂ Scrubbing System and then a CANSOLV CO ₂ Capture System. The CO ₂ Capture system targets a removal of 90% of the CO ₂ in the feed gas. Recovered SO ₂ is sent to a sulfuric acid plant and CO ₂ is sent to a compressor and discharged to a product pipeline, where it travels to an offsite location where it is used for EOR.

	IEA CO ₂ Capture Project – Technical Study Report					
<u> </u>	Document No: P0552-E60FR-401	Rev: 0				
	Date: January 30 ^h , 2013	Page 12 of 33				

4. PROCESS DESCRIPTION – Proposed Process Arrangement

The Cansolv CO₂ Capture System comprises the following major components: Direct Contact Cooler, CO₂ Absorber Tower, CO₂ Stripper Tower, CO₂ Lean Absorbent Flash MVR System and Absorbent Purification Unit (APU). The process description refers to the Preliminary Process Flow Diagram (PFD) presented in Appendix I. Note that the flue gas stream is split over two trains. The split and mixing points are indicated on the PFD. Gas pre-treating is required to minimize the SO₂ and NO₂ content of the feed gas and sub cool the flue gas before feed to the CO₂ Absorber Tower.

4.1 Direct Contact Cooler: Sub-cooler, SO₂/NO₂ removal and Booster Fan

The flue gas is sent to the Prescrubber (C-1901), which is operated as a Direct Contact Cooler (DCC) to sub-cool the flue gas before sending it to the CO₂ Absorber (C-1401). Sub-cooling the flue gas will improve CO₂ absorption capacity of the amine. The preliminary prescrubber design includes a Prescrubber Cooler (E-1901) to sub cool the flue gas down to 30°C, in order to reduce the required amine circulation rate and thus energy consumption of the Cansolv plant.

In order to decrease the impact of SO_2 on the absorbent, SO_2 removal is controlled by adding caustic on pH control in a caustic polishing section, inside the prescrubber column.

All post-combustion amine carbon capture plants are subject to some kind of an impact on the absorbent when it is exposed to nitrogen dioxide (NO_2) present in the flue gas. This is of special consideration when the NO_2 levels are relatively elevated.

After the Direct Contact Cooler, the gas is split over two equal sized trains. Note that equipment numbering provided below is for one train. In the equipment list, the equipment for both trains is given. After the split, a booster fan (K-1901) will be installed to drive the flue gas through the absorber and out the stack.

4.2 CO₂ Absorption

The flue gas exits the prescrubber (C-1901) and is ducted to the CO₂ Absorber (C-1401). CO₂ absorption from the flue gas occurs by counter-current contact with Cansolv Absorbent DC-103 in a vertical multi-level packed-bed tower, namely the CO₂ Absorber. The gas entering the absorption section of the tower will have sufficient pressure to overcome the pressure drop in the tower packing before being discharged at the top of the CO₂ Absorber stack.

The Lean Amine Pumps (P-1404) deliver CO₂ lean amine from the Lean Amine Flash Vessel (V-1401) through the Lean Amine Cooler (E-1403) then to the top of the CO₂ Absorber. The lean amine is cooled to prevent water loss from evaporation into the flue gas, to enhance the CO₂ removal performance of the absorbent and to maintain an overall water balance in the Cansolv absorbent DC inventory.

Canachu	IEA CO ₂ Capture Project- Technical Study Report					
<u> Lansun</u>	Document No: Q0552-E60FR-401	Rev: 0				
	Date: February 5th ^h , 2013	Page 13 of 33				

CO₂ absorption is an exothermic reaction. The heat generated by absorption must be removed to prevent temperature increase of the absorbent, which would reduce the amine absorption capacity. This would also increase water evaporation from the absorbent into the heated flue gas and cause a water imbalance in the process.

The treated flue gas leaving the top of the CO₂ absorption section will pass through a water wash section before being released through the stack. Before being released through the stack, the treated gas is combined with the treated gas from the other train.

4.3 CO₂ Amine Regeneration

The rich amine is collected in the bottom sump of the CO₂ Absorber and is pumped by the CO₂ Rich Amine Pumps (P-1403) and heated in the CO₂ Lean/Rich Exchangers (E-1406) to recover heat from the hot lean amine discharged from the Lean Amine Flash Vessel (V-1401). Rich amine is piped to the top of the CO₂ Stripper (C-1402) for amine regeneration and CO₂ recovery. The rich amine enters the column under the CO₂ reflux rectification packing section and flows onto a gallery tray that allows for disengagement of any vapor from the rich amine before it flows down to the two stripping packing sections under the gallery tray. The rich amine is depleted of CO₂ by water vapor generated in the CO₂ Amine Regenerator Reboilers (E-1404) which flows in an upward direction counter-current to the rich amine.

Water vapor in the stripper, carrying the stripped CO₂, flows up the stripper column into the rectification packing section at the top, where a portion of the vapor is condensed by recycled reflux to enrich the overhead CO₂ gas stream.

The CO₂ Stripper overhead gas is partially condensed in the CO₂ Amine Regenerator Condensers (E-1405). The partially condensed two phase mixture gravity flows to the CO₂ Reflux Accumulator (V-1402) where the two phases separate. The reflux water is collected and returned via the CO₂ Stripper Reflux Pumps (P-1405) to the CO₂ Stripper rectification section. The CO₂ product gas is piped to the CO₂ Compression System (OSBL). Reflux is pumped back on level control to the top of the CO₂ Stripper from the CO₂ Reflux Accumulator by the CO₂ Stripper Reflux Pumps. The pressure of the CO₂ Stripper is controlled by the product CO₂ discharge control valve.

The flow of steam to the reboiler is proportional to the rich amine flow sent to the CO₂ Stripper. The set-point of the low pressure steam flow controller feeding the CO₂ Amine Regenerator Reboilers (E-1404) is also dependent on the stripper top temperature controller. The steam to amine flow ratio set-point is adjusted by this temperature controller.

The temperature at the top of the column is set to maintain the required vapor traffic and stripping efficiency.

The steam flow rate can be controlled either by modulating a steam flow control valve or a condensate flow control valve. For large scale applications, it is recommended to control the

Cansolv	IEA CO ₂ Capture Project- Technical Study Report	
	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 14 of 33

flow of steam by modulating the flow of condensate since this method of control minimizes the pressure loss of the steam supplied to the reboiler and also reduces the size of the required control valve.

The CO₂ Lean Amine Pump (P-1404) delivers the lean amine from the Lean Flash Tank back to the CO₂ absorber after being cooled in the CO₂ Lean/Rich Exchangers and Lean Amine Cooler

4.4 Amine Purification Unit (APU)

As explained in the previous section, the amine quality needs to be maintained in the Amine Purification Unit (APU). Only one APU is installed which is operated batch wise: the treated absorbent is alternated between train 1 and 2.

Ion Exchange (U-0600)

The CO₂ Amine Purification Unit, APU (U-0600) is designed to remove Heat Stable Salts (HSS) from the Cansolv DC Absorbent. These salts are continuously formed within the absorbent, primarily due to residual amounts of NO₂ and SO₂ contained in the flue gas. Once absorbed, NO₂ forms nitric and nitrous acid while SO₂ forms sulfurous acid which oxidizes to sulfuric acid. These acids, and some organic acids formed by the oxidative degradation of the amine, neutralize a portion of the amine via an acid/base reaction. Therefore, a portion of the absorbent is inactivated for further CO₂ absorption. Although a certain level of HSS is desirable within the absorbent, any excess HSS must be removed. HSS removal is achieved by ion exchange (IX) using a resin bed contained inside a column.

The CO₂ APU process is a batch process which involves five main steps: 1. Salt Loading, 2. Amine Recovery Rinse, 3. Buffering Rinse, 4. Regeneration; 5. Excess Caustic Rinse. Together, these five steps constitute an IX cycle. Note that the sizing of the APU is standardized to minimize costs and schedule.

Thermal Reclaimer (U-0700)

The amine in the CO₂ Capture System accumulates ionic and non-ionic amine degradation products over time that must be removed from the solvent.

The purpose of the Thermal Reclaimer Unit (A-0700) is to remove the non-ionic degradation products from the active CO₂ amine. The thermal reclaimer unit distills the CO₂ amine under vacuum conditions to separate the water and amine, leaving the non-ionic degradation products in the bottom.

A slipstream is taken from the treated CO_2 lean amine exiting the CO_2 APU (A-0600) and fed to the Thermal Reclaimer Unit (A-0700). This stream will essentially consist of water, amine, degradation products, residual CO_2 and small amounts of sodium nitrate and sodium sulfate.

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 15 of 33

The design flow rate of CO_2 lean amine sent to the thermal reclaimer is based on the calculated amine degradation rate. To maintain the degradation products below design concentration, the thermal reclaimer must process a specific flowrate of CO_2 lean amine continuously.

The amine feed to the thermal reclaimer is heated up in a pre-heater using steam. The pre-heated feed is flashed over a control valve and fed into a vacuum distillation column. The overhead vapor of this column, which consists of amine and water, is condensed and separated while the remaining vapor is routed to a vacuum unit. A portion of the condensed amine and water is returned to the column as determined by minimum wetting rates of the rectifying packed bed. The rest of the condensed overhead is returned as lean, reclaimed amine to the Lean Amine Flash Vessel (V-1401).

The bottom of the thermal reclaimer distillation column is heated with medium pressure steam. Column pressure is typically kept at 55 mbar by a vacuum unit to operate with a bottom temperature of just under 200°C. The bottom residue, which mainly consists of degradation products, is continuously pumped to a storage tank, where it is diluted and cooled with process water. Diluted residues are periodically disposed of offsite, typically via incineration.

4.5 Amine Storage Facilities (U-0400)

One common solvent storage tank will be installed. The tank is designed such that the absorbent inventory of one train can be stored in the storage tank. During normal operation the tank is empty. The tank is used to provide amine make-up and during maintenance activities. The Amine Storage Facilities consists also an Amine Make-up Tank in order to sent the absorbent from the tank back into the process trains.

Canachu	IEA CO ₂ Capture Project- Technical Study Report	
Cansolv	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 16 of 33

5. PROJECT DESIGN BASIS

5.1 Process Line-up and Battery Limits

Figure 1: Battery Limits CO₂ Carbon Capture Plant

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 17 of 33

Cansolv's process design is based on the available process design parameters, given in the "Post Combustion CO₂ Capture Unit Request For Information" document. The design basis as given by Foster Wheeler (FW) for this project is shown in Table 1.

Table 1: CO₂ Capture Plant Design Basis provided by FW

Flue Gas Specifications from FW				
Capture	wt-%	90		
Flue gas	t/hr	3680		
Pressure	bar(g)	0.01		
Temperature	°C	50		
CO ₂	vol%	13.55		
N ₂	vol%	70.31		
O_2	vol%	3.11		
H ₂ O	vol%	12.19		
Ar	vol%	0.83		
Impurities (1)				
NO _x	mg/Nm ³	130		
NO ₂	ppmv	< 20		
SO _x	ppmv	< 10		
Particulates	mg/Nm³	< 10		

Notes: (1) based on 6% oxygen, dry.

The Carbon Capture System will be installed to treat flue gas. The Figure 1 shows the process line-up within the Carbon Capture System. The dotted block outlines the battery limits of the Cansolv scope of work for current study.

The treated flue gas from the absorption section will be released to atmosphere. The liquid effluent from the Prescrubber requires minimal treatment and can be reused as process water or for steam regeneration to reduce the energy demand. In addition to the liquid effluent, there is also a smaller caustic blowdown coming from the Prescrubber. This stream contains caustic components and is usually sent to a Waste Water Treatment System. The liquid effluent from the

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 18 of 33

Amine Purification Unit contains traces of amine and is usually sent to a Waste Water Treatment System. The waste from the Thermal Reclaimer Unit will require disposal by others.

5.2 List of Assumptions

For the purpose of this proposal, the following assumptions are taken to develop the design basis. All these assumptions needs to be validated in the next project phase.

- 1. Design capture rate: the CO₂ capture plant will be designed to capture 90 wt-% of the CO₂ in the feed gas by processing the entire flue gas flow.
- 2. NO_x content: the specified amount of NO_x is 130 mg/Nm³.
- 3. The SO_x concentration in the feed gas is provided by FW to be 10 ppmv. In the absence of any specified SO_3 concentration in the feed gas, the provided SO_x concentration in the flue gas is assumed to be only SO_2 .
- 4. Since there is no specified concentration of Benzene, Volatile Organic Compounds (VOC), Formaldehyde and Unburned Hydrocarbons (UHC) in the flue gas, concentration of these species are assumed to be negligible.
- 5. All contaminants levels are specified at a 6% oxygen and dry basis. For the purpose of the study, it is assumed that the levels are almost similar at actual operating conditions.
- 6. Filtration Requirement: The expected fly ash ingress rate into the absorbent is marginable. For this reason, only a multi cartridge filter type is expected to be required at this stage. During the next engineering stage, if the design dust load leads to an expected particulate matter ingress rate, a Candle Type Filtration System may be required, although highly unlikely.
- 7. Since no Unburned Hydrocarbons (UHC) are expected to be present in the Flue Gas sent to the CO₂ Absorber, an Activated Carbon Filter is not included in the process line-up at this stage.
- 8. None of the equipment has been spared, as no availability requirement is provided. With no sparing, expected availability is above 90% including planned maintenance activities. Exact sparing philosophy should be determined in the next project phase.
- 9. The current proposal maximizes the use of water cooling. An average cooling water temperature of 16°C has been assumed. The process fluids (flue gas, absorbent) are cooled to 30°C to optimize CO₂ removal performance.
- 10. No design features are foreseen for winterization.
- 11. The caustic polisher is designed for a standard packing height.
- 12. The temperature of the flue gas leaving the absorber is selected such that the required water make-up rate is minimised. Note that the water condensed in the pre-scrubber is not taken into account in setting the treated gas exit temperature. The temperature of the pure CO₂ product stream is equal to the flue gas inlet temperature, assuming the CO₂ product stream is further compressed hence temperature minimization might be beneficial.
- 13. The provided steam pressure (4.5 barg) and temperature (165 degC) are not in agreement with each other for saturated steam. It is assumed that the steam is superheated at the inlet of the reboiler. For the sizing of the reboiler, no credit is taken for this effect.
- 14. No industry margins on equipment have been applied. The equipment margins will be further agreed on in the project phase.

	IEA CO ₂ Capture Project- Technical Study Report	
I-MISIMY	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 19 of 33

15. Equipment size limitations have been based on previous reference projects. These limitations are indicated in the Equipment List as given in the Appendix. Limitations need to be reconfirmed with vendors.

5.3 Inlet Gas Specification

The required flue gas flow rate to be treated was calculated based on the CO2 product yield of 12.68 t/h provided in the Basis of Design (section 4.3) of the China CCS Capacity Building Program Request for Information by FW. The Table 2 characterizes the flue gas to be treated at Cansolv Absorber:

Table 2: Characterizes the flue gas at the Cansolv Absorber

Design Feed Gas	Unit	Value
Characteristics		
Gas flow to Prescrubber	kg/h	3,486,481
Sub-cooled Temperature	°C	30
to Absorber		
CO2 Source	tpd	18,109
CO2 Removal	tpd	16,298
CO2 Capture rate	%	90
Inlet pressure	bar(g)	0.032
Flue Gas Composition		
O2	vol %	3.40
N2 (including Ar)	vol %	77.75
H2O	vol %	4.05
CO2	vol %	14.81
CO	vol %	0
SO3	ppmv	0
H2	vol %	0
Ar	vol %	0
Particulates	mg/Nm3	10
HCl	ppmv	0
HF	ppmv	0
Unburnt hydrocarbons	ppmv	0
Volatile organic	ppbv	0
compounds		
Formaldehyde	ppmv	0
Trace Metals	mg/Nm3	0
Trace Cations	ppmv	0

5.4 CO₂ Product Requirements

The required CO₂ Product Specifications have been provided by FW and summarized in table 3.

Canach	IEA CO ₂ Capture Project- Technical Study Report	
I-MISIMY	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 20 of 33

Table 3: CO2 Product Requirements

CO2 maximum impurities	Unit	
$N_2/Ar^{(1)}$	Dry vol%	4
CO (1)	Dry vol%	0.2
$O_2^{(1)}$	ppm	100
SO_x	ppm	100
NO_x	ppm	100

Note: 1. Total non-condensable content $(N_2 + O_2 + H_2 + CH_4 + Ar)$ shall be maximum 4% vol.basis

5.5 Available Utilities

The following utilities specifications are assumed to be available at battery limits. Electrical energy will also be required.

Table 4: Utilities Specifications

Utility	Unit	Specification
Low Pressure Steam	barg	4.5
Cooling Water Supply Temperature	°C	15
(Normal)		
Cooling Water Return Temperature	°C	26
(Normal)		
Caustic Soda Concentration*	wt %	50
Caustic temperature*	°C	30
Demineralised water Pressure*	kPag	750
Demineralised water Temperature*	°C	35
Raw water Pressure	kPag	800
High pressure steam*	barg	22

*These utilities have been assumed by Cansolv

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 21 of 33

6. CO₂ CAPTURE SYSTEM SPECIFICATIONS

6.1 Heat and Material Balances

The preliminary Heat and material balance outlining major streams is given in Appendix II. Note that some streams are provided for half of the flue gas stream, as the proposal is based on two equal sized trains. The flue gas inlet streams and product streams are provided for the total unit. The numbering in the Process Flow Scheme is also adjusted accordingly.

6.2 Process Equipment Design Considerations (and Capital Cost Advantages)

The Preliminary Process Equipment List is given in Appendix III.

Number of trains

Processing the flue gas in a single train is not considered to be feasible due to the quantity of flue gas which needs to be processed. For this proposal, it has been aimed to maximize economy of scale while still satisfying equipment size limitations. As also described above, the flue gas will be split after a common pre-scrubber. Two equal sized trains are proposed to process half of the pre-scrubbed flue gas (2 x 50%). The Amine Storage Facilities and Amine Purification Unit will be shared between both processing trains. Due to the installation of two trains, lower turndown rates can be achieved. Additionally, CO₂ capturing might still be feasible when the one of the two processing trains is not available. It is believed that by the installation of two processing trains, all required equipment fits within the current available sizing on the market. This needs to be confirmed with vendors in the next project phase.

CO₂ Absorber

The proposed CO₂ Absorber design, including selection of packing type, packing height and tower cross-sectional area, minimizes the CO₂ amine circulation rate, packing section pressure drop and installed equipment cost while providing the mass transfer surface area required to achieve the target CO₂ removal. Expected turndown of the plant is below 25% as packing is installed in the towers and all pumps can operate continuously in recycle mode.

The bottom of the CO_2 Absorber sump is designed with an elevated portion to minimize the CO_2 amine inventory, while providing enough positive suction head to the CO_2 Rich Amine Pumps.

CO₂ Stripper Reboilers

For designs involving large reboilers, most Cansolv Systems are using welded plate heat exchangers for the stripper reboilers.

The core of a welded plate heat exchanger is a stack of corrugated heat-transfer plates in stainless steel welded alternately to form channels. The frame of the welded plate heat exchanger consists of four corner beams, top and bottom heads and four side panels with nozzle connections. These components are bolted together and can be quickly taken apart for inspection, service or cleaning.

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 22 of 33

Welded plate heat exchangers are compact. All the heat transfer area is packed into a smaller footprint than that required for comparable heat exchangers. Welded plate heat exchangers provide many advantages over the typical shell and tube exchangers:

- 1. Alternately welded plates permit access for inspection, service or cleaning.
- 2. No gaskets between plates allows operating:
 - a. with aggressive media.
 - b. at higher temperatures and pressures.
- 3. Corrugated plates promote high turbulence which, in turn:
 - a. achieves three to five times greater overall heat transfer coefficients than a shell-and-tube heat exchanger.
 - b. minimizes fouling, which makes longer operating periods possible.
- 4. Close temperature approach can handle temperature approaches down to 3°C.
- 5. Compactness takes only a fraction of the floor space of a shell-and-tube heat exchanger.

Should fouling occur, it is easy to clean welded plate heat exchangers without removing it from the plant. Cleaning can be done on site by circulating cleaning solutions through the unit. Chemical cleaning is highly effective as a result of the unit's high turbulence and low hold-up volume. Chemical cleaning can also be performed by removing the plate pack and immersing it in a chemical bath.

Other Process Heat Exchangers

For similar reasons, gasketed plate heat exchangers are recommended for all other process heat exchangers, including water coolers, CO₂ Stripper Condensers and Lean / Rich Exchangers. Plate heat exchangers minimize the temperature approach. Currently no sparing of heat exchangers is foreseen. It is likely that multiple heat exchangers are required to meet mechanical and construction contraints. The exact number of installed heat exchangers will be determined in the next project phase during detailled engineering.

Amine Storage Facilities

As two dedicated process trains will be installed, it has anticipated that the storage facilities only needs to be sized to store the amine inventory of one processing train. This will minimize the size of the required amine tank. During planned maintenance activities amine storage can also be take place in ISO-container. The installed storage facility is sufficient large to store the yearly make-up rate for both processing trains. There is no need to store possible contaminated amine, as an Amine Purification Unit is part of the process. This will ensure that the amine is continuously meeting the right specification.

6.3 Utilities, Chemical Consumption, Effluents

The preliminary utilities, chemicals and effluents summary defines the utilities required to operate the CO₂ Capture Plant. The summaries are given in appendix IV.

Canach	IEA CO ₂ Capture Project- Technical Study Report	
64115UIV	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 23 of 33

The figures reported for amine consumption are based on the assumptions stated in section 6.2. At this stage, a conservative approach was taken for these calculations. The expected amine consumption may be reduced at the next engineering stage, once the design basis for the inlet flue gas contaminants is fixed. Additionally, potential integration with other units on utilities can take place.

Solid wastes consist of the spent IX resin and filtered particulates, if any, from the CO₂ filter.

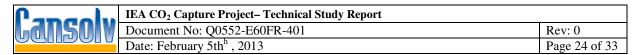
No Waste Water Treatment System is included in the current Proposal.

The waste stream from the Thermal Reclaimer Unit (A-0700) will need to be handled off-site, either via incineration or by certified disposal sites.

6.4 Treated Gas

The characteristics of the treated gas exiting the CO₂ Absorber section are shown in Table 5:

Table 5: Treated gas characteristics exiting the CO₂ Absorber water wash section


Parameter	Unit	
Treated gas temperature	°C	43.4
Treated gas pressure	kPag	0.2
Treated gas flow	Nm ³ /h	2,347,654
Treated Gas Composition		
N ₂ (including Ar)	vol %	85.98
\mathbf{O}_2	vol %	3.76
CO_2	vol %	1.64
H ₂ O	vol %	8.62

6.5 CO₂ Product

The characteristics of the CO₂ product gas, on a wet basis, exiting the CO₂ Reflux Accumulator are shown in Table 6. The level of contaminants in the CO₂ product gas is expected to be very low..

Table 6: CO₂ product gas characteristics

Parameter	Unit	
Product gas temperature	°C	30
Product gas pressure	kPag	98

Product gas mass flow	kg/hr	686,919
Product Gas Composition		
CO_2	wt %	97.9
H ₂ O	wt %	2.1

The expected CO₂-composition is meeting the composition requirements as given in the BOD.

6.6 Cansolv CO₂ Absorbent Summary

Initial Fill

Cansolv CO₂ absorbent is procured through Cansolv, on an Incoterms 2010 FCA basis, usually at a concentration of ~50% so no further dilution is required before use.

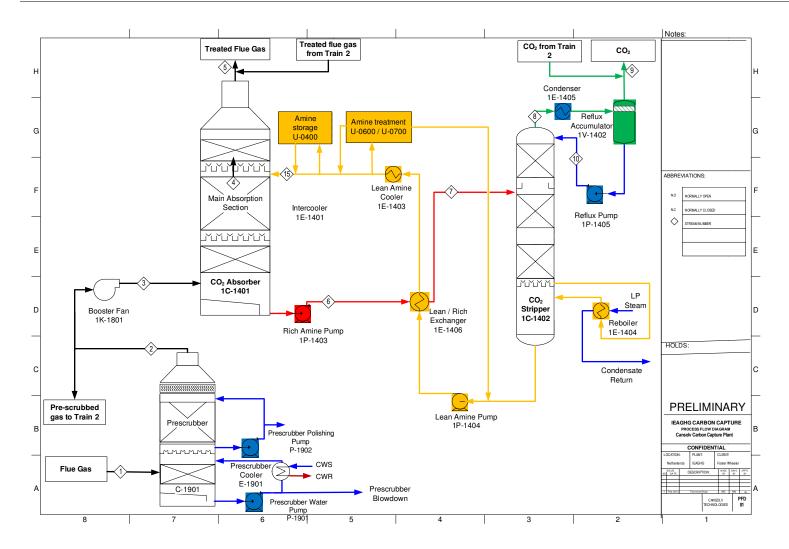
Annual Make-Up

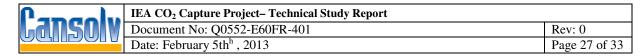
The Cansolv CO₂ absorbent make-up rate is defined by six main factors:

- 1. Absorbent degradation
- 2. Absorbent losses via the CO₂ Absorbent Filter (S-0500)
- 3. Absorbent losses via the CO₂ Absorbent Purification Unit (A-0600)
- 4. Absorbent Entrainment with the Flue Gas
- 5. Absorbent Entrainment via the Product Gas
- 6. Mechanical losses

#2 in this case is expected to be negligible

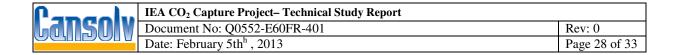
Absorbent degradation is the main cause of Cansolv CO_2 absorbent losses. Degradation products are removed in the APU. Absorbent entrainment into the flue gas and the product gas is minimal. The rectification section in the CO_2 Stripper captures absorbent vapour in the reflux water stream, returning the amine to the tower.

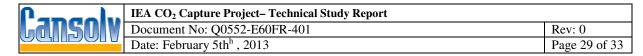

The expected make-up rate is ~18% of the total required inventory.


	IEA CO ₂ Capture Project- Technical Study Report	
	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 25 of 33

7. OPTIONS FOR INTERNAL HEAT RECOVERY

Cansolv uses different strategies in order to minimize energy consumption.

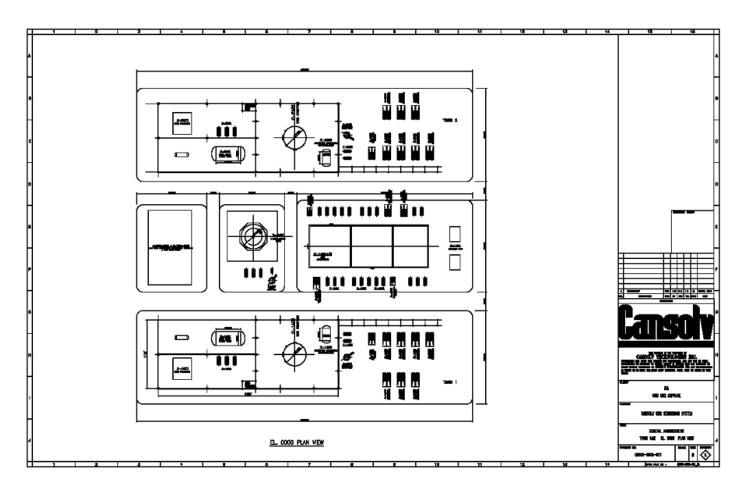

APPENDIX I: PROCESS FLOW DIAGRAM


APPENDIX II: PRELIMINARY HEAT & MATERIAL BALANCE

Please contact Cansolv Technologies Inc (CTI) for details.

APPENDIX III: SIZED EQUIPMENT LIST

Please contact Cansolv Technologies Inc (CTI) for details.



APPENDIX IV: UTILITY CONSUMPTION TABLE

Please contact Cansolv Technologies Inc (CTI) for details.

APPENDIX V: ROUGH ESTIMATED LAYOUT / PLOT PLAN

A rough estimate of plot plan is presented. An estimation of overall plot space required is shown in table blew. The estimated plot space required includes Carbon Capture process area. The total estimated plot plant area is $\sim 25000 \text{ m}^2$

Cansolv	IEA CO ₂ Capture Project- Technical Study Report	
	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 31 of 33

APPENDIX VI: FUTURE INNOVATION AND DEVELOPMENT

INNOVATIVE FUTURE: Development of 2^{nd} Generation Solvents for CO_2 Post Combustion Capture

Cansolv has established a comprehensive framework to steer development of 2nd generation solvents. Any new solvents are required to highlight the following improvements when compared to DC-103:

- Increased CO₂ loading capacity
- Lower regeneration energy requirement
- Increased stability

The table below presents the relationships between the technical objectives set for the new solvents and the resulting business value.

Table 7: Relationship between aimed technical objectives and expected business value

Technical Objectives (vs. DC-103)	Business Value
30% more CO ₂ loading in the solvent	Reduction in solvent circulation leading to: reduced CAPEX reduced space requirements less inventory
20% less steam requirement for steam regeneration	 reduced operating costs lowered CO₂ footprint per ton CO₂ captured
25% more stability in oxidative environment	reducing solvent loss and make-up rate

Development of new CANSOLV DC-201

The first development stage comprises of testing new candidates at the lab bench. During this "ranking exercise", the following solvent characteristics are studied:

- Loading-stripping capacity under different CO₂ partial pressures.
- Regeneration energy, using a lab bench unit mimicking the Cansolv CO₂ capture system, for screening and solvent comparison purposes
- Nuclear Magnetic Resonance for the carbamate/bicarbonate equilibrium and ease of regeneration

For one of the solvents that were tested in 2010, it was demonstrated that the technical and business objectives could potentially be met and thus warranted further consideration and testing. Upon further testing of this new solvent, CANSOLV DC-201, it was recognized that the loading

Canach	IEA CO ₂ Capture Project- Technical Study Report	
1-dusiny	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 32 of 33

capacity increased by more than 50% over DC-103. This in turn led to a reduction in liquid circulation rate, and hence to a lower contribution of the sensible heat and latent heat components in the regenerator. Furthermore, the optimization of the DC-201 formulation showed a 15% reduction in required regeneration energy over DC-103 on the Cansolv lab bench unit.

The second stage of the development consisted of testing DC-201 under real flue gas conditions at the 'pilot' size. Several piloting campaigns were performed, where some of the critical parameters studied were:

- Effect of gas temperature and inter-cooling on solvent loading;
- Effect of packing height and type on approach to equilibrium (gas and liquid sides);
- Effect of lean-rich temperature approach on stripper performance;
- Emission measurements (with or without the use of a water-wash section).

Currently pilot testing has been successfully concluded at four different test facilities. The first campaign was conducted at the SINTEF 1 ton/day Tiller pilot facility (Trondheim, Norway). The main purpose was to test the DC-201 under different conditions in the pilot plant.. Emission measurements were done; DC-201 volatility is really low. (7 times lower than MEA).CANSOLV DC201 was also tested in 2011 at a steel production site in Japan. Two gas conditions were studied: 22.5% CO₂ (flue gas from Blast Furnace) and 13.5% CO₂ (diluted gas). In 2012, two pilot testing campaigns took place:

- Pilot testing (1 tpd) at an external facility, Energy and Environmental Research Center (North Dakota, US) sponsored by the United States Department Of Energy (US DOE).
- Large pilot testing (20 tpd) at an external facility, National Carbon Capture Center (Alabama, US), operated by Southern and sponsored by the US DOE. The test was conducted over a longer period of time (2 to 3 months) in order to evaluate the stability of the solvent

Expected performance for FW Design

We are currently working through the rigorous steps of making DC-201 a successful and commercial solvent. Based on the data and on the results gathered to date, it is possible to estimate the potential performance of the DC-201 solvent if it is to be used for the FW case compared to the DC-103 solvent.

Capex savings are anticipated since a reduction in solvent circulation, steam consumption and cooling requirements all of which is expected to lead to correspondingly smaller piping, regenerating equipment and exchangers & pumps.

Early indications are that the solvent will be commercially available from qualified suppliers and should be cheaper than the current DC-103 market price.

Canach	IEA CO ₂ Capture Project- Technical Study Report	
<u> </u>	Document No: Q0552-E60FR-401	Rev: 0
	Date: February 5th ^h , 2013	Page 33 of 33

DC103 design performances and DC201 expected performances for FW case

Main parameters DC201 vs. DC103 (% relative)

Solvent circulation	>36%
Steam consumption	>20%
Cooling water	>27%

Next validation steps

In order to further validate the above characteristics for solvent circulation and energy consumption; as well as to verify and quantify solvent stability (to validate solvent degradation under various fluegas conditions), the development of this 2nd generation solvent is ongoing and it is expected that DC-201 is commercial available in 2013: When the solvent is available at the market, it is proposed to update this proposal.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C - Basic information on SC PC plant alternatives Sheet: 49 of 49

ATTACHMENT A.3: Cansolv SO₂ Scrubbing System

1. Business Profile

1.1 Cansolv Technologies

Cansolv Technologies Incorporated (CTI) mission is to be a leading global provider of high efficiency air pollution control and capture solutions. CTI's commitment is to providing custom designed economic solutions to our clients' environmental problems.

CTI is an innovative, technology-centered company that offers its clients high efficiency air pollution and capture solutions for the removal of SO_2 and CO_2 from gas streams in various industrial applications. Our commitment is to provide custom designed economic solutions to our clients' environmental problems.

CTI was formed in 1997 to commercialize the CANSOLV SO_2 Scrubbing System. On November 30th of 2008, Shell Global Solutions International B.V (SGSI) purchased 100% of the shares of CTI. The company now operates as a wholly owned subsidiary of SGSI.

CTI maintains an office and an R&D laboratory in Montreal, Canada and an office in Beijing, China. As a subsidiary of Shell Global Solutions, CTI can leverage large amounts of ancillary knowledge and incorporate its solutions into the largest of projects in many industries. A list of references is available in Appendix I.

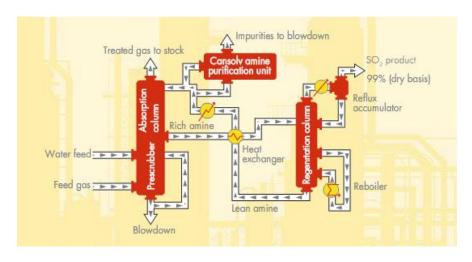
1.2 Royal Dutch Shell

Royal Dutch Shell is a global group of energy and petrochemicals companies with around 90,000 employees in more than 80 countries and territories. Our innovative approach ensures we are ready to help tackle the challenges of the new energy future.

Shell Projects and Technology, formerly Shell Global Solutions, provides technical services and technology capability in upstream and downstream activities. It manages the delivery of major projects

and helps to improve performance across the company.

Shell Projects and Technology delivers differentiated technical information technology for Royal Dutch Shell and drive research and innovation to create tomorrow's technology solutions. Projects and Technology also houses Safety & Environment and


Contracting & Procurement as these are integral to all our activities.

Safety is always our top priority. We aim to have zero fatalities and no incidents that harm people, or put our neighbors or facilities at risk.

Find more information at: www.cansolv.com and www.shell.com

2. Technology Overview

The CANSOLV SO₂ Scrubbing System uses regenerable amine-based solvents to selectively capture SO₂ from a gas stream. Low-pressure/saturated steam is used to strip the targeted chemical compounds from solution and the solvent is returned to the Scrubber for re-use. Pure water-saturated stream of SO₂ exits the System and can be used as feedstock for other industrial processes. The Amine Purification Unit, a proprietary equipment, regenerates the amine solvent to minimize the amount of make-up.

The CANSOLV SO2 Scrubbing System enables to:

- Decrease emissions of SO₂ to industry leading levels (levels as low as 10 ppm can be achieved);
- De-couple the emissions from the plant operations;
- Concentrate SO₂ to enable sulphuric acid production;
- Recycle back the SO₂ from the emissions to the process;
- Minimizing the size and complexity of the whole Tail Gas Treatment line-up;
- Minimize the risk associated with strengthening regulations.

The possibility of resetting the operational parameters of a CANSOLV-SO₂ to meet stricter regulations minimizes the risk of having to put in place additional scrubbing technologies in the future, thus securing the assets the entire lifespan of the plant.

The CANSOLV SO_2 Scrubbing System is fully automated and is a robust and forgiving process that does not require continuous monitoring to meet emission targets. It has a high turndown and turn-up capability.

If steam availability is limited, the system can be designed with steam optimization solutions such as Mechanical Vapour Recompression (MVR). Other options for reducing steam consumption are the Double Effect Split Flow (DESF), Hot Water Flash (HWF), Reflux Pre-Heater (RPH), Rich Amine Pre-Heater (RAPH) and Hot Water with Regenerator under Vacuum (HWRV).

Find more information at: www.cansolv.com/SO2/Cansolv SO2 Scrubbing Systems Process.php

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 1 of 16

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Fired Power Plants

DOCUMENT NAME : CASE 1: SC PC WITHOUT CCS

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

 $\mathrm{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C.1 - Case 1: SC PC without CCS

Date:

Sheet: 2 of 16

January 2014

TABLE OF CONTENT

Introduction	3
1.1. Process unit arrangement	3
Process description	4
2.1. Overview	4
2.2. Unit 1000 – Feedstock and solid handling	4
2.3. Unit 2000 – Boiler Island	4
2.4. Unit 2100 – Flue Gas Desulphurization	4
2.5. Unit 3000 – Steam Cycle	5
2.6. Unit 6000 - Utility Units	5
Process Flow Diagrams	6
Heat and Material Balance	7
Utility and chemicals consumption	8
Overall Performance	.12
Environmental impact	.13
7.1. Gaseous emissions	13
7.2. Liquid effluents	14
Preliminary plot plan	. 15
Equipment list	.16
	1.1. Process unit arrangement Process description. 2.1. Overview. 2.2. Unit 1000 – Feedstock and solid handling. 2.3. Unit 2000 – Boiler Island. 2.4. Unit 2100 – Flue Gas Desulphurization. 2.5. Unit 3000 – Steam Cycle. 2.6. Unit 6000 - Utility Units. Process Flow Diagrams. Heat and Material Balance. Utility and chemicals consumption. Overall Performance. Environmental impact. 7.1. Gaseous emissions. 7.2. Liquid effluents.

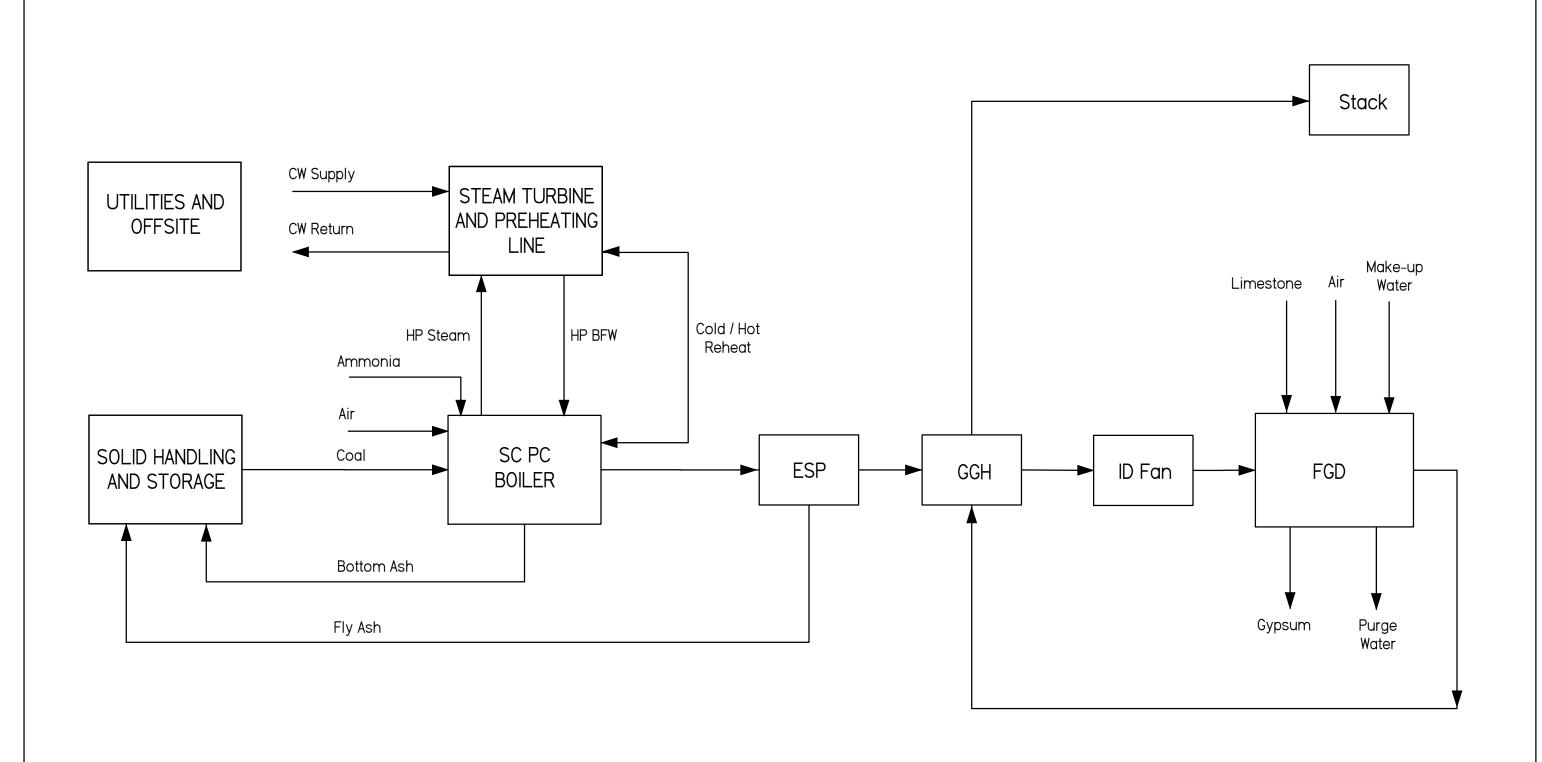
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 3 of 16

1. Introduction

This chapter of the report includes all technical information relevant to Case 1 of the study, which is a supercritical pulverised coal (SC PC) fired steam plant without carbon capture. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce electric power for export to the external grid.

The configuration of the SC PC plant is based on one once through steam generator, with superheating and single steam reheating, and a steam turbine generator for around 1,000 MWe net power production.


The description of the main process units is covered in chapter C of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Table 1. Case 1 – Unit arrangement

Unit	Description	Trains
1000	Storage and Handling of solid materials	N/A
2000	SC PC supercritical boilers	1 x 100%
	Electro Static precipitators	1 x 100%
2050	Flue Gas Denitrification (DeNOx) – SCR system	1 x 100%
2100	Flue Gas Desulphurisation (FGD)	1 x 100%
3000	Steam Cycle (SC)	
	Steam Turbine and Condenser	1 x 100%
	Deaerator	1 x 100%
	Water Preheating line	1 x 100%
6000	Utility and Offsite	N/A

0	June 13	Draft	GP	LM	UNIT: Block Flow Diagram		
Rev.	Date	Comment	Ву	Appr	CASE: 1	Sheet 01 of 01	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 4 of 16

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) shown in section 3, while stream numbers refer to Section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 1000 – Feedstock and solid handling

The unit is composed of the following systems:

- Coal storage and handling
- Limestone storage and handling
- Ashes collection and storage
- Gypsum storage and handling

The general description relevant to this unit is reported in chapter C, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 2000 – Boiler Island

This unit is mainly composed of the Boiler and the Selective Catalytic Reactor (SCR) system. Technical information relevant to these packages is reported in chapter C, sections 2.2 and 2.3 respectively. For this Case 1, SCR system is used to meet the environmental NO_X emission limits of 150 mg/Nm³ (6% volume O₂, dry).

Main process information of this case and interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Flue Gas Desulphurization

This unit is mainly composed of the FGD and the gypsum dehydration systems. For this Case 1, flue gas desulphurisation is required to meet the plant overall environmental SOx limit of 150 mg/Nm³ (6% volume O₂, dry).

Alstom wet scrubbing technology was selected for the development of this study case. Technical information relevant to this system is reported in chapter C, section 2.4.1. The impact of a different FGD technology and supplier is also summarised in chapter C, section 2.4.4.

Main process information of this case and interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

Gas-gas heat (GGH) exchanger

Saturated flue gases from top of the absorber in the FGD system are heated-up, before discharge from the stack, to ensure proper flue gas dispersion and avoid water

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS

condensation. Hot flue gases from the boiler air pre-heater are used as heating medium before entering the FGD absorber. The gas-gas heater is a very expensive equipment representing around 25-30% of the total FGD unit installed cost.

Sheet: 5 of 16

2.5. Unit 3000 – Steam Cycle

The steam cycle is mainly composed of one supercritical Steam Turbine Generator (STG), water-cooled condenser and the water pre-heating line. General description relevant to this unit is reported in chapter C, section 2.7.1.

Main process information of this case and interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.6. Unit 6000 - Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

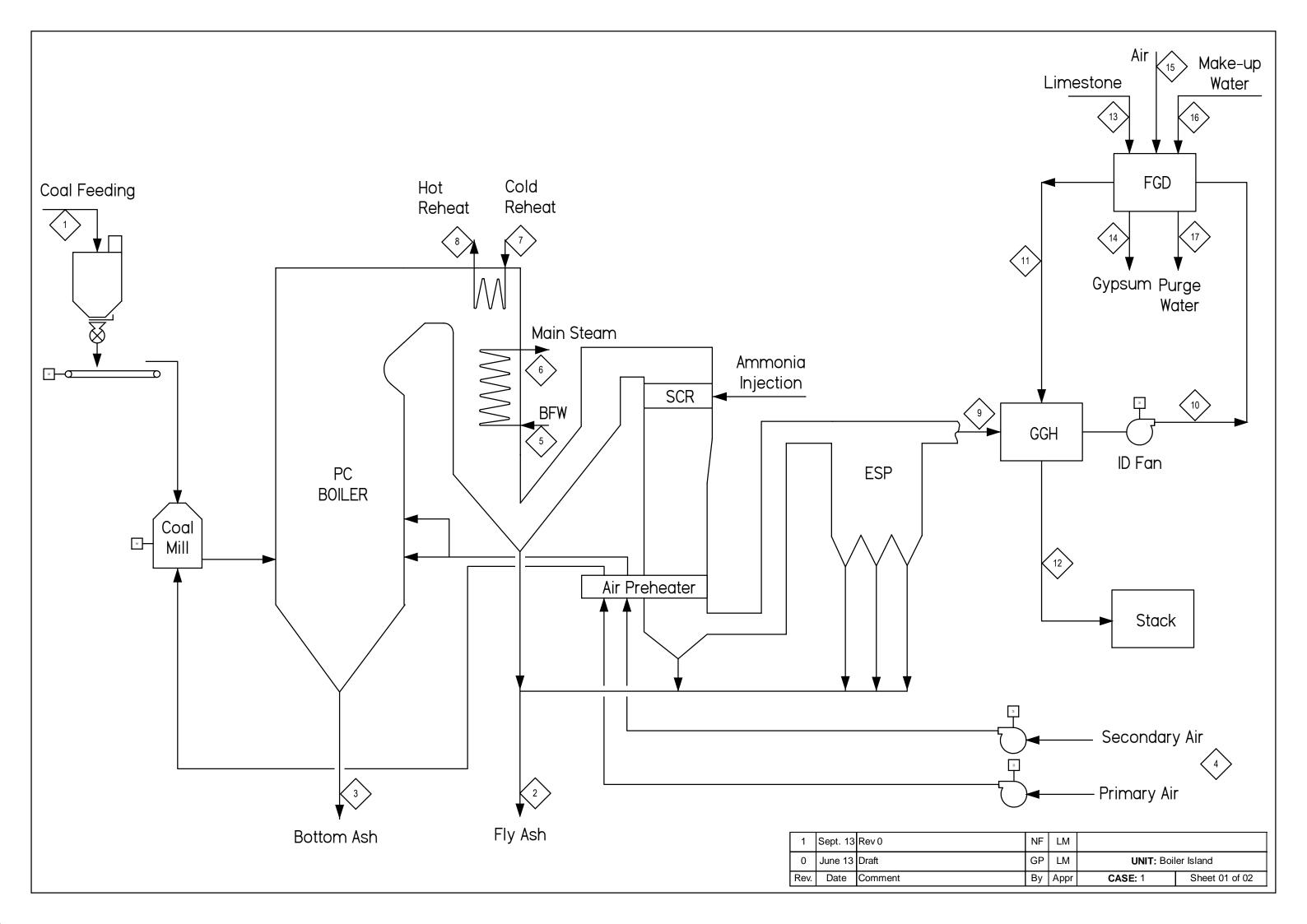
The main utility units include:

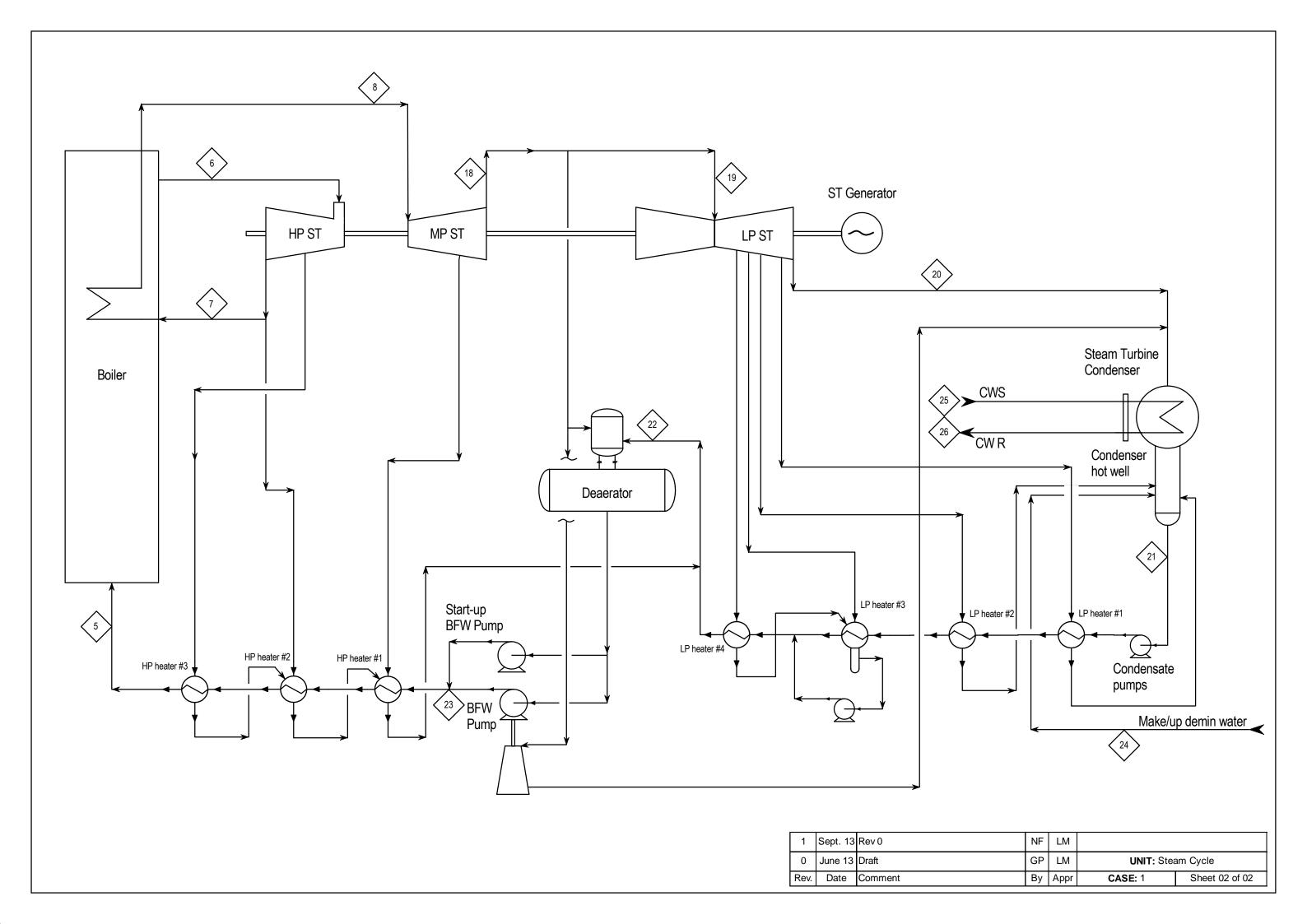
- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

Basin diameter	150 m
Cooling tower height	210 m
Water inlet height	17 m

- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

Process descriptions of the above systems are enclosed in chapter C, section 2.8.




CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 6 of 16

3. Process Flow Diagrams

Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 7 of 16

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the Process Flow Diagrams of section 3.

	Case 1 - S	C PC w/o CCS - HEAT AND MATERIAL BALANCE	REVISION	draft	0	
	CLIENT:	IEAGHG	PREP.	GP	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	LM	
	LOCATION:	The Netherlands	DATE	July 13	Sept. 13	

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	1	2	3	4	5	6	7	8	
STREAM	Coal to Boiler Island	Fly Ash	Bottom Ash	Air intake from Atmosphere	BFW from steam cycle	HP Steam to Steam Turbine	Cold Reheat from UNIT 3000	Hot Reheat to Steam Turbine	
Temperature (°C)	AMB	AMB	AMB	9	290	600	366	620	
Pressure (bar)	ATM	ATM	ATM	ATM	325	270	63	60	
TOTAL FLOW	Solid	Dry solid	Dry solid						
Mass flow (kg/h)	325,000	29,200	12,500	3,383,000	2,877,000	2,877,000	2,421,000	2,421,000	
Molar flow (kmol/h)				117,250	159,745	159,745	134,425	134,425	
LIQUID PHASE									
Mass flow (kg/h)					2,877,000				
GASEOUS PHASE									
Mass flow (kg/h)				3,383,000		2,877,000	2,421,000	2,421,000	
Molar flow (kmol/h)				117,250		159,745	134,425	134,425	
Molecular Weight				28.9		18.0	18.0	18.0	
Commonition (upl 0/)	24+								
Composition (vol %)	%wt			0.00%	0.00%	0.00%	0.00%	0.00%	
H ₂ CO	C: 64.6%			0.00%	0.00%	0.00%	0.00%	0.00%	
CO ₂	H: 4.38%			0.03%	0.00%	0.00%	0.00%	0.00%	
N_2	O: 7.02%			77.27%	0.00%	0.00%	0.00%	0.00%	
O_2	S: 0.86%			20.73%	0.00%	0.00%	0.00%	0.00%	
CH₄	N: 1.41%			0.00%	0.00%	0.00%	0.00%	0.00%	
Ar	CI: 0.03%			0.92%	0.00%	0.00%	0.00%	0.00%	
SO ₂	Moisture: 9.5%			0.00%	0.00%	0.00%	0.00%	0.00%	
H ₂ O	Ash: 12.20%			1.05%	100%	100%	100%	100%	
Total				100%	100%	100%	100%	100%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)									
SOx				-	-	-	-	-	
NOx				-	-	-	-	-	
Particulate				-	-	-	-	-	

	Case 1 -	SC PC w/o CCS - HEAT AND MATERIAL BALANCE	REVISION	draft	0	
	CLIENT:	IEAGHG	PREP.	GP	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	LM	
	LOCATION:	The Netherlands	DATE	July 13	Sept. 13	

HEAT AND MATERIAL BALANCE UNIT 2100 - FGD

	9	10	11	UNIT 2100	13	14	15	16	17	
STREAM		10		12	13	14	12	10		
JINEAW	Flue Gas from ESP to GGH	Flue Gas to FGD	Treated Gas from FGD	Flue Gas to stack	Limestone to FGD	Product Gypsum	Oxidation Air	Make up Water	Waste water from FGD	
Temperature (°C)	132	90	47	90	AMB	AMB	AMB	15	AMB	
Pressure (bar)	-	-	-	-	ATM	ATM	ATM	ATM	ATM	
TOTAL FLOW					Solid	Solid				
Mass flow (kg/h)	3,667,000	3,667,000	3,740,700	3,740,700	8,850	16,165	8,655	85,000	7,790	
Molar flow (kmol/h)	123,410	123,410	127,460	127,460			300	4,720	433	
LIQUID PHASE										
Mass flow (kg/h)								85,000	7,790	
GASEOUS PHASE										
Mass flow (kg/h)	3,667,000	3,667,000	3,740,700	3,740,700			8,655			
Molar flow (kmol/h)	123,410	123,410	127,460	127,460			300			
Molecular Weight	29.7	29.7	29.3	29.3			28.85			
Composition (vol %)										
H ₂	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	
СО	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	
CO ₂	14.06%	14.06%	13.68%	13.68%			0.03%	0.00%	0.00%	
N ₂	73.56%	73.56%	71.40%	71.40%			77.27%	0.00%	0.00%	
O_2	3.28%	3.28%	3.20%	3.20%			20.73%	0.00%	0.00%	
CH_4	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	0.00%	
Ar	0.87%	0.87%	0.85%	0.85%			0.92%	0.00%	0.00%	
SO_2	0.07%	0.07%	0.00%	0.00%			0.00%	0.00%	0.00%	
H ₂ O	8.16%	8.16%	10.88%	10.88%			1.05%	100%	100%	
Total	100%	100%	100%	100%			100%	100%	100%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)										
SOx	1897	1897	150	150	-	-	-	-	-	
NOx	150	150	150	150	-	-	-	-	-	
particulate	10	10	10	10	-	-	-	-	-	

NOTE

1. Air in-leakage are included in the flue gas streams

Ca	se 1 - SC PC w/o CCS - H&M BALANCE	REVISION	draft	0
CLIENT:	IEAGHG	PREP.	GP	GP
PROJECT NAME:	CO2 capture at coal based power and H2 plants	CHECKED	NF	NF
PROJECT NO:	1-BD-0681 A	APPROVED	LM	LM
LOCATION:	The Netherlands	DATE	July 13	Sept. 13

HEAT AND MATERIAL BALANCE UNIT 3000 - STEAM CYCLE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
5	HP Water to Boiler Island	2,877	290	323	1278
6	HP Steam from Boiler to HP Steam Turbine	2,877	600	270.0	3475
7	Cold Reheat to Boiler	2,421	366	63.0	3081
8	Hot Reheat to MP Steam Turbine	2,421	620	60.0	3706
18	MP Steam Turbine exhaust	2,150	285	6.0	3031
19	Steam to LP Steam Turbine	1,967	285	5.9	3031
20	Exhaust from LP Steam Turbine	1,585	29	0.04	2292
21	Condensate	1,947	29	0.04	121
22	LP Preheated Condensate	2,826	142	9.5	597
23	BFW to pre-heating	2,877	156	325	678
24	Make up Water	5	9	0.04	38
25	Cooling Water Inlet	82,588	15	4.0	63
26	Cooling Water Outlet	82,588	26	3.5	109

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 8 of 16

5. Utility and chemicals consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Water consumption summary is reported in Table 2,
- Electrical consumption summary is shown in Table 3,
- Sorbent and chemicals consumption is shown in Table 4.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.1 - Case 1: SC PC without CCS

Date: January 2014

Sheet: 9 of 16

Table 2. Case 1 – Water consumption summary

CLIENT: IEAGHG REVISION 0

PROJECT NAME: CO2 capture at coal fired power plants
PROJECT No.: 1-BD-0681 A MADE BY GP
LOCATION: The Netherlands APPROVED BY LM

	Case 1 - Water consumption							
UNIT	DESCRIPTION UNIT	Raw Water [t/h]	Demi Water [t/h]	Cooling Water 1° syst. [DT = 11°C] [t/h]	Cooling Water 2° syst. [DT = 11°C] [t/h]			
1000	FEEDSTOCK AND SOLID HANDLING							
1000	Solid Receiving, Handling and storage							
2000	BOILER ISALND and FLUE GAS TREATMENT Boiler island							
	Flue Gas Desulphurization (Wet FGD)	85						
500	POWER ISLAND (Steam Turbine) Condenser			82590				
	Turbine and generator auxiliaries		5		4960			
ВоР	UTILITY and OFFSITE UNITS Cooling Water System	1575						
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	8	-5					
	Waste Water Treatment	-10						
	Miscellanea				100			
	BALANCE	1658	0.0	82590	5060			

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 10 of 16

Table 3. Case 1 – Electrical consumption summary

CLIENT:	IEAGHG	REVISION	0	
PROJECT NAME	: CO2 capture at coal based power and hydrogen plants	DATE	Jun-13	
PROJECT No. :	1-BD-0681 A	MADE BY	GP	
LOCATION :	The Netherlands	APPROVED BY	LM	

Case 1 - Electrical consumption

UNIT	DESCRIPTION UNIT	Absorbed Electri Power
		[kW]
1000	FEEDSTOCK AND SOLID HANDLING	
	Solids Handling	3330
2000	BOILER ISLAND and FLUE GAS TREATMENT	
	Boiler island (including ID fan)	21920
	Flue Gas Desulphurization (FGD)	2890
3000	POWER ISLAND (Steam Turbine)	
	Steam Turbine Auxiliaries and condenser	2600
	Condensate and feedwater system	1250
	Miscellanea	600
ВоР	UTILITY and OFFSITE UNITS	
	Cooling Water System	9990
	Other Units	1440
	BALANCE	44.020

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 11 of 16

Table 4. Case 1 – Sorbent and chemicals consumption

	Consumption
Limestone injection to the FGD	8.85 t/h
Ammonia solution to SCR (1)	4.5 t/h

^{(1) 25%} wt ammonia solution

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 12 of 16

6. Overall Performance

The following table shows the overall performance of Case 1.

FOSTER WHEELER

CLIENT: **IEAGHG** 0 **REVISION** PROJECT NAME: CO2 capture at coal based power and hydrogen plants DATE Jun-13 PROJECT No.: GΡ 1-BD-0681 A MADE BY LOCATION: The Netherlands **APPROVED BY** LM

Case 1 - SC PC Plant Performance Summary

OVERALL PERFORMANCES		
Fuel flow rate (A.R.)	t/h	325.0
Fuel HHV (A.R.)	kJ/kg	27060
Fuel LHV (A.R.)	kJ/kg	25870
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443
Steam turbine power output (@ gen terminals)	MWe	1076.7
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	1076.7
Boiler Island and FGD	MWe	24.8
Utility & Offsite Units consumption	MWe	11.4
Power Islands consumption	MWe	4.5
Feedstock and solids handling	MWe	3.3
ELECTRIC POWER CONSUMPTION	MWe	44.0
NET ELECTRIC POWER OUTPUT	MWe	1032.7
(Step Up transformer efficiency = 0.997%) (B)	MWe	1029.6
Gross electrical efficiency (C/A x 100) (based on LHV)	%	46.1%
Net electrical efficiency (B/A x 100) (based on LHV)	%	44.1%
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	44.1%
Net electrical efficiency (B/A' x 100) (based on HHV)	%	42.1%
Fuel Consumption per net power production	MWth/MWe	2.27
CO ₂ emission per net power production	kg/MWh	745.3

⁽¹⁾ Steam driven BFW pumps are included

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 13 of 16

7. Environmental impact

The SC PC steam plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the flue gases from the boiler. Table 5 summarizes the expected flue gases flowrate and composition.

Minor and fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air containing particulate.

Flue gas to stack Emission type Continuous Conditions Wet gas flowrate, kg/h 3,740,000 Flow, Nm³/h $\overline{}^{(1)}$ 2,857,000 Temperature, °C 90 Composition (% vol) 0.85 N_2 71.40 O_2 3.20 13.68 CO_2 10.88 H_2O $mg/Nm^{3(1)}$ **Emission** NOx < 150 SOx < 150 Particulate < 10

Table 5. Case 1 – Plant emission during normal operation

Table 6. Case 1 – Plant minor emission

Emission source	Emission type	Temperature	
Coal milling and feed system	Continuous	ambient	Air: 10 mg/Nm ³ particulate
Limestone milling and preparation	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
Gypsum handling and de-hydration	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
Ash storage and transfer	Intermittent	ambient	Air: 10 mg/Nm ³ particulate

⁽¹⁾ Dry gas, O2 content 6% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 14 of 16

7.2. Liquid effluents

The plant does not produce significant liquid waste. FGD unit blow-down is treated in a dedicated R.O. system to recover water, so main liquid effluent is the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids.

Cooling Tower blow-down

Flowrate : $376.5 \text{ m}^3/\text{h}$

FGD blow-down

Flowrate : $10 \text{ m}^3/\text{h}$

7.3. Solid effluents

The power plant is expected to produce the following solid by-products:

Fly ash from boiler

Flowrate : 29.2 t/h

Bottom ash from boiler

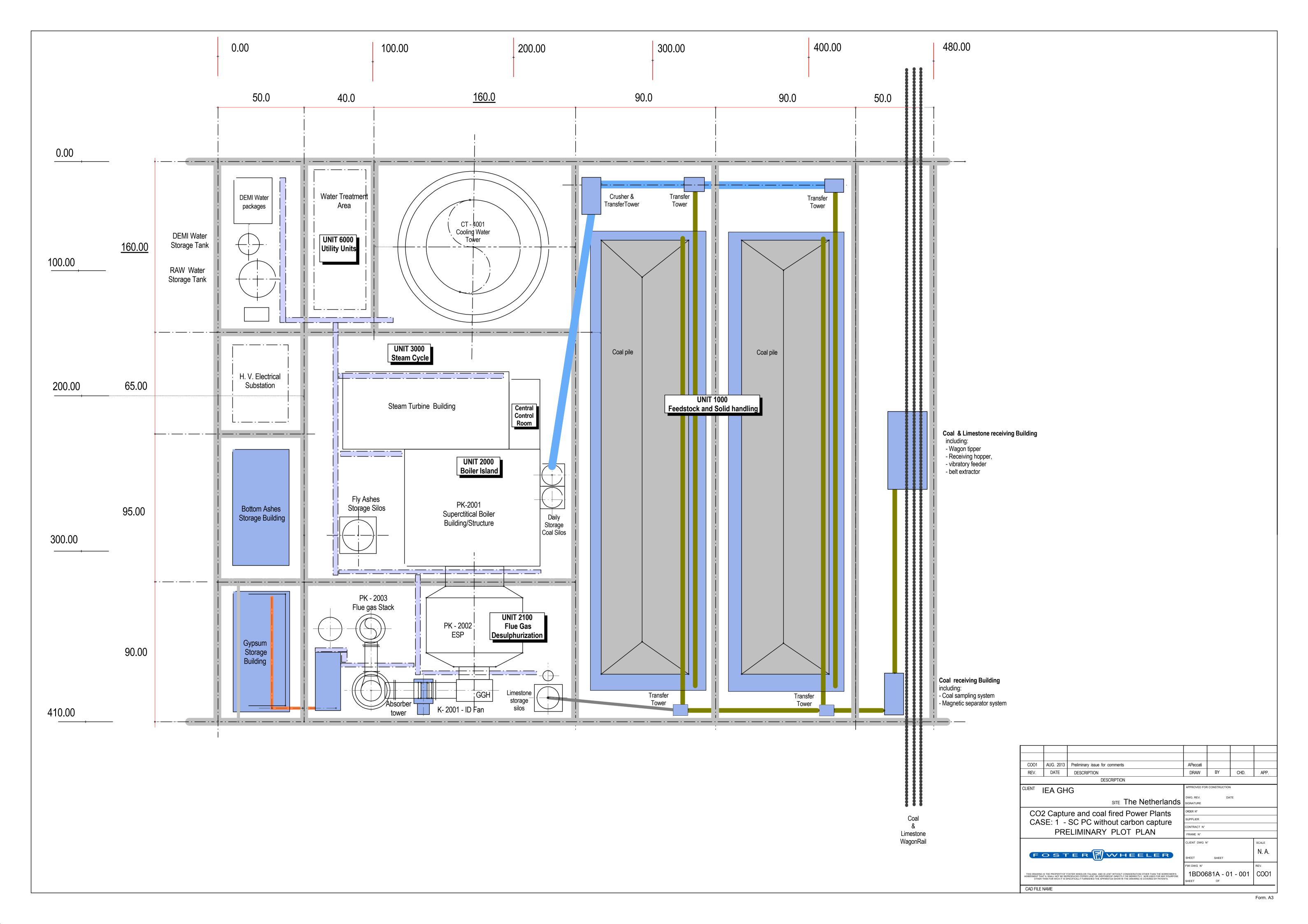
Flowrate : 12.5 t/h

Fly and bottom ash might be sold to cement industries, if local market exist, or sent to disposal.

Solid gypsum from FGD

Solid gypsum, produced in de-hydrated form in the FGD system, can be sold in the market.

Flowrate : 16.2 t/h Moisture content : 10% wt



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 15 of 16

8. Preliminary plot plan

Plot plan at block level of Case 1 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.1 - Case 1: SC PC without CCS Sheet: 16 of 16

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION Rev. Draft Rev. 0 Rev. 1 Rev. 2 DATE Sept. 2013 January 2014 June 13 ISSUED BY GP GP GP CHECKED BY NF NF NF APPROVED BY LM LM LM

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COAL HANDLING SYSTEM							
	Including:		Coal flowrate to boiler: 325 t/h					30 days storage
	- Wagon tipper							Storage piles: 2 x 128,000 t each
	- Receiving Hopper, vibratory feeder and belt extractor							
	- Conveyors	Belt						
	- Transfer Towers	enclosed						
	- As-Received Coal Sampling System	Two - Stage						
	- As-Received Magnetic separator System	Magnetic Plates						
	- Conveyors	Belt						
	- Transfer Towers	enclosed						
	- Cruscher Tower	Impactor reduction						
	- As-Fired Coal Sampling System	Swing hammer						
	- As-Fired Magnetic separator System	Magnetic Plates						
	- Coal Silo		2 x 4900 m3					For daily storage
	- Filters							
	- Fans							
	LIMESTONE HANDLING SYSTEM							
	Including:		Limestone flowrate to FGD: 9.0 t/h					
	- Wagon tipper		Limestone Storage volume: 5700 m3					30 days storage capacity
	- Receiving Hopper, vibratory feeder and belt extractor							
	- Conveyor	Belt						
	- Transfer Tower	enclosed						
	- Conveyor	Belt						
	- Limestone Sampling System	Swing Hammer						
	- Separator System	Magnetc Plates						
	- Transfer Tower	enclosed						
	- Conveyor	Belt with tipper						
	- Limestone Mills							
	- Limestone Silo		1 x 200 m3					For daily storage
	- Filters							
	- Fan							
				1				

CLIENT: IEA GHG

LOCATION: The Netherlands

PROL NAME: CO2 capture at co2

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	LM	LM	

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	ASH SYSTEM							
	Including: - Ash storage silos - Ash conveyors - Bottom ash crusher - Pneumatic conveying system - Filters - Fans		Bottom Ash Capacity: 12.5 t/h Bottom Ash Storage volume: 6000 m3 Fly Ash Capacity: 29.2 t/h Fly Ash Storage volume: 14000 m3					14 days storage capacity 14 days storage capacity
	GYPSUM SYSTEM							
	Including: - Storage unit - Conveyors		Capacity: 16.165 t/h Storage volume: 9000 m3					30 days storage capacity 1 operating, 1 spare

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	LM	LM	

EQUIPMENT LIST Unit 2000 - Boiler Island

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	BOILER							
PK - 2001	Super Critical Boiler, including:		Capacity: 2877t/h main steam production Thermal input: 2443 MWth (HHV) / 2335 MWth (LHV) Main steam condition: 270 bar(a)/600 °C Reheat steam condition: 60 bar(a)/620 °C				(1)	Boiler package including: - Coal mill - Fuel Feeding system - One Fired Boiler Furnace -Low NOx burners system including main burners and pilots - Economizers/super heater coils, water wall circuit - Reheating coils - Air pre-heater - Ash collection hoppers - Combustion air fans with electric motor (2 x 60% primary air, 2 x 60% secondary - Ash collection hoppers - Start-up system - Flue gas ducts - Bottom Ash cooling devices
K - 2001 A/B	ID fan	Axial	Flowrate: 2 x 1660 x 10^3 Nm3/h Vol. Flow: 2 x 652 x 10^3 m3/h Power consumption: 2 x 5045 kW	2 x 6660 kWe				
PK - 2002	Flue gas cleaning system	ESP						
PK - 2003	Flue gas stack	cement stack						
PK - 2004	Continuous emission monitoring system							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	I.M	I.M	

EQUIPMENT LIST

Unit 2000 - Boiler Island

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	SCR SYSTEM - UNIT 2050							
	SCR system Including: - Reactor casing - Catalyst - Bypass system - Ammonia injection equipment - Handling equipment - Control System							

Notes:

A. Robertson, H. Agarwal, M. Gagliano, A. Seltzer, Oxy-combustion boiler material development, 35th International Technical Conference on Clean Coal & Fuel System, Clearwater, Florida (USA)

⁽¹⁾ Reference for boiler material selection:

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION Rev. Draft Rev. 0 Rev. 1 Rev. 2 Sept. 2013 DATE June 13 January 2014 GP GP ISSUED BY GP CHECKED BY NF NF NF APPROVED BY LM LM LM

EQUIPMENT LIST

Unit 2100 - Flue Gas Desulphurization

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	FGD SYSTEM							
	Wet FGD system Including: - Limestone feeder - Absorber tower - Oxydation air blower - Make up water system - Limestone slurry preparation system - Reagent feed pump - Gypsum dewatering system - Miscellaneous equipment		Flue gas inlet flowrate:2766 x10^3 Nm3/h Removal efficiency: 92.1 %					
	GAS-GAS HEATER							
	Gas-gas heat exchanger		Hot side flowrate: 2766 x 10 ³ Nm3/h Cold side flowrate: 2856 x 10 ³ Nm3/h Duty: 42.9 MWth					

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	LM	LM	

EQUIPMENT LIST

Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	PACKAGES							
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		1076 MWe HP admission: 2877 t/h @ 270 bar Hot reheat admission: 2420 t/h @ 60 bar LP admission: 2118 t/h @ 5.9 bar					Including: Lube oil system Cooling system Idraulic control system Drainage system Seals system Drainage system Drainage system Electrical generator and relevant auxiliaries
E- 3001 A/B E- 3002 PK- 3002 E- 3001	Inter/After Condenser Gland Condenser Steam Condenser Package Steam condenser	water cooled	1055 MWth					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
PK- 3003	Steam Turbine Bypass System							Including: MP dump tube LP dump tube HP/MP Letdown station MP Letdown station LP Letdown station
PK- 3004 PK- 3005 PK- 3006	Phosphate injection package Oxygen scavanger injection package Amines injection package							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	LM	LM	

EQUIPMENT LIST Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	HEAT EXCHANGERS		Duty (kW)		Shell/tube	Shell/tube		
E- 3002	BFW Economiser #1		240080					
E- 3003	BFW Economiser #2		191335					
E- 3003	BFW Economiser #3		47180					
E- 3004	Condensate heater #1		73630					
E- 3005	Condensate heater #2		43915					
E- 3006	Condensate heater #3		91775					
E- 3006	Condensate heater #4		42050					
	PUMPS		Q [m ³ /h] x H [m]					
P- 3001	BFW pumps	Centrifugal Steam driven	2877 m3/h x 3566 m	33000 kWe equivalent				One operating
P- 3002	BFW pump	Centrifugal	40% MCR					For start-up, electric motor
P- 3003 A/B	Condensate pump	Centrifugal	2540 m3/h x 170 m	1600				One operating one spare, electric motor
	VESSEL							
D- 3001	Dearator	Horizontal						

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture

REVISION	Rev. Draft	Rev. 0	Rev. 1	Rev. 2
DATE	June 13	Sept. 2013	January 2014	
ISSUED BY	GP	GP	GP	
CHECKED BY	NF	NF	NF	
APPROVED BY	LM	LM	LM	

EQUIPMENT LIST

Unit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COOLING SYSTEM		Duty					
P- 6001 A/ /F P- 6002 A/B P- 6003 A/B	Cooling Tower including: Cooling water basin PUMPS Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system) Cooling tower make-up pumps PACKAGES Cooling Water Filtration Package Cooling Water Sidestream Filters Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps Antiscalant Package Dispersant storage tank Dispersant dosage pumps	Natural draft Centrifugal Centrifugal centrifugal	1120 MWth Diameter: 150 m, Height: 210 m, Water inlet: 17 m Q [m3/h] x H [m] 15000 m3/h x 35 m 5070 m3/h x 45 m 1700 m3/h x 30 m Capacity: 9500 m3/h	1600 800 220			concrete	Six in operation One in operation, one spare One in operation, one spare
	RAW WATER SYSTEM		Q [m3/h] x H [m]					
T- 6001 P- 6004 A/B P- 6005A/B	Raw Water storage tank Raw water pumps to RO Raw water pump to FGD (make-up)	centrifugal centrifugal	2520 m3 10 m3/h x 50 m 95 m3/h x 40 m	50 18.5				24 hour storage One in operation, one spare One in operation, one spare

CLIENT: IEA GHG REVISION Rev. Draft Rev. 0 Rev. 1 Rev. 2 Sept. 2013 January 2014 DATE June 13 LOCATION: The Netherlands PROJ. NAME: CO2 capture at coal based power and hydrogen plants ISSUED BY GP GP GP NF NF NF CONTRACT N. 1-BD-0681 A CHECKED BY CASE: 1 - SC PC without carbon capture APPROVED BY LM LM LM

EQUIPMENT LIST Unit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	DEMINERALIZED WATER SYSTEM		Q [m3/h] x H [m]					
PK- 6001 T- 6002 P- 6005A/B	Demin Water Package, including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system Demin Water storage tank Demin water pump to Power Island (make-up)	centrifugal	120 m3 5 m3/h x 40 m	3.5				24 hour storage One in operation, one spare
	FIRE FIGHTING SYSTEM							
T- 6003	Fire water storage tank Fire pumps (diesel) Fire pumps (electric) FW jockey pump							
	OTHER UTILITIES							
	Plant air compression skid Emergency diesel generator system Waste water treatment Electrical equipment Buildings Auxiliary boiler Condensate polishing system							

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 1 of 19

CLIENT : IEAGHG

PROJECT NAME : CO CAPTURE AT COAL FIRED POWER PLANTS

DOCUMENT NAME : CASE 2: SC PC WITH CCS

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

Revision no.: Final **IEAGHG**

 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C.2 - Case 2: SC PC with CCS

Date:

Sheet: 2 of 19

January 2014

TABLE OF CONTENT

2. Process description 2.1. Overview	1.	Introduction3
2.1. Overview		1.1. Process unit arrangement
2.2. Unit 1000 – Feedstock and Solid Handling 2.3. Unit 2000 – Boiler Island	2.	Process description5
2.3. Unit 2000 – Boiler Island		2.1. Overview5
2.4. Unit 2100 – Flue Gas Desulphurization		2.2. Unit 1000 – Feedstock and Solid Handling5
2.5. Unit 3000 – Steam Cycle		2.3. Unit 2000 – Boiler Island
2.6. Unit 4000 – CO ₂ Amine Absorption		2.4. Unit 2100 – Flue Gas Desulphurization
2.7. Unit 5000 – CO ₂ Compression and drying 2.8. Unit 6000 - Utility Units 3. Process Flow Diagrams 4. Heat and Material Balance 5. Utility and chemicals consumption 6. Overall Performance 7. Environmental impact 7.1. Gaseous emissions 7.2. Liquid effluents 7.3. Solid effluent 8. Preliminary plot plan		2.5. Unit 3000 – Steam Cycle
2.8. Unit 6000 - Utility Units 3. Process Flow Diagrams 4. Heat and Material Balance 5. Utility and chemicals consumption 6. Overall Performance 7. Environmental impact 7.1. Gaseous emissions 7.2. Liquid effluents 7.3. Solid effluent 8. Preliminary plot plan		2.6. Unit 4000 – CO ₂ Amine Absorption
3. Process Flow Diagrams 4. Heat and Material Balance 5. Utility and chemicals consumption 6. Overall Performance 7. Environmental impact 7.1. Gaseous emissions 7.2. Liquid effluents 7.3. Solid effluent 8. Preliminary plot plan		2.7. Unit 5000 – CO ₂ Compression and drying
4. Heat and Material Balance 5. Utility and chemicals consumption		2.8. Unit 6000 - Utility Units6
5. Utility and chemicals consumption	3.	Process Flow Diagrams
6. Overall Performance	4.	Heat and Material Balance9
7. Environmental impact	5.	Utility and chemicals consumption10
7.1. Gaseous emissions	6.	Overall Performance
7.2. Liquid effluents	7.	Environmental impact
7.3. Solid effluent		7.1. Gaseous emissions
8. Preliminary plot plan		7.2. Liquid effluents17
· · ·		7.3. Solid effluent
	8.	Preliminary plot plan
9. Equipment list	9.	Equipment list

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 3 of 19

1. Introduction

This chapter of the report includes all technical information relevant to Case 2 of the study, which is a supercritical pulverised coal (SC PC) fired steam plant with amine-based solvent washing for carbon capture. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce electric power for export to the external grid.

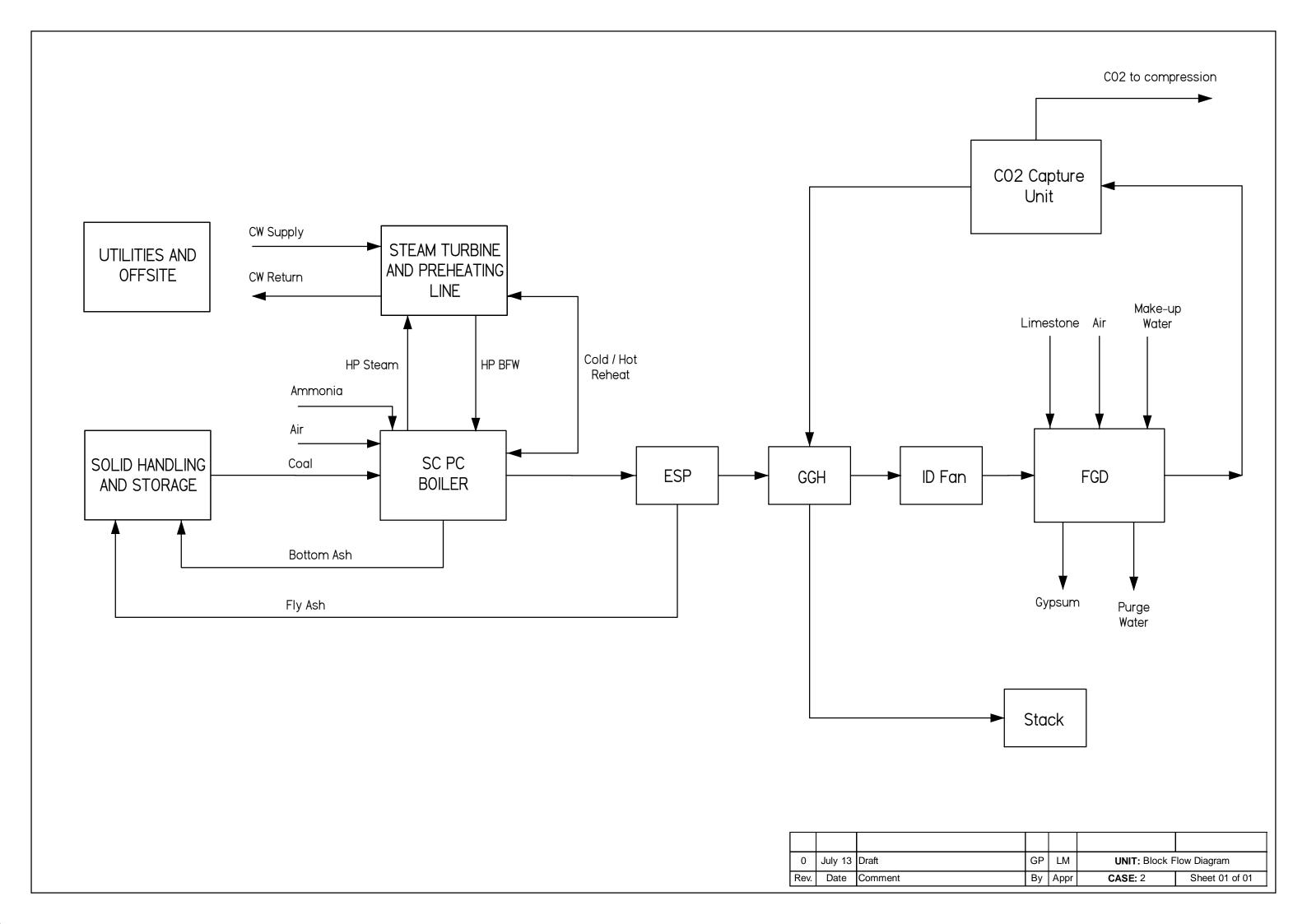
The configuration of the SC PC plant is based on one once-through steam generator, with superheating and single steam reheating, and a steam turbine generator. Plant is designed with the same thermal capacity of the reference case without carbon capture (refer to chapter C.1 of this report).

The description of the main process units is covered in chapter C of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Table 1. Case 2 – Unit arrangement


Unit	Description	Trains
1000	Storage and Handling of solid materials	N/A
2000	SC PC supercritical boilers	1 x 100%
	Electro Static precipitators	1 x 100%
2050	Flue Gas Denitrification (DeNOx) – SCR system	1 x 100%
2100	Flue Gas Desulphurisation (FGD)	1 x 100%
4000	Steam Cycle (SC)	
	Steam Turbine and Condenser	1 x 100%
	Deaerator	1 x 100%
	Water Preheating line	1 x 100%
4000	CO ₂ Amine Absorption Unit	
	Flue gas quencher	2 x 50%
	Absorber	2 x 50%
	Regenerator	2 x 50%

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 4 of 19

Unit	Description	Trains
5000	CO ₂ compression	2 x 50%
6000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 5 of 19

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) shown in Section 3, while stream numbers refer to Section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 1000 – Feedstock and Solid Handling

The unit is composed of the following systems:

- Coal storage and handling
- Limestone storage and handling
- Ashes collection and storage
- Gypsum storage and handling

The general description relevant to this unit is reported in chapter C, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 2000 – Boiler Island

This unit is mainly composed of the Boiler and the Selective Catalytic Reactor (SCR) system. Technical information relevant to these packages is reported in Chapter C, sections 2.2 and 2.3 respectively.

Main process information of this case and interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Flue Gas Desulphurization

This unit is mainly composed of the FGD and the gypsum dehydration systems. For this Case 2 with carbon capture, higher desulphurisation efficiency is required from the FGD system of the plant, so to limit solvent degradation in the downstream absorber washing column to the maximum extent. The FGD plant is designed to meet a SO₂ concentration in the flue gas of 10 ppmv (dry, 6%O₂), corresponding to a SO₂ removal efficiency of approximately 98.5%. The SO₃ emissions are reduced to the minimum with respect to the Wet FGD capability, thus corresponding to 13 ppmv (dry, 6%O₂) at the FGD outlet.

Alstom wet scrubbing technology was selected for the development of this study case. Technical information relevant to this system is reported in chapter C, section 2.4.1. The impact of a different FGD technology and supplier is also summarised in chapter C, section 2.4.4.

Main process information of this case and interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 6 of 19

Gas-gas heat exchanger

Saturated flue gases from top of the absorber in the post-combustion unit are heatedup, before discharge from the stack to ensure proper flue gas dispersion and avoid water condensation. Hot flue gases from the boiler air pre-heater are used as heating medium before entering the FGD absorber. The gas-gas heater is a very expensive equipment representing around 25-30% of the total FGD unit installed cost.

2.5. Unit 3000 – Steam Cycle

The steam cycle is mainly composed of one supercritical Steam Turbine Generator (STG), water-cooled condenser and the water pre-heating line. General description relevant to this unit is reported in chapter C, section 2.7.2.

Main process information of this case and interconnections with the other units are shown in the block flow diagram and in the heat and mass balance tables.

2.6. Unit 4000 – CO₂ Amine Absorption

This unit is mainly composed of flue gas quencher, CO₂ absorption column and amine regenerator. Cansolv technology was considered for the development of this study case. Technical information relevant to this system is reported in chapter C, section 2.5.1.

Main process information of this case and interconnections with the other units are shown in the block flow diagram and in the heat and mass balance tables.

2.7. Unit 5000 – CO₂ Compression and drying

The process description of CO_2 Compression and drying package is reported in chapter C, section 2.6. Main process information of this case and interconnections with the other units are shown in the block flow diagram and in the heat and mass balance tables.

2.8. Unit 6000 - Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

- Cooling Water system, based on two natural draft cooling tower, with the following characteristics:

Basin diameter	120 m
Cooling tower height	210 m
Water inlet height	17 m

- Raw water system;

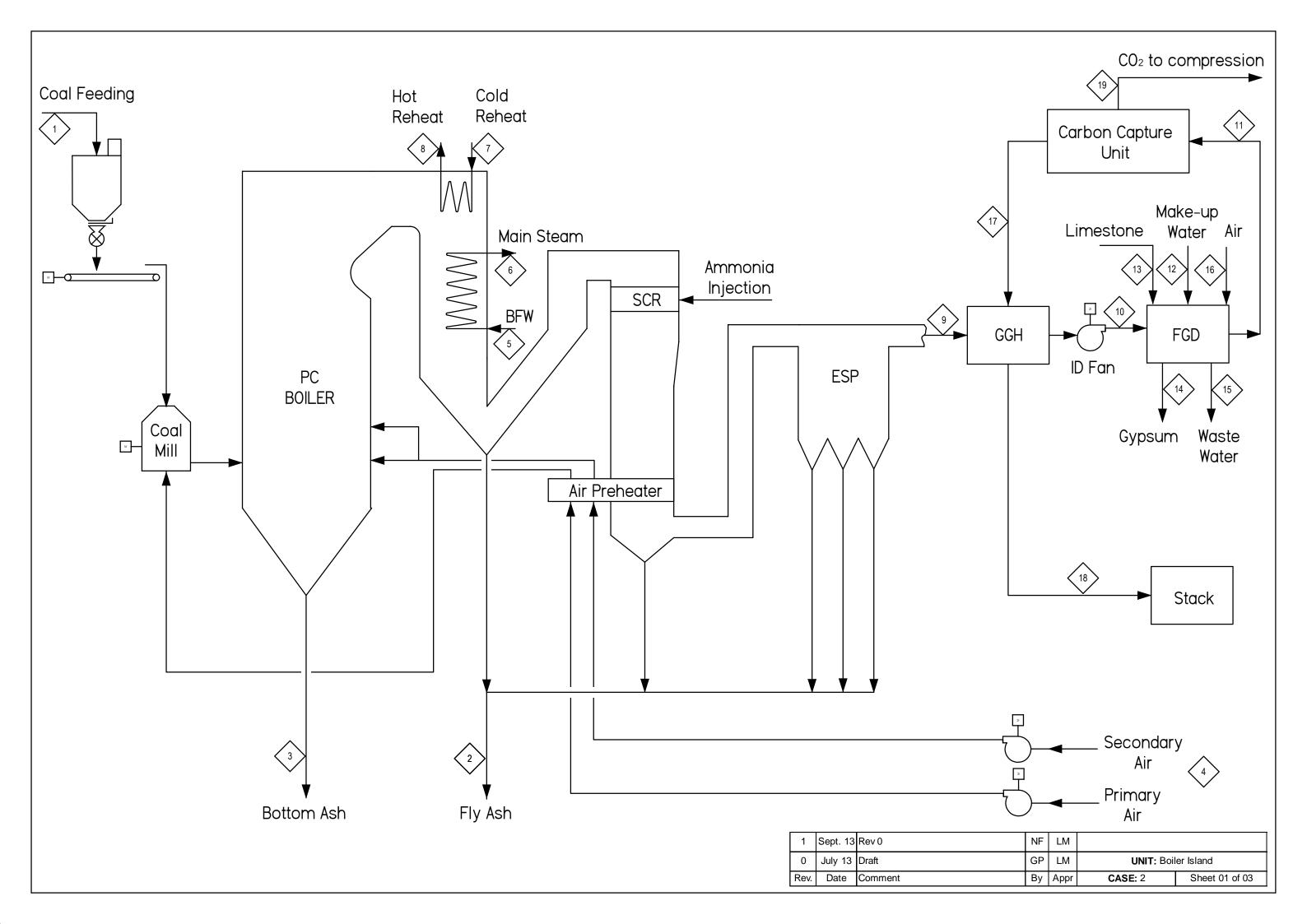
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

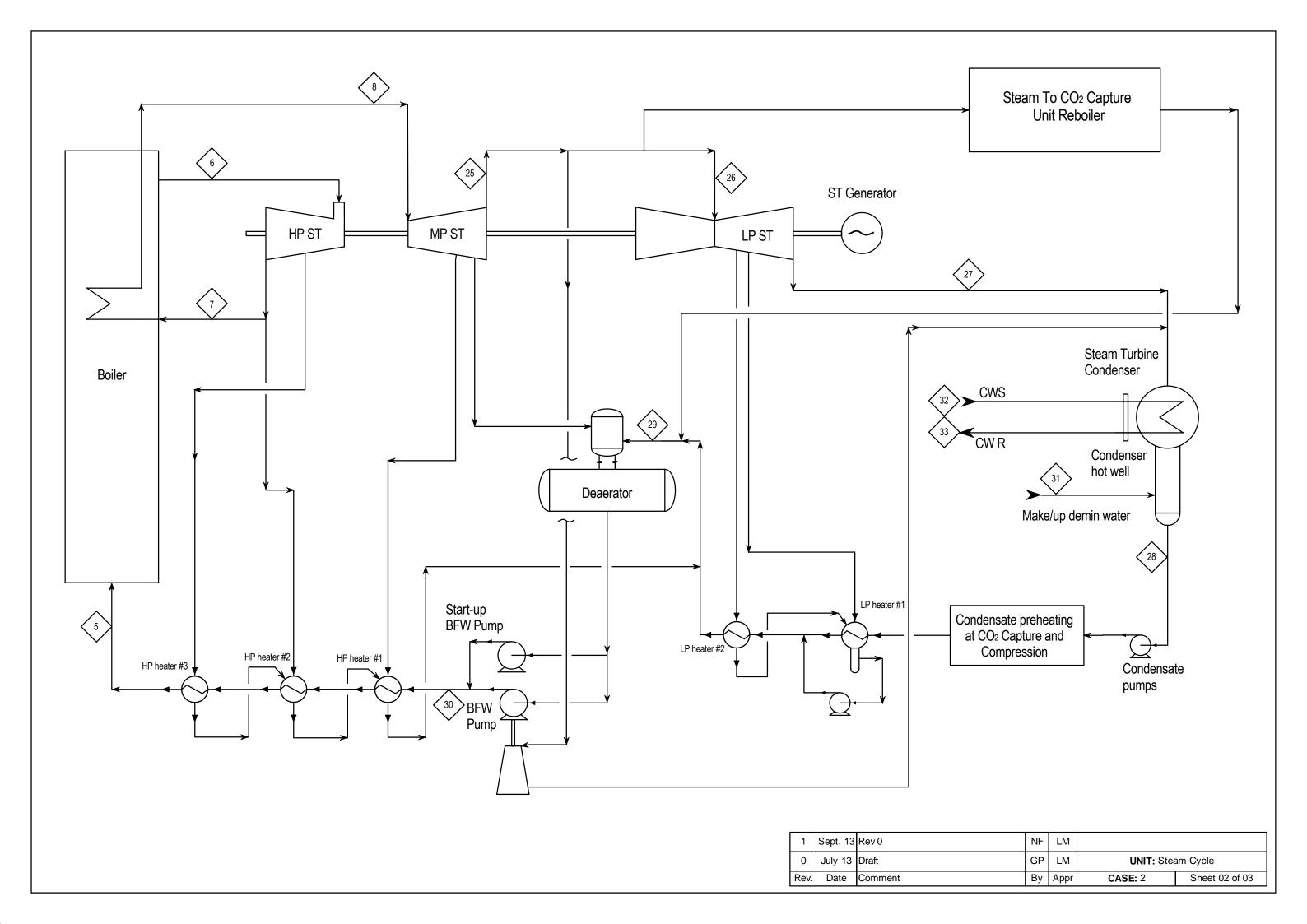
Chapter C.2 - Case 2: SC PC with CCS Sheet: 7 of 19

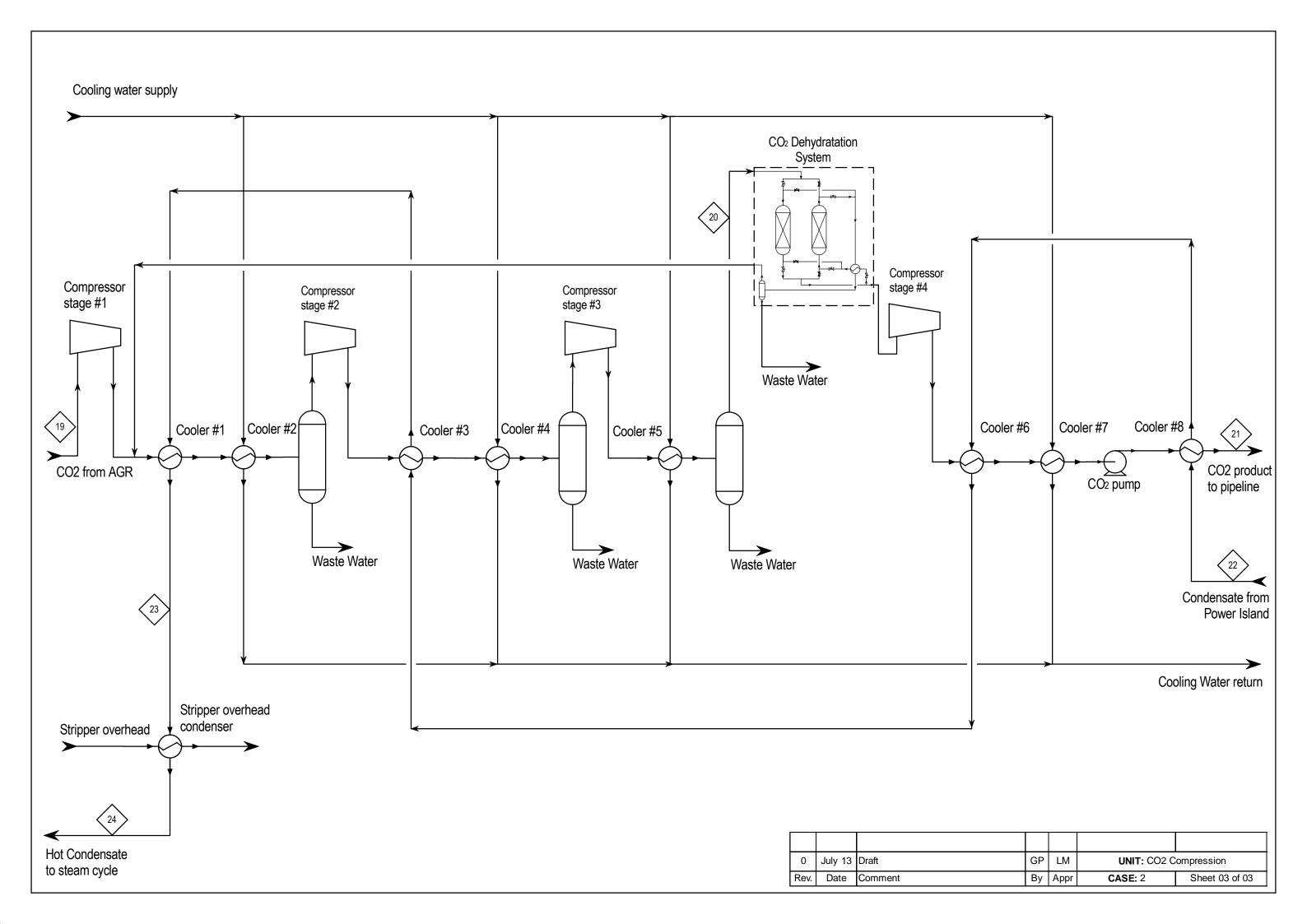
- Demineralised water plant;

- Fire fighting system;
- Instrument and Plant air.

Process descriptions of the above systems are enclosed in chapter C, section 2.8.




CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter C.2 - Case 2: SC PC with CCS Sheet: 8 of 19

3. Process Flow Diagrams

Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 9 of 19

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the Process Flow Diagrams of section 3.

	Case 2 - SC PC with CCS - HEAT AND MATERIAL BALANCE							draft	0		
	CLIENT :	CLIENT: IEA GHG						GP	GP		
FOSTERWHEELER	PROJECT NAME:		CO2 capture at coa	I based power and h	ydrogen plants		CHECKED	NF	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM	LM		
	LOCATION:		The Netherlands				DATE	July 13	Sept. 13		
	HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND										
	1	2	3	4	5	6	7	8			
STREAM	Coal to Boiler Island	Fly Ash	Bottom Ash	Air intake from Atmosphere	BFW from steam cycle	HP Steam to Steam Turbine	Cold Reheat from UNIT 3000	Hot Reheat to Steam Turbine			
Temperature (°C)	AMB	AMB	AMB	9	290	600	366	620			
Pressure (bar)	AMB	ATM	ATM	1.013	324	270	63	60			
TOTAL FLOW	Solid										
Mass flow (kg/h)	325,000	29,200	12,500	3,383,000	2,868,000	2,868,000	2,456,000	2,456,000			
Molar flow (kmol/h)				117,250	159,245	159,245	136,369	136,369			
LIQUID PHASE											
Mass flow (kg/h)					2,868,000						
GASEOUS PHASE											
Mass flow (kg/h)				3,383,000		2,868,000	2,456,000	2,456,000			
Molar flow (kmol/h)				117,250		159,245	136,369	136,369			
Molecular Weight				28.85		18.01	18.01	18.01			
Composition (vol %)	%wt										
H_2				0.00%	0.00%	0.00%	0.00%	0.00%			
СО	C: 64.6%			0.00%	0.00%	0.00%	0.00%	0.00%			
CO ₂	H: 4.38%			0.03%	0.00%	0.00%	0.00%	0.00%			
N_2	O: 7.02%			77.27%	0.00%	0.00%	0.00%	0.00%			
O ₂	S: 0.86%			20.73%	0.00%	0.00%	0.00%	0.00%			
CH ₄	N: 1.41%			0.00%	0.00%	0.00%	0.00%	0.00%			
Ar	CI: 0.03%			0.92%	0.00%	0.00%	0.00%	0.00%			
SO ₂	Moisture: 9.5%			0.00%	0.00%	0.00%	0.00%	0.00%			
H ₂ O	Ash: 12.20%			1.05%	100.00%	100.00%	100.00%	100.00%			

100.00%

100.00%

100.00%

100.00%

100.00%

Total

SOx NOx

particulate

Emissions (mg/Nm³, dry basis 6% vol O₂)

	Case 2 - 9	SC PC with CCS - HEAT AND MATERIAL BALANCE	REVISION	draft	0	
	CLIENT:	IEA GHG	PREP.	GP	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	LM	
	LOCATION:	The Netherlands	DATE	July 13	Sept. 13	
	-	LICAT AND MATERIAL DALANCE		_	_	

HEAT AND MATERIAL BALANCE UNIT 2100 - FGD

	9	10	11	12	13	14	15	16	
STREAM	Flue Gas from ESP to GGH	Flue Gas to FGD	Treated gas from FGD	Make up Water	Limestone to FGD	Product Gypsum	Waste water from FGD	Oxidation Air	
Temperature (°C)	132	90	47	15	AMB	AMB	AMB	AMB	
Pressure (bar)	-	-	-	ATM	ATM	ATM	ATM	ATM	
TOTAL FLOW					Solid	Solid			
Mass flow (kg/h)	3,667,000	3,667,000	3,741,000	85,000	9,200	16,900	7,800	9,100	
Molar flow (kmol/h)	123,412	123,412	127,470	4,720			433	315	
LIQUID PHASE									
Mass flow (kg/h)				85,000			7,800		
GASEOUS PHASE	1								
Mass flow (kg/h)	3,667,000	3,667,000	3,741,000					9,100	
Molar flow (kmol/h)	123,412	123,412	127,470					315	
Molecular Weight	29.71	29.71	29.3					28.85	
Composition (vol %)									
H ₂	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
СО	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
CO ₂	14.06%	14.06%	13.68%	0.00%			0.00%	0.03%	
N_2	73.56%	73.56%	71.40%	0.00%			0.00%	77.27%	
O_2	3.28%	3.28%	3.20%	0.00%			0.00%	20.73%	
CH₄	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
Ar	0.87%	0.87%	0.84%	0.00%			0.00%	0.92%	
SO_2	0.07%	0.07%	0.00%	0.00%			0.00%	0.00%	
H ₂ O	8.16%	8.16%	10.88%	100.00%			100.00%	1.05%	
Total	100.00%	100.00%	100.00%	100.00%			100.00%	100.00%	
Emissions (mg/Nm³, dry basis 6% vol O ₂)									
SOx	1897	1897	SO ₂ : 10 ppm SO ₃ : 13 ppm	-	-	-	-	-	
NOx	130	130	130	-	-	-	-	-	
particulate	10	10	10	-	-	-	-	-	

NOTE

1. Air in-leakage are included in the flue gas streams

	Case 2 - 9	SC PC with CCS - HEAT AND MATERIAL BALANCE	REVISION	draft	0	
	CLIENT:	IEA GHG	PREP.	GP	GP	
FOSTER WHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	LM	
	LOCATION:	The Netherlands	DATE	July 13	Sept. 13	

HEAT AND MATERIAL BALANCE UNIT 4000 and 5000 - CO2 CAPTURE AND COMPRESSION

	11	17	18	19	20	21	22	23	24	
STREAM	Feed Gas to CCU	Treated Gas to GGH	Flue Gas to Stack	Carbon Dioxide to Compression	CO2 to drying package	CO2 to long term Storage	Condensate from Power Island	Preheated Condensate to Stripper Condenser	Preheated Condensate to Power Island	
Temperature (°C)	47	43	95	30	26	30	29	60	74	
Pressure (bar)	-	-	-	2.0	30.3	110.0	14.5	14.0	13.5	
TOTAL FLOW										
Mass flow (kg/h)	3,741,000	2,924,000	2,924,000	701,000	770,205	690,900	1,310,000	1,310,000	1,310,000	
Molar flow (kmol/h)	127,470	107,502	107,502	16,075	17,520	15,700	72,713	72,713	72,713	
LIQUID PHASE						supercritical state				
Mass flow (kg/h)						692,000	1,310,000	1,310,000	1,310,000	
GASEOUS PHASE										
Mass flow (kg/h)	3,741,000	2,924,000	2,924,000	701,000	770,205					
Molar flow (kmol/h)	127,470	107,502	107,502	16,075	17,520					
Molecular Weight	29	27.2	27.2	43.6	44.0					
Composition (vol %)										
H ₂	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
со	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
CO ₂	13.68%	1.58%	1.58%	97.90%	99.82%	100.00%	0.00%	0.00%	0.00%	
N_2	71.40%	84.66%	84.66%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
O_2	3.20%	4.13%	4.13%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
CH₄	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Ar	0.84%	1.00%	1.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
SO ₂	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
H ₂ O	10.88%	8.62%	8.62%	2.10%	0.18%	0.00%	100.00%	100.00%	100.00%	
Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)										
SOx	SO2: 10 ppm SO3: 13 ppm	< 1 ppm	< 1 ppm	-	-	-				
NOx	130	150	150	-	-	-				
particulate	10	10	10	-	-	-				

FOSTER WHEELER								
Case	2 - SC PC with CCS - H&M BALANCE	Revision	draft	0				
CLIENT:	IEA GHG	Prepared	GP	GP				
PROJECT NAME:	CO2 capture at coal based power and H2 plants	Checked	NF	NF				
PROJECT NO:	1-BD-0681 A	Approved	LM	LM				
LOCATION:	The Netherlands	Date	July 13	Sept. 13				
<u>-</u>	LICAT AND MATERIAL DALANCE	-						

HEAT AND MATERIAL BALANCE UNIT 3000 - STEAM CYCLE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
6	HP Water to Boiler Island	2,868	290	323	1278
7	HP Steam from Boiler	2,868	600	270	3475
8	Cold Reheat to Boiler	2,456	366	63.0	3081
9	Hot Reheat to MP Steam Turbine	2,456	620	60.0	3706
25	MP Steam Turbine exhaust	2,105	275	5.5	3011
26	Steam to LP Steam Turbine	1,252	275	5.4	3012
27	Exhaust from LP Steam Turbine	1,130	29	0.04	2292
28	Condensate	1,310	29	0.04	121
29	LP Preheated Condensate	2,910	143	9.5	602
30	BFW to preheating	2,957	156	325	678
31	Make up Water	5	9	0.04	38
32	Cooling Water Inlet	60,752	15	4.0	63
33	Cooling Water Outlet	60,752	26	3.5	109

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 10 of 19

5. Utility and chemicals consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Water consumption summary is reported in Table 2,
- Electrical consumption summary is shown in Table 3,
- Sorbent and chemicals consumption, shown in Table 4.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C.2 - Case 2: SC PC with CCS

Date: January 2014

Sheet: 11 of 19

Table 2. Case 2 – Water consumption summary

CLIENT: IEAGHG

PROJECT NAME: CO2 capture at coal based power and H2 plants
PROJECT No.: 1-BD-0681 A

LOCATION: The Netherlands

REVISION

0

DATE
Jul-13

MADE BY
GP
LOCATION: The Netherlands
APPROVED BY
LM

	Case 2 - Water consumption							
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water 1° syst. [DT = 11°C]	Cooling Water 2° syst. [DT = 11°C]			
		[t/h]	[t/h]	[t/h]	[t/h]			
1000	FEEDSTOCK AND SOLID HANDLING							
	Solid Receiving, Handling and storage							
2000	BOILER ISALND and FLUE GAS TREATMENT							
2000	Boiler island							
	Flue Gas Desulphurization (Wet FGD)	85						
500	POWER ISLAND (Steam Turbine)							
	Condenser			60800				
	Miscellanea		5		4420			
	iviscenanea		,		4420			
BoP	UTILITY and OFFSITE UNITS							
	Cooling Water System	2170						
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	10	-7					
	Waste Water Treatment	-170.0						
	Miscellanea				100			
	CO2 CAPTURE UNIT							
4000	CO2 capture unit		2		53070			
5000	CO2 compression				33070			
	·							
	BALANCE	2095	0.0	60800	57590			

Note: (1) Minus prior to figure means figure is generated

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 12 of 19

Table 3. Case 2 – Electrical consumption summary

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Jul-13
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 2 - Electrical consumption

UNIT	DESCRIPTION UNIT	Absorbed Electric Power
		[kW]
1000	FEEDSTOCK AND SOLID HANDLING	
	Solids Handling	3350
2000	BOILER ISLAND and FLUE GAS TREATMENT	
	Boiler island (including ID fan)	22370
	Flue Gas Desulphurization (FGD)	4000
3000	POWER ISLAND (Steam Turbine)	
	Steam Turbine Auxiliiaries and condenser	3300
	Condensate pump and feedwater system	920
	Miscellanea	600
	CO2 CAPTURE UNIT	
4000	CO2 capture unit	82230
5000	CO2 Compression	02230
ВоР	UTILITY and OFFSITE UNITS	
	Cooling Water System	15020
	Other Units	1440
	BALANCE	133,230

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 13 of 19

Table 4. Case 2 – Sorbent and chemicals consumption

	Consumption
Limestone injection to the FGD	9.21 t/h
Ammonia solution to SCR (1)	4.72 t/h
NaOH to CO ₂ capture unit (2)	200 kg/h

^{(1) 25%} wt ammonia solution

^{50%} wt. FWI estimate

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 14 of 19

6. Overall Performance

The following table shows the overall performance of Case 2.

FOSTER WHEELER

CLIENT: **REVISION** 0 **IEAGHG** PROJECT NAME: CO2 capture at coal based power and hydrogen plants DATE Jul-13 PROJECT No.: 1-BD-0681 A **MADE BY** GΡ LOCATION: The Netherlands **APPROVED BY** LM

Case 2 - SC PC Plant with carbon capture Performance Summary

OVERALL PERFORMANCES					
Fuel flow rate (A.R.)	t/h	325.0			
Fuel HHV (A.R.)	kJ/kg	27060			
Fuel LHV (A.R.)	kJ/kg	25870			
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335			
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443			
Steam turbine power output (@ gen terminals)	MWe	958.1			
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	958.1			
Boiler Island	MWe	26.4			
Utility & Offsite Units consumption	MWe	16.5			
Power Islands consumption (note 1)	MWe	4.8			
CO2 Capture and compression unit	MWe	82.2			
Feedstock and solids handling	MWe	3.3			
ELECTRIC POWER CONSUMPTION	MWe	133.2			
NET ELECTRIC POWER OUTPUT	MWe	824.9			
(Step Up transformer efficiency = 0.997%) (B)	MWe	822.4			
Gross electrical efficiency (C/A x 100) (based on LHV)	%	41.0%			
Net electrical efficiency (B/A x 100) (based on LHV)	%	35.2%			
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	39.2%			
Net electrical efficiency (B/A' x 100) (based on HHV)	%	33.7%			
Fuel Consumption per net power production	MWth/MWe	2.84			
CO ₂ emission per net power production	kg/MWh	93.0			

⁽¹⁾ Steam driven BFW pumps are included

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 15 of 19

The following Table shows the overall CO_2 balance and removal efficiency of Case 2

CO ₂ removal efficiency	Equivalent flow of CO ₂
INPUT	,
FUEL CARBON CONTENT (A)	17495
FROM the DeSOX reaction + CO ₂ in air (B)	109
ОИТРИТ	
Carbon losses (D)	166
CO ₂ flue gas content	17438
Total to storage (C)	15700
Emission	1738
TOTAL	17604
Overall Carbon Capture, % ((C+D)/(A+B))	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 16 of 19

7. Environmental impact

The SC PC steam plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents and solid wastes from the plant are summarized in the following sections.

7.1. Gaseous emissions

During normal operation at full load, the main continuous emissions are the flue gases from the top of the absorber. Table 5 summarizes the expected flue gas flow rate and composition.

Minor and fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6 these emission mainly consists of air containing particulate.

Table 5. Case 2 – Plant emission during normal operation

Flue gas to stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	2,977,000
Flow, Nm ³ /h (1)	2,410,000
Temperature, °C	95
Composition	(% vol)
Ar	1.00
\mathbf{N}_2	84.66
O_2	4.13
CO_2	1.58
H ₂ O	8.62
Emission	
NOx	< 150 mg/Nm ^{3 (1)}
SOx	< 1 ppmv ⁽¹⁾
Particulate	< 10 mg/Nm ^{3 (1)}

⁽¹⁾ Dry gas, O2 content 6% vol.

Table 6. Case 2 – Plant minor emission

Emission source	Emission type	Temperature	
Coal milling and feed system	Continuous	ambient	Air: 10 mg/Nm ³ particulate
Limestone milling and preparation	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
Gypsum handling and de-hydration	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
Ash storage and transfer	Intermittent	ambient	Air: 10 mg/Nm ³ particulate

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 17 of 19

7.2. Liquid effluents

The plant does not produce significant liquid waste. Plant blow-downs (e.g. FGD, CO₂ capture unit) are treated to recover water, so main liquid effluent is cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids.

Cooling Tower blow-down

Flowrate : $518.5 \text{ m}^3/\text{h}$

FGD blow-down

Flowrate : $10 \text{ m}^3/\text{h}$

7.3. Solid effluent

The power plant is expected to produce the following solid by-products:

Fly ash from boiler

Flowrate : 29.2 t/h

Bottom ash from boiler

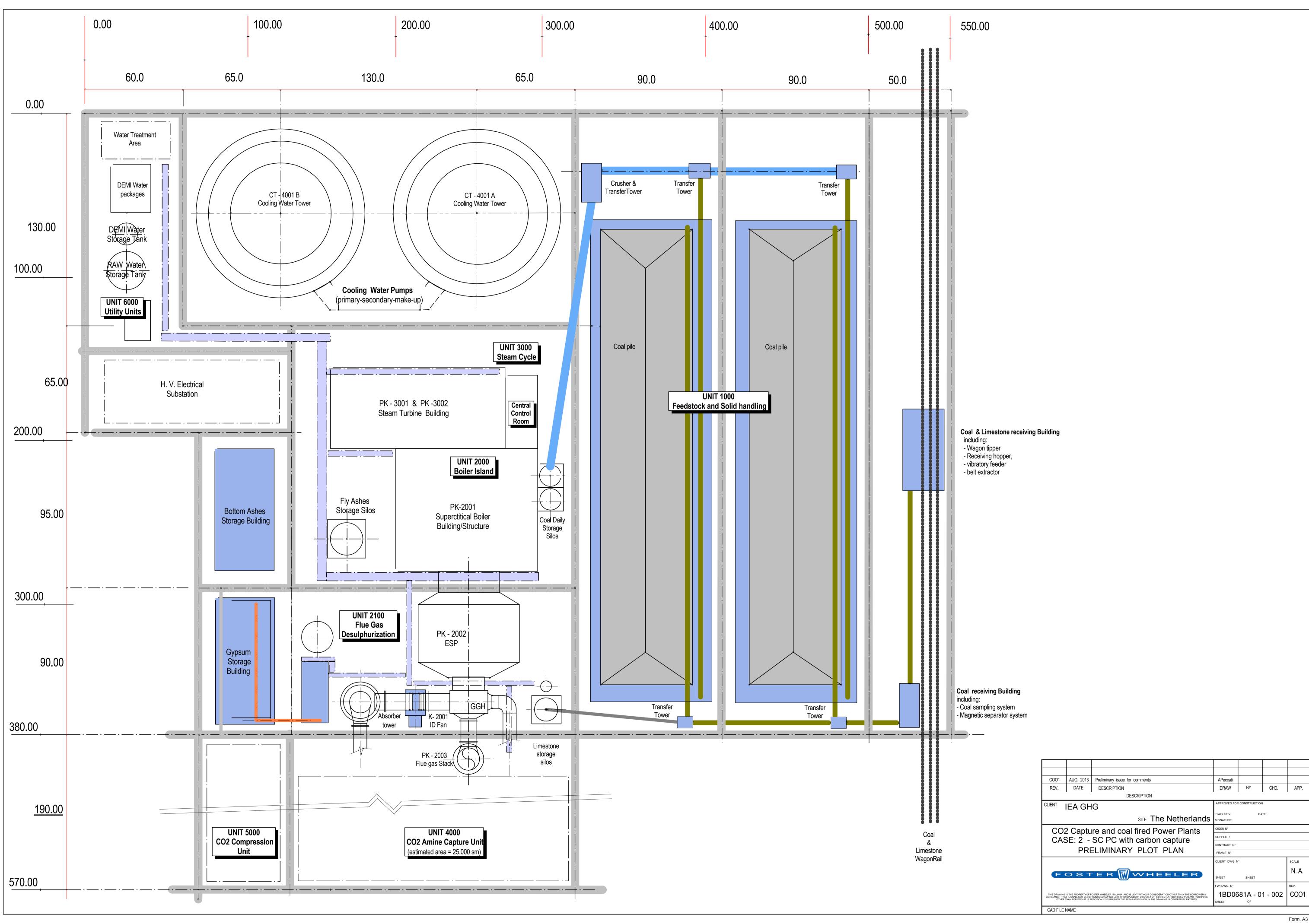
Flowrate : 12.5 t/h

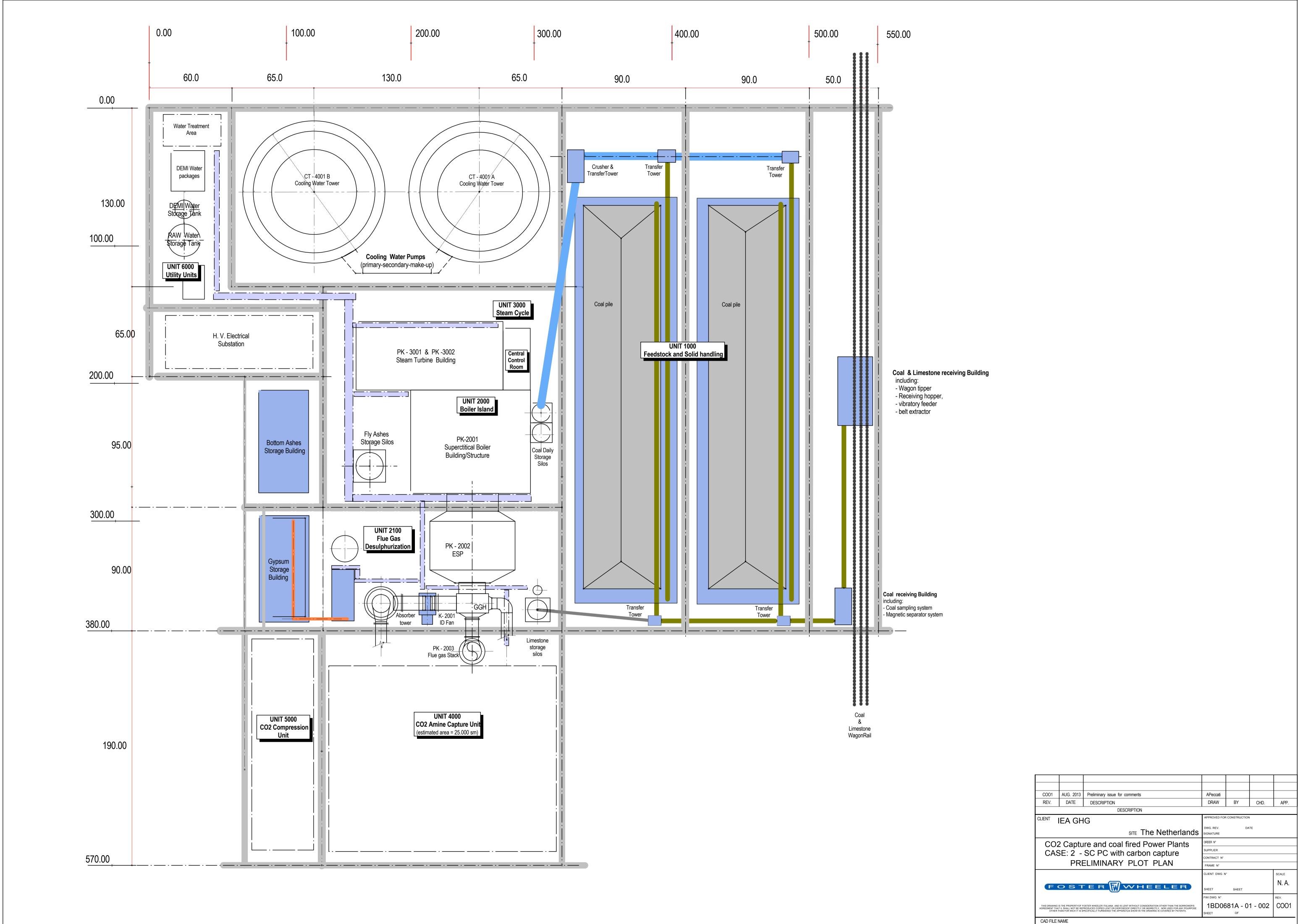
Fly and bottom ash might be sold to cement industries, if local market exist, or sent to disposal.

Solid gypsum from FGD

Solid gypsum, produced in de-hydrated form in the FGD system, can be sold in the market.

Flowrate : 16.9 t/h Moisture content : 10% wt




CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 18 of 19

8. Preliminary plot plan

Plot plan at block level of Case 2 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter C.2 - Case 2: SC PC with CCS Sheet: 19 of 19

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A $\,$

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COAL HANDLING SYSTEM							
	Including:		Coal flowrate to boiler: 325 t/h					30 days storage
	- Wagon tipper							Storage piles: 2 x 128,000 t each
	- Receiving Hopper, vibratory feeder and belt extractor							
	- Conveyors	Belt						
	- Transfer Towers	enclosed						
	- As-Received Coal Sampling System	Two - Stage						
	- As-Received Magnetic separator System	Magnetic Plates						
	- Conveyors	Belt						
	- Transfer Towers	enclosed						
	- Cruscher Tower	Impactor reduction						
	- As-Fired Coal Sampling System	Swing hammer						
	- As-Fired Magnetic separator System	Magnetic Plates	. 1000					
	- Coal Silos		2 x 4900 m3					For daily storage
	- Filters							
	- Fan							
	LIMESTONE HANDLING SYSTEM							
	Including:		Limestone flowrate to FGD: 9.2 t/h					
	- Wagon tipper		Limestone Storage volume: 6000 m3					30 days storage
	- Receiving Hopper, vibratory feeder and belt extractor							
	- Conveyor	Belt						
	- Transfer Tower	enclosed						
	- Conveyor	Belt						
	- Limestone Sampling System	Swing Hammer						
	- Separator System	Magnetc Plates						
	- Transfer Tower	enclosed						
	- Conveyor	Belt with tipper						
	- Limestone Mills							
	- Limestone Silos		1 x 200 m3					For daily storage
	- Filters							
	- Fan							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	ASH SYSTEM							
	Including:		Bottom Ash Capacity: 12.5t/h					
	- Ash storage silos		Bottom Ash Storage volume: 6000 m3					14 days storage capacity
	- Ash conveyors							
	- Bottom ash crusher		Fly Ash Capacity: 29.2 t/h					14 days storage capacity
	- Pneumatic conveying system		Fly Ash Storage volume: 14000 m3					
	- Compressors							
	- Filters							
	- Fans							
	9777 9777 5 9779 977			 				
	GYPSUM SYSTEM							
	Including:		Capacity: 16.9 t/h					
	- Storage unit		Storage volume: 9360 m3					30 days storage capacity
	- Conveyors							1 operating, 1 spare

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LISTUnit 2000 - Boiler Island

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	BOILER							
PK - 2001	Super Critical Boiler, including:		Capacity: 2868 t/h main steam production Thermal input: 2435 MWth (HHV) / 2335 MWth (LHV) Main steam condition: 270 bar(a)/600 °C Reheat steam condition: 60 bar(a)/620 °C				(1)	Boiler package including: - Coal mill - Fuel Feeding system - One Fired Boiler Furnace - Low NOx burners system including main burners and pilots - Economizers/super heater coils, water wall circuit - Reheating coils - Air pre-heater - Ash collection hoppers - Combustion air fans with electric motor (2 x 60% primary air, 2 x 60% secondary - Ash collection hoppers - Start-up system - Flue gas ducts - Bottom Ash cooling devices
K - 2001 A/B	ID fan	Axial	Flowrate: 2 x 1660 x 10 ³ Nm3/h Vol. Flow: 2 x 652 x 10 ³ m3/h Power consumption: 2 x 5265 kW	2 x 6950 kWe				
PK - 2002	Flue gas cleaning system	ESP						
PK - 2003	Flue gas stack	cement stack						
PK - 2004	Continuous emission monitoring system							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 2000 - Boiler Island

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	SCR SYSTEM - UNIT 2050							
	SCR system Including: - Reactor casing - Catalyst - Bypass system - Ammonia injection equipment - Handling equipment - Control System							

Notes:

A. Robertson, H. Agarwal, M. Gagliano, A. Seltzer, Oxy-combustion boiler material development, 35th International Technical Conference on Clean Coal & Fuel System, Clearwater, Florida (USA)

⁽¹⁾ Reference for boiler material selection:

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

REVISION Rev.: Draft Rev. 0 Rev. 1 Rev. 2 DATE Jun-13 January 2014 ISSUED BY GP GP CHECKED BY NF NF APPROVED BY LM LM

CASE: 2 - SC PC with carbon capture

EQUIPMENT LIST

Unit 2100 - Flue Gas Desulphurization

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	FGD SYSTEM							
	Wet FGD system Including: - Limestone feeder - Absorber tower - Oxydation air blower - Make up water system - Limestone slurry preparation - Reagent feed pump - Gypsum dewatering - Miscellaneous equipment		Flue gas inlet flowrate: 2766 x 10^3 Nm3/h Removal efficiency: 98.5 %					
	GAS-GAS HEATER							
	Gas-gas heat exchanger		Hot side flowrate: 2766 x10^3 Nm3/h Cold side flowrate: 2410 x10^3 Nm3/h Duty: 42.9 MWth					

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	I M	I M		

EQUIPMENT LIST Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	PACKAGES							
	FACRAGES	<u> </u>						
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		958 MWe HP admission: 2868 t/h @ 270 bar Hot reheat admission: 2456 t/h @ 60 bar					Including: Lube oil system Cooling system Idraulic control system Drainage system Seals system
			LP admission: 1252 t/h @ 5.4 bar					Drainage system Electrical generator and relevant auxiliaries
E- 3001 A/B E- 3002	Inter/After Condenser Gland Condenser							
PK- 3002 E- 3001	Steam Condenser Package Steam condenser		776 MWth					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
PK- 3003	Steam Turbine Bypass System							Including: MP dump tube LP dump tube HP/MP Letdown station MP Letdown station LP Letdown station
PK- 3004 PK- 3005 PK- 3006	Phosphate injection package Oxygen scavanger injection package Amines injection package							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	HEAT EXCHANGERS		Duty (kW)		Shell/tube	Shell/tube		
E- 3002	BFW Economiser #1		267630					
E- 3003	BFW Economiser #2		162430					
E- 3003	BFW Economiser #3		47030					
E- 3004	Condensate heater #3		69000					
E- 3005	Condensate heater #4		16140					
	PUMPS		Q [m ³ /h] x H [m]					
P- 3001	BFW pumps	Centrifugal Steam driven	2956 m3/h x 3565 m	34000 kWe equivalent				One operating
P- 3002	BFW pump	Centrifugal	40% MCR					For start-up, electric motor
P- 3003 A/B	Condensate pump	Centrifugal	1710 x 170	1120				One operating one spare, electric motor
	VESSEL							
D- 3001	Dearator	Horizontal						

CLIENT: IEA GHG	REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
LOCATION: The Netherlands	DATE	Jun-13	January 2014		
PROJ. NAME: CO2 capture at coal based power and hydrogen plants	ISSUED BY	GP	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: 2 - SC PC with carbon capture	APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - CO2 Capture Unit (2 x 50%)

	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	PACKAGES							
	CO ₂ capture Unit		For each train: Feed gas flowrate: 1428560 Nm3/h CO2 product: 180150 Nm3/h; 97.9% purity Treated gas florate: 1204770 Nm3/h CO2 capture rate: 90 %					2 x 50%
	PUMPS		Q [m3/h] x H [m]					
	For each train:							
K001	Flue gas Blower							
P001-A/B	Flue gas cooling water pumps							
P002-A/B	wash water circulation pumps							
P003-A/B	Risch solution pumps							
P004-A/B	Regenerator reflux pumps							
P005-A/B	Lean solution pumps							
P006	Solution sump pump							
P007-A/B	Steam condensate return pumps							
P008-A/B	Flue gas wash water pumps							
P009-A/B	Caustic soda make-up pumps							
P010	Reclaimed waste pump							
P011	Reclaimed waste transfer pump							
P012	Reclaimer caustic soda feed pump							

CLIENT: IEA GHG	REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
LOCATION: The Netherlands	DATE	Jun-13	January 2014		
PROJ. NAME: CO2 capture at coal based power and hydrogen plants	ISSUED BY	GP	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: 2 - SC PC with carbon capture	APPROVED BY	LM	I M		_

EQUIPMENT LIST

Unit 4000 - CO2 Capture Unit (2 x 50%)

	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	DRUMS / COLUMNS / TANKS							
	For each train:							
D-001	Flue gas quencher							
D-002	CO2 absorber							
D-003	Regenerator							
V-001	Regenerator reflux drum							
V-002	Steam condensatte drum							
T-001	Solution storage tank							
T-002	Solution sump tank							
T-003	Reclaimed waste tank							
T-004	Caustic soda storage tank							
	HEAT EXCHANGERS							
	For each train:							
E-001	Flue gas cooling water cooler							
E-002	Wash water cooler							
E-003	Solution heat exchanger							
E-004	Regenerator condenser							
E-005	Regenerator reboiler							
E-006	Lean solution cooler							
E-007	Reclaimer							
	MISCELLANEA							
	For each train:							
F-001	Up Stream guard filter							
F-002	Carbon filter							
F-003	Down stream guard filter							
F-004	Solution sump filter							

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 5000 - CO2 compression Unit (2 x 50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COMPRESSORS							
K - 5001	CO_2 Compressor	Centrifugal, integrally geared, Electrical Driven 4 Stages	180200 Nm3/h p in: 1,6 bar a p out:75 bar a	36000 kW				Intercooling: Condensate from Power island Cooling Water
	PUMPS		Q,m3/h x H,m					
P - 5001	CO ₂ Pump	centrifugal	500 x 530	675 kW				Liquid CO2 product, per each train: Flowrate: 346 t/h; 110 bar a; 30°C
	PACKAGE							
PK - 5001	CO ₂ drying package							

Note 1: Equipment shown are for one train only

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COOLING SYSTEM		Duty					
	Cooling Tower including: Cooling water basin PUMPS Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system) Cooling tower make-up pumps PACKAGES Cooling Water Filtration Package Cooling Water Sidestream Filters Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps Antiscalant Package Dispersant storage tank Dispersant dosage pumps	Natural draft Centrifugal Centrifugal centrifugal	2 x 758 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m Q [m³/h] x H [m] 15200 x 35 14400 x 45 2400 x 30 Capacity: 12000 m3/h	1700 2100 300				Four in operation Four in operation, one spare One in operation, one spare
	RAW WATER SYSTEM							
T- 6001 P- 6004 A/B P- 6005 A/B	Raw Water storage tank Raw water pumps to RO Raw water pump to FGD (make-up)	centrifugal centrifugal	2640 m3 15 x 50 50 x 7.5	7.5 360				24 hour storage One in operation, one spare One in operation, one spare

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture

REVISION	Rev.: Draft	Rev. 0	Rev. 1	Rev. 2
DATE	Jun-13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	DEMINERALIZED WATER SYSTEM							
PK- 6001 T- 6002 P- 6005 A/B P- 6006 A/B	Demin Water Package, including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system Demin Water storage tank Demin water pump to FGD (make-up) Demin water pump to Power Island (make-up)	centrifugal centrifugal	240 m3 95 x 40 10 x 40	18.5 4				24 hour storage One in operation, one spare One in operation, one spare
	FIRE FIGHTING SYSTEM							
T- 6003	Fire water storage tank Fire pumps (diesel) Fire pumps (electric) FW jockey pump							
	MISCELLANEA							
	Plant air compression skid Emergency diesel generator system Waste water treatment system Electrical equipment Buildings Auxiliary boiler Condensate Polishing system							

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Shoot: 1 of 17

Sheet: 1 of 17

January 2014

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 2.1: SC PC WITH CCS – BIOMASS CO-FIRING

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Date: January 2014

Sheet: 2 of 17

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	3
2.	Process Description	5
	2.1. Overview	5
	2.2. Unit 1000 – Feedstock and Solid Handling	5
	2.3. Unit 2000 – Boiler Island	
	2.4. Flue Gas Treatment (FGD and CO ₂ capture unit)	6
3.	Process Flow Diagrams	7
4.	Heat and Material Balance	8
5.	Utility and chemicals Consumption	9
6.	Overall Performance	13
7.	Environmental Impact	15
	7.1. Gaseous Emission	15
	7.2. Liquid effluents	15
	7.3. Solid effluents	
8.	Main equipment design changes	17

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Dat

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 3 of 17

1. Introduction

This chapter of the report includes all technical information relevant to Case 2.1 of the study, which is a supercritical PC boiler steam plant, co-firing coal and biomass (wood chips), with amine-based solvent washing for carbon capture.

Plant configuration is basically same as Case 2, though plant of Case 2.1 is designed to co-fire biomass in the amount required to meet zero net emission of carbon dioxide, considering biomass as zero carbon fuel. The resulting biomass feed corresponds to 7.5% of the total thermal input (based on LHV), while the plant has same thermal capacity and same carbon removal efficiency of the reference case (Case 2).

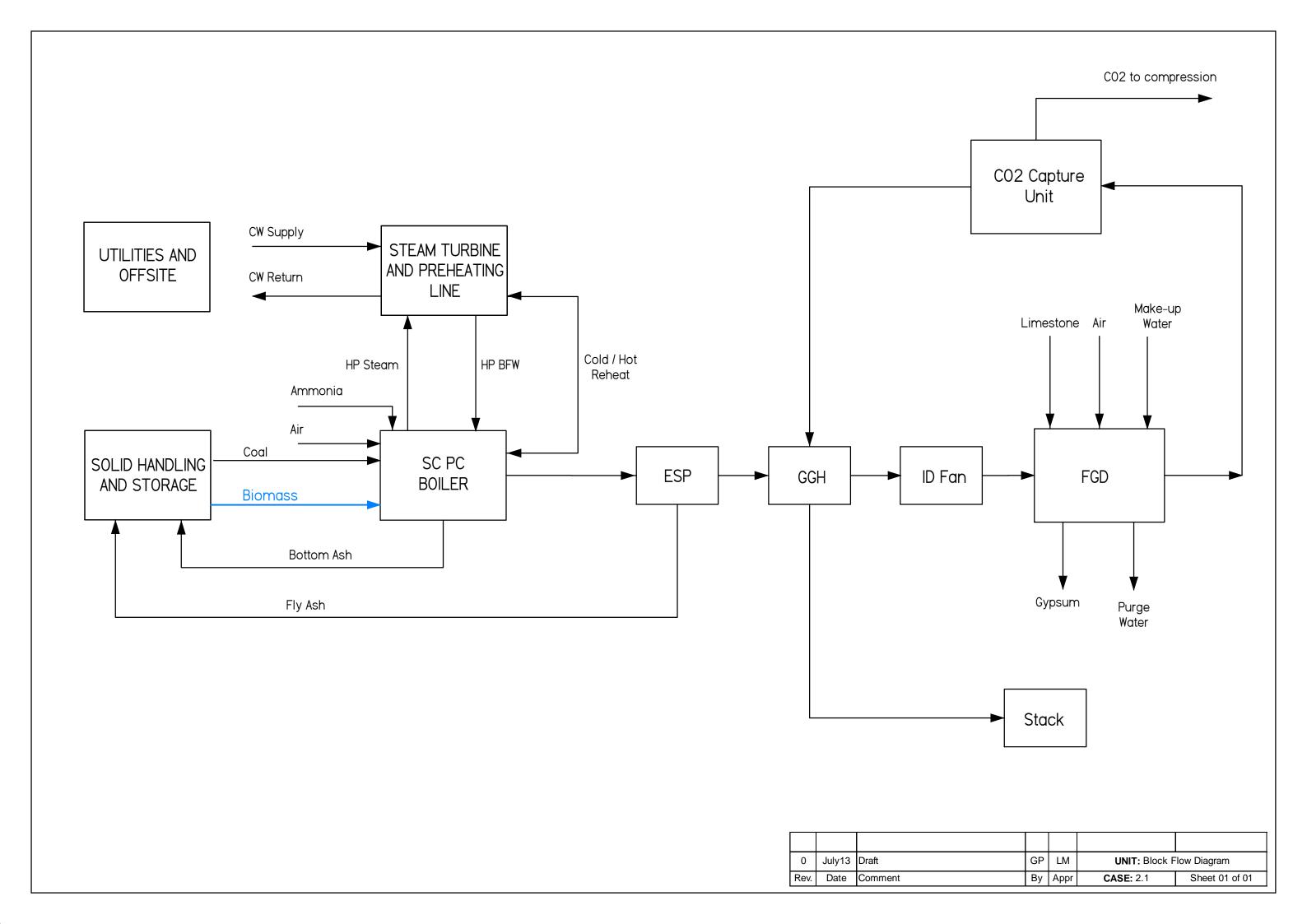
The description of the main process units and the reference Case 2 performance are covered respectively in chapter C and C.2 of this report; only plant design changes required to co-fire coal and biomass are discussed in the following sections, together with the main plant performance results.

1.1. Process unit arrangement

The arrangement of the main units is reported in Table 1, together with the main differences with respect to the base case, as further discussed in the following sections. Reference is also made to the block flow diagram attached below.

Table 1. Case 2.1 – Unit arrangement

Unit	Description	Trains	Difference
1000	Storage and Handling of solid materials	N/A	Biomass storage to be added
			No significant design changes for coal and other solid handling: slightly lower consumptions
2000	SC PC supercritical boiler Electro Static precipitator SCR system	1 x 100%	No significant design changes: same thermal capacity, slightly higher volumetric flowrate due to the lower LHV of biomass fuel
2100	Flue Gas Desulphurisation (FGD)	1 x 100%	No significant design changes: slightly higher flue gas flowrate; lower limestone circulation and consumption due to lower biomass sulphur content
4000	Steam Cycle (SC) Steam Turbine and Condenser Deaerator Water Preheating line		-



CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 4 of 17

Unit	Description	Trains	Difference
4000	CO ₂ Amine Absorption Unit Flue gas quencher Absorber Regenerator		No significant design changes: Same carbon removal efficiency, slightly higher design capacity: higher carbon flowrate due to the increased fuel consumption (%wt)
5000	CO ₂ compression	2 x 50%	No significant design changes: slightly higher design capacity: higher carbon flowrate due to the increased fuel consumption (% wt)
6000	<u>Utility and Offsite</u>	N/A	-

January 2014

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 5 of 17

2. Process Description

2.1. Overview

The description reported in this section focuses only on those units with a design different from that of the reference case, necessary to co-fire the amount of biomass required to meet zero carbon emission. Design changes are also reflected in the simplified Process Flow Diagrams (PFD) shown in section 3.

For all the other units, reference shall be made to the base case description, included in chapter C.2, section 2.

2.2. Unit 1000 – Feedstock and Solid Handling

In addition to the coal, ashes, limestone and gypsum storage and handling system, biomass storage and handling system is included for the present case.

Biomass will be delivered to the site by rails and stored in a rectangular stockyard building, equipped with stacking and reclaiming machines. The storage capacity is made to ensure the plant feeding at maximum capacity for approximately 30 days.

Biomass feeding system, from the storage building to the boiler, is of the same type of that employed for coal, with conveyors that bring biomass to the crushers and then to the biomass silos.

No difference are expected for the coal and other solid system, apart a slightly lower capacity due to the reduced coal consumption.

2.3. Unit 2000 – Boiler Island

The boiler is a single pass tower type supercritical boiler, with low NOx type burners located in the lower portion of the furnace and staging of the combustion to minimize NOx formation. Hot combustion products exit the furnace and pass through the radiant and convective heating surfaces for steam generation and superheating, then to the regenerative heaters for air pre-heating and finally to the flue gas clean-up system, including ESP and FGD, as for Case 2.

The main difference consists on the type of burners; coal burners have to be modified in order to allow a biomass injection lance down the centre axis of the burner. With this type of burner, the biomass is fired separately, but concentrically with the coal, in the same burner.

It has to be noted that for this particular case no additional biomass drying pretreatment is required, as the moisture content of the resulting fuel mixture with 7.5% biomass fired (LHV basis) is low enough to be handled if the boiler furnace. However, the higher moisture content of the biomass leads to a higher feed flowrate to meet the same thermal capacity of the reference case, corresponding to a higher

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS D

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 6 of 17

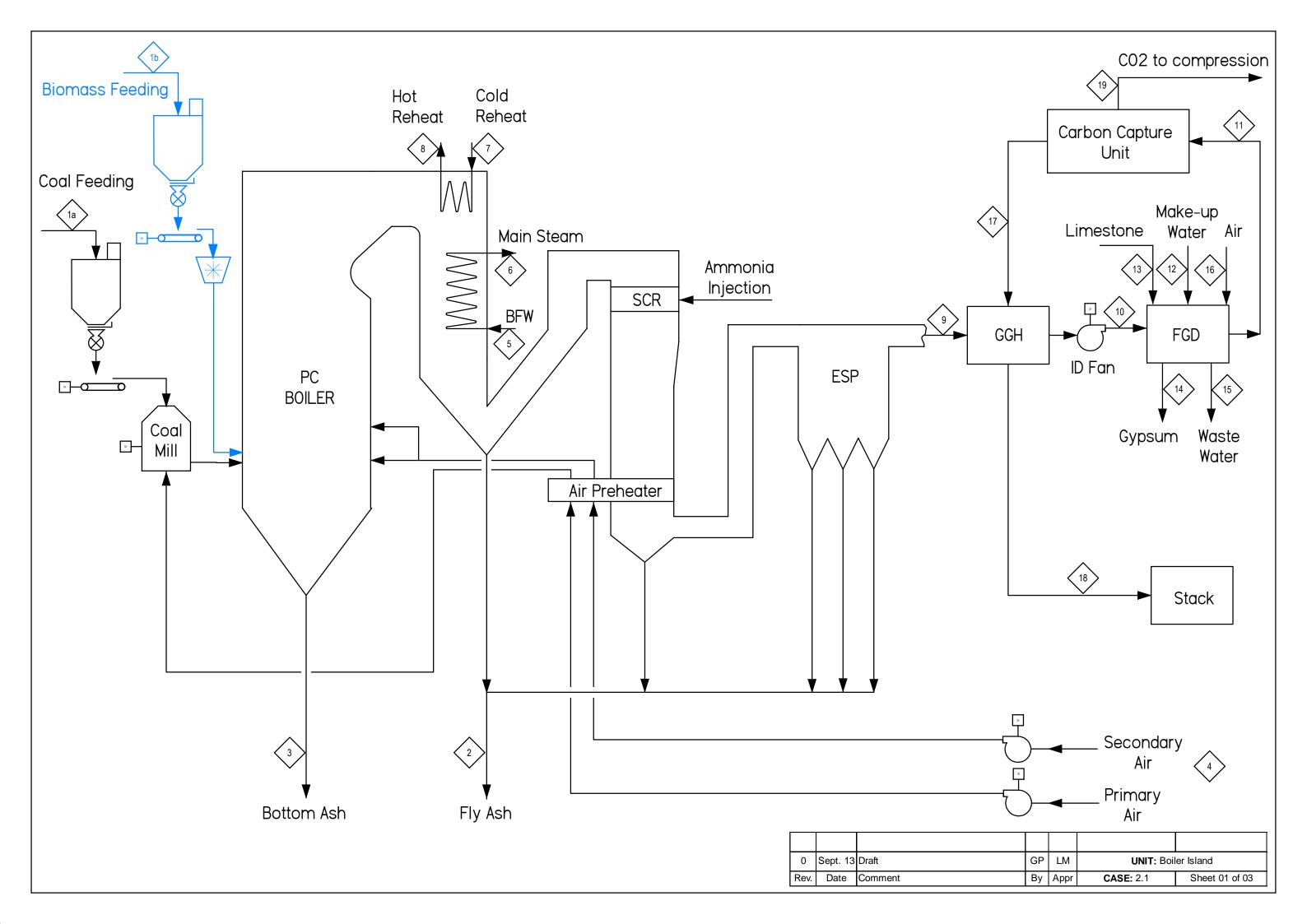
design capacity of both the fuel system (approximately +20%) and the flue gas ducts (approximately +4%).

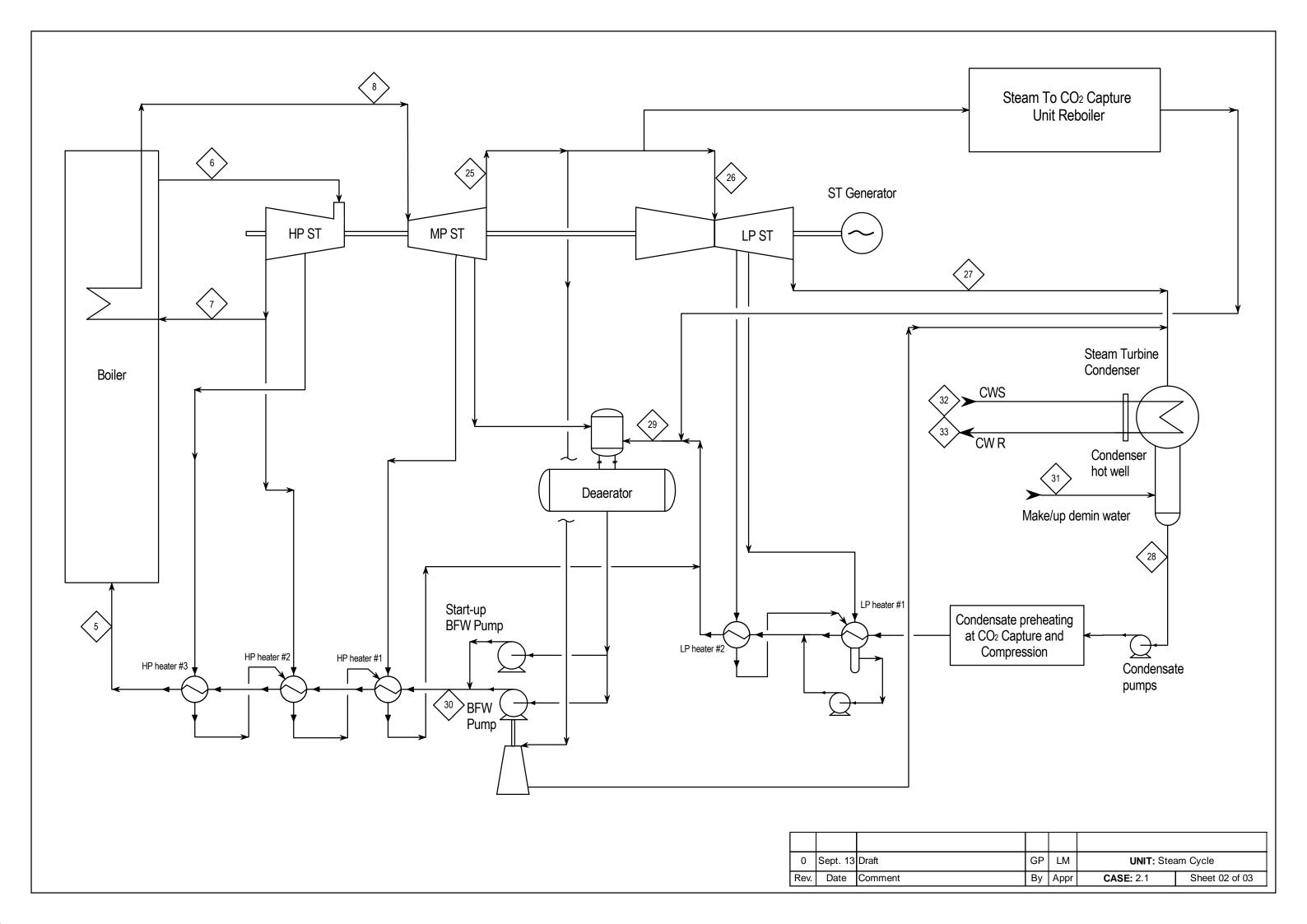
2.4. Flue Gas Treatment (FGD and CO₂ capture unit)

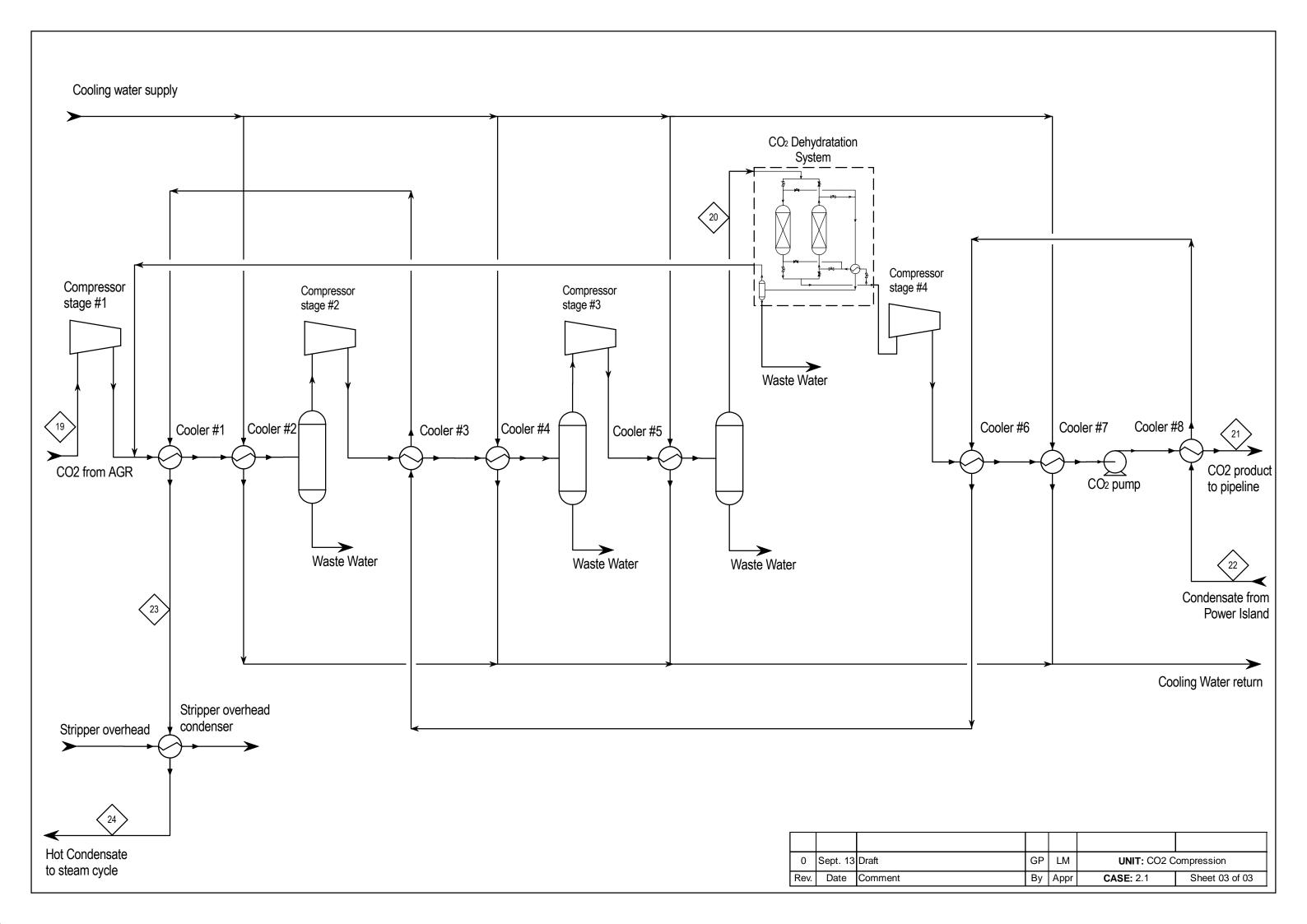
The co-firing of biomass and coal in the boiler does not have significant impact on the downstream flue gas treatment unit. The design is almost the same as Case 2, with the exception of slight difference in the capacity due to the different flowrate and composition of the flue gas resulting from the combustion of a higher moisture content fuel.

Main differences are the following:

- Flue gas flowrate is higher with respect to the reference case due to the higher feed flowrate. The difference is particularly significant upstream the FGD (+4%), due to the higher water content. As the flue gases exit at their water dew point from the FGD absorber, the difference in the downstream unit is lower, as well as the water make-up required to the desulphurisation unit.
- Carbon dioxide flowrate is slightly higher than the reference case, thus resulting in a higher design capacity of the CO₂ capture and compression unit. The higher carbon flowrate is related to the increased fuel feed mass flowrate required to meet the same thermal capacity of the reference case boiler.




CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 7 of 17

3. Process Flow Diagrams

Simplified Process Flow Diagrams of this case, showing process modifications with respect to the reference case, are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 8 of 17

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the Process Flow Diagrams of section 3.

January 2014

	Case 2.1 - SC PC witl	h CCS - Biomass co-firing - HEAT AND MATERIAL BALANCE	REVISION	draft	
Minima de la compansión d	CLIENT:	IEA GHG	PREP.	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	Sept. 13	
		HEAT AND MATERIAL RALANCE			

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	1a	1b	2	3	4	5	6	7	8	
STREAM	Coal to Boiler Island	Biomass to boiler island	Fly Ash	Bottom Ash	Air intake from Atmosphere	BFW from steam cycle	HP Steam to Steam Turbine	Cold Reheat from UNIT 3000	Hot Reheat to Steam Turbine	
Temperature (°C)	AMB	AMB	AMB	AMB	9	290	600	366	620	
Pressure (bar)	AMB	AMB	ATM	ATM	1.013	324	270	63	60	
TOTAL FLOW	Solid	Solid								
Mass flow (kg/h)	300,600	86,400	27,800	11,900	3,428,800	2,852,000	2,852,000	2,442,000	2,442,000	
Molar flow (kmol/h)					118,840	158,356	158,356	135,591	135,591	
LIQUID PHASE										
Mass flow (kg/h)						2,852,000				
GASEOUS PHASE										
Mass flow (kg/h)					3,428,800		2,852,000	2,442,000	2,442,000	
Molar flow (kmol/h)					118,840		158,356	135,591	135,591	
Molecular Weight					28.85		18.01	18.01	18.01	
Composition (vol %)	%wt	%wt								
H ₂					0.00%	0.00%	0.00%	0.00%	0.00%	
СО	C: 64.6%	C: 25.0%			0.00%	0.00%	0.00%	0.00%	0.00%	
CO ₂	H: 4.38%	H: 2.70%			0.03%	0.00%	0.00%	0.00%	0.00%	
N_2	O: 7.02%	O: 21.1%			77.27%	0.00%	0.00%	0.00%	0.00%	
02	S: 0.86%	S: 0.03%			20.73%	0.00%	0.00%	0.00%	0.00%	
CH ₄	N: 1.41%	N: 0.15%			0.00%	0.00%	0.00%	0.00%	0.00%	
Ar	CI: 0.03%	Cl: 0.01%			0.92%	0.00%	0.00%	0.00%	0.00%	
SO ₂	Moisture: 9.5%	Moisture: 50.0%			0.00%	0.00%	0.00%	0.00%	0.00%	
H ₂ O	Ash: 12.20%	Ash: 1.0%			1.05%	100.00%	100.00%	100.00%	100.00%	
Total					100.00%	100.00%	100.00%	100.00%	100.00%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)										
SOx					-	-	-	-	-	
NOx					-	-	-	-	-	
particulate					-	-	-	-	-	

	Case 2.1 - SC PC with	CCS - Biomass co-firing - HEAT AND MATERIAL BALANCE	REVISION	draft	
	CLIENT:	IEA GHG	PREP.	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	Sept. 13	
			<u>-</u>		

HEAT AND MATERIAL BALANCE UNIT 2100 - FGD

	9	10	11	12	13	14	15	16	
STREAM	Flue Gas from ESP to GGH	Flue Gas to FGD	Treated gas from FGD	Make up Water	Limestone to FGD	Product Gypsum	Waste water from FGD	Oxidation Air	
Temperature (°C)	134	90	47	15	AMB	AMB	AMB	AMB	
Pressure (bar)	-	-	-	ATM	ATM	ATM	ATM	ATM	
TOTAL FLOW					Solid	Solid			
Mass flow (kg/h)	3,776,000	3,776,000	3,801,400	40,000	8,580	15,780	7,250	8,475	
Molar flow (kmol/h)	128,080	128,080	129,420	2,220			403	294	
LIQUID PHASE									
Mass flow (kg/h)				40,000			7,250		
GASEOUS PHASE									
Mass flow (kg/h)	3,776,000	3,776,000	3,801,400					8,475	
Molar flow (kmol/h)	128,080	128,080	129,420					294	
Molecular Weight	29.48	29.48	29.37					28.85	
Composition (vol %)									
H ₂	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
со	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
CO ₂	13.92%	13.92%	13.84%	0.00%			0.00%	0.03%	
N_2	71.82%	71.82%	71.25%	0.00%			0.00%	77.27%	
O ₂	3.21%	3.21%	3.19%	0.00%			0.00%	20.73%	
CH₄	0.00%	0.00%	0.00%	0.00%			0.00%	0.00%	
Ar	0.85%	0.85%	0.84%	0.00%			0.00%	0.92%	
SO ₂	0.06%	0.06%	0.00%	0.00%			0.00%	0.00%	
H ₂ O	10.14%	10.14%	10.88%	100.00%			100.00%	1.05%	
Total	100.00%	100.00%	100.00%	100.00%			100.00%	100.00%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)									
SOx	1897	1897	SO ₂ : 10 ppm SO ₃ : 13 ppm	-	-	-	-	-	
NOx	130	130	130	-	-	-	-	-	
particulate	10	10	10	-	-	-	-		

NOTE

1. Air in-leakage are included in the flue gas streams

	Case 2.1 - SC PC with	n CCS - Biomass co-firing - HEAT AND MATERIAL BALANCE	REVISION	draft	
	CLIENT:	IEA GHG	PREP.	GP	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	NF	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	Sept. 13	

HEAT AND MATERIAL BALANCE UNIT 4000 and 5000 - CO2 CAPTURE AND COMPRESSION

	11	17	18	19	20	21	22	23	24	
STREAM	Feed Gas to CCU	Treated Gas to GGH	Flue Gas to Stack	Carbon Dioxide to Compression	CO2 to drying package	CO2 to long term Storage	Condensate from Power Island	Preheated Condensate to Stripper Condenser	Preheated Condensate to Power Island	
Temperature (°C)	47	43	95	30	26	30	29	60	74	
Pressure (bar)	-	-	-	2.0	30.3	110.0	14.5	14.0	13.5	
TOTAL FLOW										
Mass flow (kg/h)	3,801,400	2,449,340	2,449,340	717,650	791,045	710,000	1,284,860	1,284,860	1,284,860	
Molar flow (kmol/h)	129,420	109,280	109,280	16,510	17,990	16,114	71,341	71,341	71,341	
LIQUID PHASE						supercritical state				
Mass flow (kg/h)						710,000	1,284,860	1,284,860	1,284,860	
GASEOUS PHASE										
Mass flow (kg/h)	3,801,400	2,449,340	2,449,340	717,650	791,045					
Molar flow (kmol/h)	129,420	109,280	109,280	16,510	17,990					
Molecular Weight	29	22.4	22.4	43.5	44.0					
Composition (vol %)										
H ₂	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
CO	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
CO ₂	13.84%	1.60%	1.60%	97.90%	99.82%	100.00%	0.00%	0.00%	0.00%	
N_2	71.25%	84.38%	84.38%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
O ₂	3.19%	4.11%	4.11%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
CH₄	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
Ar	0.84%	1.00%	1.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
SO ₂	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	
H ₂ O	10.88%	8.62%	8.62%	2.10%	0.18%	0.00%	100.00%	100.00%	100.00%	
Total	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	100.00%	
Emissions (mg/Nm ³ , dry basis 6% vol O ₂)										
SOx	SO2: 10 ppm SO3: 13 ppm	< 1 ppm	< 1 ppm	-	-	-				
NOx	130	150	150	-	-	-				
particulate	10	10	10	-	-	-				

FOSTERWWHEELER					
Case	2.1 - SC PC with CCS - Biomass co-firing H&M BALANCE	Revision	draft		
CLIENT:	IEA GHG	Prepared	GP		
PROJECT NAME:	CO2 capture at coal based power and H2 plants	Checked	NF		
PROJECT NO:	1-BD-0681 A	Approved	LM		
LOCATION:	The Netherlands	Date	Sept. 13		

HEAT AND MATERIAL BALANCE UNIT 3000 - STEAM CYCLE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
6	HP Water to Boiler Island	2,852	290	323	1278
7	HP Steam from Boiler	2,852	600	270	3475
8	Cold Reheat to Boiler	2,442	366	63.0	3081
9	Hot Reheat to MP Steam Turbine	2,442	620	60.0	3706
25	MP Steam Turbine exhaust	2,096	275	5.5	3011
26	Steam to LP Steam Turbine	1,382	275	5.4	3012
27	Exhaust from LP Steam Turbine	1,095	29	0.04	2292
28	Condensate	1,285	29	0.04	121
29	LP Preheated Condensate	2,899	143	9.5	602
30	BFW to preheating	2,943	156	325	678
31	Make up Water	5	9	0.04	38
32	Cooling Water Inlet	59,600	15	4.0	63
33	Cooling Water Outlet	59,600	26	3.5	109

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 9 of 17

5. Utility and chemicals Consumption

Main utility and chemical consumption of the plant is reported in the following tables, compared with the reference case figures (in brackets). More specifically:

- Water consumption summary is reported in Table 2,
- Electrical consumption summary is shown in Table 3,
- Sorbent and chemicals consumption, shown in Table 4.

With respect to the reference case, the following considerations can be made:

- The solid handling consumption is slightly lower than the reference case. In fact, the increased consumption of the feedstock handling system (coal and biomass), due to the increased flowrate required to meet the same thermal duty, is more than offset by the reduced consumption of the ashes handling system. In fact the consumptions of pneumatic transport required for the ashes have a greater impact on plant consumption than the feedstock conveyor consumption.
- The increased flue gas flowrate results in a higher power demand within the boiler island, in particular for the ID fan, while the reduced limestone recirculation related to the lower sulphur content in the fuel mixture leads to a lower power demand within the FGD unit.
- Utilities and offsite consumption increases, mainly due to the higher cooling water requirements within the CO₂ capture and compression unit.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 10 of 17

Table 2. Case 2.1 – Water consumption summary

CLIENT: IEAGHG REVISION 0

PROJECT NAME: CO2 capture at coal based power and H2 plants
PROJECT No.: 1-BD-0681 A MADE BY
LOCATION: The Netherlands APPROVED BY

LOCATION: The Netherlands APPROVED BY

REVISION 0

DATE
Jul-13

MADE BY
GP
APPROVED BY
LM

	EGCATION :	The Netherlands		APPROVED BY	LIVI
	Case 2.1 -	Biomass co-firing	- Water consumption	1	-
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water 1° syst. [DT = 11°C]	Cooling Water 2° syst. [DT = 11°C]
		[t/h]	[t/h]	[t/h]	[t/h]
1000	FEEDSTOCK AND SOLID HANDLING				
1000	Solid Receiving, Handling and storage				
	ona receiving, ranamig and storage				
2000	BOILER ISALND and FLUE GAS TREATMENT				
	Boiler island				
	Flue Gas Desulphurization (Wet FGD)	40			
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(85)			
			1	-	
500	POWER ISLAND (Steam Turbine)				
300				59600	
	Condenser			(60800)	
	Steam Turbine generator and auxiliaries		5		4370
	Steam furbline generator and advinaries		,		(4420)
BoP	UTILITY and OFFSITE UNITS Cooling Water System	2170			
	Cooling water system	21/0			
	Demineralized/Condensate Recovery/Plant and Potable				
	Water Systems	10	-7		
	1,111				
	Waste Water Treatment	-170.0			
	Miscellanea				100
	CO2 CAPTURE UNIT				
4000	CO2 capture unit		2		54260
5000	CO2 compression		-		(53070)
3000	CO2 Compression				
	BALANCE	2050 (2095)	0.0	59600 (60800)	58730 (57590)
N. 1022	BALANCE Minus prior to figure means figure is generated	(2095)	0.0	(60800)	(57590)

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 11 of 17

January 2014

Table 3. Case 2.1 – Electrical consumption summary

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Jul-13
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 2.1 - Biomass co-firing - Electrical consumption

UNIT	DESCRIPTION UNIT	Absorbed Electri Power
		[kW]
1000	FEEDSTOCK AND SOLID HANDLING	
	Solids Handling	3270 (3350)
2000	BOILER ISLAND and FLUE GAS TREATMENT	
	Boiler island (including ID fan)	24220 (22370)
	Flue Gas Desulphurization (FGD)	3720 (4000)
3000	POWER ISLAND (Steam Turbine)	
	Steam Turbine Auxiliaries and condenser	3350 (3300)
	Condensate pump and feedwater system	910 <i>(920)</i>
	Miscellanea	600
	CO2 CAPTURE UNIT	
4000	CO2 capture unit	84340
5000	CO2 Compression	(82230)
ВоР	UTILITY and OFFSITE UNITS	
	Cooling Water System	16080 (15020)
	Other Units	1440
	BALANCE	137,930 (133,230)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 12 of 17

Table 4. Case 2.1 – Sorbent and chemicals consumption

	Consumption
Limestone injection to the FGD	8.58 t/h
Ammonia solution to SCR (1)	4.8 t/h
NaOH to flue gas quencher (2)	200 kg/h

^{(1) 25%} wt ammonia solution

^{50%} wt. FWI estimate

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 13 of 17

6. Overall Performance

The following Table shows the overall performance of Case 2.1, compared with the reference case performance.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Jul-13
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 2.1 - Biomass co-firing - SC PC Plant with carbon capture performance summary

OVERALL PERFORMANCES COMPARISON					
		CASE 2.1	CASE 2 (reference)		
Coal flow rate (A.R.)	t/h	300.6	325.0		
Coal LHV (A.R.)	kJ/kg	25870	25870		
Biomass flowrate (A.R.)	t/h	86.4	-		
Biomass LHV (A.R.)	kJ/kg	7300	-		
Fuel flowrate	t/h	386.9	325.0		
Fuel HHV	kJ/kg	23289	27060		
Fuel LHV	kJ/kg	21725	25870		
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335	2335		
Thermal energy of coal (based on LHV)	MWth	2160	2335		
Thermal energy of biomass (based on LHV)	MWth	175	-		
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2503	2443		
Steam turbine power output (@ gen terminals)	MWe	948.8	958.1		
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	948.8	958.1		
Boiler Island	MWe	27.9	26.4		
Utility & Offsite Units consumption	MWe	17.5	16.5		
Power Islands consumption (note 1)	MWe	4.9	4.8		
CO2 Capture and compression unit	MWe	84.3	82.2		
Feedstock and solids handling	MWe	3.3	3.3		
ELECTRIC POWER CONSUMPTION	MWe	137.9	133.2		
NET ELECTRIC POWER OUTPUT	MWe	810.9	824.9		
(Step Up transformer efficiency = 0.997%) (B)	MWe	808.5	822.4		
Gross electrical efficiency (C/A x 100) (based on LHV)	%	40.6%	41.0%		
Net electrical efficiency (B/A x 100) (based on LHV)	%	34.6%	35.2%		
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	37.9%	39.2%		
Net electrical efficiency (B/A' x 100) (based on HHV)	%	32.3%	33.7%		
Fuel Consumption per net power production	MWth/MWe	3.10	2.84		
CO ₂ emission per net power production	kg/MWh	0.0	93.0		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 14 of 17

With respect to the reference case, the following considerations can be made:

- Gross power production is reduced because of the lower boiler efficiency, related to the increased moisture content, and the increased steam consumption in the regenerator reboiler, due to the higher carbon flowrate.
- Net electrical efficiency decreases of about 0.6 percentage points, due to the above consideration and to the increased plant auxiliary demand.

The following Table shows the overall CO₂ balance and removal efficiency of Case 2.1. Carbon emission corresponds to the carbon content in the biomass feed.

CO ₂ removal efficiency	Equivalent flow of CO ₂
	kmol/h
INPUT	
FUEL CARBON CONTENT (A)	17978
Carbon content from coal	16180
Carbon content from biomass	1798
FROM the DeSOX reaction + CO ₂ in air (B)	104
ОИТРИТ	
Carbon losses (D)	170
CO ₂ flue gas content	17912
Total to storage (C)	16114
Emission	1798
TOTAL	18082
Overall Carbon Capture, % ((C+D)/(A+B))	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing

Date: January 2014

Sheet: 15 of 17

7. Environmental Impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

7.1. Gaseous Emission

During normal operation at full load, the main continuous emissions are the flue gases from the boiler. Table 5 summarizes the expected flue gas flow rate and composition. Differences with respect to reference case are related to the changes in the feed composition and flow.

The same minor and fugitive emissions related to the milling, storage and handling of solid materials and listed for the base case, also including biomass handling system, are applied also for this alternative.

Flue gas to stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	3,030,000
Flow, Nm ³ /h (1)	2,445,000
Temperature, °C	95
Composition	(% vol)
Ar	1.00
N_2	84.38
O_2	4.11
CO ₂	1.60
H ₂ O	8.62
Emission	
NOx	< 50 mg/Nm ^{3 (1)}
SOx	< 1 ppmv ⁽¹⁾
	3(1)

Table 5. Case 2.1 – Plant emission during normal operation

7.2. Liquid effluents

The plant does not produce significant liquid waste. FGD unit blow-down is treated in a dedicated R.O. system to recover water, so main liquid effluent is cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids.

Cooling Tower blowdown

Flowrate : $518 \text{ m}^3/\text{h}$

FGD blow-down

Flowrate : $10 \text{ m}^3/\text{h}$

⁽¹⁾ Dry gas, O₂ content 6% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 16 of 17

7.3. Solid effluents

As for the base case, the power plant is expected to produce the following solid effluents:

Fly ash from boiler

Flowrate : 27.8 t/h

Bottom ash from boiler

Flowrate : 11.9 t/h

Fly and bottom ash might be sold to cement industries, if local market exists, or sent to disposal.

Solid gypsum from FGD

As for the base case, solid gypsum produced in hydrated form in the FGD system, can be sold in the market.

Flowrate : 15.8 t/h Moisture content : 10%wt

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.3 - Case 2.1: SC PC with CCS - Biomass co-firing Sheet: 17 of 17

8. Main equipment design changes

The overleaf equipment summary table shows the major design differences between the present Case 2.1 and the reference Case 2.

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: 2.1 - SC PC with carbon capture - co-firing with biomass

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	July 13	Jan-14		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 1000 - FEEDSTOCK AND SOLID HANDLING					
	Coal handling		300.6 t/h (Storage pile: 2 x 116,000)			Size changed (- 7.5%)
	Biomass handling Limestone handling		86.4 t/h (Storage pile: 1 x 35,000) 8.5 t/h			To be added Size changed (- 7.6%)
	Ash handling Gypsum handling		(Storage volume 3300 m3) 39.7 t/h 15.8 t/h			Size changed (- 5.0%) Size changed (- 6.5%)
	UNIT 2000 - BOILER ISLAND		2010 011			one changed (vie /v)
PK - 2001	Super Critical Boiler, including:		Capacity: 2852 t/h main steam production Thermal input: 2500 MWth (HHV) / 2335 MWth (LHV) Main steam condition: 270 bar(a)/600°C Reheat steam condition: 60 bar(a)/620°C			Size changes - Feed system: + 20% - Flue gas system: + 4%
K - 2001 A/B	ID fan	Axial	Flowrate: 2 x 1720 x 10^3 Nm3/h Vol. Flow: 2 x 660 x 10^3 m3/h Power consumption: 2 x 5418 kW	2 x 7150 kWe		Size changed (+ 3.6%)
PK - 2002	Flue gas cleaning system	ESP				Size changed (+ 3.6%)
PK - 2003	Flue gas stack	cement stack				
	SCR System					
	UNIT 2100 - Flue Gas Desulphurization					
	Wet FGD system		Flue gas inlet flowrate: 2870 x 10^3 Nm3/h gypsum production: 15.8 t/h			Size changed: feed flowrate: +3.6% sorbent recirculation: -6.5%
	Gas-gas heat exchanger		Hot side flowrate: 2870 x 10 ³ Nm3/h Cold side flowrate: 2450 x 10 ³ Nm3/h			Size changed
	Unit 4000 - CO ₂ Amine Absorption Unit (2x50%)					
	CO ₂ capture Unit (2 x 50%)		For each train: Feed gas flowrate: 1450 x 10^3 Nm3/h			Size changed (+ 1.5%)
	Unit 5000 - CO ₂ compression Unit (2 x 50%)					
	CO ₂ compression Unit (2 x 50%)	_	Feed gas flowrate: 185,000 Nm3/h each train			Size changed (+ 2.6%)

Sheet: 1 of 14

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS
Cooling system sensitivity

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 1: SC PC WITHOUT CCS

COOLING SYSTEM SENSITIVITY

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter C.4 - Case 1: SC PC without CCS Cooling system sensitivity ate: January 2014

Sheet: 2 of 14

TABLE OF CONTENT

1.	Intr	roduction	3
2.	Pro	cess Description	4
	2.1.	Overview	4
	2.2.	Impact on process units	4
	2.3.	Unit 3000 – Steam Cycle	4
		2.3.1. Seawater system	4
		2.3.2. Air cooling system	4
	2.4.	Unit 6000 - Utility Units	
		2.4.1. Seawater system	
		2.4.2. Air cooling system	5
3.	Pro	cess Flow Diagrams	6
4.	Util	lity and chemicals consumption	7
5.	Ove	erall Performance	11
6.	Env	vironmental Impact	13
	6.1.	Gaseous emissions	13
	6.2.	Liquid effluents	13
		6.2.1. Seawater system	
	6.3.	Solid effluents	13
7.	Equ	ıipment list	14
	_		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

1. Introduction

This chapter presents the main impacts on plant design and performance of alternative types of cooling system, taking as reference the supercritical pulverised coal (SC PC) fired steam plant without carbon capture described in chapter C.1 (Case 1). With respect to this case, based on natural draft cooling water tower system, two different systems are analysed hereafter:

Sheet: 3 of 14

- SW: once-through seawater cooling;
- AC: dry air cooling.

The description of the main process units and the reference Case 1 performance are covered respectively in chapter C and C.1 of this report; only plant design changes related to the alternative cooling systems are discussed in the following sections, together with the main plant performance results.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

2. Process Description

2.1. Overview

The description of the following sections makes reference to the simplified Process Flow Diagrams (PFD) of section 3, which show only the design changes related to the alternative cooling systems. For all the other units, reference shall be made to the base case description, included in chapter C.1, section 2.

Sheet: 4 of 14

2.2. Impact on process units

The adoption of a cooling system different from the reference case does not lead to significant modification within the process units.

2.3. Unit 3000 – Steam Cycle

The main consequence of a cooling system alternative to that of the reference case is a different steam condenser type.

2.3.1. Seawater system

A seawater cooled steam condenser is considered in this case. The lower sea water inlet temperature, as well as the lower permitted temperature increase (see data below) allows to achieve a condensing pressure lower than the reference case (3.0 kPa vs. 4.0 kPa respectively), with consequent higher steam turbine power generation.

In fact, being the sea water supplied to the steam condenser at 12°C and considering a maximum allowed temperature increase of 7°C, the condensation temperature is 24°C.

2.3.2. Air cooling system

The exhaust steam from the LP turbine is piped directly to the air-cooled, finned tube, condenser. The finned tubes are usually arranged in an "A" form or delta over a forced draught fan in order to reduce the plot area requirements.

A temperature difference of 25°C is considered between ambient air and the condensing steam, resulting in a higher steam condensing pressure with respect to the reference case (5.2 kPa vs. 4.0 kPa respectively) with consequent lower steam turbine power generation.

2.4. Unit 6000 - Utility Units

Apart from the cooling water system, alternative to the cooling tower type of the reference case, no significant impact is foreseen in the other utility units of the SC PC power plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

2.4.1. Seawater system

In the once-through system, seawater is pumped from the sea, directly used in the heat exchangers of the plant and then discharged back to sea.

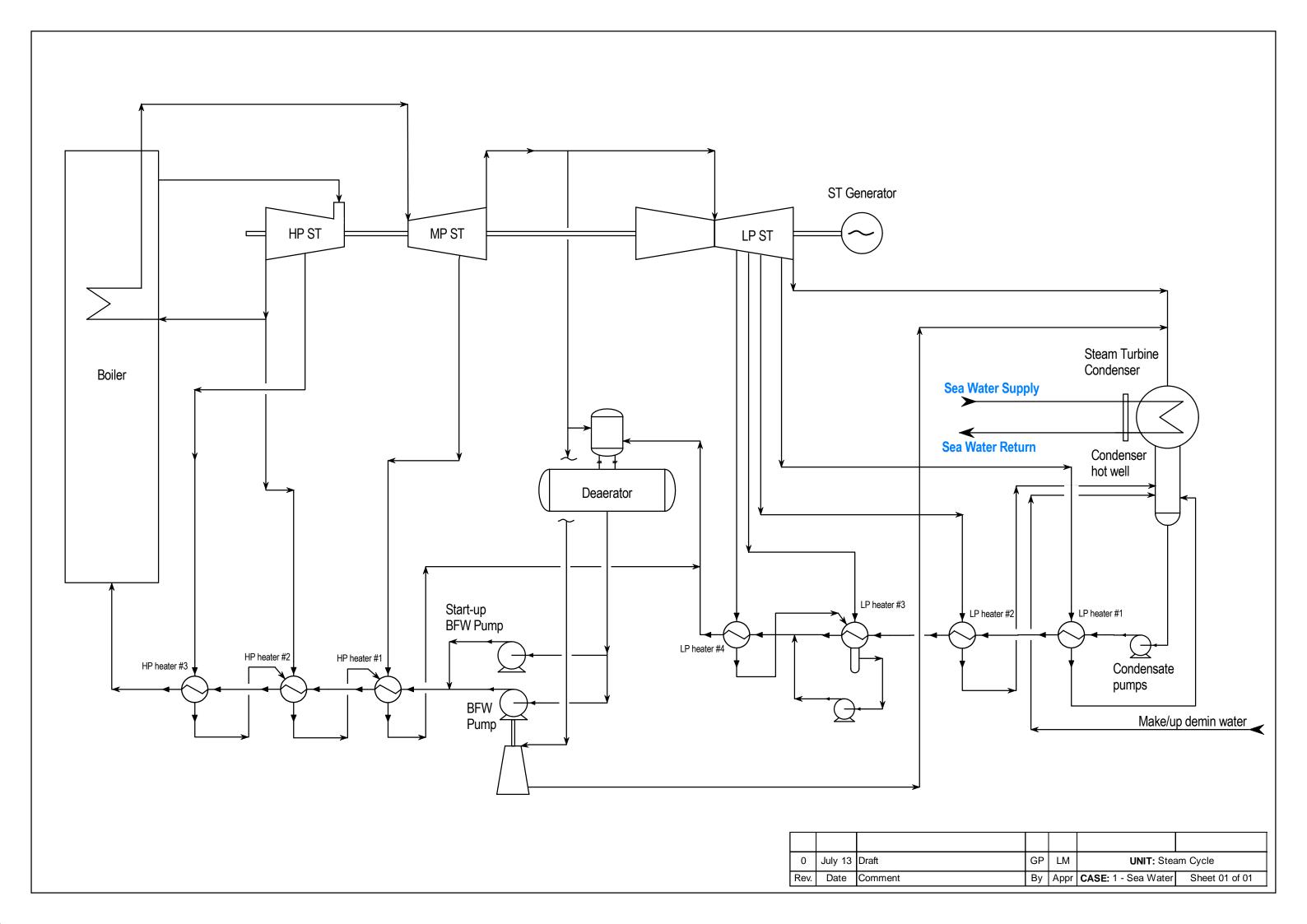
Sheet: 5 of 14

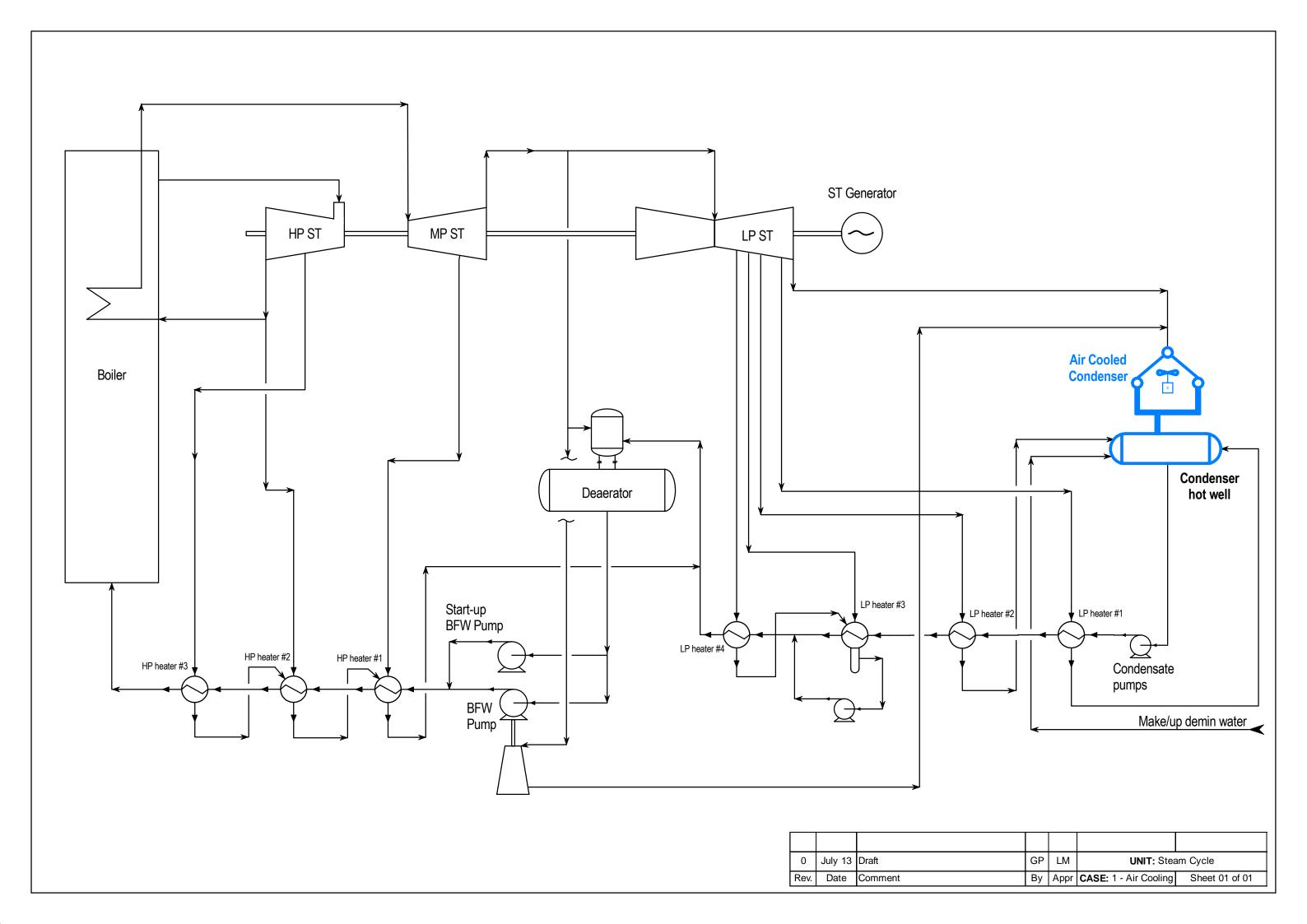
This system has the advantage of using a "free" coolant medium, without generating a real stream of waste water, since seawater is returned to the sea without any significant change in composition, apart from its higher temperature. However, the maximum allowable seawater temperature increase is 7°C, in order to minimize environmental impact of the sea, thus resulting in a higher circulating cooling water flowrate.

In addition to the once-trough system, a seawater-cooled closed circuit of demineralised water is considered (secondary system) for machinery and steam turbine generator cooling and for all plant users where seawater is not applicable.

2.4.2. Air cooling system

Ambient air is generally used as cooling medium. Similarly to the previous case, a secondary system consisting of an air-cooled closed circuit of demineralised water, conditioned and stabilised, is used for machinery and steam turbine generator cooling.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter C.4 - Case 1: SC PC without CCS Sheet: 6 of 14

Cooling system sensitivity

3. Process Flow Diagrams

Simplified Process Flow Diagrams of this case, showing process modifications with respect to the reference case, are attached to this section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

4. Utility and chemicals consumption

Main utility consumption of the process and utility units is reported in the following tables, including data of the reference case. More specifically:

• Water consumption summary is reported in Table 1 and Table 2, respectively for the seawater cooling and air cooling systems (reference case consumptions shown in brackets).

Sheet: 7 of 14

• Electrical consumption summary is shown in Table 3 for both the seawater cooling and the air cooling systems.

With respect to the reference case, the following considerations can be made:

- For both the alternative systems, raw water requirement is significantly lower than the reference case, mainly because there is no cooling tower make-up.
- The overall electrical consumption of the seawater system is slightly lower than the reference case with cooling tower. In fact, the cooling water system shows almost the same consumption as the higher cooling water flowrate, due to the lower ΔT allowed for the seawater, is offset by the lower cooling water pump head required for pumping the cooling water to the users.
- The overall electrical consumption of the air cooling system is slightly lower than the reference case with cooling tower. The absence of cooling water pumps, with the exception of those of the closed circuit, partially offsets the additional consumption of the air coolers fans, i.e. the air condenser in the steam cycle.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS Cooling system sensitivity

Table 1. Case 1 (Sea Water Cooling) – Water consumption summary

Sheet: 8 of 14

CLIENT: IEAGHG

PROJECT NAME: CO2 capture at coal based power and H2 plants

PROJECT No.: 1-BD-0681 A

LOCATION: The Netherlands

REVISION

0

MADE BY

NF

LOCATION: The Netherlands

APPROVED BY

LM

	Case 1 (SW) - Water consumption					
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Sea Cooling Water DT = 7°C	Machinery CW DT = 11°C	
		[t/h]	[t/h]	[t/h]	[t/h]	
1000	FEEDSTOCK AND SOLID HANDLING					
	Solid Receiving, Handling and storage					
2000	BOILER ISALND and FLUE GAS TREATMENT Boiler island					
	Bollerisland					
	Flue Gas Desulphurization (Wet FGD)	85				
	(
500	POWER ISLAND (Steam Turbine)					
	Condenser			131640		
	Turbine and generator auxiliaries		5		5030	
	Turbine and generator auxiliaries		5		5050	
ВоР	UTILITY and OFFSITE UNITS					
	Cooling Water System			8320		
	Demineralized/Condensate Recovery/Plant and	8	-5			
	Potable Water Systems					
	Waste Water Treatment	-10				
	waste water meaning	10				
	Miscellanea				100	
	DALANCE	83	0.0	139,960	5,130	
	BALANCE	(1658)	0.0	(82,590)	(5,060)	

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS
Cooling system sensitivity

Table 2. Case 1 (Air Cooling) – Water consumption summary

CLIENT: IEAGHG REVISION 0

PROJECT NAME: CO2 capture at coal based power and H2 plants DATE Jun-13

PROJECT No.: 1-BD-0681 A MADE BY NF
LOCATION: The Netherlands APPROVED BY LM

Sheet: 9 of 14

	Ca	se 1 (AC) - Water	consumption		
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Machinery CW DT = 8°C	Primary cooling mediur
		[t/h]	[t/h]	[t/h]	
1000	FEEDSTOCK AND SOLID HANDLING				
	Solid Receiving, Handling and storage				
2000	BOILER ISALND and FLUE GAS TREATMENT				
	Boiler island				9
	Flue Gas Desulphurization (Wet FGD)	85			
					5
500	POWER ISLAND (Steam Turbine)				-
	Condenser				PRIN
	Turbine and generator auxiliaries		5	6730	in As
ВоР	UTILITY and OFFSITE UNITS				nsi 🗆
	Cooling Water System				RIS
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	8	-5		NO PRIMARY COOLING WATER IS AVAILABLE. AIR IS USED AS PRIMARY COOLING MEDIUM
	Waste Water Treatment	-10			VAIL
	Miscellanea			140	IS A
					TER
					- M
					LIN
					- 8
					RY C
					M M
					A C
					ž
	BALANCE	83 (1658)	0.0	6,870 (5,060)	0 (82,590)

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS Cooling system sensitivity

Table 3. Case 1 (Cooling medium sensitivity) – Electrical consumption summary

FOSTERWHEELER

Sheet: 10 of 14

 CLIENT:
 IEAGHG
 REVISION
 0

 PROJECT NAME:
 CO2 capture at coal based power and hydrogen plants
 DATE
 Jun-13

 PROJECT No.:
 1-BD-0681 A
 MADE BY
 GP

 LOCATION:
 The Netherlands
 APPROVED BY
 LM

Case 1 - Electrical consumption <u>Sensitivity to cooling system</u>

	Absorbed Electric Power			
UNIT	DESCRIPTION UNIT	CASE 1	CASE 1	CASE 1
UNII	DESCRIPTION UNIT	(Cooling tower)	(Sea Water)	(Dry air)
		[kW]	[kW]	[kW]
1000	FEEDSTOCK AND SOLID HANDLING			
	Solids Handling	3330	3330	3330
2000	BOILER ISLAND and FLUE GAS TREATMENT			
	Boiler island (including ID fan)	21920	21920	21920
	Flue Gas Desulphurization (FGD)	2890	2890	2890
3000	POWER ISLAND (Steam Turbine)			
3000	Steam Turbine Auxiliaries	2600	2600	2600
	Steam furbile Auxiliaries	2000	2000	2000
	Condenser	_	-	7500
	Condensate and feedwater system	1250	1250	1250
	Miscellanea	600	600	600
ВоР	UTILITY and OFFSITE UNITS			
	Cooling Water System	9990	9290	2220
	Other Units	1440	1440	1440
	BALANCE	44,020	43,320	43,750

Revision no.: Final **IEAGHG**

January 2014 ${\rm CO_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

5. Overall Performance

The following Table shows the overall performance of the plant with the three different cooling systems assessed in the study.

Sheet: 11 of 14

FOSTERWHEELER

CLIENT: **REVISION IEAGHG** 0 PROJECT NAME: CO2 capture at coal based power and hydrogen plants DATE Jul-13 PROJECT No.: 1-BD-0681 A MADE BY NF **APPROVED BY** LOCATION: The Netherlands LM

Case 1 - SC PC Plant Performance Summary

OVERALL PERFO	RMANCES			
		CASE 1	CASE 1	CASE 1
		(Cooling tower)	(Sea Water)	(Dry air)
Fuel flow rate (A.R.)	t/h	325.0	325.0	325.0
Fuel HHV (A.R.)	kJ/kg	27060	27060	27060
Fuel LHV (A.R.)	kJ/kg	25870	25870	25870
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335	2335	2335
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443	2443	2443
Steam turbine power output (@ gen terminals)	MWe	1076.7	1091.0	1062.0
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	1076.7	1091.0	1062.0
Boiler Island and FGD	MWe	24.8	24.8	24.8
Utility & Offsite Units consumption	MWe	11.4	10.7	3.7
Power Islands consumption	MWe	4.5	4.5	12.0
Feedstock and solids handling	MWe	3.3	3.3	3.3
ELECTRIC POWER CONSUMPTION	MWe	44.0	43.3	43.7
NET ELECTRIC POWER OUTPUT	MWe	1032.7	1047.7	1018.3
(Step Up transformer efficiency = 0.997%) (B)	MWe	1029.6	1044.5	1015.2
Gross electrical efficiency (C/A x 100) (based on LHV)	%	46.1%	46.7%	45.5%
Net electrical efficiency (B/A x 100) (based on LHV)	%	44.1%	44.7%	43.5%
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	44.1%	44.7%	43.5%
Net electrical efficiency (B/A' x 100) (based on HHV)	%	42.1%	42.8%	41.6%
Fuel Consumption per net power production	MWth/MWe	2.27	2.24	2.30
CO ₂ emission per net power production	kg/MWh	745.3	734.6	755.8

⁽¹⁾ Steam driven BFW pumps are included

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

By comparing the results of the reference case with those of the alternative cooling system type, the following consideration can be made:

• <u>Sea water system</u>: Net electrical efficiency increases of about 0.6 percentage points, due to the higher gross power production, related to the lower condensation pressure, and the lower plant auxiliary power demand.

Sheet: 12 of 14

• <u>Air cooling system</u>. Net electrical efficiency decreases of about 0.6, due to the lower gross power production, related to the higher condensation pressure.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS

Cooling system sensitivity

6. Environmental Impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 13 of 14

6.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the flue gases from the boiler. No difference is expected in the flowrate and composition of this stream. The same minor and fugitive emissions, related to leakages within the handling of solid materials, are valid for these alternative systems.

6.2. Liquid effluents

Waste water treatment

As per the reference case, the plant does not produce significant liquid waste. FGD unit blow-down is treated in a dedicated R.O. system to recover water.

6.2.1. Seawater system

For the seawater case, seawater is returned to the sea basin after exchanging heat in the plant, with a maximum temperature increase of 7°C. The main characteristics of the discharged seawater are listed below:

Maximum flow rate: 140,000 m³/h Temperature: 19 °C

6.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.4 - Case 1: SC PC without CCS
Cooling system sensitivity

Sheet: 14 of 14

7. Equipment list

The following equipment summary tables show the major impact on equipment design for the alternative cooling system types.

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture - Sea Water sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
KEVISION	Kev Diait	Kev 1	Rev.2	Kev.5
DATE	20-Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001 PK- 3002 E- 3001 E- 3001	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package Steam condenser Steam condenser	Water cooled Sea Water cooled	1091 MWe 1055 MWth 1040 MWth			Size changed To be deleted (*) To be added (*)
	COOLING SYSTEM					
E- 6001	Closed cooling water cooler		65 MWth			To be added
P- 6001 A / / H P- 6002 A / B	Sea Cooling Water Pumps Machinery Cooling Water Pumps	Centrifugal Centrifugal	17000 m3/h x 20 m 5150 m3/h x 35 m	1600 800	Eight in operation One in operation, one spare	To be added (*) Size changed
CT- 6001	Cooling Tower includind: Cooling water basin	Natural draft	1120 MWth Diameter: 150 m, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A//F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make-up pumps	Centrifugal centrifugal	15000 m3/h x 35 m 1700 m3/h x 30 m	1600 220	Six in operation	To be deleted (*)
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 9500 m3/h			
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

^(*) Different material selection (titanium) is considered for the steam condenser and cooling water pumps design to address corrosion issues related to the use of SW as cooling medium.

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A $\,$

CASE: 1 - SC PC without carbon capture - Air Cooled sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	03-Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001 PK- 3002 E- 3001 AC- 3001	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package Steam condenser Air cooled Steam condenser		1062 MWe 1055 MWth 1070 MWth	100 x 90 kW		Size changed To be deleted To be added
	COOLING SYSTEM					
AC- 6001	Closed loop air cooler		64 MWth	1700 kWe		To be added
P- 6002 A / B	Cooling Water Pumps (secondary system)	Centrifugal	6880 m3/h x 35 m	950	One in operation, one spare	Size changed
CT- 6001	Cooling Tower includind: Cooling water basin	Natural draft	1120 MWth Diameter: 150 m, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A//F P- 6003 A/B	Cooling Water Pumps (primary system) Cooling tower make-up pumps	Centrifugal centrifugal	15000 m3/h x 35 m 1700 m3/h x 30 m	1600 220	Six in operation	To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps		Capacity: 9500 m3/h			To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS Sheet: 1 of 15

Cooling system sensitivity

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 2: SC PC WITH CCS

COOLING SYSTEM SENSITIVITY

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS
Cooling system sensitivity

Sheet: 2 of 15

TABLE OF CONTENT

1.	Intr	oduction	3		
2.	. Process Description				
	2.1.	Overview			
	2.2.	Impact on process units	4		
	2.3.	Unit 3000 – Steam Cycle	4		
		2.3.1. Seawater system			
		2.3.2. Air cooling system	5		
	2.4.	Unit 6000 - Utility Units	5		
		2.4.1. Seawater system	5		
		2.4.2. Air cooling system	6		
3.	Pro	cess Flow Diagrams	7		
4.	Util	ity and chemicals Consumption	8		
5.	Ove	erall Performance	12		
6.	Env	rironmental Impact	14		
	6.1.	Gaseous Emission	14		
	6.2.	Liquid effluents	14		
		6.2.1. Seawater system	14		
	6.3.	Solid effluents	14		
7.	Eau	ripment List	15		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS Sheet: 3 of 15

Cooling system sensitivity

1. Introduction

This chapter presents the main impacts on plant design and performance of alternative types of cooling system, taking as reference the supercritical pulverised coal (SC PC) fired steam plant with carbon capture described in chapter C.2 (Case 2). With respect to this case, based on natural draft cooling water tower system, two different systems are analysed hereafter:

- SW: once-through seawater cooling;
- AC: dry air cooling.

The description of the main process units and the reference Case 2 performance are covered respectively in chapter C and C.2 of this report; only plant design changes related to the alternative cooling systems are discussed in the following sections, together with the main plant performance results.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

2. Process Description

2.1. Overview

The description of the following sections makes reference to the simplified Process Flow Diagrams (PFD) of section 3, which show only the design changes related to the alternative cooling systems. For all the other units, reference shall be made to the base case description, included in chapter C.2, section 2.

Sheet: 4 of 15

2.2. Impact on process units

The adoption of a cooling system different from the reference case leads to the following modification within the process units.

2.2.1. Seawater system

- <u>CO₂ capture unit</u>: Sweet cooling water from the closed water circuit exchanging with seawater is used as cooling medium in the capture unit. This is because seawater is not generally used for the direct cooling of process streams with relative small duty.
- <u>CO₂ compression</u>: Seawater coolers are considered for the after-coolers of the CO₂ compressor trains. This allows to achieve a cooling level of the CO₂ stream greater than the reference case, corresponding also to a lower compressor power demand.

2.2.2. Air cooling system

- <u>CO₂ capture unit</u>: Air coolers are considered for each cooling service in the capture unit.
- <u>CO₂ compression</u>: Air coolers are considered for the after-coolers of the CO₂ compressor trains. During operation at normal ambient conditions, , this allows to achieve a cooling level of the CO₂ stream greater than the reference case, corresponding to a lower compressor power demand, offset by the additional power requirement of the air cooler fans.

Details on the temperature that can be achieved with both cooling system are reported in the following section 2.4.

2.3. Unit 3000 – Steam Cycle

The main consequence of a cooling system alternative to that of the reference case is a different steam condenser type.

2.3.1. Seawater system

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

A seawater cooled steam condenser is considered in this case. The lower sea water inlet temperature, as well as the lower permitted temperature increase (see data below) allows to achieve a condensing pressure lower than the reference case (3.0 kPa vs. 4.0 kPa respectively), with consequent higher steam turbine power generation.

Sheet: 5 of 15

In fact, being the sea water supplied to the steam condenser at 12°C and considering a maximum allowed temperature increase of 7°C, the condensation temperature is 24°C.

2.3.2. Air cooling system

The exhaust steam from the LP turbine is piped directly to the air-cooled, finned tube, condenser. The finned tubes are usually arranged in an "A" form or delta over a forced draught fan in order to reduce the plot area requirements.

A temperature difference of 25°C is considered between ambient air and the condensing steam, resulting in a higher steam condensing pressure with respect to the reference case (5.2 kPa vs. 4.0 kPa respectively) with consequent lower steam turbine power generation.

2.4. Unit 6000 - Utility Units

Apart from the cooling water system, alternative to the cooling tower type of the reference case, no significant impact is foreseen in the other utility units of the SC PC power plant.

2.4.1. Seawater system

In the once-through system, seawater is pumped from the sea, directly used in the heat exchangers of the plant and then discharged back to sea.

This system has the advantage of using a "free" coolant medium, without generating a real stream of waste water, since seawater is returned to the sea without any significant change in composition, apart from its higher temperature. However, the maximum allowable seawater temperature increase is 7°C, in order to minimize environmental impact of the sea, thus resulting in a higher circulating cooling water flowrate.

In addition to the steam turbine condenser, seawater is used for the CO_2 compressors intercoolers. During normal operation conditions, this allows achieving a temperature of the hot stream of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).

In addition to the once-trough system, a seawater-cooled closed circuit of demineralised water is considered (secondary system) for machinery and steam

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS Sheet: 6 of 15

Cooling system sensitivity

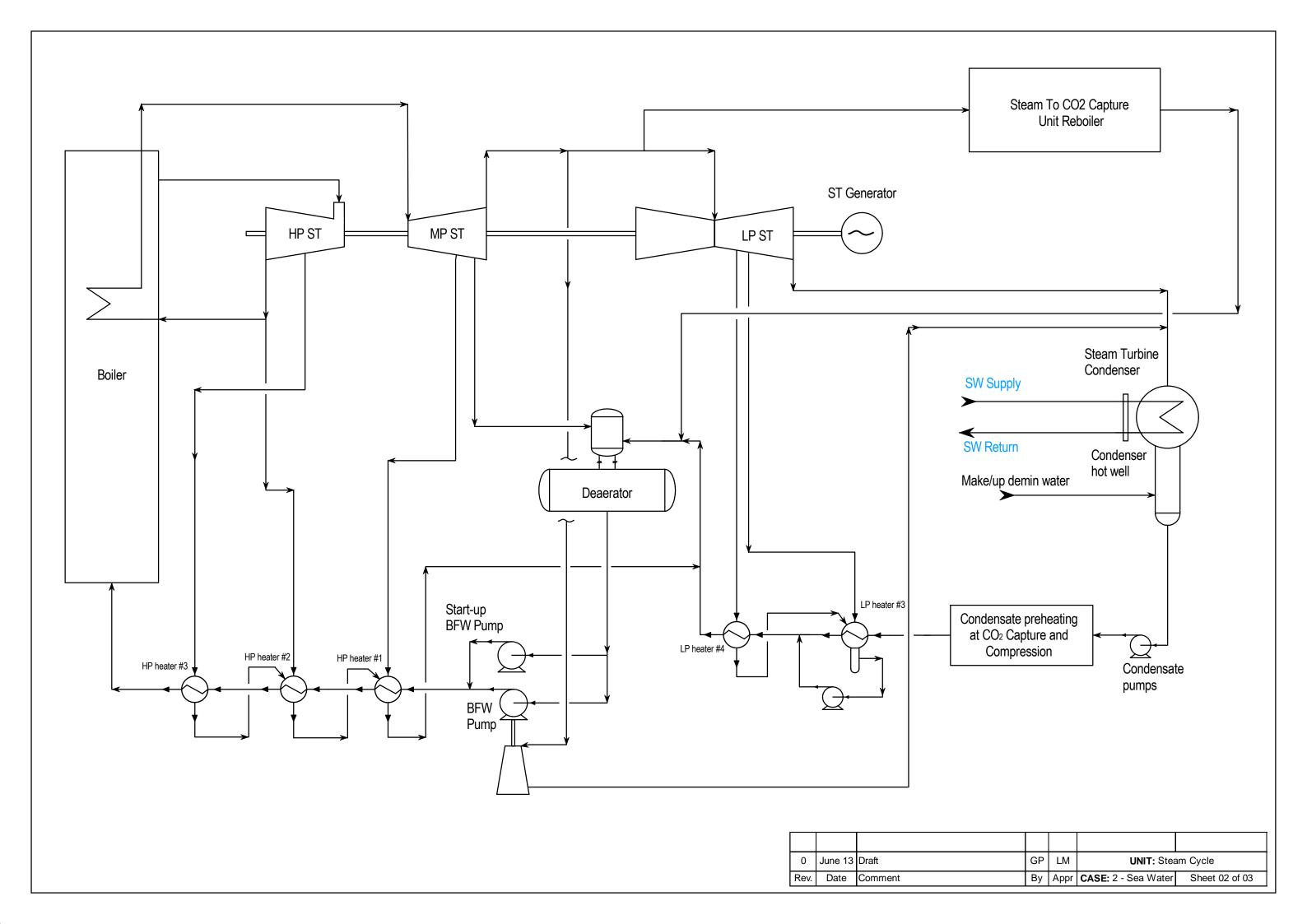
turbine generator cooling and for all plant users where seawater is not applicable, e.g. for cooling of process streams within the capture unit.

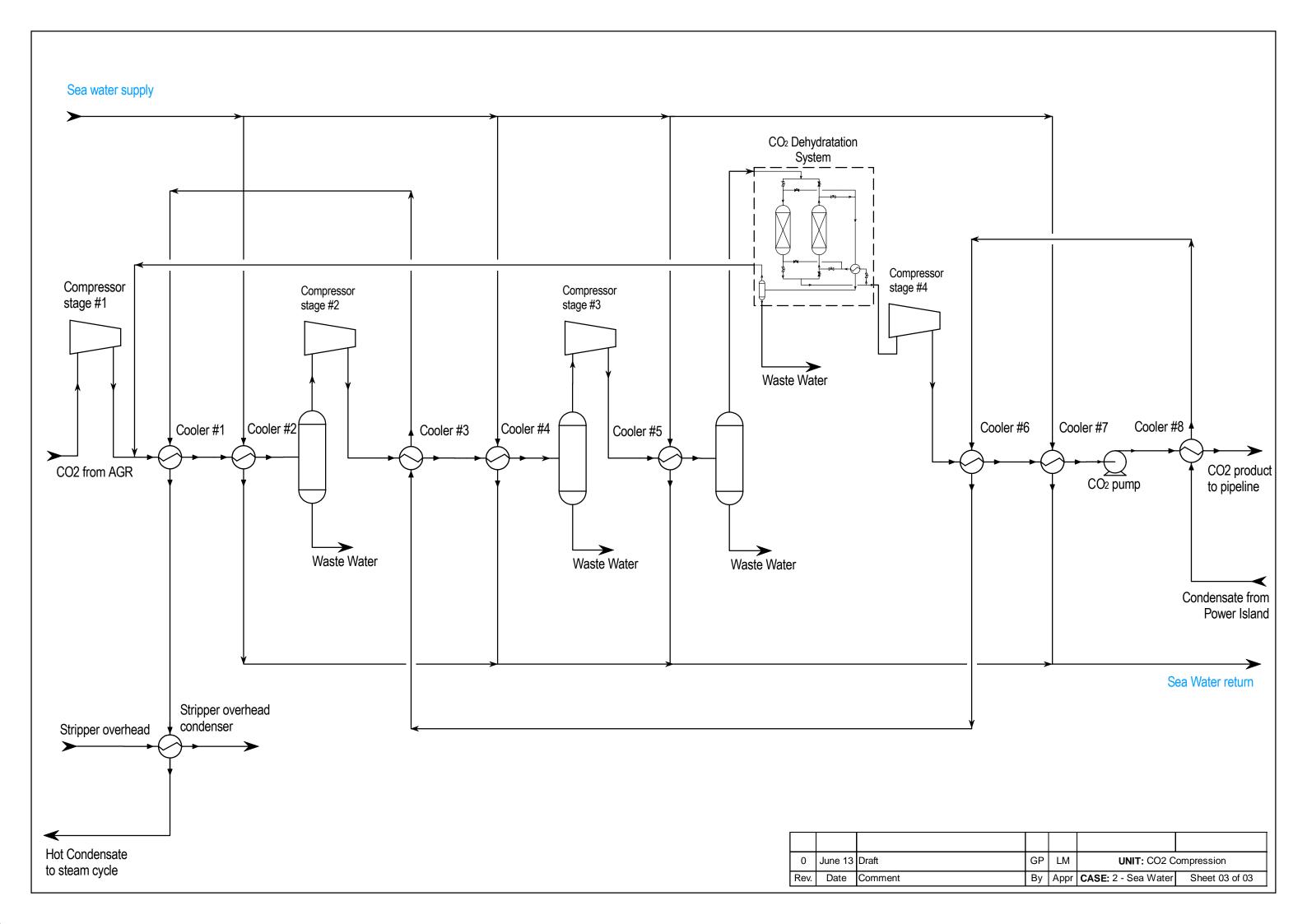
2.4.2. Air cooling system

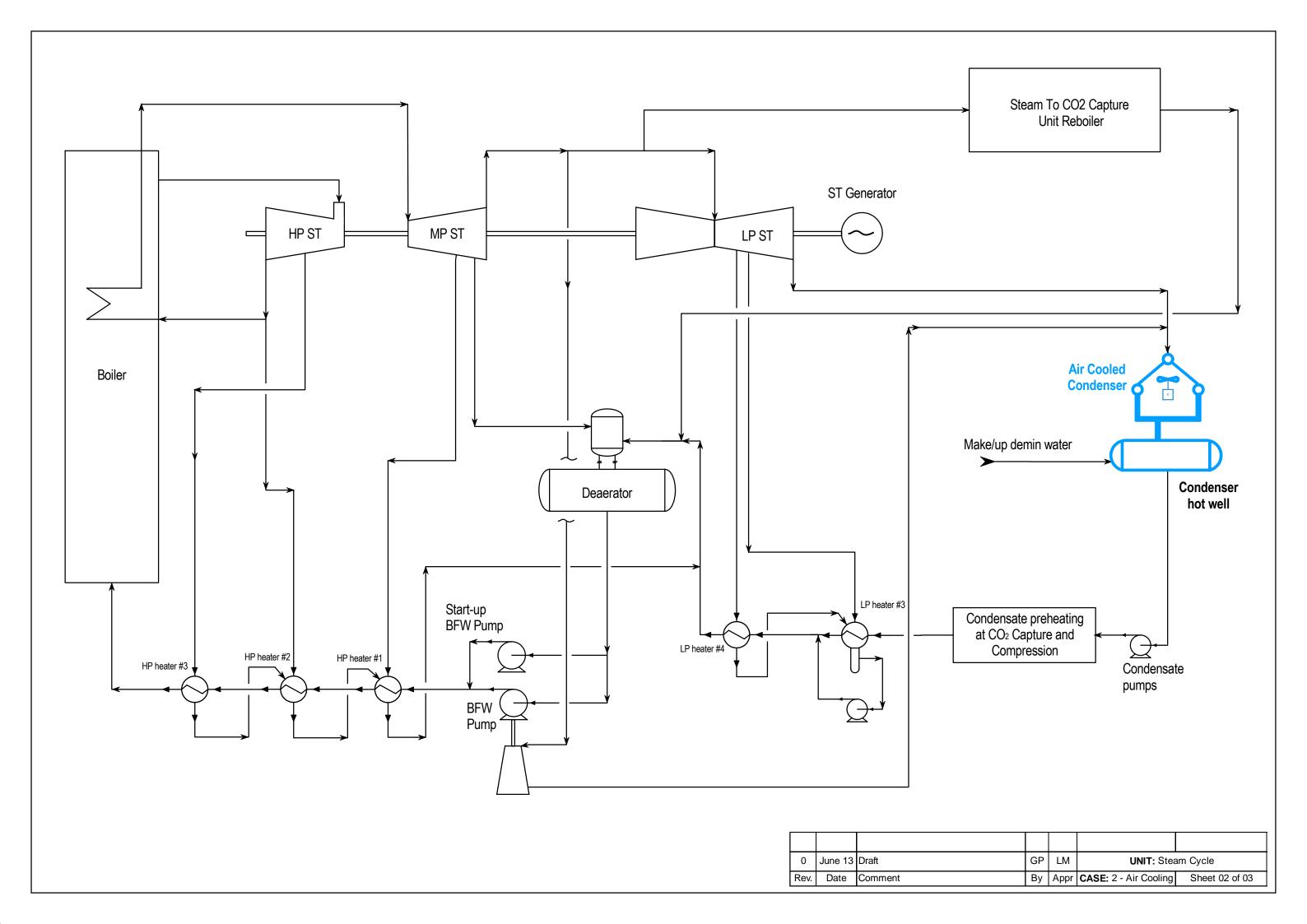
The use of ambient air as cooling medium is maximised. The secondary system, consisting of an air-cooled closed circuit of demineralised water, conditioned and stabilised, is used only for machinery and steam turbine generator cooling.

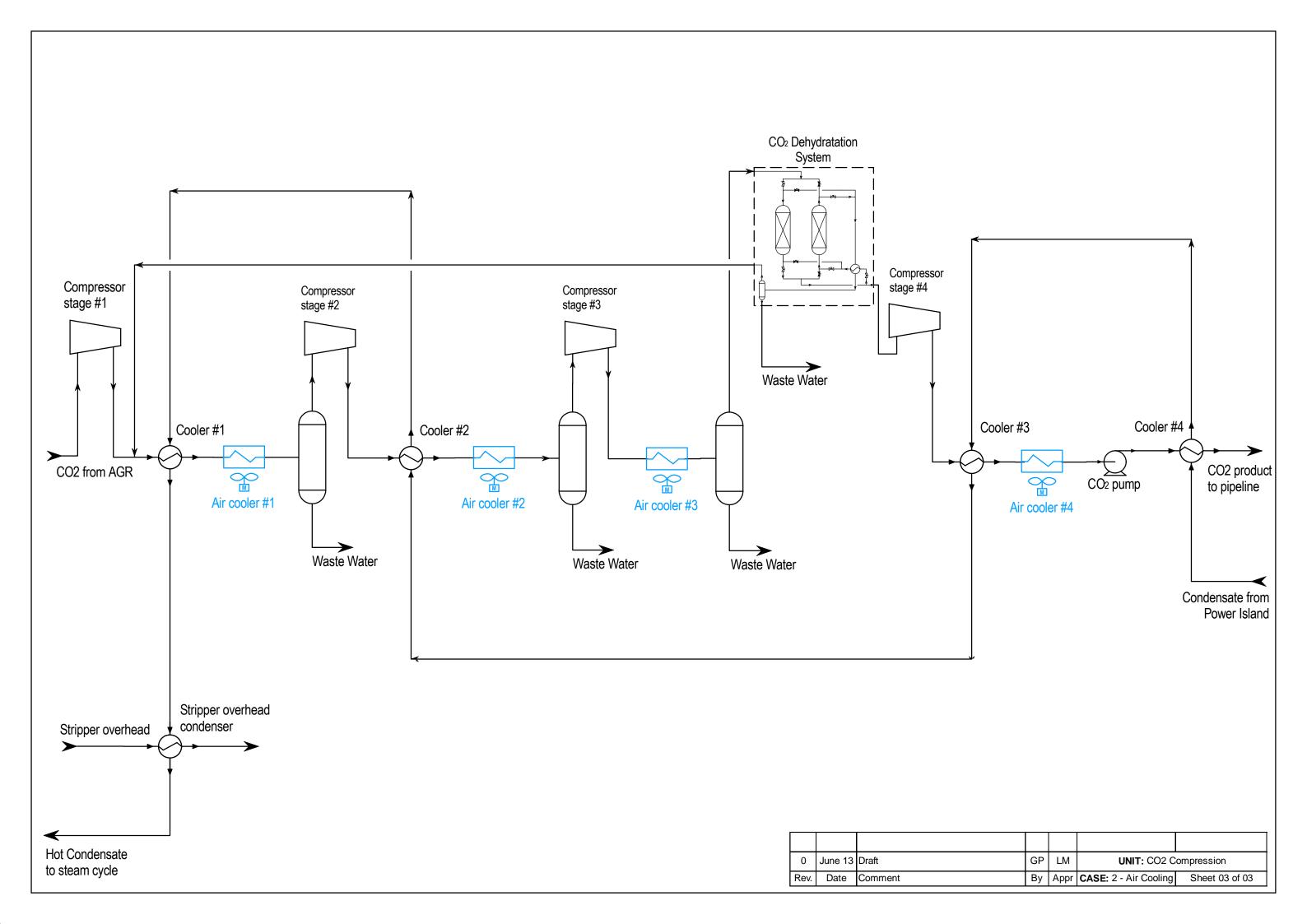
As above stated, the installation of an air cooled steam turbine condenser has a negative impact on the performance, due to the higher condensation pressure resulting from the 25°C approach normally considered for this application.

For services other than steam condenser, e.g. water air coolers or compressor intercoolers, the temperature difference between hot fluid exit temperature and ambient air is generally lower, around 10°C, corresponding to a final hot fluid temperature of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter C.5 - Case 2: SC PC with CCS Sheet: 7 of 15


Cooling system sensitivity


3. Process Flow Diagrams

Simplified Process Flow Diagrams of this case, showing process modifications with respect to the reference case, are attached to this section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

4. Utility and chemicals consumption

Main utility consumption of the process and utility units is reported in the following tables, including data of the reference case. More specifically:

• Water consumption summary is reported in Table 1 and Table 2, respectively for the seawater cooling and air cooling systems (reference case consumptions shown in brackets).

Sheet: 8 of 15

• Electrical consumption summary is shown in Table 3 for both the seawater cooling and the air cooling systems.

With respect to the reference case, the following considerations can be made:

- For both the alternative systems, raw water requirement is significantly lower than the reference case, mainly because there is no cooling tower make-up. The raw water required by the demineralised water plant and the FGD is totally recovered in the Waste Water Treatment, resulting in a zero raw water demand.
- The overall electrical consumption of the seawater system is slightly higher than the reference case with cooling tower. In fact, the cooling water system consumption increases due to the higher amount of sea water required for the closed water circuit providing the cooling medium to the CO₂ capture unit, while consumption related to the seawater for the condenser is almost the same as the reference case, as the higher cooling water flowrate, due to the lower ΔT allowed for the seawater, is compensated by the lower cooling water pump head required for pumping the cooling water to the users. This increased consumption offsets the lower compressor consumption in the CO₂ compression unit because of the increased cooling capacity.
- The overall electrical consumption of the air cooling system is slightly lower than the reference case with cooling tower. The absence of cooling water pumps, with the exception of those of the closed circuit, partially offsets the additional consumption of the air coolers fans, i.e. the air condenser in the steam cycle.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

Table 1. Case 2 (Sea Water Cooling) – Water consumption summary

CLIENT: IEAGHG

PROJECT NAME: CO2 capture at coal based power and H2 plants

PROJECT No.: 1-BD-0681 A

LOCATION: The Netherlands

CLIENT: IEAGHG

REVISION

0

Jul-13

MADE BY

NF

APPROVED BY

LM

Sheet: 9 of 15

	Ca	se 2 (SW) - Water	consumption		
UNIT	DESCRIPTION UNIT	Raw Water [t/h]	Demi Water [t/h]	Sea Cooling Water DT = 7°C [t/h]	Machinery CW DT = 11°C [t/h]
1000	FEEDSTOCK AND SOLID HANDLING	[411]	[911]	[411]	[4,1]
1000	Solid Receiving, Handling and storage				
2000	BOILER ISALND and FLUE GAS TREATMENT Boiler island				
	Bollet Island				
	Flue Gas Desulphurization (Wet FGD)	85			
500	POWER ISLAND (Steam Turbine)				
	Condenser			97900	
	- 1:		_		4470
	Turbine and generator auxiliaries		5		4470
ВоР	UTILITY and OFFSITE UNITS				
	Cooling Water System			84880	
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	10	-7		
	Waste Water Treatment	-95			100
	waste water freatment	33			100
	Miscellanea				
4000	CO2 CAPTURE UNIT CO2 capture unit				
4000			2	8220	47840
5000	CO2 compression				
	BALANCE	0 (2095)	0.0	191,000 (60,800)	52,410 (<i>57,590</i>)

Note: (1) Minus prior to figure means figure is generated

Revision no.: Final **IEAGHG**

 ${\rm CO_2}$ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

January 2014

Sheet: 10 of 15

Table 2. Case 2 (Air Cooling) – Water consumption summary

CLIENT: IEAGHG REVISION PROJECT NAME: CO2 capture at coal based power and H2 plants DATE Jul-13 PROJECT No.: 1-BD-0681 A MADE BY NF APPROVED BY **LOCATION**: The Netherlands LM

	Ca	ase 2 (AC) - Water	consumption		
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water [t/h]	Machinery CW DT = 8°C [t/h]	Primary cooling medium
1000	FEEDSTOCK AND SOLID HANDLING				
1000	Solid Receiving, Handling and storage				Σ
	3, 1 1 3 1 1 3				
2000	BOILER ISALND and FLUE GAS TREATMENT				JEI
	Boiler island				2 0
					<u> </u>
	Flue Gas Desulphurization (Wet FGD)	85			
					5
					<u> </u>
500	POWER ISLAND (Steam Turbine)				
	Condenser				<u> </u>
	Turbine and generator auxiliaries		5	6000	- S -
	Turbine and generator auxiliaries		5	6000	<u> </u>
ВоР	UTILITY and OFFSITE UNITS				- 3S -
BOI	Cooling Water System				r s
					<u> </u>
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	10	-7		NO PRIMARY COOLING WATER IS AVAILABLE. AIR IS USED AS PRIMARY COOLING MEDIUM
					
	Waste Water Treatment	-95.0			→
	Missellense			140	- × -
	Miscellanea			140	- 2
					┼──
4000	CO2 CAPTURE UNIT				
4000	CO2 capture unit		2		9
5000	CO2 compression				
3000	CO2 compression				8
					-
					AR,
					<u> </u>
					<u> </u>
					9
	BALANCE	0 <i>(2095)</i>	0.0	6,140 (57,590)	- (60,800)

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

Table 3. Case 2 (Cooling medium sensitivity) – Electrical consumption summary

Sheet: 11 of 15

FOSTERWHEELER

 CLIENT:
 IEAGHG
 REVISION
 0

 PROJECT NAME:
 CO2 capture at coal based power and hydrogen plants
 DATE
 Jul-13

 PROJECT No.:
 1-BD-0681 A
 MADE BY
 NF

 LOCATION:
 The Netherlands
 APPROVED BY
 LM

Case 2 - Electrical consumption <u>Sensitivity to cooling system</u>

		Ab	Absorbed Electric Power		
UNIT	DESCRIPTION UNIT	<u>CASE 2</u> (<u>Cooling tower)</u> [kW]	<u>CASE 2</u> <u>(Sea Water)</u> [kW]	<u>CASE 2</u> (<u>Dry air)</u> [kW]	
1000	FEEDSTOCK AND SOLID HANDLING				
	Solids Handling	3350	3350	3350	
2000	BOILER ISLAND and FLUE GAS TREATMENT				
	Boiler island (including ID fan)	22370	22370	22370	
	Flue Gas Desulphurization (FGD)	4000	4000	4000	
	ride das Desdipiturization (POD)	4000	4000	4000	
3000	POWER ISLAND (Steam Turbine)				
	Steam Turbine Auxiliaries	3300	3300	3300	
	Steam turbine air condenser	-	-	5250	
	Condensate and feedwater system	920	920	920	
	24				
	Miscellanea	600	600	600	
	CO2 CAPTURE UNIT				
4000	CO2 capture unit				
		82230	80630	88180	
5000	CO2 Compression				
ВоР	UTILITY and OFFSITE UNITS				
ВОР	Cooling Water System	15020	17600	2000	
	Cooling Water System	13020	17000	2000	
	Other Units	1440	1440	1460	
			-		
-					
	DALANCE	422.225	424.240	424 420	
	BALANCE	133,230	134,210	131,430	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

5. Overall Performance

The following Table shows the overall performance of the plant with the three different cooling systems assessed in the study.

Sheet: 12 of 15

FOSTERWHEELER

 CLIENT:
 IEAGHG
 REVISION
 0

 PROJECT NAME:
 CO2 capture at coal based power and hydrogen plants
 DATE
 Jul-13

 PROJECT No.:
 1-BD-0681 A
 MADE BY
 NF

 LOCATION:
 The Netherlands
 APPROVED BY
 LM

Case 2 - SC PC Plant Performance Summary

OVERALL F	PERFORMANCES			
		CASE 2 (Cooling tower)	CASE 2 (Sea Water)	CASE 2 (Dry air)
Fuel flow rate (A.R.)	t/h	325.0	325.0	325.0
Fuel HHV (A.R.)	kJ/kg	27060	27060	27060
Fuel LHV (A.R.)	kJ/kg	25870	25870	25870
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335	2335	2335
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443	2443	2443
Steam turbine power output (@ gen terminals)	MWe	958.1	969.3	947.2
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	958.1	969.3	947.2
Boiler Island and FGD	MWe	26.4	26.4	26.4
Utility & Offsite Units consumption	MWe	16.5	19.0	3.5
Power Islands consumption	MWe	4.8	4.8	10.1
CO2 Capture and compression unit	MWe	82.2	80.6	88.2
Feedstock and solids handling	MWe	3.3	3.3	3.3
ELECTRIC POWER CONSUMPTION	MWe	133.2	134.2	131.4
NET ELECTRIC POWER OUTPUT	MWe	824.9	835.0	815.8
(Step Up transformer efficiency = 0.997%) (B)	MWe	822.4	832.5	813.3
Gross electrical efficiency (C/A x 100) (based on LHV)	%	41.0%	41.5%	40.6%
Net electrical efficiency (B/A x 100) (based on LHV)	%	35.2%	35.6%	34.8%
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	39.2%	39.7%	38.8%
Net electrical efficiency (B/A' x 100) (based on HHV)	%	33.7%	34.1%	33.3%
Fuel Consumption per net power production	MWth/MWe	2.84	2.81	2.87
CO ₂ emission per net power production	kg/MWh	93.0	91.9	94.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS

Cooling system sensitivity

By comparing the results of the reference case with those of the alternative cooling system type, the following consideration can be made:

• <u>Sea water system</u>: Net electrical efficiency increases of about 0.4 percentage points, as the higher gross power production, related to the lower condensation pressure, and the lower plant auxiliary power demand more than offset the plant power auxiliary demand.

Sheet: 13 of 15

• <u>Air cooling system</u>. Net electrical efficiency decreases of about 0.4, as the lower gross power production, related to the higher condensation pressure, more than offsets the lower plant power auxiliary demand.

The overall CO₂ balance and removal efficiency is unchanged with respect to Case 3, as shown in the following.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
FUEL CARBON CONTENT (A)	17495
FROM the DeSOX reaction (B)	109
ОИТРИТ	
Carbon losses (D)	166
CO ₂ flue gas content	17438
Total to storage (C)	15700
Emission	1738
TOTAL	17604
Overall Carbon Capture, % ((C+D)/(A+B))	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS Sheet: 14 of 15

Cooling system sensitivity

6. Environmental Impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

6.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the flue gases from the boiler. No difference is expected in the flowrate and composition of this stream. The same minor and fugitive emissions, related to leakages within the handling of solid materials, are valid for these alternative systems.

6.2. Liquid effluents

Waste water treatment

As per the reference case, the plant does not produce significant liquid waste. FGD and CO₂ capture units blow-down is treated in a dedicated R.O. system to recover water.

6.2.1. Seawater system

For the seawater case, seawater is returned to the sea basin after exchanging heat in the plant, with a maximum temperature increase of 7°C. The main characteristics of the discharged seawater are listed below:

Maximum flow rate: $191,000 \text{ m}^3/\text{h}$ Temperature: 19 °C

6.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter C.5 - Case 2: SC PC with CCS Sheet: 15 of 15

Cooling system sensitivity

7. Equipment list

The following equipment summary tables show the major impact on equipment design for the alternative cooling system types.

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture - Sea Water sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	03-Jul-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001 PK- 3002 E- 3001 E- 3001	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package Steam condenser Steam condenser	Water cooled Sea Water cooled	970 MWe 776 MWth 772 MWth			Size changed To be deleted (*) To be added (*)
E- 3001		Sea water cooled	/ / 2 IVI W til			To be added (*)
	UNIT 5000 - CO2 COMPRESSION					
K - 5001/2	CO2 compression trains	Centrifugal, integrally geared, Electrical Driven 4 Stages	180200 Nm3/h p in : 1,6 bar a p out : 75 bar a		Intercooling: Condensate from Power island Sea Water Cooling Water	Size changed Intercooling medium changed
	COOLING SYSTEM					
E- 6001	Closed cooling water cooler		670 MWth			To be added
	Sea Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system)	Centrifugal Centrifugal	16500 m3/h x 20 m 13500 m3/h x 35 m		Twelve in operation Four in operation, one spare	To be added (*) Size changed
CT - 6001 A/B	Cooling Tower includind: Cooling water basin	Natural draft	2 x 758 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A//F	Cooling Water Pumps (primary system)	Centrifugal	15200 m3/h x 35 m	1700	Four in operation	To be deleted (*)
P- 6003 A / B	Cooling tower make-up pumps	centrifugal	2400 m3/h x 30 m	300		()
	Cooling Water Filtration Package Cooling Water Sidestream Filters Sodium Hypochlorite Dosing Package		Capacity: 12000 m3/h			
	Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

^(*) Different material selection (titanium) is considered for the steam condenser and cooling water pumps design to address corrosion issues related to the use of SW as cooling medium.

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture - Air cooled sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	03-Jul-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001 PK- 3002 E- 3001 AC- 3001	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package Steam condenser Air cooled Steam condenser	Water cooled	947 MWe 776 MWth 780 MWth	70 x 90 kWe		Size changed To be deleted To be added
	UNIT 4000 - CO2 CAPTURE					
E- AC-001 E- AC-002 E- AC-004 E- AC-006	Flue gas cooling water air cooler Wash water air cooler Regenerator condenser Lean solution cooler		Duty: 610 MWth (both train)			Changed from CW cooler to air cooler
	UNIT 5000 - CO2 COMPRESSION					
K - 5001/2	CO2 compression trains	Centrifugal, integrally geared, Electrical Driven 4 Stages	180200 Nm3/h p in : 1,6 bar a p out : 75 bar a		Intercooling: Condensate from Power island	Size changed Intercooling medium changed
AC - 5001 / 2 / 3 / 4	Intercooler	Air cooler	35 MWth per train	510 kWe	Air cooled Cooling Water	
	COOLING SYSTEM					
AC- 6001	Closed loop air cooler		60 MWth	1600 kWe		To be added
P- 6002	Cooling Water Pumps (secondary system)	Centrifugal	6150 m3/h x 35 m	800	Four One in operation, one spare	Size and number changed
CT - 6001 A/B	Cooling Tower includind: Cooling water basin	Natural draft	2 x 758 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A/ /F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal centrifugal	15200 m3/h x 35 m 2400 m3/h x 30 m	1700 300	Four in operation	To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters Sodium Humachlarita Pacina Package		Capacity: 12000 m3/h			
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

January 2014

Sheet: 1 of 35

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D - Basic information on oxy-combustion SC PC plant

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Fired Power Plants

DOCUMENT NAME : BASIC INFORMATION ON OXY-COMBUSTION SC PC PLANT

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter D - Basic information on oxy-combustion SC PC plant

Date: January 2014

Sheet: 2 of 35

TABLE OF CONTENT

I.	Inti	roducti	lon	3
2.	Bas	ic info	rmation of main process units	5
	2.1.	Feeds	tock and solids handling	5
		2.1.1.	Coal storage and handling	
		2.1.2.	Lime storage and handling	
		2.1.3.	.,	
		2.1.4.	FGD by-product storage and handling	6
	2.2.	Boiler	Island	6
		2.2.1.	Key features of Oxy-combustion boiler	7
	2.3.	Flue (Gas Desulphurization (FGD) system	12
		2.3.1.	FWE Circulating Fluid Bed Scrubbing (CFBS) Technology	13
		2.3.2.	Chiyoda Thoroughbred 121 (CT-201) Jet Bubbling Reactor process.	15
		2.3.3.	High level assessment of FGD technology	16
		2.3.4.	FGD technology for study cases development	18
	2.4.	Carbo	on dioxide compression and purification	18
	2.5.	Air Se	paration Unit	26
		2.5.1.	Impact on ASU design for high operational flexibility	29
	2.6.	Steam	Cycle	29
	2.7.	Utility	and Offsite units	32
		2.7.1.		
		2.7.2.	Raw and Demineralised water	32
		2.7.3.	Fire fighting system	33
		2.7.4.	Instrument and plant air system	33
		2.7.5.	Waste Water Treatment	33

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 3 of 35

1. Introduction

The oxy-combustion supercritical pulverised coal (SC PC) plant is a combination of several process units. The main process blocks of the plant are the following:

January 2014

- Air separation unit;
- Feedstock and solids handling;
- Oxy-combustion boiler island;
- Flue Gas Desulphurization (FGD);
- Steam cycle;
- CO₂ purification and compression.

Other ancillary utilities, such as cooling water, plant and instrument air, demineralised water support the operation of these basic blocks.

The focus of this Chapter D is to provide a general description of the major blocks of the oxy-combustion SC PC power plant, which are included in the oxy-combustion coal fired boiler-based case of the study, while Chapter D.1 through D.3 of the report gives basic engineering information for each alternative, with the support of specific heat and mass balances, utility consumption summaries, etc.

Table 1 provides key features of the oxy fired boiler-based case, technically and economically assessed in this study. In addition, some specific additional cases are developed to assess performance and costs of near zero emission plants (around 98% CO₂ capture) and to assess sensitivity to the cooling system; the list of these cases is shown in Table 2.

Case	Chapter	Description	Key features
Case 3	D.1	Oxy-combustion SC PC boiler with cryogenic CO ₂ purification	 Generic state-of-art supercritical oxygen-fired boiler Generic low pressure air separation unit CFBS FGD technology Air Products' CPU Primary cooling system: natural draft cooling tower

Table 1. SC PC oxy-fired boiler-based main study case

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 4 of 35

Table 2. SC PC oxy-fired boiler-based additional study cases

Case	Chapter	Differences	
Case 3 – Near zero emissions			
3.1	D.2	Around 98% CO ₂ capture through Air Products' PRISM [®] membrane technology	
Case 3 – Sensitivity to cooling water system			
3 - (SW)	D.3	Primary cooling system: sea water	
3 - (AC)		Primary cooling system: air cooling	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 5 of 35

2. Basic information of main process units

2.1. Feedstock and solids handling

2.1.1. Coal storage and handling

This unit is the same as the one described in chapter C for the air-fired boiler cases. Anyhow, the description of the unit is here below reported for clarity of the reader.

The scope of the feedstock receiving, handling and storage unit is to unload, convey, prepare, and store the coal delivered to the plant.

The coal is delivered from a port to the plant by train. The unloading is done by a wagon tipper that unloads the coal to the receiving equipment. Coal from each hopper is fed directly into a vibratory feeder and subsequently discharged onto a belt extractor. A conveyor and transfer tower system finally delivers the coal to the open stockyard (as-received coal).

The storage pile is designed to hold an inventory of 30 days of design consumption to allow the facility to hedge against delivery disruptions.

From the storage piles, the coal is discharged onto enclosed belt conveyors to two elevated feed hoppers, each sized for a capacity equivalent to two hours. Coal is discharged from the feed hoppers, at a controlled rate, and transported by belt feeders to parallel crushers, each sized for 100% of the full capacity. The crushers are designed to break down big lumps and deliver a coal with lump size not exceeding 35 mm. Coal from the crushers is then transferred by enclosed belt conveyors to the day silos close to the boiler island (as-fired coal).

Two magnetic plate separators for removal of tramp iron and two sampling systems are supplied for both the as-received coal and the as-fired coal. The recovered iron from the separators is delivered to a reclaim pile, while data from the analyses are used to support the reliable and efficient operation of the plant.

Enclosed belt conveyors, storage hoppers and silos, flow control feeders and other equipment handling coal are potential sources of air pollution, due to dispersion of fine powder. To control the plant environment all these items of equipment are connected to bag filters and exhaust fans that permit the capture of any coal powder generated in the coal handling area.

2.1.2. <u>Lime storage and handling</u>

Lime is delivered to the plant site by trains and is stored in dedicated silos, equipped with stacking and reclaiming machines. The storage capacity is made to ensure the plant is capable of feeding at maximum capacity for approximately 30 days.

Hydrated lime is prepared at site. A hydrated lime silo is provided to cover the requirement of the hydrated lime for the desulphurization process in case of

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 6 of 35

malfunction of the hydration system; the hydrated lime silo is located close to the scrubber.

For the FGD process the hydrated lime must be transported from the hydrated lime silo to the CFBS. For the hydrated lime transportation a speed controlled rotary valve with double flap, motor, feed ejector and blower are used. The rotary valve is used to dose the required amount of absorbent. The blower air transports the added absorbent via a piping system to the scrubber.

2.1.3. Fly and bottom ash collection and storage

The fly ash is discharged from the collecting hoppers by star valves into a dense phase, pneumatic transport, which carries the fly ash to storage silos. From the silos, fly ash is loaded by gravity to trucks for transportation. Cyclones and exhaust filter bags are used to prevent air contamination.

The bottom ash is collected and crushed by a grinder to reduce the lump size, thus making handling and transportation easier with conveyors that bring ash to the storage.

2.1.4. FGD by-product storage and handling

The FGD by-product is discharged from the insulated filter hoppers by means of a control valve into the dedicated product silo, within the storage and handling unit battery limits. The equipment for product transport consists of the same components as for the hydrated lime conveying system: speed controlled rotary valve with double flap, motor, feed ejector and blower.

The design of residue silo foresees enough space to allow discharging to either truck or train wagon. Minimum storage capacity is approximately 30 days.

2.2. Boiler Island

The boiler unit is treated as a package supplied by specialised Vendors. Supercritical PC boilers firing coal, of the size proposed for this study, using oxygen are not developed commercially yet. However, based on literatures studies, it is expected that the behaviour and design features of the boiler would not be different from those of air fired plants ^(1, 2).

¹ A. Seltzer, Z. Fan, H. Hack, *Design of a flexi-BurnTM Pulverised Coal Power Plant for Carbon Dioxide Sequestration*, 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida (USA)

² A. Robertson, H. Agarwal, M. Gagliano, A. Seltzer, *Oxy-combustion boiler material development*, 35th International Technical Conference on Clean Coal & Fuel System, Clearwater, Florida (USA)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 7 of 35

The following description refers to the simplified scheme shown in Figure 1.

The boiler is a single pass tower-type super critical boiler. For reduction of NOx emission level, the firing system is provided with staging in the furnace, incorporating multi-stage supply of combustion oxygen and flue gas. Oxygen at 97% vol purity from the Air Separation Unit is supplied to the burners.

Hot combustion products exit the furnace and pass through the radiant and convective heating surfaces for steam generation and superheating. Then, flue gases exiting the convective section at 340°C are used to heat the primary and secondary recycle flue gas streams via a regenerative gas/gas heater. Furthermore, flue gases are de-dusted via the ESP and split into two, with one stream forming the secondary recycle and returning back through the gas/gas heater (exit temp 330°C) to the burners. The remaining stream is cooled, dried and split again to form primary recycle and net flue gases (CO₂ product stream). The primary recycle passes through the FGD and then through the gas/gas heater (exit temperature 250°C) and it is finally delivered to the coal mills. For additional details on the selection of the FGD technology and its positioning (i.e. primary recycle, secondary recycle or whole flue gas flow) reference has to be made to section 2.3. The pulverized fuel is dried in the mill using this flow and transported to the burners. The net flue gases are sent to the downstream CO₂ purification and compression unit.

Feed water enters the economizer, recovers heat from the combustion gases and then passes to the water wall circuits enclosing the furnace. The fluid then passes through heating surface banks to convective primary superheat, radiant secondary superheat and then to convective final superheat. The steam finally exits the steam generator to flow to the HP steam turbine module. Returning cold reheat steam passes through the reheater and is returned to the IP steam turbine module.

The furnace bottom comprises hoppers with a clinker grinding system situated below it. Ash passes through the clinker grinder to the ash handling system. Fly ash is collected from the discharge hoppers on the economisers and the ESP.

2.2.1. Key features of Oxy-combustion boiler

As almost pure oxygen is used for combustion, there is a deficient mass flow rate in the boiler due to absence of inert nitrogen present in standard air fired plants, which leads to the following:

Overall balance of heat absorbed throughout the furnace chamber changes substantially, as the same heat quantity is introduced to a reduced mass of combustion products. This would result in greatly increased temperatures, and consequently increased radiant heat pick-up, greater slagging and higher NOx emissions. Furthermore, the reduced volumetric flow (and hence gas velocity) in the convective passes of the boiler would lead to lower heat transfer coefficients and reduced heat absorption.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 8 of 35

- Properties of the flue gases and design of the furnace would be considerably different due to the high content of CO₂ in the gases.

To compensate for this loss in mass flowrates and to reach flue gases characteristics similar to those of the air fired cases, a proper portion of the flue gases is recycled back to the furnace, so as to maintain the mass/volume flow at an acceptable level and to achieve a similar heat transfer in the radiant and convection sections as compared to conventional boilers. In addition, the oxygen flowrate is selected in order to maintain the oxygen concentration in the furnace (before combustion) at around 20%-30%, close to conventional air-fired boilers conditions.

Flue gas recycles

Two streams of recycle flue gas are required for the oxy-combustion system.

The <u>Primary recycle</u> stream, which passes through the coal mills, is used for drying and transportation of the pulverised fuel to the burners.

The primary recycle stream is characterised by low water content, so to be able to remove coal moisture at relatively low temperature level, and low SOx content in order to avoid the risk of acid corrosion in the mill machinery.

Because of the above, primary recycle is taken downstream of the final contact cooler, where the water content is reduced down to the dew point at 28°C, and it is sent firstly to the FGD unit and then heated up in the regenerative gas-gas heater, to increase the temperature above the dew point before being fed to the coal mills.

The <u>secondary recycle</u> stream provides the additional gas heat capacity to the burners to maintain temperatures within the furnace similar to those of air firing boilers. The wet solid-free secondary flue gas recycle is taken downstream of the electrostatic precipitator (ESP), to avoid excessive ash concentrations into the boiler flue gas passes and erosion of the related fan. A secondary air fan blows the flue gas recycle through the regenerative gas-gas heater to be heated up before being recycled into the boiler.

The combined primary and secondary gas recycle is approximately 68% of the original flue gas leaving the economiser.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 9 of 35

Oxygen supply

 O_2 purity supplied by the Air Separation Unit (ASU) is set to 97%mol. Several literature studies indicate this purity as the optimum point that minimises ASU + CPU total costs (operating and capital) $^{(1,2)}$.

Most of the oxygen is mixed with the secondary recycle downstream of the gas-gas heater to avoid oxygen leakage to the flue gas. However, the oxygen content of the secondary recycle should not exceed 40% to avoid the need to specify pure oxygen construction materials standards for the ducting. The remaining portion of the oxygen is injected to the primary recycle, downstream of the coal pulverisers to minimize risk of fires and explosions in the mills, in the event of lower or no recycle flow.

Air leakage into the boiler

As the conventional boilers, also oxy-combustion boilers are operated at a slight vacuum to prevent leakage of hot flue gases at any level out of the system, for safety reasons. This leads to unavoidable ambient air leakage into the boiler, affecting the purity of the flue gases generated in the boiler. Air leakage represents the biggest source of nitrogen in the product gases, which is to be removed from the final CO₂ product.

Considering a good and adequate sealing for the boiler, the minimum air leakage obtainable on a new pulverized coal boiler could be about 1% of the flue gas flow ^(1, 3). Other sources of air infiltration are the electrostatic precipitators and the FGD filters. For this study an overall air-in leakage of 3% of the flue gas has been considered.

Flue gas fans

A flue gas fan is installed on the secondary recycle downstream of the ESP to force the flue gas through the gas-gas heater back to the boiler. The ID fan is installed downstream of the final contact cooler, providing the primary flue gas recycle the required pressure to get back to the boiler through the FGD and the coal mills. Net flue gases (CO₂ product stream) are sent to the CO₂ purification and compression section at the same pressure of the primary flue gas recycle.

¹ A. Seltzer, Z. Fan, H. Hack, *Design of a flexi-BurnTM Pulverised Coal Power Plant for Carbon Dioxide Sequestration*, 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida (USA)

² IHI Corporation entrusted by New Energy and Industrial technology Development Organisation, *Feasibility Study for Carbon Dioxide Capture based on Oxyfuel Combustion Technology for Coal Fired Power Plant*, FY2010 Clean Coal Technology Promotion Project, March 2011

³ IEAGHG Report 2005/9, Oxy Combustion Processes for CO₂ Capture from Power Plant

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 10 of 35

Heat Recovery

In an oxy-combustion boiler, the overall heat exchanged in the gas-gas heater is lower than in the air pre-heater in a conventional air fired boiler, as flue gas are recycled at high temperature. Available heat is recovered from the flue gases upstream of the ESP to preheat feed water. Condensate preheating can also be foreseen upstream of the final flue gas cooling in the contact cooler.

Date:

January 2014

Indirect contact cooler

The CO₂-rich flue gas downstream of the heat recovery section, after the secondary recycle, is sent to a conventional contact cooler. The flue gases at around 110°C are sent to a venturi scrubber for first quench with water from the bottom of the contact column. In the column, the flue gases are cooled down to 28°C by contact with condensate that has been cooled against cooling water. Most of the SO₃ and HCl impurities in the flue gases are removed in the contacting column, while very little SO₂ or NOx is removed due to the low system pressure.

Around half of the flue gases from the top of the contact column are recycled back to the boiler as primary recycle. The remaining stream is sent to the downstream CO₂ purification and compression unit.

Air firing during start-up and up-set conditions

The oxy-combustion power plant is not designed for the continuous operation in air-firing mode. However, during start-up sequence and up-set conditions, e.g. trip of the ASU, the boiler can be switched to air firing for the time required for safe shutdown. In these conditions, the flue gases are released to atmosphere through the dedicated stack.

NOx emission

Because of the peculiarity of the Air Products' CO₂ purification unit (CPU), no secondary measures are foreseen for the NOx reduction (e.g. SNCR). In fact, nitrogen oxide formation is lower in oxy-fired conditions with respect to air-firing mode and almost all the NOx content is removed as nitric acid in the CPU.

Should the CPU not foresee the NOx removal section, the requirement of a secondary reduction system for NOx abatement would depend on both the emission limits and the CO₂ specification, because most of the NOx remain in the vent stream, while some is trapped in the condensed CO₂. As CO₂ specification requirements and emission limits for oxy-fuel applications are still not defined, some literature studies have considered the installation of the SNCR ⁽¹⁾, others have not ⁽²⁾.

¹ A. Seltzer, Z. Fan, H. Hack, *Design of a flexi-BurnTM Pulverised Coal Power Plant for Carbon Dioxide Sequestration*, 34th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida (USA)

² IEAGHG Report 2005/9, Oxy Combustion Processes for CO₂ Capture from Power Plant

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant

Sheet: 11 of 35



Figure 1. Oxy-fired boiler and flue gas recirculation block scheme

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 12 of 35

2.3. Flue Gas Desulphurization (FGD) system

A flue gas desulphurisation system is included to reduce the SO_X concentration in the furnace and in the flue gas recycle loop below the limit at which excessive gas-side tube corrosion occurs. Furthermore, the installation of the FGD allows controlling the SO_X/NO_X ratio to the optimum value for the downstream CO_2 purification and compression unit (CPU).

Two different FGD systems were investigated during the course of the study, seeking the support of different specialized technology suppliers:

- Wet bubbling FGD, provided by Chiyoda Corporation.
- Circulating fluid bed scrubbing FGD provided by Foster Wheeler Energie GmbH (FWE).

However, it is pointed out that conventional wet scrubbing FGD technologies could also be taken into for oxy-fuel applications.

Information received from each technology supplier is reported in the following sections 2.3.1 and 2.3.2, limited to the information that suppliers have authorized for disclosure. A high level assessment on key features and main advantages and disadvantages of each technology is also included in section 2.3.3.

It has to be noted that some differences may exist between figures in the vendors' information and those shown in the report of the specific study case. In fact, information in the attachments is based on preliminary stream properties and flowrates, as estimated during the early stages of the study; then, data have been slightly adjusted and optimised during study execution either by vendors or Foster Wheeler. Figures included in the report for each study case shall be considered as the final ones.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 13 of 35

2.3.1. FWE Circulating Fluid Bed Scrubbing (CFBS) Technology

Foster Wheeler Energie GmbH (FWE) proposed for the IEAGHG study cases its Circulating Fluid Bed Scrubber (CFBS) system with hydrated lime injection and fabric filter, including product recirculation.

January 2014

Date:

The general technical information on the CFBS technology is summarised in chapter C, section 2.4.2. The following sections include the specific set of information for the oxy-combustion boiler alternative, namely Case 3, provided by FWE to support the study.

FGD performance

The performance provided by FWE for Case 3 refers to the following characteristics and conditions of the flue gas entering the FGD unit.

1			
t/h	820		
Nm³/h wet, act. O ₂	459,520		
Nm³/h dry, act. O ₂	442,380		
Nm³/h dry (1)	427,865		
°C	38 (1)		
ion (wet)			
%	3,73		
%	1.81		
%	13.75		
%	74,24		
%	6,25		
Flue gas composition (dry)			
% dry	6,49		
% dry	77,12		
Pollutants			
mg/Nm³ dry	5539		
mg/Nm³ dry	108		
Emission requirements			
mg/Nm³ dry	275		
mg/Nm³ dry	< 5		
	t/h Nm³/h wet, act. O ₂ Nm³/h dry, act. O ₂ Nm³/h dry (1) °C ion (wet) % % % % % % ion (dry) % dry % dry mg/Nm³ dry mg/Nm³ dry ments mg/Nm³ dry		

 $^{^{(1)}}$ 38°C=28°C+10°C from ID fan.

Main consumption data

Clean gas temperature	°C	38
Flue gas inlet temperature	°C	38
Water consumption FGD	m³/h	0
Compressed Air consumption	m³/h	1000
ID-Fan (in case of 0mbar at battery limit and a	kW	900

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter D - Basic information on oxy-combustion SC PC plant

Date: January 2014

Sheet: 14 of 35

foreseen pressure drop of FGD of 42 mbar)		
Pump and Other	kW	1050
Sum of electrical consumption	kW	1950
Hydrated lime consumption (purity 100%)	kg/h	8725
Product	kg/h	13000
Product composition according to design data		
CaSO ₃	%	15 - 25
CaSO ₄	%	15 - 25
CaCO ₃	%	50
Ca(OH) ₂	%	5 - 15

Requirements for FGD water quality

Max. content of solid matter	< 100	[ppm]
Max. content of abrasive components	< 10	[ppm]
Max. grain size of suspended matter	< 50	[microns]

Minimum required quality for soft burnt lime

Residue on mesh 0.09 mm		[%]
Particle size (d50**)	< 20	[µm]
Lime reactivity (T60*)	< 2	[min]
Purity (CaO content)	> 95	[%]
Moisture	≤ 1	[%]

Delivered hydrated lime minimum requirements

Particle size (d ₅₀ **)	≤ 5	[µm]
Hydrated Lime reactivity (BET) specific surface area	>18	$[m^2/g]$

^{*)} T60 means temperature expansion from 20°C to 60°C at defined conditions.

Plot area requirements

	OXY SCPC
Plot area	Approx. 35m x 10m

^{**)} d₅₀ mean average particle size, the 50% weight fracture.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 15 of 35

2.3.2. Chiyoda Thoroughbred 121 (CT-201) Jet Bubbling Reactor process

Chiyoda is the technology provider of the limestone forced oxidation flue gas desulfurization technology, named Chiyoda Thoroughbred 121 (CT-201) process, based on the simultaneous SO_2 absorption, oxidation, neutralization and crystallization in the Jet Bubbling Reactor (JBR).

An overview of the CT-201 process is attached to chapter C, section 2.4.3, including the specific set of information for Case 3, provided by Chiyoda to support the study.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 16 of 35

2.3.3. High level assessment of FGD technology

Key features of the various FGD technologies were analysed in chapter C, section 2.4.4, in particular considering the following main aspects:

January 2014

- FGD reagent and by-product,
- Operating experience,
- Water consumption,
- Sulphur removal efficiency.

The purpose of this section is to make a high-level discussion of specific aspects related to the preliminary selection of the FGD technology for the oxy-combustion alternative. More general considerations on the positioning of the FGD in the flue gas recirculation loop within oxy-combustion boiler are also discussed. However it has to be noted that optimisation of the sulphur oxide removal in oxy-fuel application (technology options, positioning, CAPEX/OPEX, heat recovery, integration with CPU, etc.) is strictly case-specific (e.g. coal sulphur content, CPU technology, CO₂ specification) and it would require a detailed analysis that is beyond the scope of the current study

Due to the SOx removal rate required in the oxy-combustion alternative and because of the low sulphur content in the coal feed, a full sized FGD installed to treat the entire flue gas flowrate is not deemed necessary, as it would lead to an unjustified high investment cost.

Depending on the technology, two different possibilities have been identified with each vendor, in order to reduce the SO_X content to a level that does not leads to corrosion issues in the boiler furnace and the flue gas recirculation duct (< 2000-3000 ppm).

With reference to the Chiyoda technology, the optimum flue gas inlet temperature is around 150°C, to avoid reduction of oxidation reactivity of absorbed SO₂ and crystallization of gypsum by-product. Therefore, the best suited configuration for this process is the installation of the FGD on the secondary recycle stream to the boiler island. In this configuration, around 60% sulphur removal efficiency is required to meet the above target, also providing a great flexibility in controlling the SOx content in the flue gas recirculation and in the flue gas to the CPU. On the other hand, the secondary flue gas recycle exits the FGD at around 65°C, and consequently more heat is required in the gas-gas heater to reach the proper boiler inlet temperature, resulting in less heat available for feed water heating in the boiler flue gas path.

FWE technology leads to the possibility of installing a smaller FGD on the primary recycle stream downstream of the flue gas fan, provided that the temperature increase through the fan is enough to provide the increase of the inlet temperature above the

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 17 of 35

dew point, as required by CFBS technology. In this configuration, around 96% sulphur capture is required, maximising the capability of the FGD technology, though leading to a lower flexibility in the SOx control. In addition, the lower investment cost related to the smaller size is partially offset by the installation of the fabric filter, which is mandatory for the CFBS technology.

January 2014

The following Figure 2 and Figure 3 show the two different flue gas schemes, depending on the FGD technology. The main differences described above are highlighted in the schemes.

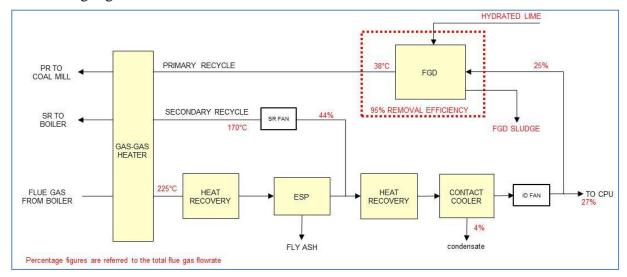


Figure 2. Flue gas configuration with dry FGD installed on primary recycle

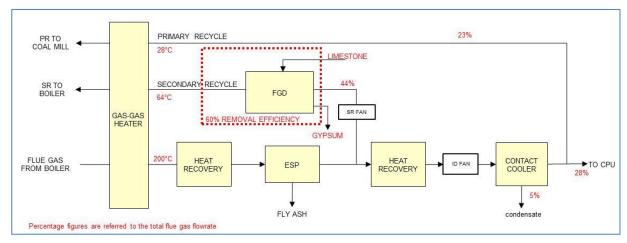


Figure 3. Flue gas configuration with wet FGD installed on secondary recycle

Extending the above consideration out of the design conditions of the specific study case, the following point should be considered for the FGD technology and its positioning in the plant configuration.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 18 of 35

Coal sulphur content is of primary importance for the evaluation of FGD requirement, type and positioning as it fixes the desulphurisation efficiency required to lower the sulphur concentration in the furnace. In case of low coal sulphur content (< 0.5% wt) no FGD is required, as sulphur oxide concentration in the furnace and the recirculation loop remains below the threshold level to control corrosion without secondary reduction measure. If coal had a sulphur content in the range of 0.5-2% wt, the FGD can be installed either on the primary recycle, with high removal rate efficiency due to the lower flowrate, or on the secondary recycle, with low removal rate. These are the conditions of the specific study case. On the other hand, for a coal sulphur content higher than 2% wt FGD should be installed on the secondary recycle or even on the total flue gas flowrate. In this case, the primary recycle flowrate is too small to achieve the required sulphur removal, even maximising the removal efficiency.

Should the sulphur oxide not be removed in the CPU, the FGD requirement depends also on the maximum SOx concentration allowed in the CO₂ product. In fact, most of the SOx entering the CO₂ purification unit remains in the captured CO₂ and not in the inert gas stream discharged to the atmosphere.

2.3.4. FGD technology for study cases development

As shown in the previous sections, all FGD technologies meet the desulphurisation efficiency required for the proper operation of the plant. Moreover, being at study level it is not possible to give a firm recommendation on the best technology for sulphur removal. Therefore, preliminary selection only is made in this work, on the basis of generic and high-level criteria, with the solely purpose of completing the technical and economical assessment of the cases.

More specifically for the oxygen fired boiler-based cases of the study, it was decided to utilize the circulating fluid bed scrubbing FGD provided by FWE, mainly because the dry FGD technology is typically considered for the oxy-combustion boiler, preferring a solution with smaller size FGD and high removal rate, with respect to a bigger system with removal rate far below the capability of a high removal efficiency system as wet scrubbing or bubbling reactor FGD.

2.4. Carbon dioxide compression and purification

The purpose of this section is to cool, dry, compress and purify to the required level the product CO₂ stream from the indirect contact cooler before sending it to the pipeline, outside plant battery limits.

Nowadays several Companies (e.g. Air Liquide, Air Products, Linde and Praxair) have developed and tested at pilot plant scale the technology for the cryogenic purification process of oxy-fired boiler flue gases. Further development and demonstration is required at commercial scale to fully validate the processes.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 19 of 35

For this study case, the CO_2 purification and compression section is based on Air Products' (AP) process, as described in the Air Products' patent N° EP 1 953 486 B1.

The CO₂ purification and compression unit consists of the following main sections:

- Sour compression for the combined removal of SOx and NOx.
- TSA unit.
- Auto-refrigerated Inerts Removal, including distillation column to meet the required oxygen specification in the CO₂ product.
- Final compression up to 110 bar.

Sour compression

The acidic impurities, such as SO_3 , SO_2 , HCl and NO_X as produced during combustion, need to be removed from the CO_2 stream to prevent corrosion of the export pipeline and comply with possible regulations. As written before, SO_3 and HCl are removed in the contacting column, so SO_2 and NO_X need to be treated at this stage of the process.

The Air Products' sour compression scheme is based on the reactions of the sulphur oxide and nitrogen oxide to form respectively sulphuric acid and nitric acid. These reactions occur at elevated pressure and in the presence of molecular oxygen and water, if enough contact time is provided. The latter acids are removed from the system as aqueous solution, producing a SO₂-free, NO_x-lean carbon dioxide stream.

Process chemistry

To remove NO from the CO₂, NO is first converted to NO₂ [1].

$$NO + \frac{1}{2}O_2 \rightarrow NO_2 \tag{1}$$

The kinetics of this reaction increases at low temperature and high pressure; at 15 bar only a few seconds are required to reach equilibrium and convert most of the NO to NO₂ especially since there is plenty of oxygen in the raw CO₂ stream, due to the excess oxygen required for combustion.

The second reaction of significance at this point is the reaction of NO_2 with SO_2 to form sulphuric acid:

$$NO_2 + SO_2 + H_2O \rightarrow NO + H_2SO_4$$
 [2]

Once all of the SO_2 has been removed by equations 1 and 2, NO_2 is converted to nitric acid by the well understood process nitric acid process, with the NO formed in Equations 2 and 4 being reconverted to NO_2 by Equation 1:

$$2 NO_2 + H_2O \rightarrow HNO_2 + HNO_3$$
 [3]

$$3 HNO_2 \rightarrow HNO_3 + 2 NO + H_2O$$
 [4]

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 20 of 35

These reactions give a path-way for SO₂ to be removed as H₂SO₄ and NO and NO₂ to be removed as HNO₃. Any elemental mercury or mercury compounds present in the gaseous carbon dioxide are also removed as mercury is converted to mercuric nitrate since mercury compounds react readily with nitric acid. Typical nitric acid concentrations in the process are sufficient to remove all mercury from the carbon dioxide stream, either by reaction or dissolution.

Process description

The following description refers to the simplified scheme shown in Figure 4.

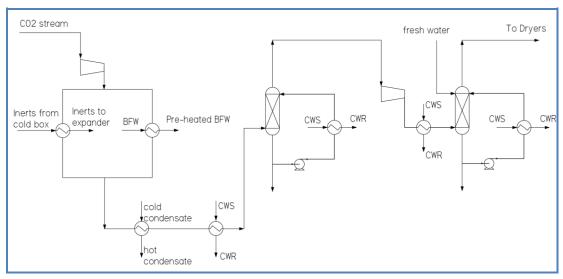


Figure 4. Sour compression scheme to 30 bar

The CO₂ stream entering Air Products' package is compressed adiabatically to 15 bar, producing a stream of compressed impure carbon dioxide at about 300°C. Such stream is used to preheat boiler feed water and the vent stream from the downstream inerts purification section, in two exchangers arranged in parallel configuration, and then condensate. Final cooling is made against a stream of cooling water to produce a stream of CO₂ at about 26°C. The conversion of sulphur oxide to sulphuric acid starts as the CO₂ rich stream is cooled down in these exchangers.

The CO₂ stream is fed to the bottom of the first contacting column, where it ascends and contacts counter-currently a stream of descending acid water. The column is designed to provide sufficient contact time between the ascending gas and the descending liquid to completely convert the remaining SO₂ to sulphuric acid and also to convert part of NO_x to nitric acid. Thus, a stream of SO₂-free carbon dioxide is removed from the top of the column and a stream of aqueous sulphuric acid that also contains some nitric acid is removed from the column bottom. The liquid is then pumped and split into two: part of the liquid is cooled down and recycled to the same contacting column as reflux, whereas the excess of liquid is sent to the Waste Water

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 21 of 35

Treatment unit. Due to the high acid content of the discharged stream (around 5%v sulphuric and nitric acid), specific treatment is required in the WWT (refer to section 2.7.5 for further details). However it has to be noted that further development is still needed to fully understand the most suitable treatment option and related cost.

The stream of SO₂-free carbon dioxide from the top of the first contacting column is compressed to about 30 bar by an integrally geared centrifugal compressor. Heat of compression generated in the compression stage is removed by means of a cooling water exchanger in order to produce a stream of cooled, compressed SO₂-free carbon dioxide, which is fed to the bottom of the second contacting column.

The gas stream ascends the column and contacts counter-currently a stream of aqueous nitric acid solution. The column is designed to provide sufficient contact time between the ascending gas and the descending liquid to almost completely convert the remaining NO_x contaminant to produce nitric acid. The SO_2 -free and NO_x -lean carbon dioxide stream is removed from the top of the column and a stream of aqueous nitric acid is removed from the column bottom. The liquid is then pumped and divided into two: part of the liquid is cooled down and recycled to the same contacting column as reflux, whereas the excess of liquid is sent to the Waste Water Treatment unit. A stream of fresh water is injected into the top of the column to increase NO_x conversion and to ensure that no acid droplets are entrained in the gas stream leaving the column top.

All the SO_2 and about 90% the NO_x contained in the flue gas are removed in the sour compression and a stream of SO_2 -free and NO_x -lean carbon dioxide is obtained. Such stream is then sent to the following sections of CO_2 inerts removal and compression.

TSA system

The raw CO₂ gas passes through a thermally regenerated dual bed desiccant dryer to lower the dew point below -55°C before entering the auto-refrigerated inerts removal section. This desiccant dryer system prevents ice formation which could cause a blockage in the cold box as well as causing corrosion in the pipeline.

Auto-refrigerated inerts removal

The inerts removal process is based on the principle of phase separation between condensed liquid CO_2 and insoluble inerts gas at a temperature of $-55^{\circ}C$, which is very close to the triple point, or freezing temperature, of CO_2 .

The actual CO₂ pressure levels and the configuration selected for the separation are fixed by the CO₂ purity and recovery specification requirements. The inerts removal process configuration is mainly affected by the oxygen specification in the CO₂ product of 100 ppm, which implies the installation of a distillation column operating at around -37°C and a flash separator at around -55°C.

The following description refers to the simplified scheme shown in Figure 5. Numbers in brackets refer to the stream tag in the figure.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 22 of 35

The CO_2 feed gas pressure is 30 bar. The necessary refrigeration for plant operation is obtained by evaporating liquid CO_2 at a pressure around 16-17 bar and 5.6 bar and compressing these two low pressure gas streams in the main CO_2 product compressor to the final pipeline delivery pressure of 110 bar.

The dry gas from the TSA unit (102) is fed to the cold box and is cooled to -5°C (104) with the returning stream evaporating and superheating CO₂ streams and the waste streams in the main exchanger, then it is used as heating medium in the distillation column reboiler (E106), exiting at about -20°C. The main heat exchangers are multi-stream plate-fin aluminium blocks.

The stream from the reboiler (105) is cooled further to -54°C where it partially condenses (106) and is passed to the flash drum. The pressure at this point is critical in controlling the process since cooling the vapour below -56.2°C would lead to the formation of solid carbon dioxide. The vapour from the separator (107), containing the separated inerts together with some CO₂, is sent back through the heat exchangers for a first pre-heating. This stream of inerts (108), which is at a pressure of 30 bara, is then heated against hot CO₂ compressed at 15 bar in the sour compression section and is expanded in a power recovery turbo-expander (K103) before being vented (110).

The liquid stream from the separator (111), at 30 bara, is heated in the second main heat exchanger and is then expanded through a valve to 16-17 bara (V103), corresponding to around -37°C before entering the distillation column. The vapour stream exiting the distillation column (114), which still contains a large portion of CO₂, is heated through both the main heat exchangers, re-compressed to 30 bara, cooled against cooling water and finally recycled to the dry gas feeding the cold box (117).

The liquid stream exiting the bottom of the distillation column (118) is split into two streams which are both expanded through a valve to two different pressure levels and heated up in the main heat exchangers, providing the necessary refrigeration.

Final compression stage

The CO₂ vapour stream leaving the first main heat exchanger at 5.6 bara (121) is then compressed in an integrally geared compressor to the same pressure as the second CO₂ stream (126) (around 16-17 bara). The two streams are combined and compressed in two intercooled stages (K101) to the required pressure of 110 bara.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter D - Basic information on oxy-combustion SC PC plant

Date: January 2014

Sheet: 23 of 35

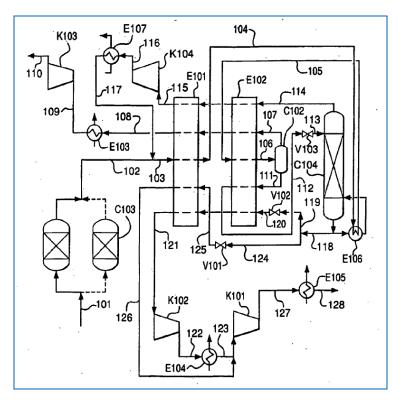


Figure 5. Auto-refrigerated inerts removal process (from EP 1 953 486 B1)

High level assessment on CO₂ purification and compression unit configuration

For this study, different options have been evaluated in order to identify the best solution from a technical and electrical efficiency point of view. As described above, the following key features characterised the final selected option:

- Axial compressor followed by an inline radial compressor, for the 1-15 bar compression.
- Vent gas heating to the maximum possible temperature using the hot CO₂ stream leaving the 1-15 bar compression stage as heating medium.
- BFW and condensate pre-heating against the hot stream leaving the 1-15 bar compression stage.
- Integrally geared intercooled machines for the 15-30 bar compression and the final compression of the purified CO₂ product stream.

The following alternative configurations have been analysed with the help of Air Products, in addition to the selected option described above:

- <u>Installation of an intercooled integrally geared machine for the 1-15 bar compression</u>. In this case, the overall consumption of the compression train is lower, but no thermal integration is possible with the steam cycle. In particular, the vent gas stream should be heated-up completely with high

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 24 of 35

pressure steam or recycled back to the boiler for heating before being expanded in the CPU, adding more complexity to the plant. Cooling water requirements also increase.

- <u>BFW and condensate pre-heating only downstream of 1-15 bar compression.</u> In this case a higher thermal duty is available for BFW preheating, but no heat is available to heat-up the vent stream before expansion. As for the previous option the vent gas stream would need to be heated-up completely with high pressure steam or recycled back to the boiler for heating with flue gas before being expanded in the CPU. In this latter option, the difference in efficiency with respect to the selected configuration is negligible, but the recycle of the flue gas to the boiler would increase plant layout complexity.
- <u>Sensitivity to inert vent stream temperature</u>. The temperature of the vent stream before being expanded offers an additional degree of freedom in the optimisation of the CPU configuration. The minimum temperature is set by the minimum temperature downstream of the expander to avoid condensation, while the maximum is limited by the temperature of the hot CO₂ stream used as heating medium. Within this range, the higher the vent stream temperature, the lower the heat available for BFW pre-heating against hot CO₂, but the higher the expander power production. In addition, as part of the vent stream is sent to the TSA drying for bed regeneration, a lower vent stream temperature implies a higher duty required to the regenerator heater, thus increasing the HP steam consumption. For this study case, the vent stream is heated-up to the maximum possible temperature, in order to reduce steam extraction from the steam cycle, reducing movement between the two units.

High CO₂ capture rate: the PRISM® membrane configuration

The above described CO_2 purification and compression process achieves a CO_2 recovery of around 90%, as required for the main study case. An alternative with near zero CO_2 emissions was also investigated, consisting of processing the inert vent stream from the auto-refrigerated process through dedicated membranes, in order to maximise CO_2 recovery from this stream that would otherwise be vented to the atmosphere.

For this purpose, Air Products' process foresees a series of $PRISM^{\otimes}$ membrane modules that recovers CO_2 from the vent stream, recycling it to the boiler, as schematically shown in Figure 6 $^{(1)}$.

¹ The same concept of including vent gas permeation in membrane system is under development by Air Liquide within their Cryocap[™] process. *M.Leclerc, R. Dubettier, F. Lockwood, High recovery Near-Zero CPU*, OCC3, Ponferrada, Sept. 2013

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 25 of 35

An additional bonus is that whilst the membrane is recovering CO₂ it is also recovering oxygen that is also recycled to the boiler with the co-recovered CO₂. This reduces the amount of oxygen required from the air separation unit, corresponding to a lower ASU power demand.

The dry oxygen and carbon dioxide-rich stream is returned back to the boiler and mixed with the secondary recycle. In fact, though it is a dry stream as required to be used for coal drying and transportation from the mill to the burners, the high oxygen content (around 25%) leads to possible risk of explosion, in particular in case of no primary recycle flow.

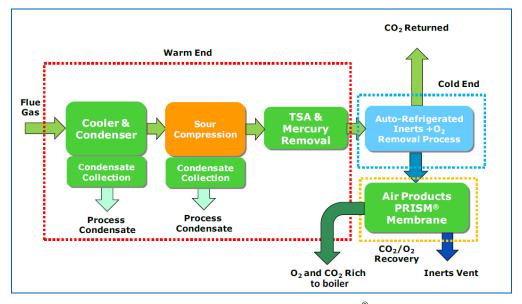


Figure 6. Air Products' process including PRISM® membrane

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 26 of 35

2.5. Air Separation Unit

The ASU is based on the cryogenic distillation of atmospheric air at low pressure and is designed to produce oxygen at 97 %mol O₂ purity. For this study case a generic ASU has been simulated with no reference to a specific supplier.

The power consumptions related to the ASU for oxy-combustion application is in the range of 190-210 kWh/ton O₂. A figure on the lower side of this range has been considered for this study as all of the ASU suppliers are currently improving their technology and they expect to be ready in the next few years.

The amount of oxygen required for the oxy-combustion boiler is 16,650 tonne/day. The configuration proposed for this study case is based on three (3 x 33%) cryogenic ASUs of 5,550 tonnes/day each. This is within the range of ASU currently being commercially offered. Single train axial flow air compressors required for this duty are also commercially available. Due to the high reliability of the air compressor machine, no sparing equipment is foreseen.

The cycle chosen is one in which gaseous oxygen (GOX) is produced by boiling liquid oxygen (LOX) which is ideally suited to this application as the delivery pressure required is low.

The ASU configuration typically proposed for oxy-combustion application is based on three-pressure levels distillation columns:

- The conventional double column includes the low pressure column with its reboiler integrated with the condenser of the high pressure column. The column pressures are set to give a temperature driving force in the reboiler/condenser.
- An extra column is added operating at intermediate pressure. The condenser
 for this column also integrates with a reboiler in the low pressure column but
 at a lower temperature, boiling a liquid stream higher up within the low
 pressure column.

This arrangement minimises the amount of feed air that must be compressed to the higher pressure of high pressure column condenser, leading to the low power requirement of the whole unit.

With reference to the simplified block flow diagram shown in Figure 7, the plant includes the following main sections.

Compression system

Process air is cleaned from dust and particulate matter through an intake air filter before being fed to the main air compressor (MAC), where it is compressed to 3.5 bar. An axial compressor without inter-cooling is used to compress the feed air, so as to provide a higher temperature air stream which can be used as a source of heat for

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 27 of 35

preheating condensate from the steam cycle. The compressed air is further cooled by cooling water and the condensed water is then separated in a dedicated separator.

January 2014

Adsorption front end air purification system

Before air is cooled to cryogenic temperatures in the main heat exchanger, water vapour, carbon dioxide and other trace impurities are removed in order to avoid the cryogenic equipment blockage.

The selected configuration includes two purification systems based on dual bed adsorbers: one system after the first air compression stage for feed to the intermediate pressure column and the other after the last compression stage to the high pressure column pressure.

The adsorber operates on a staggered cycle, i.e one vessel adsorbing and the other being reactivated. The adsorbents generally used consist of layers of alumina or silica gel plus layers of zeolite. The adsorber vessels are vertical cylindrical units having annular adsorbent beds.

Cold box

Both the intermediate and high pressure air streams exiting the two adsorbent systems are split in two. These four streams are fed directly to the main heat exchanger, consisting of several parallel aluminium plate-fin heat exchanger blocks manifolded together.

The first intermediate pressure stream is cooled close to its dew point and fed to the bottom of the intermediate pressure column. Downstream of the main heat exchanger the second intermediate pressure stream is expanded in a centrifugal expansion turbine providing the power for the centrifugal compressor, providing the air feed to the high pressure column. The expanded air is fed to the middle of the low pressure column in order to provide refrigeration for the operation of the ASU.

The first high pressure stream is cooled close to its dew point and fed to the bottom of the high pressure column while the second high pressure air stream is cooled and condensed in the main heat exchanger against boiling oxygen. The resulting liquid air from the main exchanger is fed to the middle of both the high pressure and intermediate pressure columns.

In the high and intermediate pressure columns, the gaseous air feed is separated into an overhead nitrogen vapour and an oxygen-enriched bottom liquid. The nitrogen vapour from the high pressure column is condensed against boiling oxygen in the low pressure column sump, providing the liquid reflux for both the high and the low pressure columns. Boiling oxygen in an upper stage of the low pressure column provides the condensing medium also for the nitrogen from the intermediate pressure column is condensed. The resulting liquid nitrogen stream provides the reflux stream for both the low pressure and the intermediate pressure columns.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 28 of 35

Liquid oxygen from the bottom of the high and intermediate pressure columns is cooled in the subcooler against waste nitrogen and is flashed to the low pressure column as intermediate feeds. The feeds to the low pressure column are separated into a waste nitrogen overhead vapour and a liquid oxygen bottom product, which reaches the required purity of 97% by volume.

The waste nitrogen is withdrawn from the top of the low pressure column and warmed in the subcooler and the main heat exchanger. A portion of the nitrogen stream from the main exchanger is used for adsorber reactivation. The remaining dry nitrogen is vented through a Chilled Water Tower to produce chilled water by evaporative cooling.

Pure liquid oxygen is withdrawn from the bottom of the low pressure column and returned to the main heat exchanger where it is vaporised and warmed up to ambient conditions against boosted air feed to the columns. The gaseous O_2 is then regulated and supplied to the power plant.

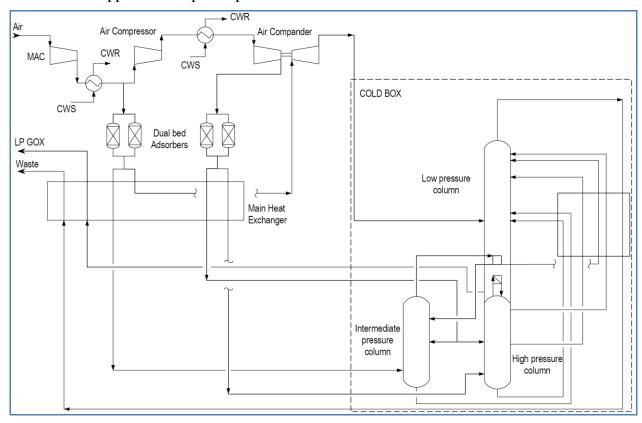


Figure 7. ASU simplified scheme

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 29 of 35

Oxygen back-up

The oxy-combustion PC boiler is designed in such a way as to allow air firing as a fallback position in the event of ASU trip. Therefore, enough oxygen back-up storage is provided in order to allow a controlled changeover to air-firing.

Date:

January 2014

Backup is in the form of liquid oxygen (LOX) at a pressure of 2.5 bar in a vacuum insulated storage tank, common to all trains, filled by gravity from the ASU.

2.5.1. Impact on ASU design for high operational flexibility

The ASU significantly impacts the overall net electricity production of the plant, mainly due to its high auxiliary power demand. Therefore, if the plant were called to operate flexibly with respect to the electricity daily demand, a possibility could be to operate the ASU at partial load during peak hours, while the rest of the plant runs at full load, thus reducing the auxiliary consumption and increasing the overall net electricity production. Vice versa, during low-electricity demand period, the ASU could be operated at load higher than that of the process unit, producing the extra oxygen required during peak demand period.

On this respect, LOX (and associated liquid air) storages become of primary importance because they allow decoupling the ASU from the rest of the power plant, providing the buffer capacity required for balancing the cycling operation of the plant. Design changes and related costs mainly depend on the load demand cycle the plant is required to respect. The following Table 3 summarises the expected impact on performance and costs of the additional LOX and liquid air storages required to follow two commonly requested power demand cycles, the first to cover daily peak demand and the second to follow a weekly cycle. For further details on the provision of LOX and liquid air storage for enhancing plant operating flexibility and for plant capabilities to operate efficiently at part load reference shall be made to IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

Table 3. LOX storage option for Oxy-combustion plant flexible operation

Case description	Delta performance	Delta capital costs
LOX / liquid air covering daily peak	+6% NPO (2 hours per day)	+1%
LOX/ liquid air covering weekly peak	+5% NPO (60 hours per week)	+2-3%

2.6. Steam Cycle

The following description makes reference to the simplified process flow diagram of the steam cycle, attached to the end of this section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant

The steam cycle is mainly composed of the Steam Turbine Generator (STG) and the water pre-heating line. It consists basically of one supercritical steam turbine, equipped with one steam condenser water cooled type, with multiple extractions for the pre-heating of the condensate and boiler feed water. In addition, the condensate and the boiler feed water are heated as far as possible utilising the available heat from the ASU, CO₂ compression and purification and flue gas sources in order to maximise the overall efficiency of the plant.

Sheet: 30 of 35

The turbine consists of HP, MP and LP sections all connected to the generator with a common shaft. Supercritical steam from the boiler is sent to the steam turbine through the stop valves and control valves. Steam from the exhaust of the HP turbine, except the flow extracted for the heating of the boiler feed water, is returned to the boiler gas path for reheating, and then throttled into the double flow MP turbine. A small steam stream is sent to the CPU for inert gas heating upstream the expander.

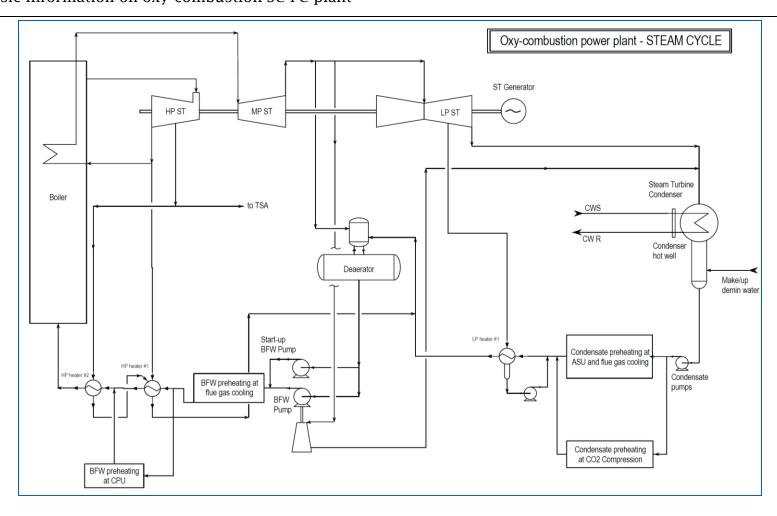
Boiler and turbine interface data are as follows:

HP turbine inlet: 270 bar; 600°C MP turbine inlet: 60 bar; 620°C

Exhaust steam from the MP turbines then flows into the double flow LP turbine system and downward into the water-cooled condenser at 4.0 kPa, corresponding to 29°C.

Recycled vacuum condensate from the condenser hot well is pumped by the condensate pumps to the process unit for heat recovery from the flue gases and in the compressor intercoolers of CPU and ASU. This allows reducing the LP steam extraction in the preheat train. Only the final pre-heater upstream of the deaerator requires steam from the steam turbine.

The preheated condensate stream is then sent to the deaerator. Exhaust steam from the MP section of the turbine is used to provide the steam necessary for the degassing of the condensate and make-up demineralised water. Part of the exhaust steam is fed to a turbine to provide the power required by the HP boiler feed water pumps.


After the deaerator a further bank of pre-heaters preheats the feed water to 290°C prior to the boiler. These heaters are heated by MP turbine exhaust steam and finally by HP steam stream extracted from the turbine. Heat recovered in the CPU and in the boiler island allows avoiding the extraction from the MP section. Steam condensate recovered into the boiler feed water heaters is sent back to the deaerator.

Chemical injection for control of the water quality is made by dedicated packages on the suction of the boiler feed water pumps and at the inlet of the boilers.

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter D - Basic information on oxy-combustion SC PC plant Date: January 2014

Sheet: 31 of 35

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 32 of 35

2.7. Utility and Offsite units

These units are the same as the ones described in Chapter C for the air-fired boiler cases. Anyhow, the description of the units is here below reported for clarity of the reader.

2.7.1. Cooling water

The cooling water system consists of raw water in a closed loop, with a natural draft, evaporative cooling tower. There are two circulation systems, depending on the pressure profile through the circuit. The primary system is used for the steam turbine condenser while the secondary one is used for machinery cooling and other users. Each circulation system is equipped with single-stage vertical water pumps.

The maximum allowed cooling water temperature increase is 11°C. The blow-down is used to prevent the concentration of dissolved solids from increasing to the point where they may precipitate and scale-up heat exchangers and the cooling tower fill. The design concentrations cycles (CC) is 4.0.

Two concrete towers are considered, with a basin diameter around 120 m and 210 meters high. Each tower is equipped with two distribution systems, one primary distribution system supplying water from a concrete duct and one secondary system from PVC pipes equipped with sprayers, connected to the concrete ducts. Tower filling, with vertical channels, increases the cooling and thermal efficiency, allowing pollutants to be easily washed through. Drift eliminators guarantee a low drift rate and low pressure drop. To avoid freezing in winter ambient conditions, the fill pack is divided into zones to allow step by step reduction of cooling capacity while maintaining an excellent water distribution and spray sprinklers are installed to create a warm water screen on the air inlets to preheat the ambient air when freezing ambient conditions occurs.

2.7.2. Raw and Demineralised water

Raw water is generally used as make-up water for the power plant, in particular as make-up of the cooling tower. Raw water is also used to produce demineralised water. Raw water from an adequate storage tank is pumped to the demineralised water package that supplies make-up water with adequate physical-chemical characteristics to the thermal cycle and to the hydrated lime preparation unit.

The treatment system includes the following:

- <u>Filtering</u> through a multimedia filter to remove solids.
- Removal of dissolved solids: filtered water passes through the Reverse Osmosis (RO) cartridge filter to remove dissolved CO₂ and then to a reverse osmosis system to remove dissolved solids.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 33 of 35

 Demineralised water production: an electro de-ionization system is used for final polishing of the water to further remove trace ionic salts of the Reverse Osmosis (RO) permeate.

January 2014

Adequate demineralised water storage is provided by means of a dedicated demineralised water tank.

The demineralised water make-up supplies the make-up water to the thermal cycle, whilst the demineralised water distribution pump supplies demineralised water to the other plant users or to the plant circuits for first filling.

2.7.3. Fire fighting system

This system consists of all the facilities able to locate possible fire and all the equipment necessary for its extinction. The fire detection and extinguishing system essentially includes the automatic and manual fire detection facilities, as well as the detection devices with relevant alarm system. An appropriate fire detection and suppression system is considered in each fire hazard area according to the applicable protection requirements. The fire fighting water is supplied by a water pumping station via a looping piping network consisting in a perimetrical circuit fed by water pumped from the cooling tower basin.

2.7.4. <u>Instrument and plant air system</u>

The air compression system supplies air to the different process and instrumentation users of the plant.

The system consists mainly of:

- Air compressors, one in operation, one in stand-by.
- Compressed air receiver drum.
- Compressed air dryer for the instrument air.

The ambient air compressed by means of the air compressor is stored in the air receiver in order to guarantee the hold-up required for emergency shutdown.

Plant air is directly taken from the air receiver, while air for instrumentation is sent to the air dryer where air is dried up to reach an adequate dew point, to ensure proper operation of the instrumentation.

2.7.5. Waste Water Treatment

All the liquid effluents generated in the plant are treated in the wastewater treatment system in order to be discharged in accordance with the current local regulations.

The following description gives an overview of the waste water treatment configuration, generally adopted in similarly designed power plants; it includes a

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 34 of 35

preliminary identification of the operations necessary to treat the different waste water streams generated in the power plant.

January 2014

The Waste Water Treatment unit is designed to treat the following main waste water streams:

- Sour condensate from the boiler warm end and the sour compression section of the CPU
- Potentially oil-contaminated rain water
- Potentially dust-contaminated rain water
- Clean rain water
- Sanitary waste water.

Mainly, the above streams are collected and routed to the waste water treatment in different systems according to their quality and final treatment destination.

The WWT system is equipped mainly with the following treatment sections:

- Treatment facilities for the sour condensate
- Treatment facilities for the potentially oily contaminated water
- Treatment facilities for the potentially dust contaminated water
- Treatment facilities for not contaminated water
- Treatment facilities for the sanitary wastewater.

Sour condensate

Sour condensate from the boiler warm end and the sour compression section of the CPU are treated in dedicated section of the Waste Water Treatment to remove acidic component and maximise water recovery. The following alternative treatment can be considered:

- Neutralisation
- Resins
- Reverse osmosis

At this study level, it is not possible to identify the optimum solution for the study case. Main parameter affecting the selection and the severity of the treatment are the recovered water utilisation and destination of the blow-down stream to be discharged (i.e. river or sea).

Potentially Dust Contaminated Water Treatment

Rain water and washing water from areas subject to potential dust contamination is treated in apposite water treatment systems prior to be sent to the "potentially oil contaminated" treatment system.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D - Basic information on oxy-combustion SC PC plant Sheet: 35 of 35

In particular, they are collected in a dedicated sewer, sent to a lamination tank and then to a chemical/physical treatment to remove the substances that are dissolved and suspended.

January 2014

The system includes also a neutralization system to modify potential acidity and/or alkalinity of washing water used for the air pre-heaters.

Potentially Oil-Contaminated Water Treatment

Potentially oil-contaminated waters are:

- Washing water from areas where there is equipment containing oil.
- Rain water from areas where there is equipment containing oil.

After being mixed with treated water coming from "potentially dust contaminated" system, water is treated in a flotation and filtration system, where emulsified oil and suspended solids are respectively separated.

Treated effluent water will have the characteristics to respect the local regulations so that it can be consequently discharged.

Not Contaminated Water Treatment

Rainwater fallen on clean areas of the plant, such as roads, parking areas, building roofs, areas for warehouse/services/laboratory etc. where there is no risk of contamination, will be collected and disposed directly to the water discharge system.

A coarse solids trap is installed upstream the discharge point in order to retain coarse solids that may be carried together with the discharge water.

Sanitary Water Treatment

The sanitary waste water streams discharged from the different sanitary stations of the plant will be collected in a dedicated sewage and destined to the Sanitary Water Treatment system. This section generally involves the following main water treatment operations:

- Primary sedimentation for coarse solids removal.
- Biological treatment for BOD removal.
- Filtration for residual organic matter and suspended solids separation.
- Disinfection for bacteria inhibition.

January 2014

Sheet: 1 of 18

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 3: OXY-COMBUSTION SC PC WITH CCS

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Date: January 2014

Sheet: 2 of 18

TABLE OF CONTENT

1.	Introduction3
	1.1. Process unit arrangement
2.	Process description4
	2.1. Overview4
	2.2. Unit 900 – Air Separation Unit4
	2.3. Unit 1000 – Feedstock and solid handling4
	2.4. Unit 2000 – Boiler Island
	2.5. Unit 2100 – Flue Gas Desulphurization
	2.6. Unit 3000 – Steam Cycle
	2.7. Unit 4000 – CO ₂ compression and purification5
	2.8. Unit 6000 - Utility Units
3.	Process Flow Diagrams7
4.	Heat and Material Balance8
5.	Utility and chemicals Consumption9
6.	Overall Performance
7.	Environmental impact
	7.1. Gaseous emissions15
	7.2. Liquid effluent16
	7.3. Solid effluents
8.	Preliminary plot plan17
9.	Equipment list18

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

1. Introduction

This chapter of the report includes all technical information relevant to Case 3 of the study, which is an oxy-combustion supercritical pulverised coal (SC PC) fired steam plant, with cryogenic purification and separation of the carbon dioxide. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce electric power for export to the external grid.

Sheet: 3 of 18

1 x 100%

2 x 50%

N/A

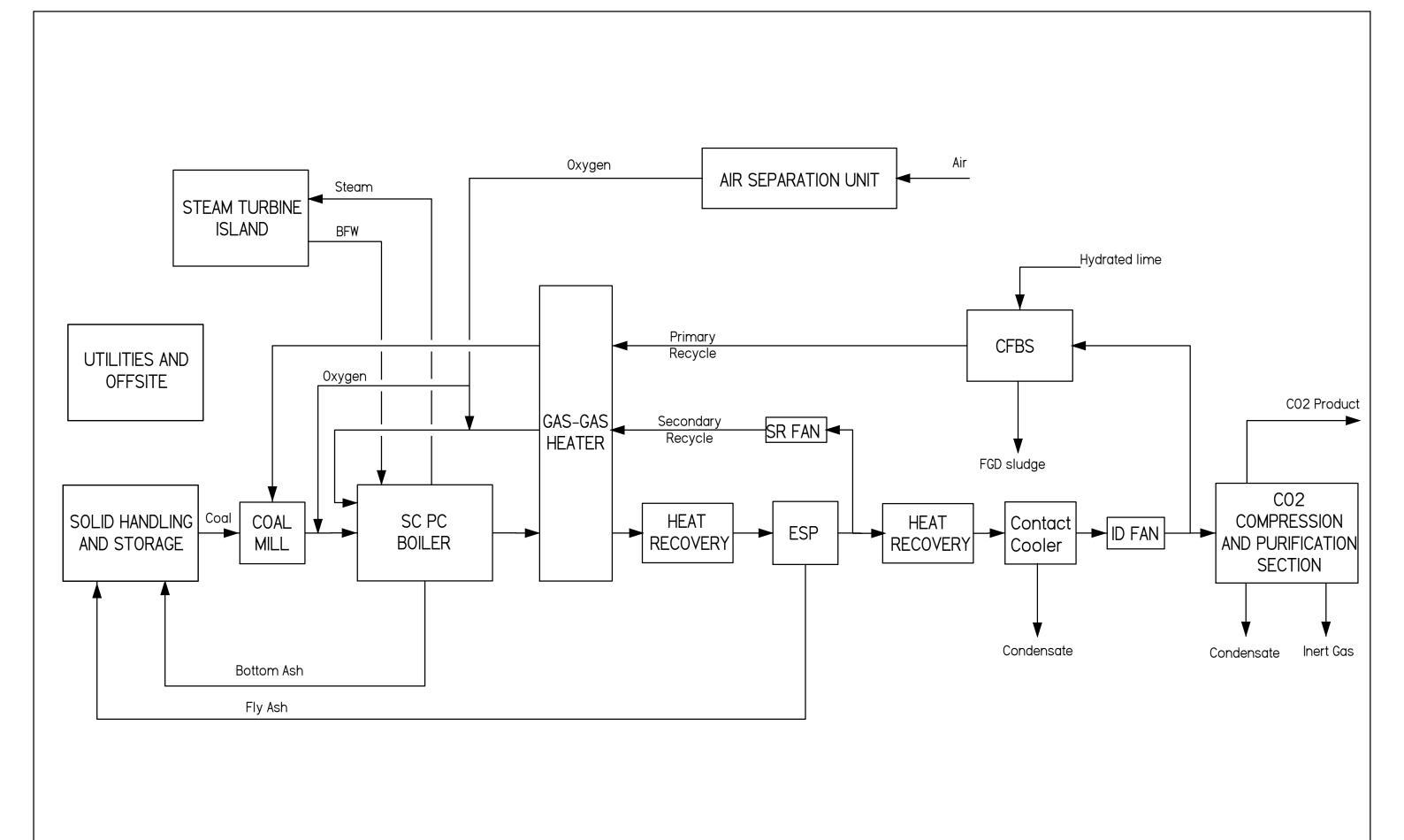
The configuration of the oxy-combustion SC PC plant is based on one once-through steam generator, with superheating and single steam reheating, and a steam turbine generator. Plant is sized by considering same input thermal capacity as the reference case without carbon capture (refer to chapter C.1 of the report).

The description of the main process units is covered in chapter D of this report and only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

6000

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.


Unit **Trains Description** 900 Air Separation Unit 3 x 33% Storage and Handling of solid materials 1000 N/A 2000 Oxy combustion SC PC supercritical boiler 1 x 100% Electro Static precipitators 1 x 100% 2100 Flue Gas Desulphurisation (FGD) 1 x 100% 3000 Steam Cycle (SC) Steam Turbine and Condenser 1 x 100% Deaerator 1 x 100% Water Preheating line 1 x 100% 4000 CO₂ purification and compression Sour compression 1 x 100%

Auto-refrigerated inert removal section

CO₂ compressors

Utility and Offsite

Table 1. Case 3 – Unit arrangement

0	July 13	Draft	GP	LM	UNIT: Block Flow Diagram		
Rev.	Date	Comment	Ву	Appr	CASE: 3	Sheet 01 of 01	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

Sheet: 4 of 18

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) shown in section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Air Separation Unit

The ASU is based on the cryogenic distillation of atmospheric air at low pressure and it is designed to produce oxygen at 97 % mol O₂ purity.

Technical information relevant to this unit is reported in chapter D, section 2.5, while main process information of this case and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.3. Unit 1000 – Feedstock and solid handling

The unit is composed of the following systems:

- Coal storage and handling
- Lime storage and handling
- Ashes collection and storage
- FGD sludge storage and handling.

The general description relevant to this unit is reported in chapter D, section 2.1.

Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.4. Unit 2000 – Boiler Island

This unit includes single pass tower-type super critical boiler, with multistage combustion of oxygen and flue gas for NOx control, the primary and secondary recycle ducts, the heat recovery section and the contact column for final flue gas cooling. Oxygen at 97% vol. purity from the Air Separation Unit is fed as oxidiser to the burners.

Technical information relevant to this unit is reported in chapter D, section 2.2, while main process information of this case and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.5. Unit 2100 – Flue Gas Desulphurization

Foster Wheeler Energie GmbH Circulating Fluid Bed Scrubber (CFBS) system with hydrated lime injection and fabric filter was selected for the development of this study case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 5 of 18

The FGD is installed on the primary recycle to reduce the SO₂ concentration in the furnace and in the flue gas recycle loop below the limit at which excessive gas-side tube corrosion occurs. Furthermore, the installation of the FGD allows controlling the SOx/NOx ratio to the optimum value for the downstream CO₂ purification and compression unit (CPU). For this study case, the FGD is sized to reduce the sulphur concentration in the furnace below 1700 ppmv.

Technical information relevant to this technology is reported in chapter D, section 2.3.1. The impact of a different FGD technology and supplier is also summarised in chapter D, section 2.3.4.

Main process information of this case and interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.6. Unit 3000 – Steam Cycle

The steam cycle is mainly composed of one supercritical Steam Turbine Generator (STG), one water-cooled condenser and the water pre-heating line. General description relevant to this unit is reported in chapter D, section 2.6.

Main process information of this case and interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.7. Unit 4000 – CO₂ compression and purification

This unit is mainly composed of the following systems:

- Sour compression for the combined removal of SOx and NOx;
- TSA unit;
- Auto-refrigerated inerts removal, including distillation column for meeting the required oxygen specification in the CO₂ product;
- The remaining part of the compression system up to 110 bar.

Air Products' process is considered for the development of this study case. Technical information relevant to this system is reported in chapter D, section 2.4.

Main process information of this case and interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.8. Unit 6000 - Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

- Cooling Water system, based on two natural draft cooling towers, with the following characteristics:

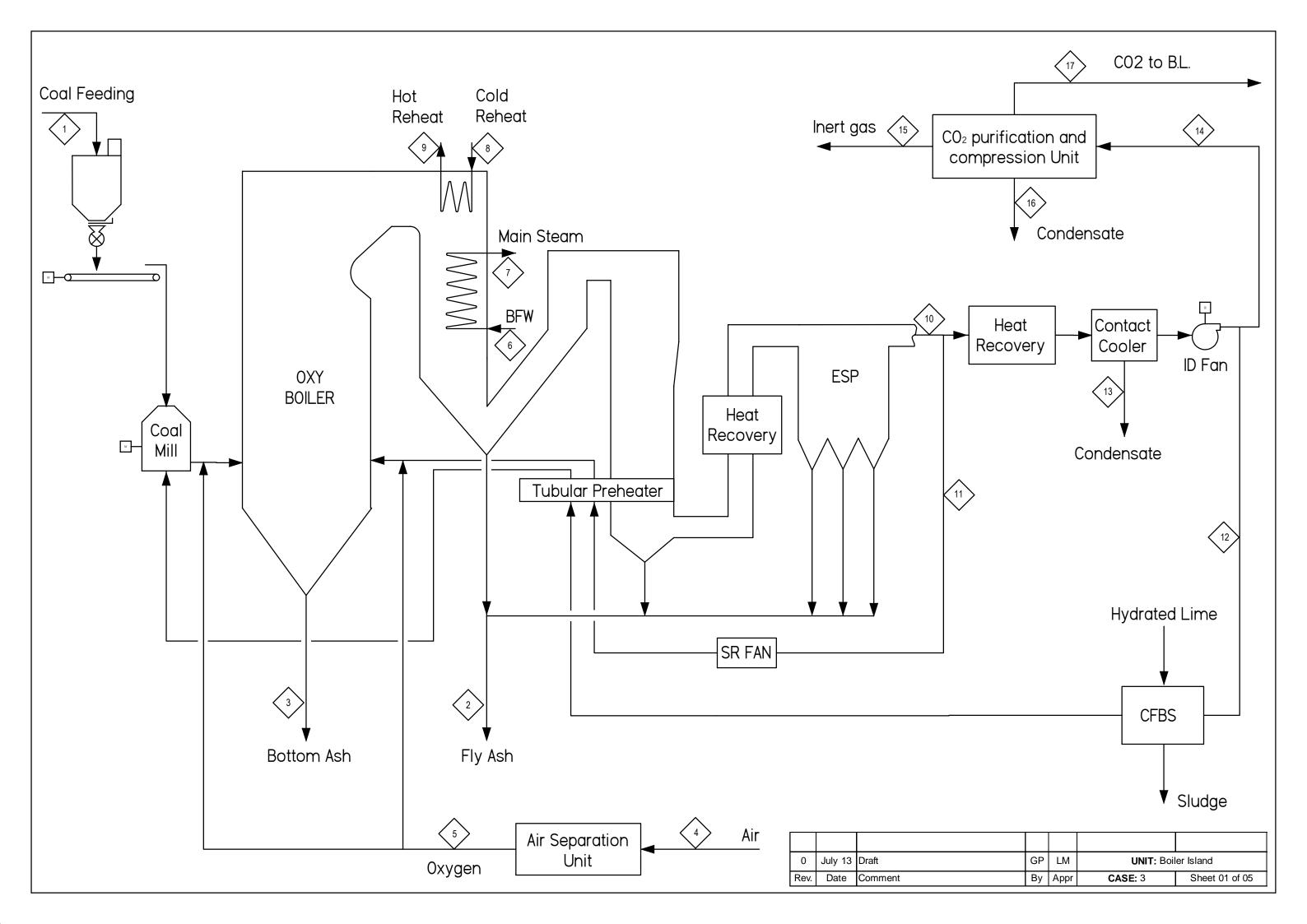
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

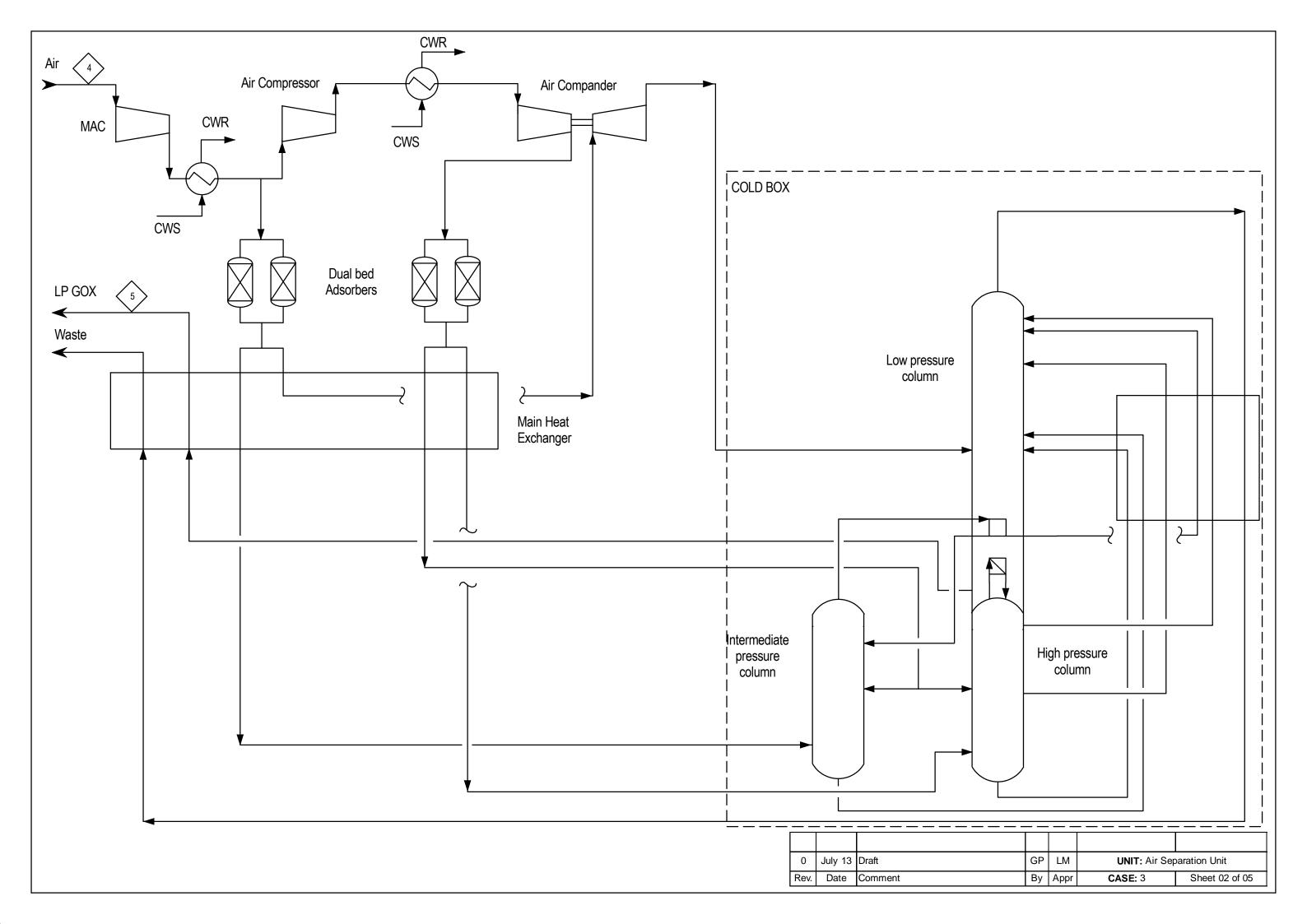
Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 6 of 18

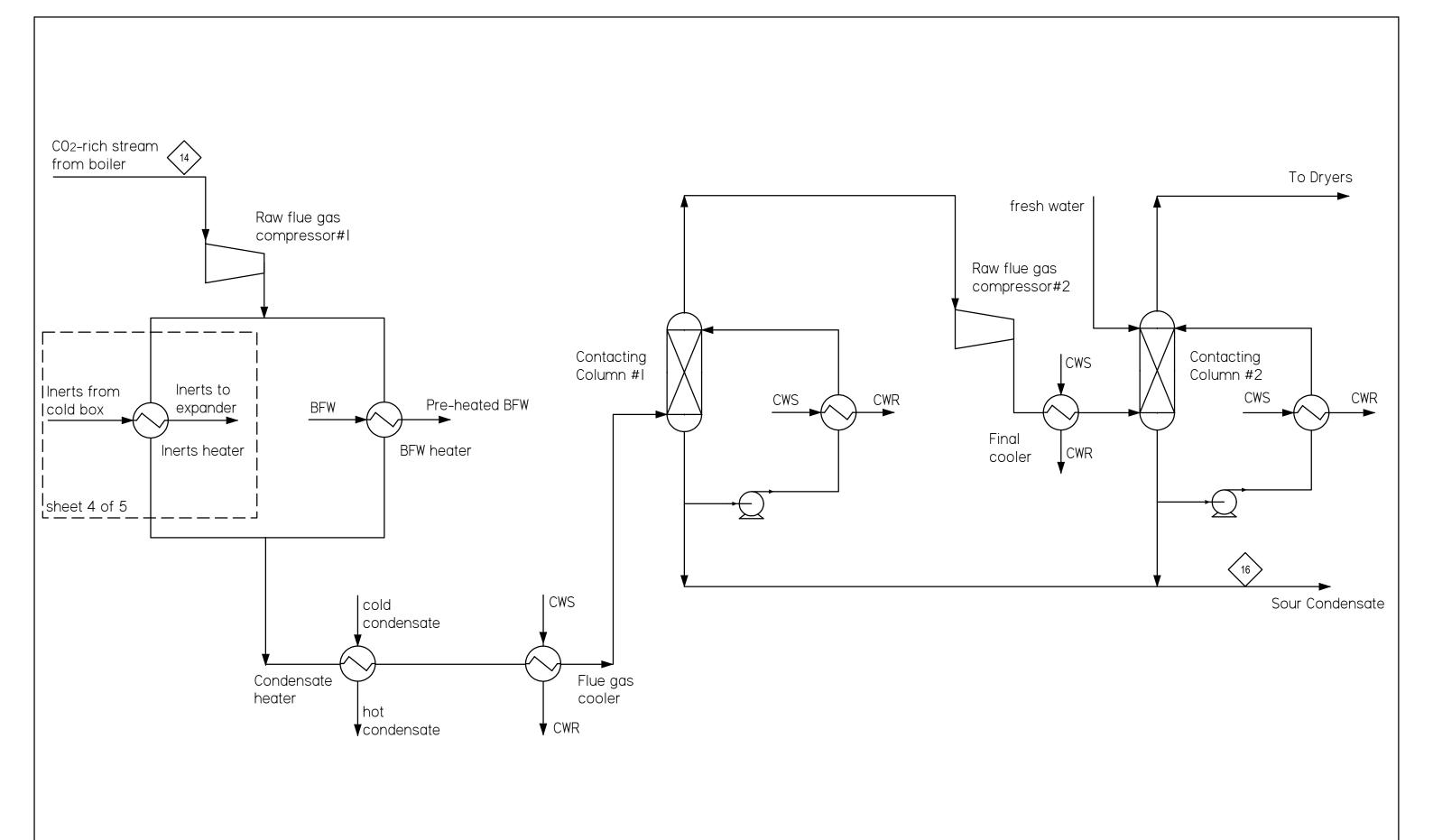
Basin diameter	120 m
Cooling tower height	210 m
Water inlet height	17 m

- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

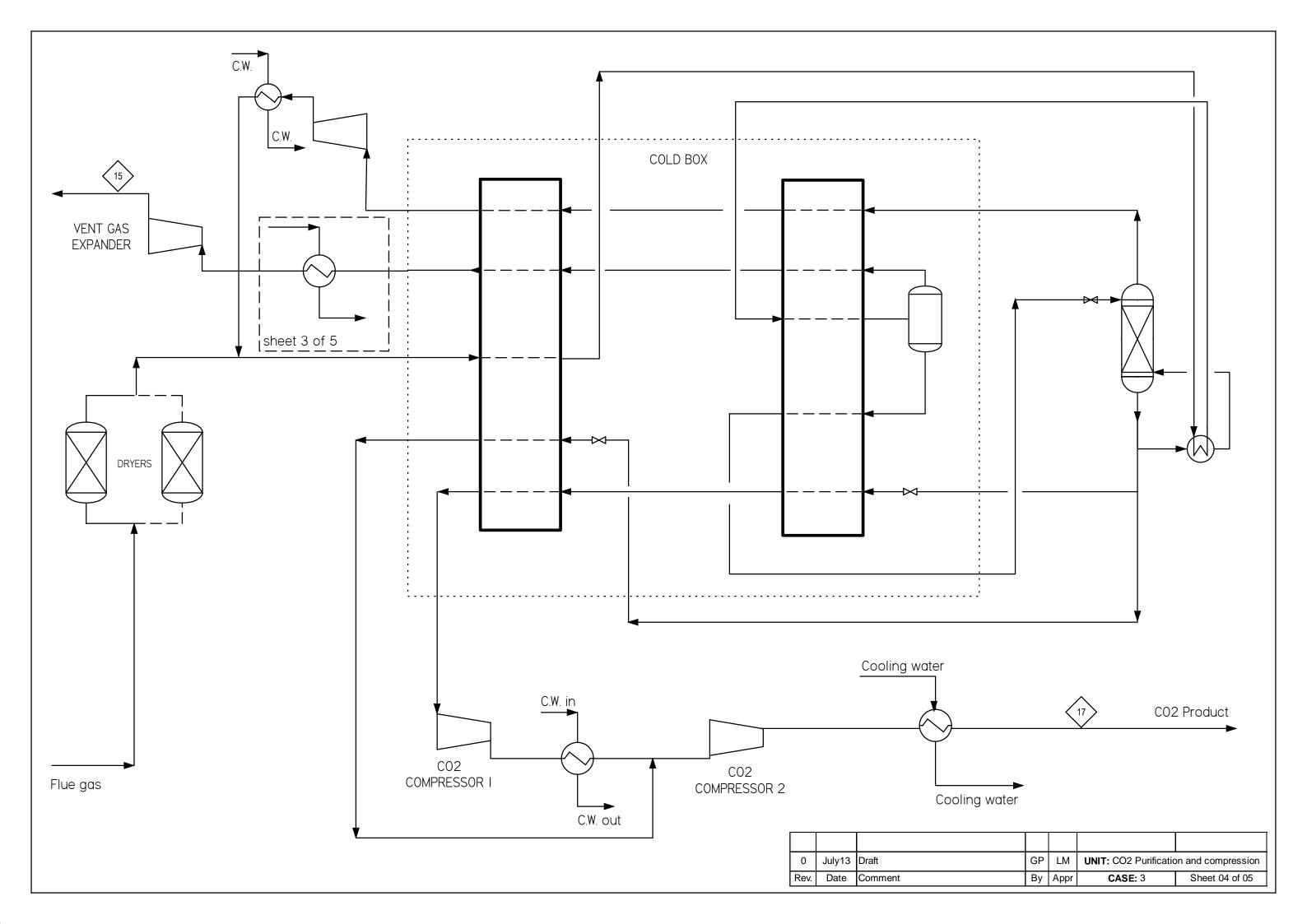
Process descriptions of the above systems are enclosed in chapter D, section 2.7.

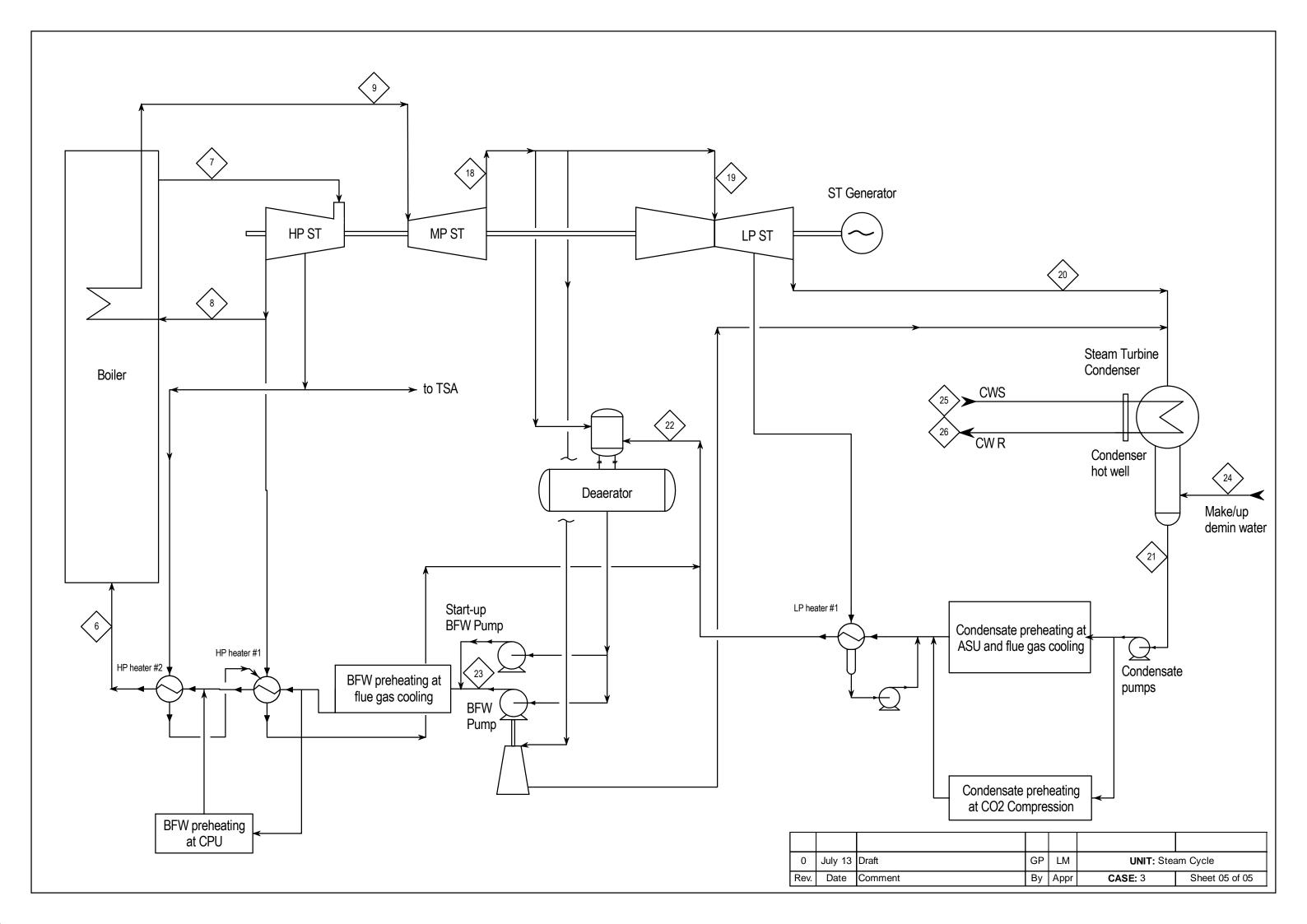



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 7 of 18

3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



0	July13	Draft	GP	LM	UNIT: Sour compression		
Re	. Date	Comment	Ву	Appr	CASE: 3	Sheet 03 of 05	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 8 of 18

4. Heat and Material Balance

Heat & Material Balances reported make reference to the simplified Process Flow Diagrams reported in section 3.

January 2014

	Case 3 - Oxyco	ombustion SC PC - HEAT AND MATERIAL BALANCE	REVISION	0	
	CLIENT:	IEA GHG	PREP.	NF	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	LM	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	The Netherlands	DATE	July 13		

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	1	2	3	4	5	6	7	8	9	10
STREAM	Coal to Boiler Island	Fly Ash	Bottom Ash	Air intake from Atmosphere	Oxygen to boiler	BFW from steam cycle	HP Steam to Steam Turbine	Cold Reheat from Steam Turbine	Hot Reheat to Steam Turbine	Flue gas from ESP
Temperature (°C)	AMB	AMB	AMB	9	AMB	290	600	366	620	160
Pressure (bar)	ATM	ATM	ATM	ATM	ATM	325	270	63	60	-
TOTAL FLOW	Solid	Dry solid	Dry solid							
Mass flow (kg/h)	325,000	29,200	12,500	2,920,000	694,000	2,900,000	2,900,000	2,195,000	2,195,000	3,400,000
Molar flow (kmol/h)				101,200	21,635	161,020	161,020	121,880	121,880	92,700
LIQUID PHASE										
Mass flow (kg/h)						2,900,000				
GASEOUS PHASE										
Mass flow (kg/h)				2,920,000	694,000		2,900,000	2,195,000	2,195,000	3,400,000
Molar flow (kmol/h)				101,200	21,635		161,020	121,880	121,880	92,700
Molecular Weight				28.9	32.1		18.0	18.0	18.0	36.7
Composition (vol %)	%wt									
H_2				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CO	C: 64.6%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CO ₂	H: 4.38%			0.03%	0.00%	0.00%	0.00%	0.00%	0.00%	62.93%
N_2	O: 7.02%			77.27%	1.20%	0.00%	0.00%	0.00%	0.00%	11.44%
02	S: 0.86%			20.73%	97.00%	0.00%	0.00%	0.00%	0.00%	5.29%
CH ₄	N: 1.41%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Ar	Cl: 0.03%			0.92%	1.80%	0.00%	0.00%	0.00%	0.00%	1.53%
H ₂ O	Moisture: 9.5%			1.05%	0.00%	100%	100%	100%	100%	18.60%
SO ₂	Ash: 12.20%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.17%
NO / NO ₂				-	-	-	-	-	-	0.04%
HNO ₃				-	-	-	-	-	-	-
H ₂ SO ₄				-	-	-	-	-	-	-
Total				100%	100%	100%	100%	100%	100%	100%

NOTE

1. Air in-leakage are included in the flue gas streams

	Case 3 - Oxyo	ombustion SC PC - HEAT AND MATERIAL BALANCE	REVISION	0	
	CLIENT:	IEA GHG	PREP.	NF	
FOSTERWHEELER	PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	CHECKED	LM	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	July 13	

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	11	12	13	14	15	16	17			
STREAM	Secondary recycle to boiler	Primary recycle to FGD	Condensate from Contact Cooler	Flue gas to CPU	Inert gas vent	Condensate from CPU	CO ₂ product			
Temperature (°C)	170	38	28	38	210	25	30			
Pressure (bar)	-	-	-	-	1.6	2.0	110			
TOTAL FLOW										
Mass flow (kg/h)	1,490,000	850,000	146,600	932,880	222,000	20,470	685,985			
Molar flow (kmol/h)	40,630	21,210	8,140	23,290	6,630	930	15,587			
LIQUID PHASE										
Mass flow (kg/h)			146,600			20,470				
GASEOUS PHASE										
Mass flow (kg/h)	1,490,000	850,000		932,880	222,000		685,985			
Molar flow (kmol/h)	40,630	21210		23290	6,630		15,587			
Molecular Weight	36.7	40.1		40.1	33.5		44.0			
Composition (vol %)										
H_2	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			
СО	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%			
CO ₂	62.93%	74.41%	0.00%	74.41%	24.50%	0.03%	99.98%			
N_2	11.44%	13.54%	0.00%	13.54%	47.24%	0.00%	46 ppmv			
02	5.29%	6.25%	0.00%	6.25%	21.41%	0.00%	100 ppmv			
CH ₄	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-			
Ar	1.53%	1.82%	0.00%	1.82%	6.33%	0.00%	27 ppmv			
H ₂ O	18.60%	3.76%	99.99%	3.76%	0.52%	94.55%	-			
SO ₂	0.17%	0.18%	0.00%	0.18%	0.00%	240 ppmv	-			
NO / NO ₂	0.04%	0.04%	0.00%	0.04%	0.00%	0.23 ppmv	-	-	-	
HNO ₃	-	-	0.00%	-	-	0.99%	-	-	-	
H_2SO_4	-	-	0.01%			4.41%	-			
Total	100%	100%	100%	100%		100%	100%			

NOTE

1. Air in-leakage are included in the flue gas streams

Case 3	B - Oxycombustion SC PC - H&M BALANCE	Revision	0	
CLIENT:	IEA GHG	Prepared	NF	
PROJECT NAME:	PROJECT NAME: CO2 capture at coal based power and H2 plants		LM	
PROJECT NO:	1-BD-0681 A	Approved	LM	
LOCATION:	The Netherlands	Date	July 13	

HEAT AND MATERIAL BALANCE UNIT 3000 - STEAM CYCLE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
6	HP Water to Boiler Island	2,900	290	323.5	1278
7	HP Steam from Boiler to HP Steam Turbine	2,900	600	270.0	3475
8	Cold Reheat to Boiler	2,195	367	63.0	3084
9	Hot Reheat to MP Steam Turbine	2,195	620	60.0	3706
18	MP Steam Turbine exhaust	2,195	285	6.0	3031
19	Steam to LP Steam Turbine	2,010	285	5.9	3031
20	Exhaust from LP steam turbine	1,864	29	0.04	2284
21	Condensate from condenser	2,040	29	0.04	121
22	Condensate to deaerator	2,850	138	9.5	581
23	BFW to pre-heating train	2,900	148	325	644
24	Make up Water	5	9	ATM	38
25	Cooling Water Inlet	94,745	15	4.0	63
26	Cooling Water Outlet	94,745	26	3.5	109

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

5. Utility and chemicals Consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

Sheet: 9 of 18

- Water consumption summary, reported in Table 2,
- Electrical consumption summary, shown in Table 3,
- Sorbent and chemicals consumption, shown in Table 4.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

Date: January 2014

Sheet: 10 of 18

Table 2. Case 3 – Water consumption summary

CLIENT: IEAGHG REVISION 0

PROJECT NAME: CO2 capture at coal based power and H2 plants
PROJECT No.: 1-BD-0681 A MADE BY NF
LOCATION: The Netherlands APPROVED BY LM

Case 3 - Water consumption

UNIT	DESCRIPTION UNIT	Raw Water [t/h]	Demi Water [t/h]	Cooling Water 1° syst. [DT = 11°C] [t/h]	Cooling Water 2° syst. [DT = 11°C] [t/h]
1000	FEEDSTOCK AND SOLID HANDLING				
1000	Solid Receiving, Handling and storage	5			
	3, 2 3 3 3	-			
2000	Air Separation Unit				
	Air Separation unit				1250
2000	BOILER ISALND and FLUE GAS TREATMENT				
	Boiler island				11080
	Flue Gas Desulphurization (CFBS)				
					2045
	CO2 compression and purification				9015
F00	DOM/FRISLAND/Steem Turking)				
500	POWER ISLAND (Steam Turbine) Condenser			94745	
	Condenser			94745	
	Turbine and generator auxiliaries		5.0		5080
	Turbine and generator auxiliaries		5.0		3000
ВоР	UTILITY and OFFSITE UNITS				
	Cooling Water System	2180			
	, , , , , , , , , , , , , , , , , , , ,				
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	8.0	-5.0		
	Waste Water Treatment	-160			
	"				
	Miscellanea				100
	BALANCE	2033	0.0	94745	26525

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 11 of 18

Table 3. Case 3 – Electrical consumption summary

FOSTER WHEELER

CLIENT: PROJECT NAME: PROJECT No. : LOCATION :	IEAGHG CO2 capture at coal based power and hydrogen plants DATI 1-BD-0681 A The Netherlands APPROVED BY	E Apr-13 V NF
	Case 3 - Electrical consumption	
UNIT	DESCRIPTION UNIT	Absorbed Electric Power [kW]
900	AIR SEPARATION UNIT	
	Main air compressors	111060
	Booster air compressors + pumps	18280
1000	FEEDSTOCK AND SOLID HANDLING	
	Solid Handling	3255
2000	BOILER ISLAND and FLUE GAS TREATMENT	
	Boiler island (including FGD)	14370
3000	STEAM CYCLE	
3000	Steam Turbine Auxiliaries and condenser	4700
	Condensate and feedwater system	1250
	Miscellanea	600
4000	CO2 PURIFICATION AND COMPRESSION	
	Flue gas compression (up to 35 bar)	83390
	CO2 compression (up to 110 bar)	26790
	Overhead recycle	790
	Expander	-15110
ВоР	UTILITY and OFFSITE UNITS	
	Cooling Water System	14290
	Other Units	1430
	BALANCE	265,095

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 12 of 18

Table 4. Case 3 – Sorbent and chemicals consumption

	Consumption
Lime injection to the FGD	7.0 t/h

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 13 of 18

6. Overall Performance

The following table shows the overall performance of Case 3.

FOSTER WHEELER

CLIENT: **IEAGHG REVISION** 0 PROJECT NAME: CO2 capture at coal based power and hydrogen plants DATE Jun-13 PROJECT No. : 1-BD-0681 A **MADE BY** NF LOCATION: The Netherlands **APPROVED BY** LM

Case 3 - Oxy SC PC Plant Performance Summary

OVERALL PERFORMANCES						
Fuel flow rate (A.R.)	t/h	325.0				
Fuel HHV (A.R.)	kJ/kg	27060				
Fuel LHV (A.R.)	kJ/kg	25870				
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335				
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443				
Steam turbine power output (@ gen terminals)	MWe	1101.0				
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	1101.0				
Boiler Island (including FGD)	MWe	14.4				
Utility & Offsite Units consumption	MWe	15.7				
Power Islands consumption	MWe	6.6				
Air Separation Unit consumptions	MWe	129.3				
CO2 purification and compression	MWe	95.9				
Feedstock and solids handling	MWe	3.3				
ELECTRIC POWER CONSUMPTION	MWe	265.1				
NET ELECTRIC POWER OUTPUT	MWe	835.9				
(Step Up transformer efficiency = 0.997%) (B)	MWe	833.4				
Gross electrical efficiency (C/A x 100) (based on LHV)	%	47.1%				
Net electrical efficiency (B/A x 100) (based on LHV)	%	35.7%				
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	45.1%				
Net electrical efficiency (B/A' x 100) (based on HHV)	%	34.1%				
Fuel Consumption per net power production	MWth/MWe	2.80				
CO ₂ emission per net power production	kg/MWh	92.2				

⁽¹⁾ Steam driven BFW pumps are included

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 14 of 18

The following table shows the overall CO₂ balance and removal efficiency of Case 3.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
FUEL CARBON CONTENT (A)	17495
OUTPUT	
Carbon losses (B)	166
CO ₂ flue gas content	17329
Total to storage (C)	15584
Emission (inert + losses)	1745
TOTAL	17495
Overall Carbon Capture, % ((B+C)/A)	90.0

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

7. Environmental impact

The oxy-combustion SC PC steam plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 15 of 18

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the inerts vent stream from the CO_2 purification unit. Table 5 summarizes the expected flow rate and composition of the inerts vent.

Minor and fugitive emissions are related to seal losses in the CO_2 purification unit and to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air containing particulate.

Flue gas to stack Emission type Continuous Conditions Wet gas flowrate, kg/h 222,000 Flow, Nm³/h 149,000 Composition (% vol) 6.33 Ar N_2 47.24 21.41 O_2 CO_2 24.50 0.52 H_2O NOx < 1 ppmv SOx < 1 pmmv

Table 5. Case 3 – Plant emission during normal operation

Table 6. Case 3 – Plant minor emission

Emission source	Emission type	Temperature	
Coal milling and feed system	Continuous	ambient	Air: 10 mg/Nm ³ particulate
Lime milling and preparation	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
Ash storage and transfer	Intermittent	ambient	Air: 10 mg/Nm ³ particulate
CO ₂ purification unit	Continuous	N/A	CO ₂ , O ₂ , N ₂ , Ar

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS

Sheet: 16 of 18

7.2. Liquid effluent

The plant does not produce significant liquid waste. Plant blow-downs (e.g. flue gas final contact cooler, CO₂ purification unit) are treated to recover water, so main liquid effluent is cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids.

Cooling Tower blowdown

Flowrate : $520 \text{ m}^3/\text{h}$

7.3. Solid effluents

The power plant is expected to produce the following solid effluents:

Fly ash from boiler

Flowrate : 29.2 t/h

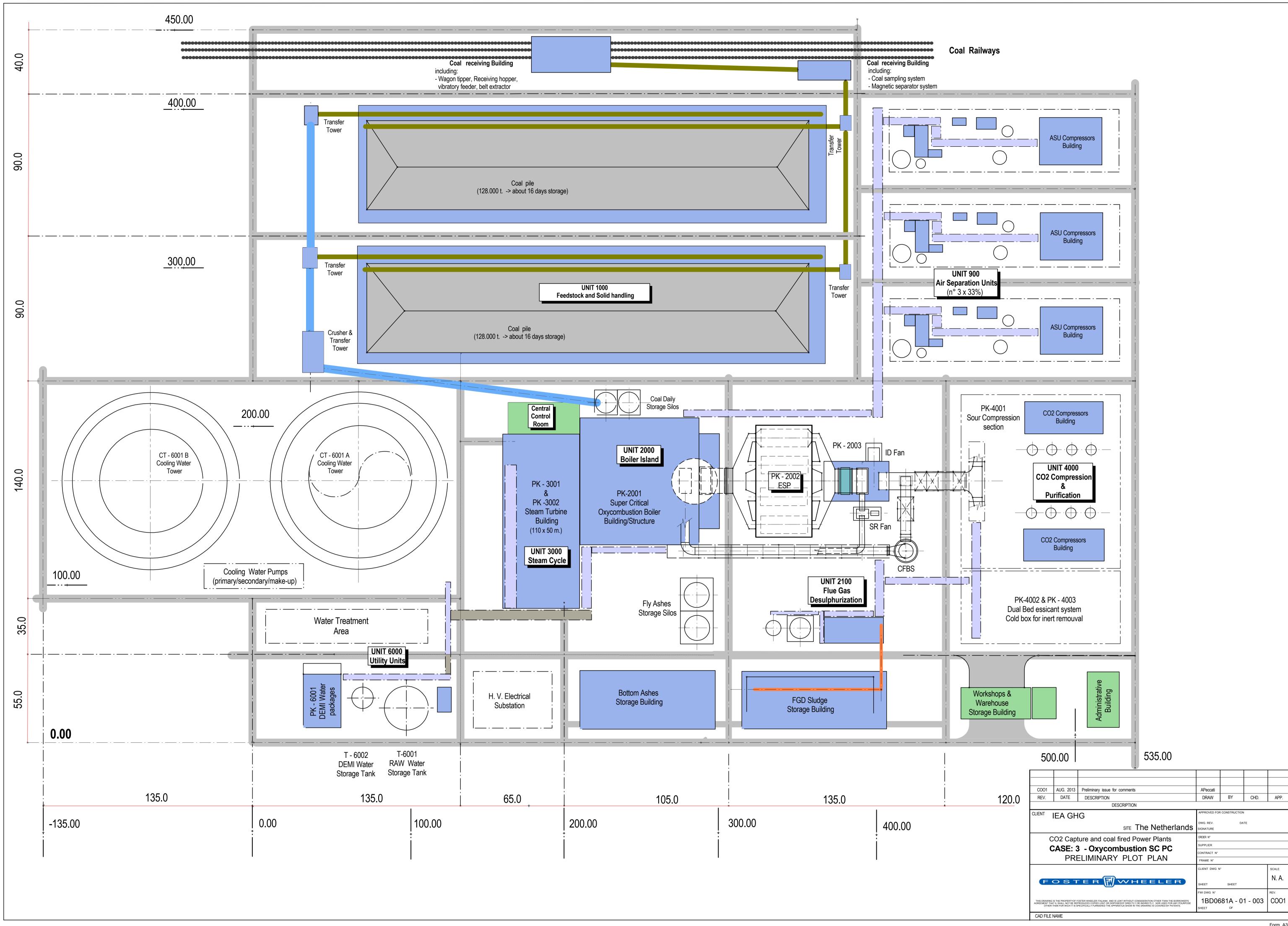
Bottom ash from boiler

Flowrate : 12.5 t/h

Sludge from FGD

Flowrate: 13.3 t/h

Fly and bottom ash might be sold to cement industries, if local market exist, or sent to disposal, outside plant battery limits. Sludge from FGD shall also be sent to outside disposal.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 17 of 18

8. Preliminary plot plan

Plot plan at block level of Case 3 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.1 - Case3: Oxy-combustion SC PC with CCS Sheet: 18 of 18

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 900 - Air Separation Unit (3 x 33%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	AIR SEPARATION UNIT							
PK - 901 A/B/C	Air Separation unit Including		3 x 5555 t/d					
	 Main Air Compressors Booster air compressor Compander Air purification system Main heat exchanger ASU compander ASU Column System Pumps ASU chiller 	Axial Centrifugal		2 x 21,000 kWe 6,400 kWe				
TK - 901	LOX storage tank		200 t					Common to all trains. Required for safe switch of the boiler to air operation

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION Rev.: Draft Rev.: 0 Rev.1 Rev.2 DATE Jun-13 Jan-14 ISSUED BY NF NF LM CHECKED BY LM APPROVED BY LM LM

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COAL HANDLING SYSTEM							
	Including: - Wagon tipper - Receiving Hopper, vibratory feeder and belt extractor - Conveyors - Transfer Towers - As-Received Coal Sampling System - As-Received Magnetic separator System	Belt enclosed Two - Stage Magnetic Plates	Coal flowrate to boiler: 325 t/h					30 days storage Storage piles: 2 x 128,000 t each
	 Conveyors Transfer Towers Cruscher Tower As-Fired Coal Sampling System As-Fired Magnetic separator System Coal Silo Filters Fans 	Belt enclosed Impactor reduction Swing hammer Magnetic Plates	2 x 4900 m3					For daily storage
	LIME HANDLING SYSTEM							
	Including: - Wagon tipper - Receiving Hopper, vibratory feeder and belt extractor - Conveyor	Belt	Lime flowrate to FGD: 7.0 t/h Lime storage volume: 4600 m3					30 days storage
	- Transfer Tower - Lime Sampling System - Separator System - Transfer Tower - Conveyor	enclosed Swing Hammer Magnetc Plates enclosed Belt with tipper						
	- Lime Silo - Filters and fans	11	2 x 155 m3					For daily storage

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVIS	SION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DA	ГЕ	Jun-13	Jan-14		
ISSUE	D BY	NF	NF		
CHECK	ED BY	LM	LM		
APPROV	ED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Feedstock and Solid handling

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	ASH SYSTEM							
	Including:		Bottom Ash Capacity: 12.5t/h					
	- Ash storage silos		Bottom Ash Storage volume: 6000 m3					14 days storage capacity
	- Ash conveyors							
	- Bottom ash crusher		Fly Ash Capacity: 29.2t/h					14 days storage capacity
	- Pneumatic conveying system		Fly Ash Storage volume: 14000 m3					
	- Compressors							
	- Filters							
	- Fans							
	FGD BY-PRODUCT SYSTEM							
	Including:		Capacity: 13.3t/h					
	- Storage unit		Storage volume: 7367 m3					30 days storage capacity
	- Conveyors							1 operating, 1 spare

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2000 - Boiler Island

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	BOILER							
PK - 2001	Super Critical Oxycombustion Boiler		Capacity: 2900 t/h main steam production Thermal input: 2443 MWth (HHV) / 2335 MWth (LHV) Main steam condition: 270 bar(a)/600 °C Reheat steam condition: 60 bar(a)/620 °C				(1)	Boiler package including: - Fuel Feeding system - Coal mill - One Fired Boiler Furnace - Low NOx burners system including main burners and pilots - Economizers/super heater coils, water wall circuit - Reheating coils - Tubular gas/gas heater - Secondary Flue Gas Recycle fans with electric motor (2 x 60%) - Flue gas ducts - Start-up system - Ash collection hoppers - Bottom Ash cooling devices - All exchangers, drums, and miscellaneous equipment required for the heat recovery of the flue gases
K - 2001 A/B	ID fan	Axial	Flowrate: 2 x 500 x 10^3 Nm3/h Vol. Flow: 2 x 575 x 10^3 m3/h Power consumption: 2 x 2880 kW	2 x 3200 kWe				
PK - 2002	Flue gas cleaning system	ESP	Removal efficiency: 99.9%					
PK - 2003	Indirect Contact Cooler							
PK - 2004	Stack							For start-up and up-set conditions

Notes:

⁽¹⁾ Reference for boiler material selection:

A. Robertson, H. Agarwal, M. Gagliano, A. Seltzer, Oxy-combustion boiler material development, 35th International Technical Conference on Clean Coal & Fuel System, Clearwater, Florida (USA)

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 2100 - FGD

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	FGD SYSTEM							
	FGD system Including: - Flue gas ducts with dampers - One Circulating Fluid Bed Scrubber (CFBS) - Internal scrubber equipment - One Fabric filter with recirculating system - Air blowers - Silo for absorbent - Product Silo for residue - Water storage tank - Water injection system for CFBS - Lime hydration system		Flue gas inlet flowrate: 476000 Nm3/h Removal efficiency: 95 %					

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	PACKAGES							
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		1100 MWe HP admission:					Including: Lube oil system Cooling system
			2900 t/h @ 270 bar Hot reheat admission: 2200 t/h @ 60 bar LP admission: 2020 t/h @ 5.9 bar					Idraulic control system Drainage system Seals system Drainage system Electrical generator and relevant auxiliaries
E- 3001 A/B E- 3002	Inter/After Condenser Gland Condenser							
PK- 3002 E- 3001	Steam Condenser Package Steam condenser		1210 MWth					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
PK- 3003	Steam Turbine Bypass System							Including: MP dump tube LP dump tube HP/MP Letdown station MP Letdown station LP Letdown station
PK- 3004 PK- 3005 PK- 3006	Phosphate injection package Oxygen scavanger injection package Amines injection package							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3000 - Steam Cycle

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	HEAT EXCHANGERS		Duty (kW)		Shell/tube	Shell/tube		
E- 3003	BFW Economiser #1		66500					
E- 3004	BFW Economiser #2		360000					
E- 3005	Condensate heater #1		101000					
	PUMPS		Q [m ³ /h] x H [m]					
P- 3001 A/B	BFW pumps	Centrifugal Steam driven	3200 x 3560	35000				Two operating
P- 3002	BFW pump	Centrifugal						For start-up, electric motor
P- 3003 A/B	Condensate pump	Centrifugal	2500 x 160	1120				One operating one spare, electric motor
	VESSEL							
D- 3001	Dearator	Horizontal						

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - CO2 compression and purification

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	PACKAGES							
PK - 4001	Sour compression section Including: - Raw flue gas compressors (two stages) - Contacting column with liquid pump around for sulphuric and nitric acid removal - Flue gas cooler downstream compressor BFW heater Condensate heater		Dry flue gas: 22,415 kmol/h 3.8% vol H ₂ O	2 x 48 MWe				
PK - 4002	Dual Bed essicant system							
PK - 4003	Cold box for inerts removal Including: - Main heat exchangers - CO2 liquid separator - CO2 distillation column - CO2 compressors and coolers - Inerts heater - Inerts expander - Overhead recycle compressors			2 x 15 MWe 16.6 MWe 1.0 MWe				

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LISTUnit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	COOLING SYSTEM		Duty					
CT- 6001 A/B	Cooling Tower including: Cooling water basin	Natural draft	2 x 775 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m				concrete	
P- 6001 A//F P- 6002 A/B/C	PUMPS Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system)	Centrifugal Centrifugal	Q [m3/h] x H [m] 16000 x 35 13500 x 45	1900 2200				Six in operation Two in operation, one spare
P- 6003 A/B	Cooling tower make up pumps PACKAGES Cooling Water Filtration Package Cooling Water Sidestream Filters	Centrifugal	2400 x 30 Capacity: 12300 m3/h	300				
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps							
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps							
	RAW WATER SYSTEM		Q [m3/h] x H [m]					
T- 6001 P- 6004 A/B	Raw Water storage tank Raw water pumps	centrifugal	120 m3 10 x 50	5.5				12 hour storage One operating, one spare
	DEMINERALIZED WATER SYSTEM		Q [m3/h] x H [m]					
PK- 6001	Demin Water Package, including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system							
T- 6002 P- 6005 A/B	Demin Water storage tank Demin water pumps	centrifugal	60 m3 5 x 65	3.5				12 hour storage One operating, one spare

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: 3 - Oxycombustion SC PC

REVISION	Rev.: Draft	Rev.: 0	Rev.1	Rev.2
DATE	Jun-13	Jan-14		
ISSUED BY	NF	NF		
CHECKED BY	LM	LM		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 6000 - Utility units

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	FIRE FIGHTING SYSTEM							
T- 6003	Fire water storage tank Fire pumps (diesel) Fire pumps (electric) FW jockey pump							
	OTHER UTILITIES							
	Plant air compression skid Emergency diesel generator system Waste water treatment Electrical equipment Buildings Auxiliary boiler Condensate polishing system							

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Sheet: 1 of 16

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS $\,$

Near-zero emission case

CLIENT : IEA GHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 3.1: OXY-COMBUSTION SC PC WITH CCS

NEAR-ZERO EMISSION CASE

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Near-zero emission case Date: January 2014

Sheet: 2 of 16

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	3
2.	Process description	
	2.1. Overview	
	2.2. Unit 2000 – Boiler Island	
	2.3. Unit 4000 – CO ₂ compression and purification	4
3.	Process Flow Diagrams	6
4.	Heat and Material Balance	7
5.	Utility and chemical consumption	8
6.	Overall performance	12
7.	Environmental impact	14
	7.1. Gaseous emissions	14
	7.2. Liquid effluent	14
	7.3. Solid effluent	15
8.	Main equipment design changes	16

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

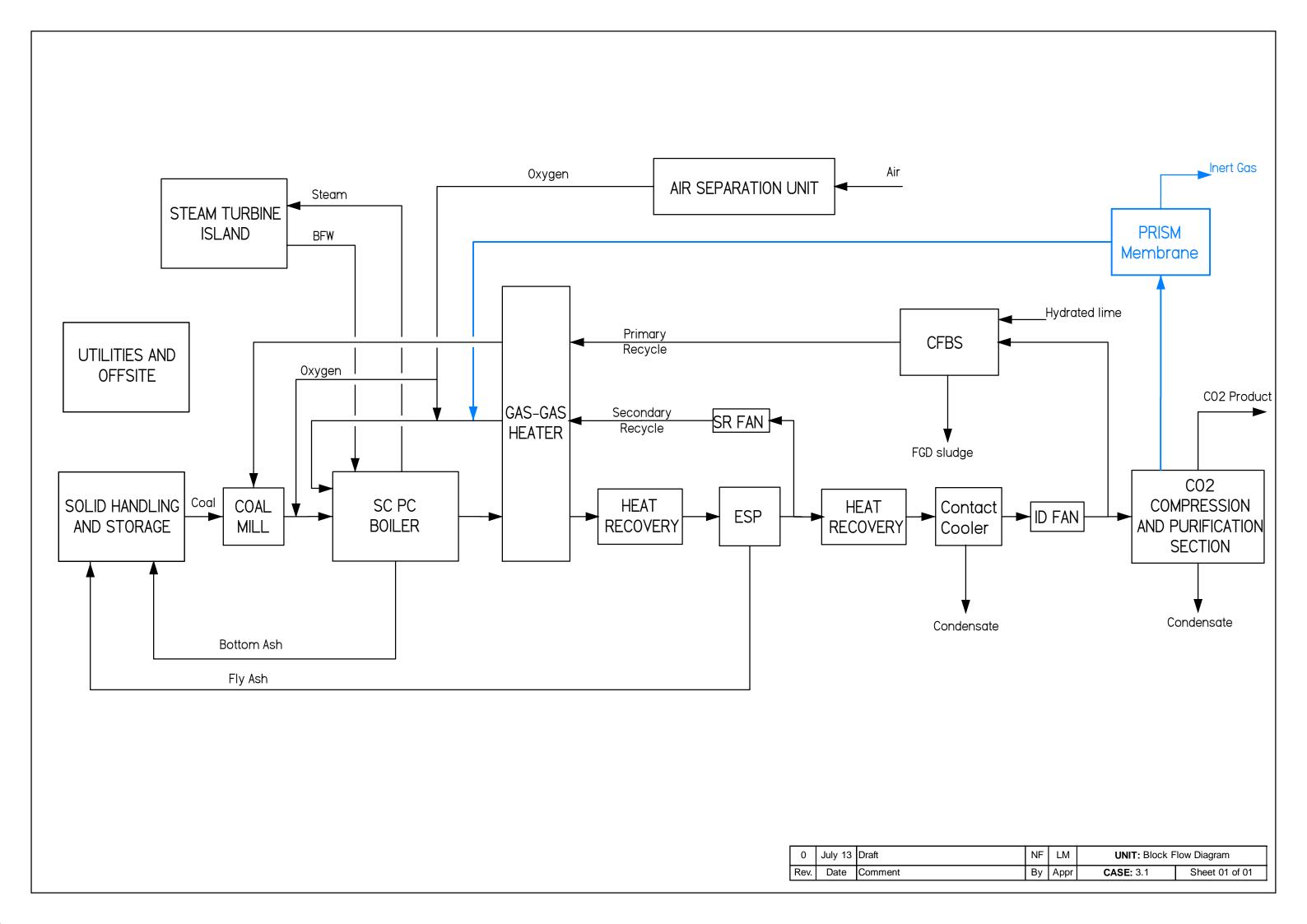
Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Sheet: 3 of 16

Near-zero emission case

1. Introduction

This chapter of the report includes all technical information relevant to Case 3.1 of the study, which is an oxy-combustion supercritical pulverised coal (SC PC) fired steam plant, with cryogenic purification of the flue gases and capture of the carbon dioxide.

Plant configuration is basically same as Case 3, though plant of Case 3.1 is designed to meet near-zero CO₂ emission target (around 98% carbon capture rate).


The description of the main process units and the reference Case 3 performance are covered respectively in chapter D and D.1 of this report; only plant design changes required to meet near-zero emission target are discussed in the following sections, together with the main plant performance results.

1.1. Process unit arrangement

The arrangement of the main units is reported in Table 1, together with the main differences with respect to the base case, as further discussed in the following sections. Reference is also made to the block flow diagram attached below.

Table 1. Case 3.1 – Unit arrangement

Unit	Description	Trains	Differences
900	Air Separation Unit	3 x 33%	No significant design change: slightly lower oxygen requirement
1000	Storage and Handling of solid materials	N/A	-
2000	Oxy combustion SC PC boiler Electro Static precipitators	1 x 100%	No significant design changes: higher flue gas flowrate and minor composition changes
2100	Flue Gas Desulphurisation (FGD)	1 x 100%	No significant design changes: minor composition changes
3000	Steam Cycle (SC) Steam Turbine and Condenser Deaerator Water Preheating line	1 x 100%	No significant design changes: minor changes in heat integration with process unit
4000	CO ₂ compression and purification Sour compression Auto-refrigerated inert removal section CO ₂ compressors	1 x 100% 1 x 100% 2 x 50%	Increased design capacity (+10%) Additional PRISM® membrane unit
6000	Utility and Offsite	N/A	Minor changes in cooling water system capacity

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Sheet: 4 of 16

Near-zero emission case

2. Process description

2.1. Overview

The description reported in this section focuses only on those units with a design different from that of the reference case, necessary to meet near-zero carbon emission target. Design changes are also reflected in the simplified Process Flow Diagrams (PFD) shown in section 3.

For all the other units, reference shall be made to the base case description, included in chapter D.1, section 2.

2.2. Unit 2000 – Boiler Island

This unit is based on single pass tower-type super critical boiler, with multistage combustion of oxygen and flue gas for NOx control, the primary and secondary recycle ducts, the heat recovery section and the contact column for final flue gas cooling, as for Case 3. The main design change is the additional duct from the membrane section of the CO₂ purification unit for recycling the CO₂ and oxygen-rich stream back to the furnace, after mixing with the secondary recycle.

The additional recirculation in the furnace results in an increased flue gas flowrate to the CO₂ purification unit and, as a consequence, of the flue gas recirculation in the warm end section of the boiler.

2.3. Unit $4000 - CO_2$ compression and purification

This unit differs from the Air Products' process of the reference case for the following features:

- Inerts gas from the auto-refrigerated section is processed through dedicated PRISM® membrane, in order to recover enough CO₂ to meet around 98% carbon capture rate. Further information relevant to this system is reported in chapter D, section 2.4.
- The recirculation back to the furnace of the CO₂ and oxygen-rich stream recovered from the membrane results in an increased flue gas flowrate entering the CO₂ purification unit. As for that, the design capacity of the unit, as well as the compression consumption and the heat recovery, is increased with respected to the base case. On the contrary, the inert gas expander is smaller, reducing the internal electrical production of the unit.

Following Table 2 summarises key stream data of this case, while main interconnections with the other units are shown in the process flow diagram.

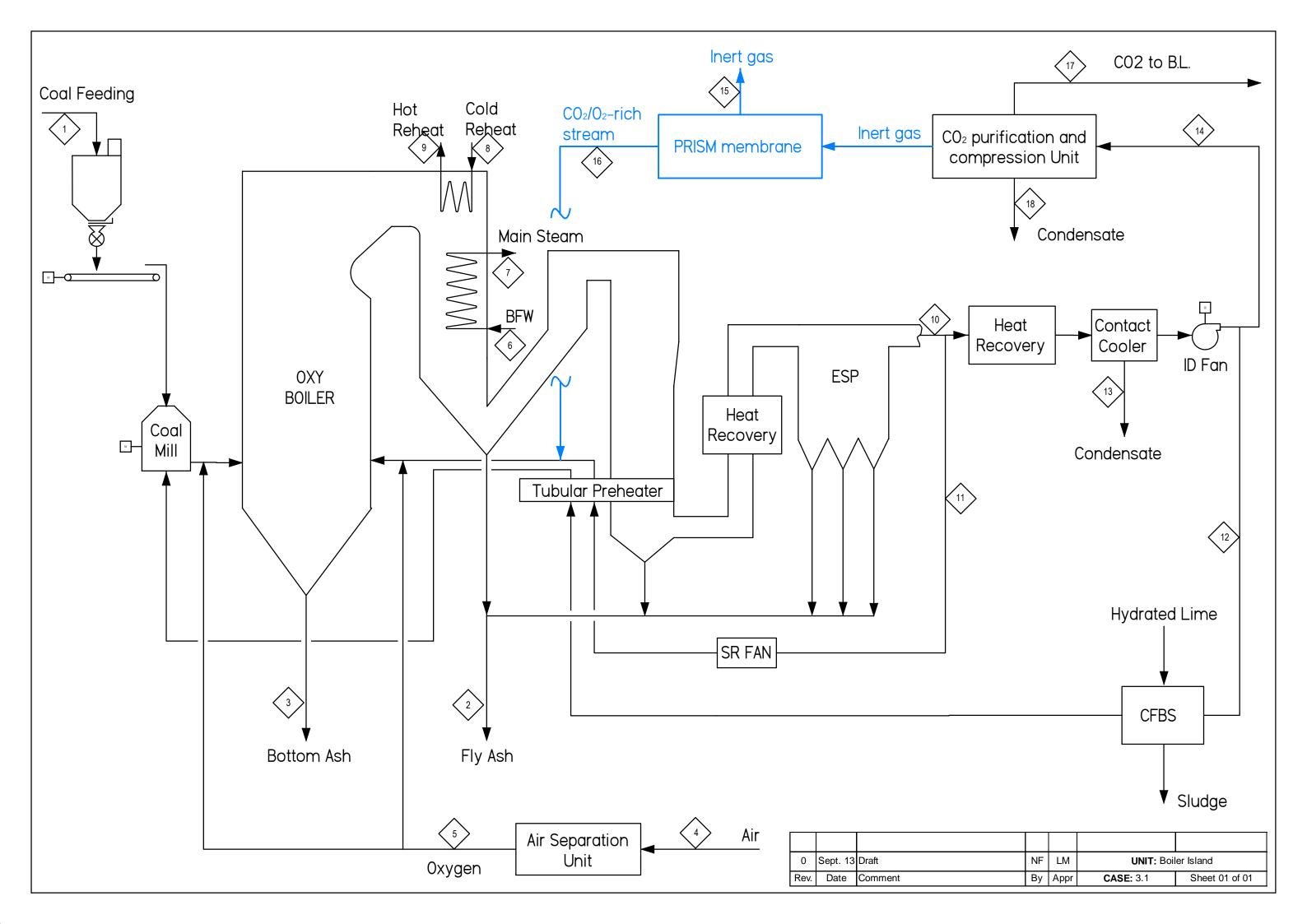
CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

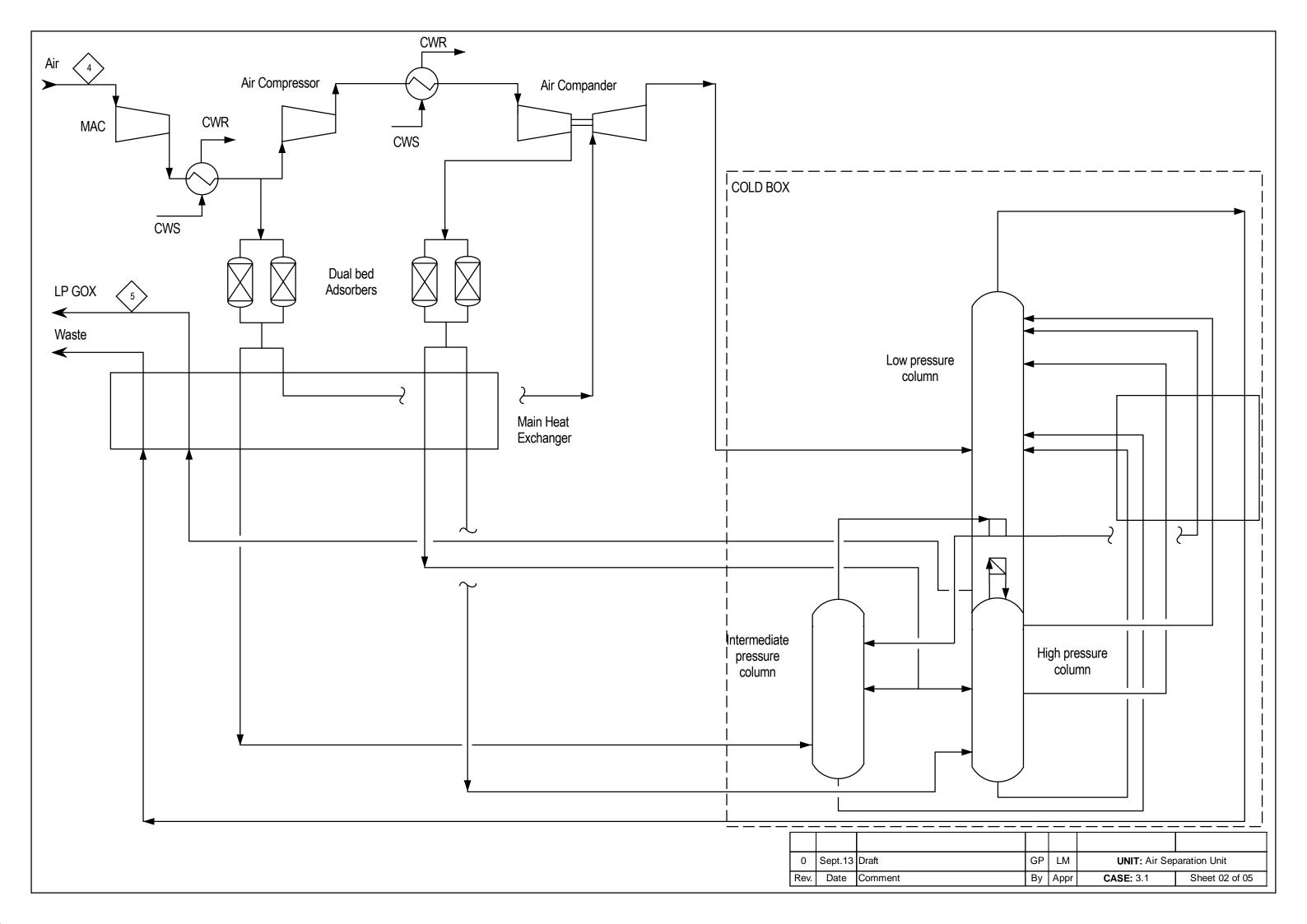
Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Sheet: 5 of 16

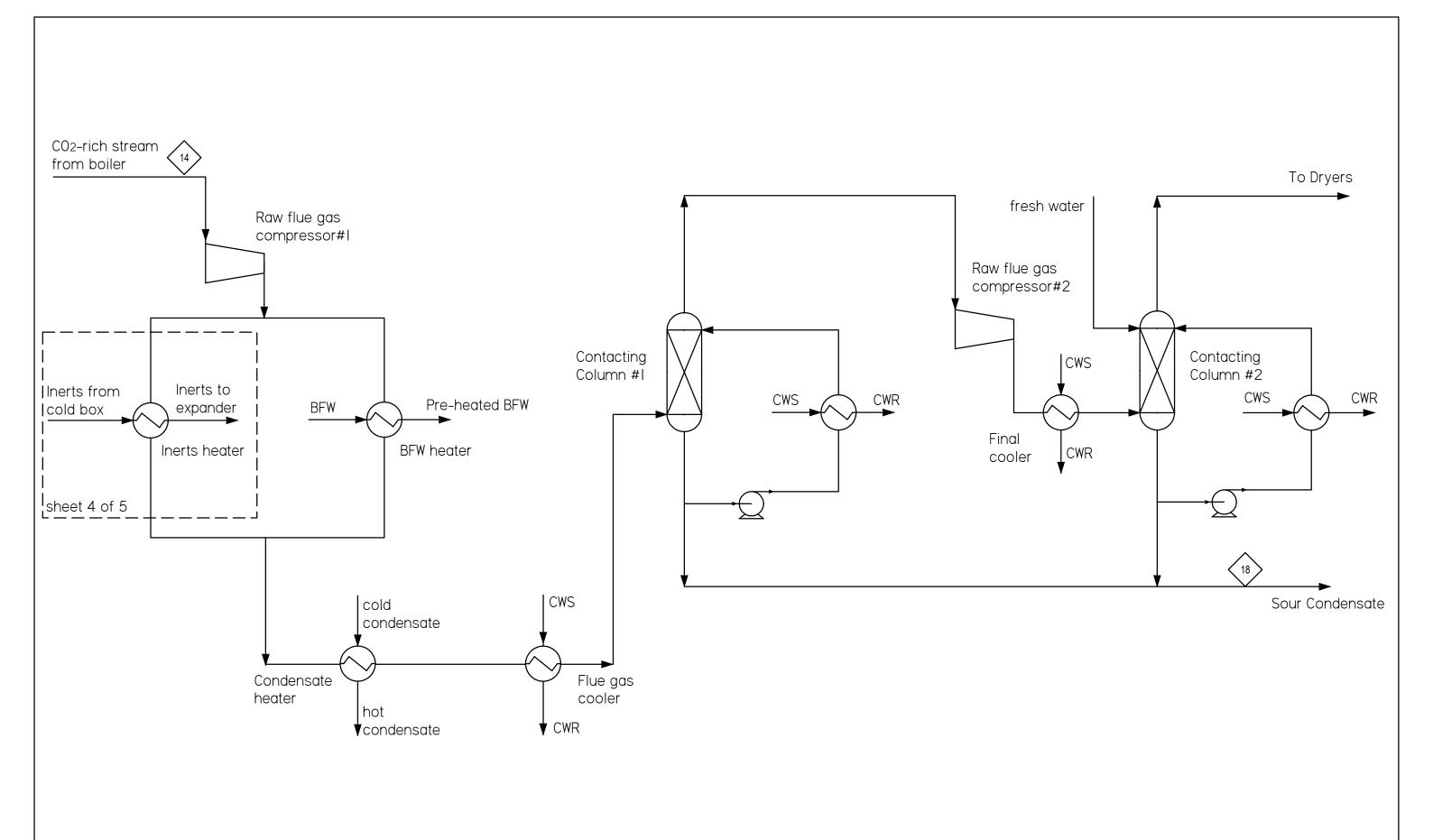
Near-zero emission case

Table 2. Case 3.1 – Key stream data

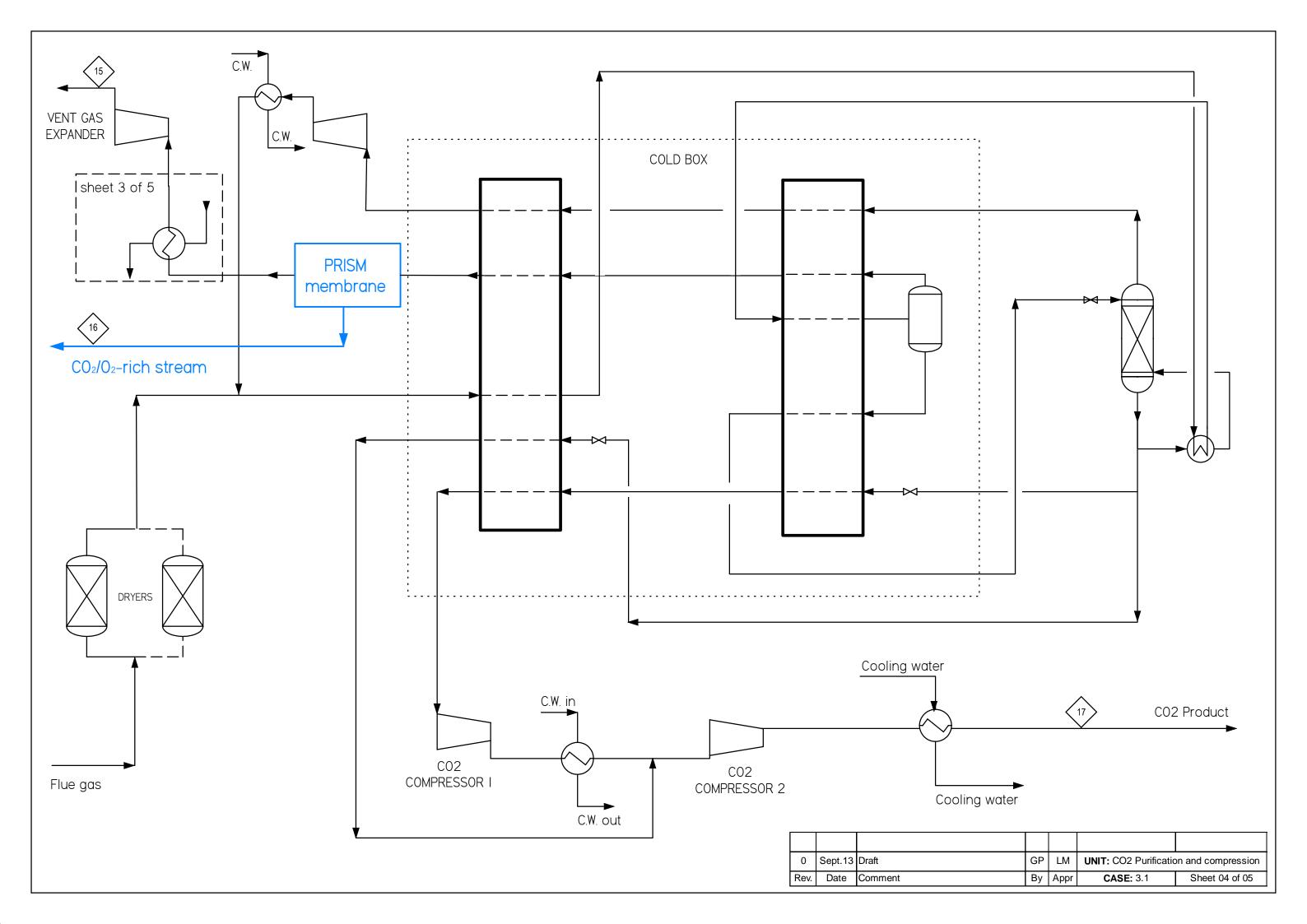
Stream	Flue gas to CPU	Inert gas vent	Inert gas recycle	CO ₂ product	
Mass flowrate, kg/h	1,018,650	140,000	108,360	744,400	
Molar flowrate, kmol/h	25,465	4,570	2,845	16,915	
Composition (% vol)					
Ar	2.13	8.6	4.6	34 ppmv	
N ₂	14.21	69.1	16.7	53 ppmv	
O_2	5.70	15.1	25.4	100 ppmv	
CO_2	73.99	6.4	53.2	99.98%	
H ₂ O	3.76	0.8	-	-	
NOx	0.04	< 1 ppmv	-	-	
SOx	0.17	< 1 pmmv	-	-	

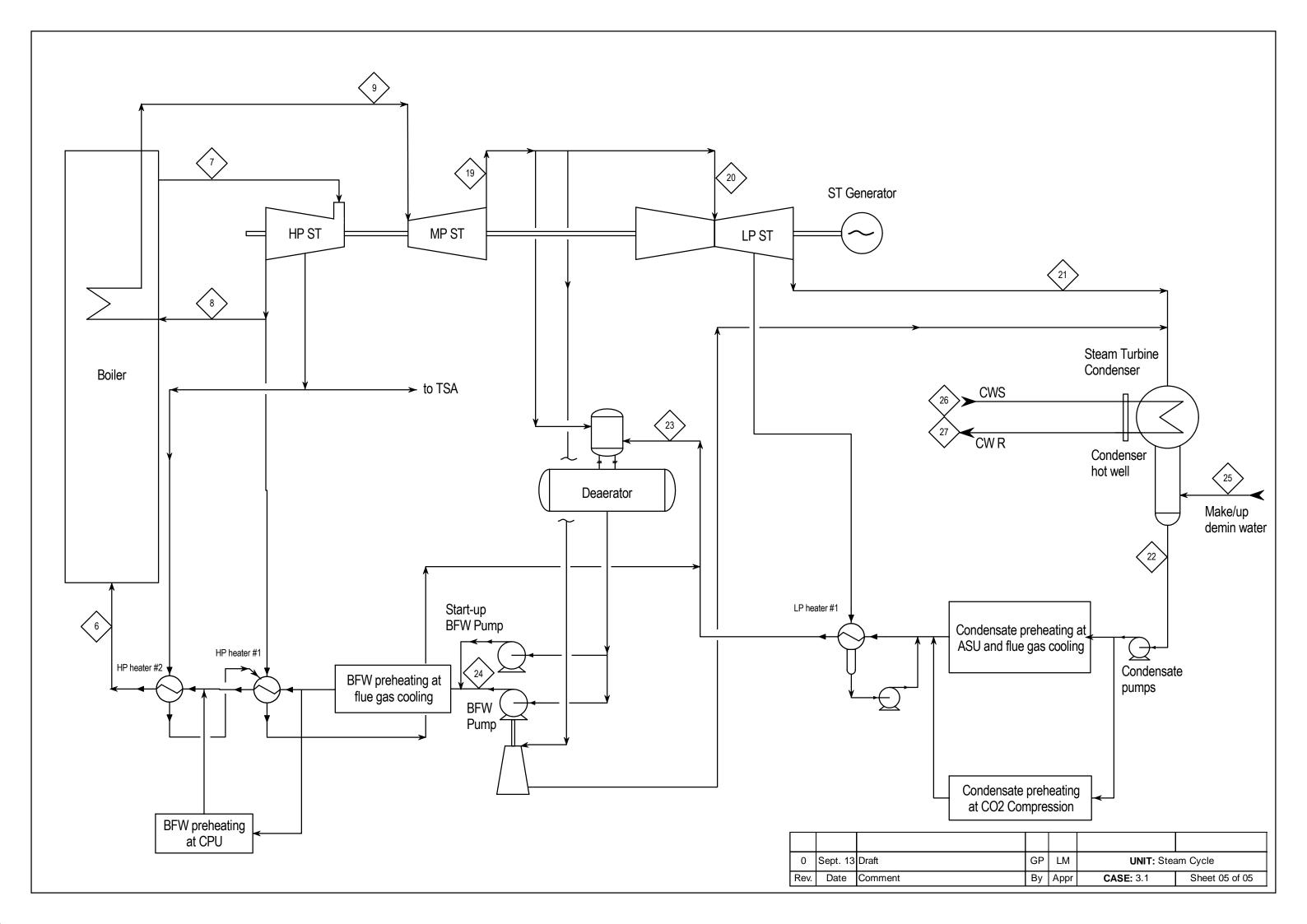

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Sheet: 6 of 16


Near-zero emission case

3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



0	Sept.13	Draft	GP	LM	UNIT: Sour compression		
Rev.	Date	Comment	Ву	Appr	CASE : 3.1	Sheet 03 of 05	

CO₂ Capture at Coal Based Power and Hydrogen Plants D

Date: January 2014

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Near-zero emission case Sheet: 7 of 16

4. Heat and Material Balance

Heat & Material Balances reported make reference to the simplified Process Flow Diagrams reported in section 3.

	Case 3 - Oxyco	REVISION	0		
	CLIENT:	IEA GHG	PREP.	NF	
FOSTER WHEELER PROJECT NAME:		CO2 capture at coal based power and hydrogen plants	CHECKED	LM	
	PROJECT NO:	1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	September 13	

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	1	2	3	4	5	6	7	8	9	10
STREAM	Coal to Boiler Island	Fly Ash	Bottom Ash	Air intake from Atmosphere	Oxygen to boiler	BFW from steam cycle	HP Steam to Steam Turbine	Cold Reheat from Steam Turbine	Hot Reheat to Steam Turbine	Flue gas from ESP
Temperature (°C)	AMB	AMB	AMB	9	AMB	290	600	366	620	160
Pressure (bar)	ATM	ATM	ATM	ATM	ATM	325	270	63	60	-
TOTAL FLOW	Solid	Dry solid	Dry solid							
Mass flow (kg/h)	325,000	29,200	12,500	2,820,000	670,260	2,895,000	2,895,000	2,208,000	2,208,000	3,400,000
Molar flow (kmol/h)				97,740	20,885	160,740	160,740	122,600	122,600	92,400
LIQUID PHASE										
Mass flow (kg/h)						2,895,000				
GASEOUS PHASE										
Mass flow (kg/h)				2,820,000	670,260		2,895,000	2,208,000	2,208,000	3,400,000
Molar flow (kmol/h)				97,740	20,885		160,740	122,600	122,600	92,400
Molecular Weight				28.9	32.1		18.0	18.0	18.0	36.8
Composition (vol %)	%wt									
H ₂				0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
со	C: 64.6%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
CO ₂	H: 4.38%			0.03%	0.00%	0.00%	0.00%	0.00%	0.00%	63.14%
N_2	O: 7.02%			77.27%	1.20%	0.00%	0.00%	0.00%	0.00%	12.12%
O_2	S: 0.86%			20.73%	97.00%	0.00%	0.00%	0.00%	0.00%	4.86%
CH₄	N: 1.41%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%
Ar	CI: 0.03%			0.92%	1.80%	0.00%	0.00%	0.00%	0.00%	1.81%
H ₂ O	Moisture: 9.5%			1.05%	0.00%	100%	100%	100%	100%	17.87%
SO ₂	Ash: 12.20%			0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.16%
NO / NO ₂				-	-	-	-	-	-	0.04%
HNO₃				-	-	-	-	-	-	-
H ₂ SO ₄				-	-	-	-	-	-	-
Total				100%	100%	100%	100%	100%	100%	100%

NOTE

1. Air in-leakage are included in the flue gas streams

	Case 3 - Oxyc	REVISION	0		
	CLIENT:	IEA GHG	PREP.	NF	
PROJECT NAME: PROJECT NO:		CO2 capture at coal based power and hydrogen plants	CHECKED	LM	
		1-BD-0681 A	APPROVED	LM	
	LOCATION:	The Netherlands	DATE	September 13	

HEAT AND MATERIAL BALANCE UNIT 2000 - BOILER ISLAND

	11	12	13	14	15	16	17	18		
STREAM	Secondary recycle to boiler	Primary recycle to FGD	Condensate from Contact Cooler	Flue gas to CPU	Inert gas vent	Inert gas recycle	CO ₂ product	Condensate from CPU		
Temperature (°C)	170	38	28	38	210	20	30	25		
Pressure (bar)	-	-	-	-	1.6	1.2	110	2.0		
TOTAL FLOW										
Mass flow (kg/h)	1,380,000	850,000	146,600	1,018,650	140,000	108,360	744,400	20,360		
Molar flow (kmol/h)	37,500	21,240	8,140	25,465	4,570	2,845	16,915	924		
LIQUID PHASE										
Mass flow (kg/h)			146,600					20,360		
GASEOUS PHASE										
Mass flow (kg/h)	1,380,000	850,000		1,018,650	140,000	108,360	744,400			
Molar flow (kmol/h)	37,500	21,240		25,465	4,570	2,845	16,915			
Molecular Weight	36.8	40.0		40.0	30.6	38.1	44.0			
Composition (vol %)										
H ₂	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
СО	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%		
CO ₂	63.14%	73.99%	0.00%	73.99%	6.40%	53.20%	99.98%	0.03%		
N_2	12.12%	14.21%	0.00%	14.21%	69.10%	16.70%	53 ppmv	0.00%		
O_2	4.86%	5.70%	0.00%	5.70%	15.10%	25.40%	100 ppmv	0.00%		
CH ₄	0.00%	0.00%	0.00%	0.00%	0.00%	0.00%	-	0.00%		
Ar	1.81%	2.13%	0.00%	2.13%	8.60%	4.60%	34 ppmv	0.00%		
H ₂ O	17.87%	3.76%	99.99%	3.76%	0.80%	0.00%	-	94.55%		
SO_2	0.16%	0.17%	0.00%	0.17%	0.00%	0.00%	-	240 ppmv		
NO / NO ₂	0.04%	0.04%	0.00%	0.04%	0.00%	0.00%	-	0.23 ppmv	-	
HNO ₃	-	-	0.00%	-	-	-	-	0.99%	-	
H ₂ SO ₄	-	-	0.01%	-	-	-	-	4.41%		
Total	100%	100%	100%	100%			100%	100%		

NOTE

1. Air in-leakage are included in the flue gas streams

Case 3	- Oxycombustion SC PC - H&M BALANCE	Revision	0	
CLIENT:	IEA GHG	Prepared	NF	
PROJECT NAME:	PROJECT NAME: CO2 capture at coal based power and H2 plants		LM	
PROJECT NO:	1-BD-0681 A	Approved	LM	
LOCATION:	LOCATION: The Netherlands		September 13	

HEAT AND MATERIAL BALANCE UNIT 3000 - STEAM CYCLE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
6	HP Water to Boiler Island	2,895	290	323.5	1278
7	HP Steam from Boiler to HP Steam Turbine	2,895	600	270.0	3475
8	Cold Reheat to Boiler	2,208	367	63.0	3084
9	Hot Reheat to MP Steam Turbine	2,208	620	60.0	3706
19	MP Steam Turbine exhaust	2,208	285	6.0	3031
20	Steam to LP Steam Turbine	2,023	285	5.9	3031
21	Exhaust from LP steam turbine	1,874	29	0.04	2284
22	Condensate from condenser	2,047	29	0.04	121
23	Condensate to deaerator	2,842	138	9.5	581
24	BFW to pre-heating train	2,895	148	325	644
25	Make up Water	5	9	ATM	38
26	Cooling Water Inlet	95,200	15	4.0	63
27	Cooling Water Outlet	95,200	26	3.5	109

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS

Near-zero emission case

Date: January 2014

Sheet: 8 of 16

5. Utility and chemical consumption

Main utility and chemical consumption of the plant is reported in the following tables, compared with the reference case figures (in brackets). More specifically:

- Water consumption summary is reported in Table 3,
- Electrical consumption summary is shown in Table 4,
- Sorbent and chemicals consumption, shown in Table 5.

With respect to the reference case, the following considerations can be made:

- Both water and electrical demand of the boiler island are slightly greater, due to the higher flue gas recirculation in the furnace.
- The Air Separation Unit, even though the design capacity is fixed to meet the oxygen demand considering no recirculation from the membrane, is operated at marginal lower load, with consequently marginal lower power demand, as part of the oxygen is provided by the recycle stream from the CO₂ purification unit.
- As detailed in previous section, consumption of the CO₂ purification unit increases as more CO₂ is processed and compressed up to the final pressure and a small inert gas flowrate is expanded to generate power.
- Utilities and offsite consumption increases, mainly due to the higher cooling water requirements.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Near-zero emission case Date: January 2014

Sheet: 9 of 16

Table 3. Case 3.1 – Water consumption summary

	CLIENT: IEAGHG	REVISION	0
FOSTERWHEELER	PROJECT NAME: CO2 capture at coal based power and H2 plants	DATE	Jun-13
	PROJECT No.: 1-BD-0681 A	MADE BY	NF
	LOCATION: The Netherlands	APPROVED BY	LM

Case 3.1 - Near zero emission - Water consumption						
UNIT DESCRIPTION UNIT Raw Water Demi Water 1° syst. [DT = 11°C] [t/h] [t/h] [t/h] [t/h] [t/h] [t/h]						
1000	FEEDSTOCK AND SOLID HANDLING	17 7	17 7	1,7	1,7,1	
1000	Solid Receiving, Handling and storage	5				
2000						
2000	Air Separation Unit Air Separation unit				1210	
					(1250)	
2000	BOILER ISALND and FLUE GAS TREATMENT				11170	
	Boiler island				(11080)	
	Flue Gas Desulphurization (CFBS)					
	CO2 compression and purification				9655 (9015)	
500	POWER ISLAND (Steam Turbine)					
	Condenser			95200 (94745)		
	Turbine and generator auxiliaries		5		5100 (5080)	
ВоР	UTILITY and OFFSITE UNITS					
	Cooling Water System	2200 (2180)				
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	8	-5			
	Miscellanea	-160			100	
	BALANCE	2053 (2033)	0.0	95200 (94745)	27235 (26525)	

Note: (1) Minus prior to figure means figure is generated

CO₂ Capture at Coal Based Power and Hydrogen Plants Dat

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS Near-zero emission case

CLIENT:

Date: January 2014

Sheet: 10 of 16

Table 4. Case 3.1 – Electrical consumption summary

FOSTERWHEELER

ROJECT NAME: ROJECT No. : DCATION :	CO2 capture at coal based power and hydrogen plants 1-BD-0681 A	DATE Jun-13 MADE BY NF ROVED BY LM
	Case 3.1 - Near zero emission - Electrical consumption	on
UNIT	DESCRIPTION UNIT	Absorbed Electric Power [kW]
900	AIR SEPARATION UNIT	
	Main air compressors	101190 (111060)
	Booster air compressors + pumps	17680 (18280)
1000	FEEDSTOCK AND SOLID HANDLING	
	Solid Handling	3255
2000	BOILER ISLAND and FLUE GAS TREATMENT	
	Boiler island (including FGD)	14650 (14370)
3000	STEAM CYCLE	
	Steam Turbine Auxiliaries and condenser	4900 (4700)
	Condensate and feedwater system	1250
	Miscellanea	600
4000	CO2 PURIFICATION AND COMPRESSION	
	Flue gas compression (up to 35 bar)	93080 (83390)
	CO2 compression (up to 110 bar)	29230 (26790)
	Overhead recycle	850 (790)
	Expander	- 10220 (15110)
ВоР	UTILITY and OFFSITE UNITS	
	Cooling Water System	14740 (14290)
	Other Units	1430
	BALANCE	278,635 (265.095)

Note: (1) Minus prior to figure means figure is generated

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS

Near-zero emission case

January 2014

Sheet: 11 of 16

Table 5. Case 3.1 – Sorbent and chemicals consumption

	Consumption
Lime injection to the FGD	6.6 t/h

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS

Near-zero emission case

Date: January 2014

Sheet: 12 of 16

6. Overall performance

The following Table shows the overall performance of Case 3.1, compared with the reference case performance.

FOSTERWH	EELER
----------	-------

 CLIENT:
 IEAGHG
 REVISION
 0

 PROJECT NAME:
 CO2 capture at coal based power and hydrogen plants
 DATE
 Jun-13

 PROJECT No.:
 1-BD-0681 A
 MADE BY
 NF

 LOCATION:
 The Netherlands
 APPROVED BY
 LM

Case 3.1 - Near zero emission - Oxy SC PC Plant Performance Summary

OVERALL PERFORMANCES COMPARISON					
		CASE 3.1	CASE 3 (reference)		
Fuel flow rate (A.R.)	t/h	325.0	325.0		
Fuel HHV (A.R.)	kJ/kg	27060	27060		
Fuel LHV (A.R.)	kJ/kg	25870	25870		
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335	2335		
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443	2443		
Steam turbine power output (@ gen terminals)	MWe	1105.0	1101.0		
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	1105.0	1101.0		
Boiler Island (including FGD)	MWe	14.7	14.4		
Utility & Offsite Units consumption	MWe	16.2	15.7		
Power Islands consumption	MWe	6.8	6.6		
Air Separation Unit consumptions	MWe	124.9	129.3		
CO2 purification and compression	MWe	112.9	95.9		
Feedstock and solids handling	MWe	3.3	3.3		
ELECTRIC POWER CONSUMPTION	MWe	278.6	265.1		
NET ELECTRIC POWER OUTPUT	MWe	826.4	835.9		
(Step Up transformer efficiency = 0.997%) (B)	MWe	823.9	833.4		
Gross electrical efficiency (C/A x 100) (based on LHV)	%	47.3%	47.1%		
Net electrical efficiency (B/A x 100) (based on LHV)	%	35.3%	35.7%		
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	45.2%	45.1%		
Net electrical efficiency (B/A' x 100) (based on HHV)	%	33.7%	34.1%		
Fuel Consumption per net power production	MWth/MWe	2.83	2.80		
CO ₂ emission per net power production	kg/MWh	22.3	92.2		

⁽¹⁾ Steam driven BFW pumps are included

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS $\,$

Near-zero emission case

Date: January 2014

Sheet: 13 of 16

With respect to the reference case, the following considerations can be made:

- Gross power production is slightly increased as more heat recovery is possible within the CO₂ purification unit and the boiler island, due to the higher flue gas flowrate through the units.
- Net electrical efficiency decreases of about 0.4 percentage points, due to increased power demand related to the required higher capture rate.

The following Table shows the overall CO₂ balance and removal efficiency of Case 3.1, compared with the reference case.

	CASE 3.1	CASE 3 (reference)	
CO ₂ removal efficiency	Equivalent flow of CO ₂	Equivalent flow of CO ₂	
	kmol/h	kmol/h	
INPUT			
FUEL CARBON CONTENT (A)	17495	17495	
ОИТРИТ			
Carbon losses (B)	166	166	
CO ₂ flue gas content (to CPU)	18842	17329	
Recovered through membrane	1513	0	
Total to storage (C)	16912	15584	
Emission (inert + losses)	417	1745	
TOTAL	17495	17495	
Overall Carbon Capture, % ((B+C)/A)	97.6	90.0	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS

Near-zero emission case

7. Environmental impact

The oxy-combustion SC PC steam plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 14 of 16

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the inerts vent stream from the PRISM® membrane within the CO₂ purification unit. Table 6 summarizes the expected flow rate and composition of the inerts vent.

The same minor and fugitive emissions, related to seal losses and handling of solid materials and listed for the base case, are applied also for this alternative.

Flue gas to stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	140,000
Flow, Nm ³ /h	102,000
Composition	(% vol)
Ar	8.6
N_2	69.1
O_2	15.1
CO_2	6.4
H_2O	0.8
NOx	< 1 ppmv
SOx	< 1 pmmv

Table 6. Case 3.1 – Plant emission during normal operation

7.2. Liquid effluent

As for the reference case, main liquid effluent is the following cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids.

Cooling Tower blowdown

Flowrate : 526 m³/h

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Date: January 2014

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS $\,$

Sheet: 15 of 16

Near-zero emission case

7.3. Solid effluent

As for the base case, the power plant is expected to produce the following solid effluents:

Fly ash from boiler

Flowrate : 29.2 t/h

Bottom ash from boiler

Flowrate : 12.5 t/h

Sludge from FGD

Flowrate : 12.6 t/h

Fly and bottom ash might be sold to cement industries, if local market exist, or sent to disposal, outside plant battery limits. Sludge from FGD shall also be sent to outside disposal.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.2 - Case 3.1: Oxy-combustion SC PC with CCS

Near-zero emission case

Date: January 2014

Sheet: 16 of 16

8. Main equipment design changes

The overleaf equipment summary table shows the major design differences between the present Case 3.1 and the reference Case 3.

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 3.1 - Oxycombustion SC PC - Near Zero Emission

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	Jul-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	I.M			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor Rating [kW]	Remarks	Difference with respect to reference case
	AIR SEPARATION UNIT					
PK - 901 A/B/C	Air Separation unit		3 x 5555 t/d		Oxygen feed: -4% with respect to base case	No changes in ASU size
	CO2 COMPRESSION AND PURIFICATION					
PK - 4001	Sour compression section		Dry flue gas: 24,510 kmol/h 3.8% vol H ₂ O			Size changed
	Including: - Raw flue gas compressors (two stages) - Contacting column with liquid pump around for sulphuric and nitric acid removal			2 x 50 MWe		Size changed
	- Flue gas cooler downstream compressor BFW heater Condensate heater		26 MWth 27 MWth			Size changed Size changed
PK - 4002	Dual Bed essicant system					Size changed
PK - 4003	Cold box for inerts removal Including: - Main heat exchangers - CO2 liquid separator - CO2 distillation column					
	- CO2 compressors and coolers - Inerts heater			2 x 16 MWe		Size changed
	- Inerts reacer - Inerts expander - Overhead recycle compressors			11.5 MWe 1.0 MWe		Size changed
	COOLING SYSTEM					
CT- 6001 A/B	Cooling Tower including: Cooling water basin	Natural draft	2 x 780 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m			
P- 6002 A/B/C	Cooling Water Pumps (secondary system)	Centrifugal	14000 m3/h x 45 m	2250 kW	Two operating, one spare	Size changed

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Sheet: 1 of 15

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS $\,$

Cooling system sensitivity

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 3: OXY-COMBUSTION SC PC WITH CCS

COOLING SYSTEM SENSITIVITY

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO
CHECKED BY : N. FERRARI
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS
Chapter D.3 - Case3: Oxy-combustion SC PC with CCS
Cooling system sensitivity

Date: January 2014

Sheet: 2 of 15

TABLE OF CONTENT

1.	Intr	oduction	. 3
2.	Pro	cess description	. 4
	2.1.	Overview	4
	2.2.	Impact on process units	4
		2.2.1. Seawater system2.2.2. Air cooling system	
	2.3.	Unit 3000 – Steam Cycle	
		2.3.1. Seawater system	
		2.3.2. Air cooling system	5
	2.4.	Unit 6000 - Utility Units	
		2.4.1. Seawater system	
		2.4.2. Air cooling system	6
3.	Pro	cess Flow Diagrams	. 7
4.	Util	ity and chemicals consumption	. 8
5.	Ove	erall performance	12
6.	Env	rironmental impact	14
	6.1.	Gaseous emissions	14
	6.2.	Liquid effluents	14
		6.2.1. Seawater system	
	6.3.	Solid effluents	14
7.	Mai	in equipment design changes	15
	111100	4P 4-2-8 -8-2	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS Sheet: 3 of 15

Cooling system sensitivity

1. Introduction

This chapter presents the main impacts on plant design and performance of alternative types of cooling system, taking as reference the oxy-supercritical pulverised coal (oxy-SC PC) power plant with carbon dioxide capture described in chapter D.1 (Case 3). With respect to this case, based on natural draft cooling water tower system, two different systems are analysed hereafter:

- SW: once-through seawater cooling;
- AC: dry air cooling.

The description of the main process units and the reference Case 3 performance are covered respectively in chapter D and D.1 of this report; only plant design changes related to the alternative cooling systems are discussed in the following sections, together with the main plant performance results.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

2. Process description

2.1. Overview

The description of the following sections makes reference to the simplified Process Flow Diagrams (PFD) of section 3, which show only the design changes related to the alternative cooling systems. For all the other units, reference shall be made to the base case description, included in chapter D.1, section 2.

Sheet: 4 of 15

2.2. Impact on process units

The adoption of a cooling system different from the reference case leads to the following modifications within the process units.

2.2.1. Seawater system

- <u>ASU</u>: Seawater coolers are considered for the after-coolers of the main air compressor. This allows to achieve a cooling level of the process air greater than the reference case, corresponding also to a lower compressor power demand.
- <u>Boiler Island</u>: Seawater is used as cooling medium in the Indirect Contact Cooler, allowing higher flue gas cooling and water condensation compared to the reference case, with consequent lower water content and flowrate of the CO₂-rich stream flowing to the CO₂ purification and compression section.
- <u>CO₂ purification unit</u>: As written above, a lower flue gas flowrate is entering this unit due to its lower water content, leading to a reduced compressor size and relevant power demand. In addition, seawater is used as cooling medium in the compressor after-coolers, allowing further cooling of the CO₂-rich stream with respect to the reference case, with associated lower compressor power demand. On the other hand, heat recovery for condensate and boiler feed water pre-heating is lower than the reference case.

2.2.2. Air cooling system

- <u>ASU</u>: Air coolers are considered for the after-coolers of the main air compressor. During operation at normal ambient conditions, this allows to achieve a cooling level of the process air greater than the reference case, corresponding to a lower compressor power demand, offset by the additional power requirement of the air cooler fans.
- <u>Boiler Island</u>: Air cooling is used as cooling medium in the Indirect Contact Cooler, again allowing higher flue gas cooling and water condensation with respect to the reference case at normal ambient conditions, with consequent

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS
Cooling system sensitivity

Sheet: 5 of 15

lower water content and flowrate of the CO₂-rich stream flowing to the CO₂ purification and compression section.

• CO₂ purification unit: As written above, a lower flue gas flowrate is entering this unit due to its lower water content, leading to a reduced compressor size and relevant power demand. In addition, air coolers are considered as compressor after-coolers, allowing further cooling of the CO₂-rich stream with respect to the reference case, with associated lower compressor power demand. On the other hand, heat recovery for condensate and boiler feed water pre-heating is lower and the air coolers fans lead to higher electric power demand.

Details on the temperature that can be achieved with both cooling system are reported in the following section 2.4.

2.3. Unit 3000 – Steam Cycle

The main consequence of a cooling system alternative to that of the reference case is a different steam condenser type.

2.3.1. Seawater system

A seawater cooled steam condenser is considered in this case. The lower sea water inlet temperature, as well as the lower permitted temperature increase (see data below) allows to achieve a condensing pressure lower than the reference case (3.0 kPa vs. 4.0 kPa respectively), with consequent higher steam turbine power generation.

In fact, being the sea water supplied to the steam condenser at 12°C and considering a maximum allowed temperature increase of 7°C, the condensation temperature is 24°C.

2.3.2. Air cooling system

The exhaust steam from the LP turbine is piped directly to the air-cooled, finned tube, condenser. The finned tubes are usually arranged in an "A" form or delta over a forced draught fan in order to reduce the plot area requirements.

A temperature difference of 25°C is considered between ambient air and the condensing steam, resulting in a higher steam condensing pressure with respect to the reference case (5.2 kPa vs. 4.0 kPa respectively) with consequent lower steam turbine power generation.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

2.4. Unit 6000 - Utility Units

Apart from the cooling water system, alternative to the cooling tower type of the reference case, no significant impact is foreseen in the other utility units of the oxycombustion power plant.

Sheet: 6 of 15

2.4.1. Seawater system

In the once-through system, seawater is pumped from the sea, directly used in the heat exchangers of the plant and then discharged back to sea.

This system has the advantage of using a "free" coolant medium, without generating a real stream of waste water, since seawater is returned to the sea without any significant change in composition, apart from its higher temperature. However, the maximum allowable seawater temperature increase is 7°C, in order to minimize environmental impact of the sea, thus resulting in a higher circulating cooling water flowrate.

In addition to the steam turbine condenser, seawater is used for the CO₂ compressors intercoolers and the main air compressor aftercoolers. During normal operation conditions, this allows achieving a temperature of the hot stream of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).

In addition to the once-trough system, a seawater-cooled closed circuit of demineralised water is considered (secondary system) for machinery and steam turbine generator cooling and for all plant users where seawater is not applicable.

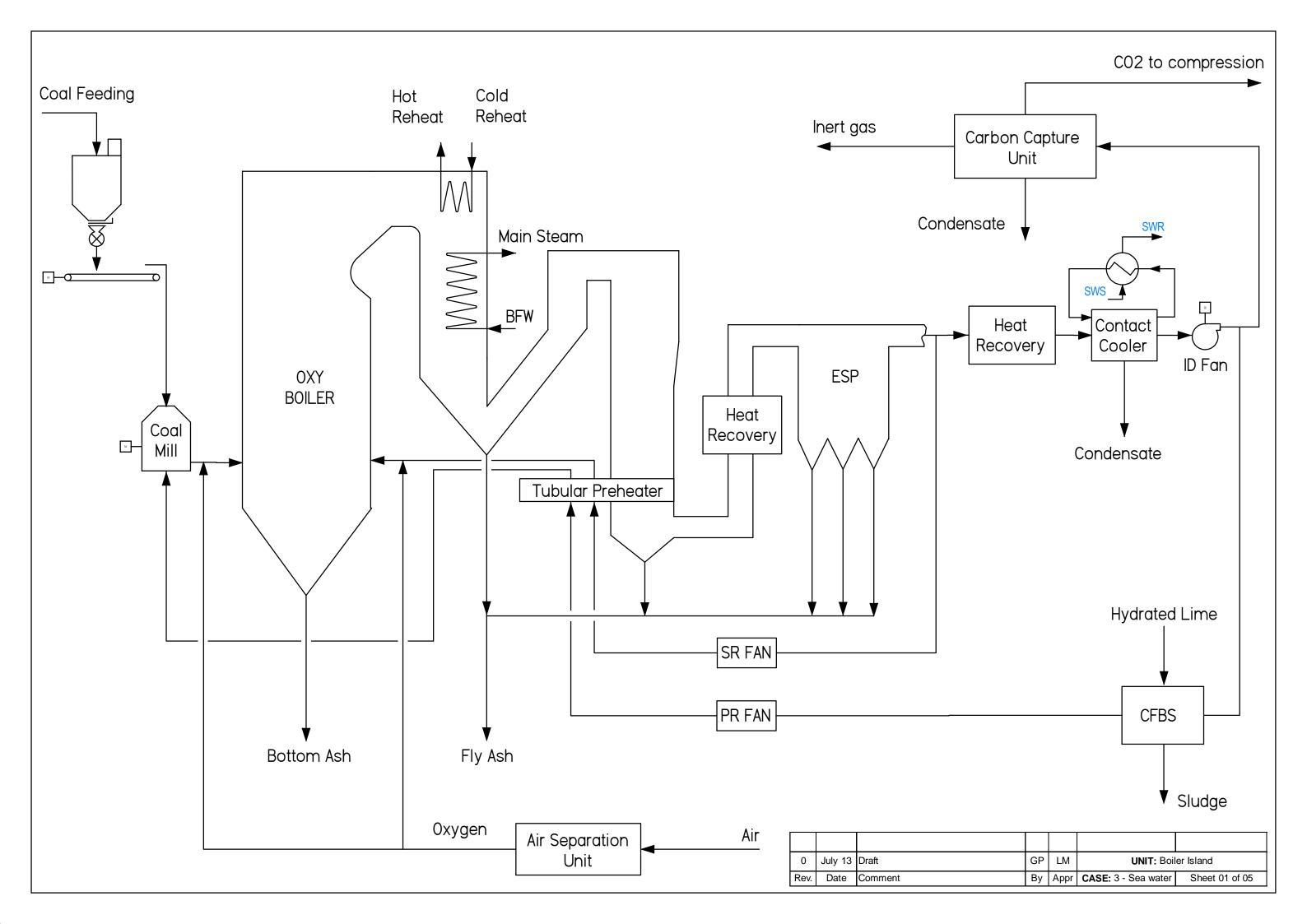
2.4.2. Air cooling system

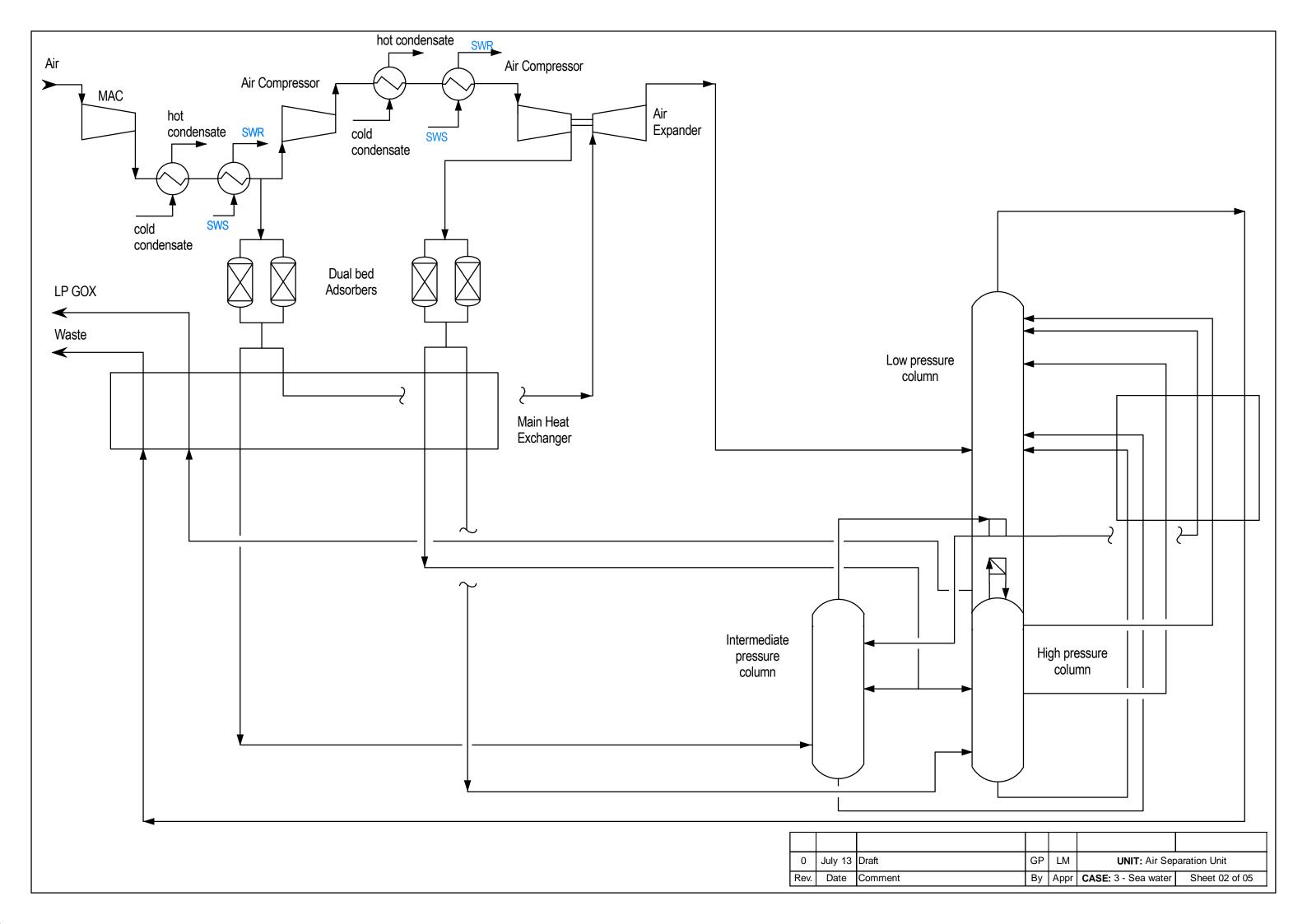
The use of ambient air as cooling medium is maximised. A secondary system consisting of an air-cooled closed circuit of demineralised water, conditioned and stabilised, is only used for machinery and steam turbine generator cooling.

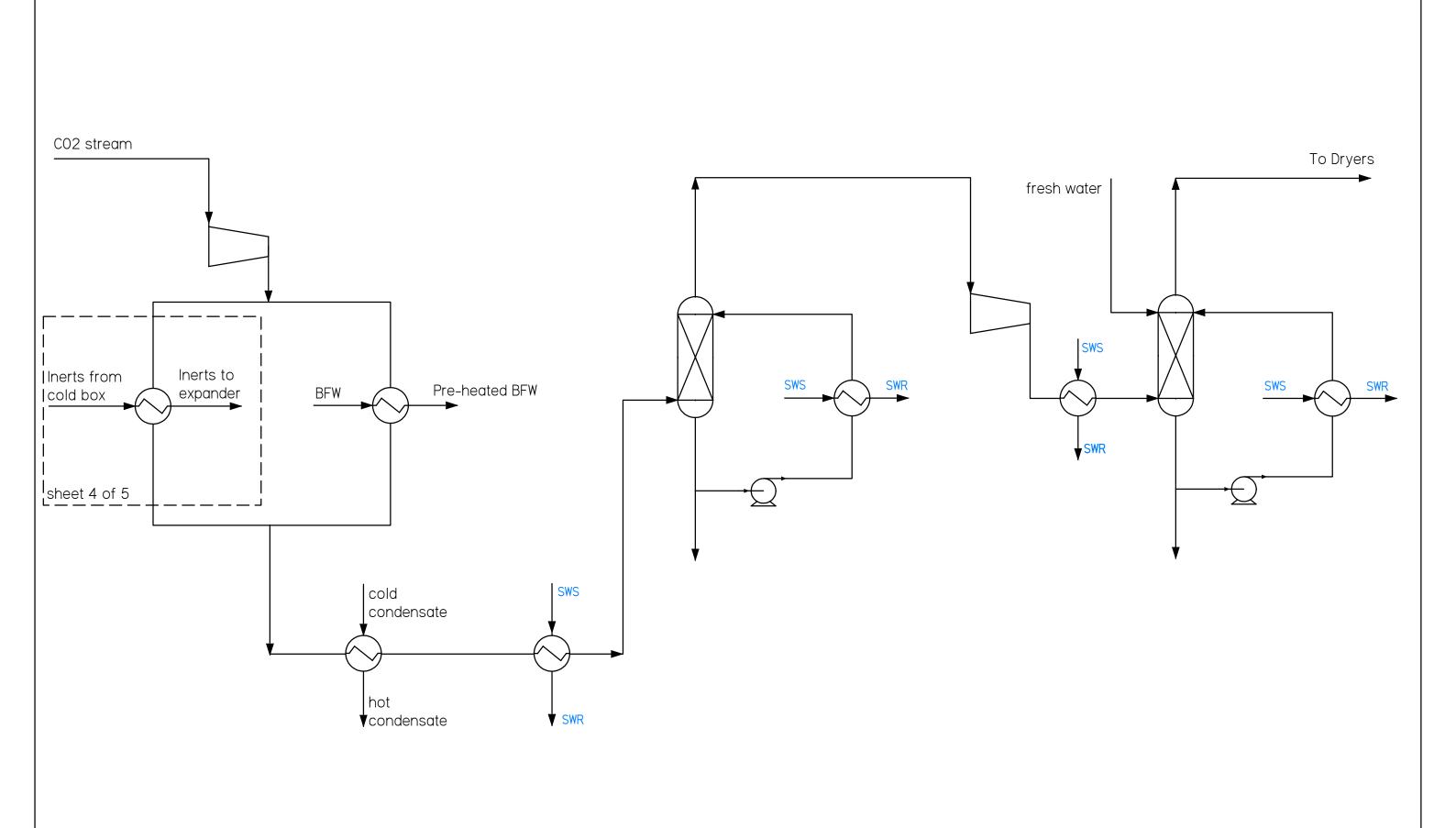
As above stated, the installation of an air cooled steam turbine condenser has a negative impact on the performance, due to the higher condensation pressure resulting from the 25°C approach normally considered for this application.

For services other than steam condenser, e.g. water air coolers or compressor intercoolers, the temperature difference between hot fluid exit temperature and ambient air is generally lower, around 10°C, corresponding to a final hot fluid temperature of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

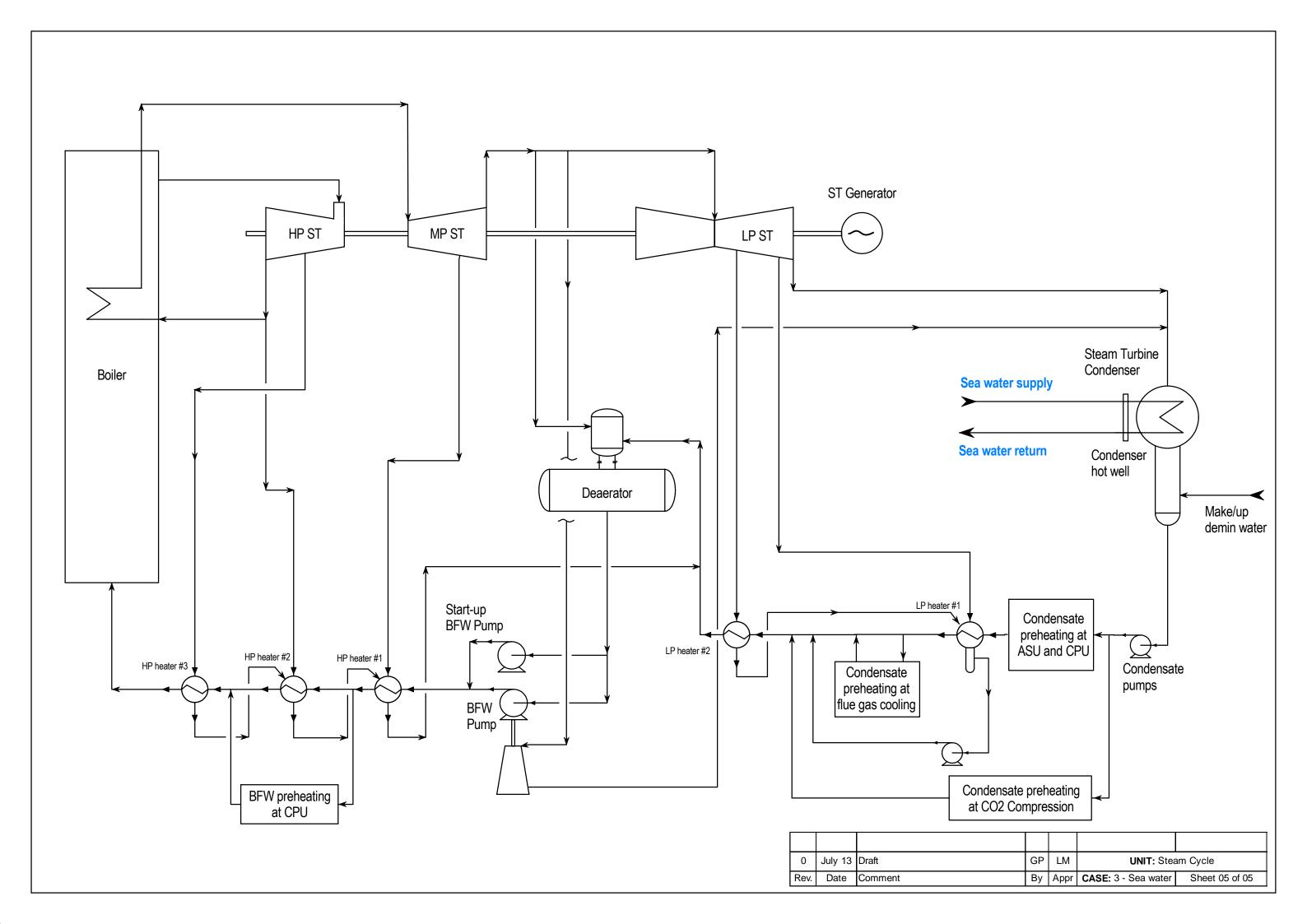

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS Sheet: 7 of 15

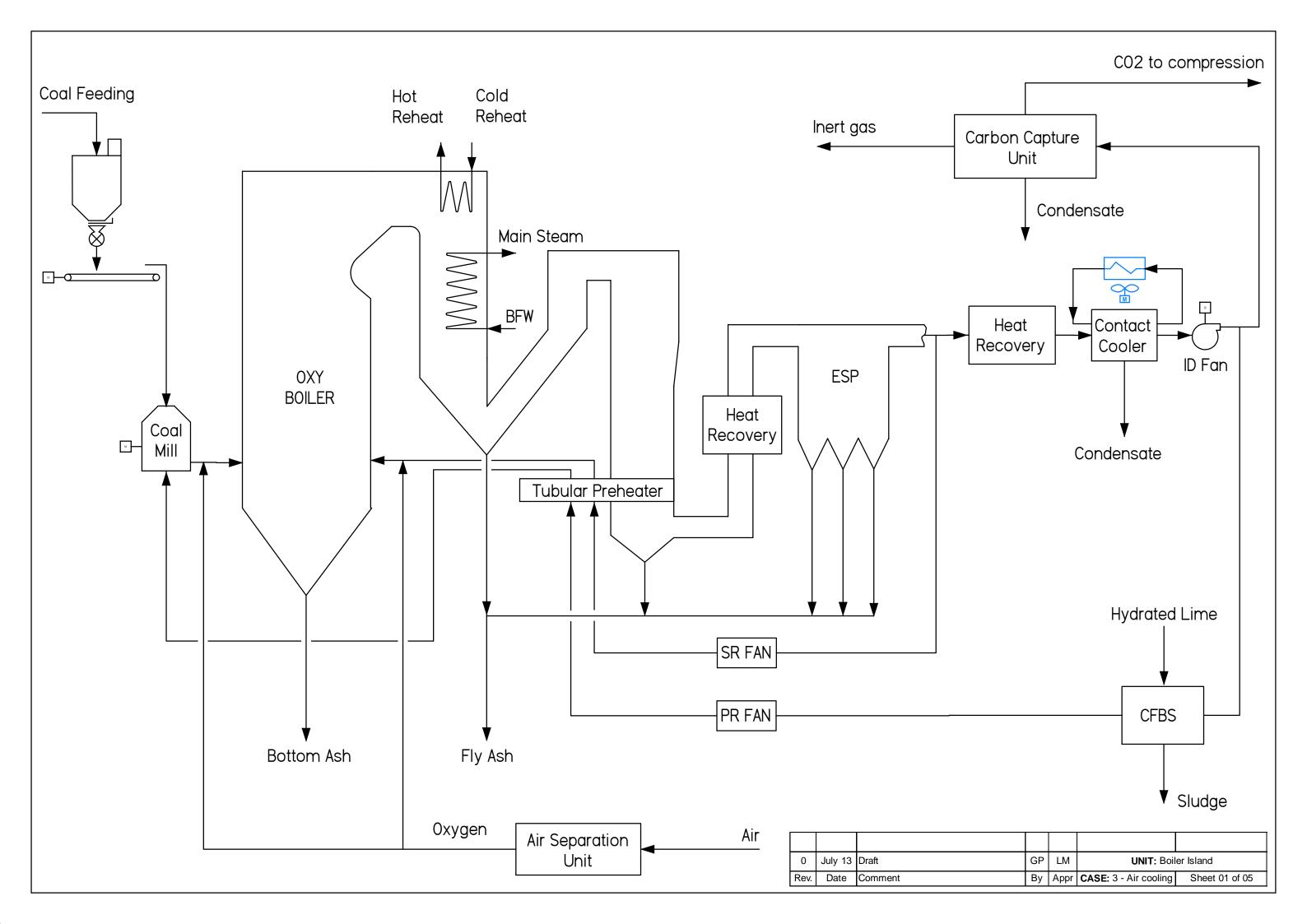

Cooling system sensitivity

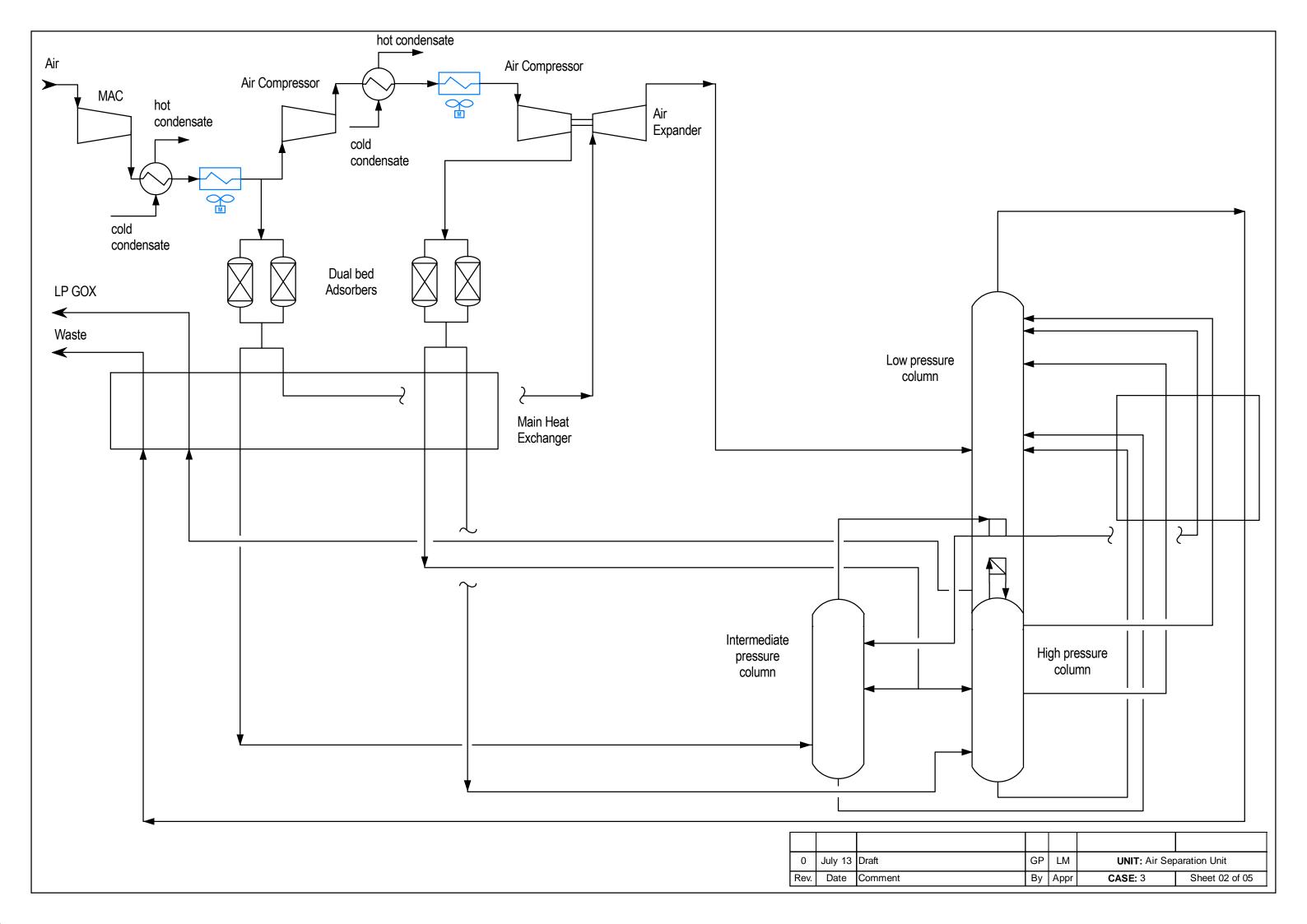

3. Process Flow Diagrams

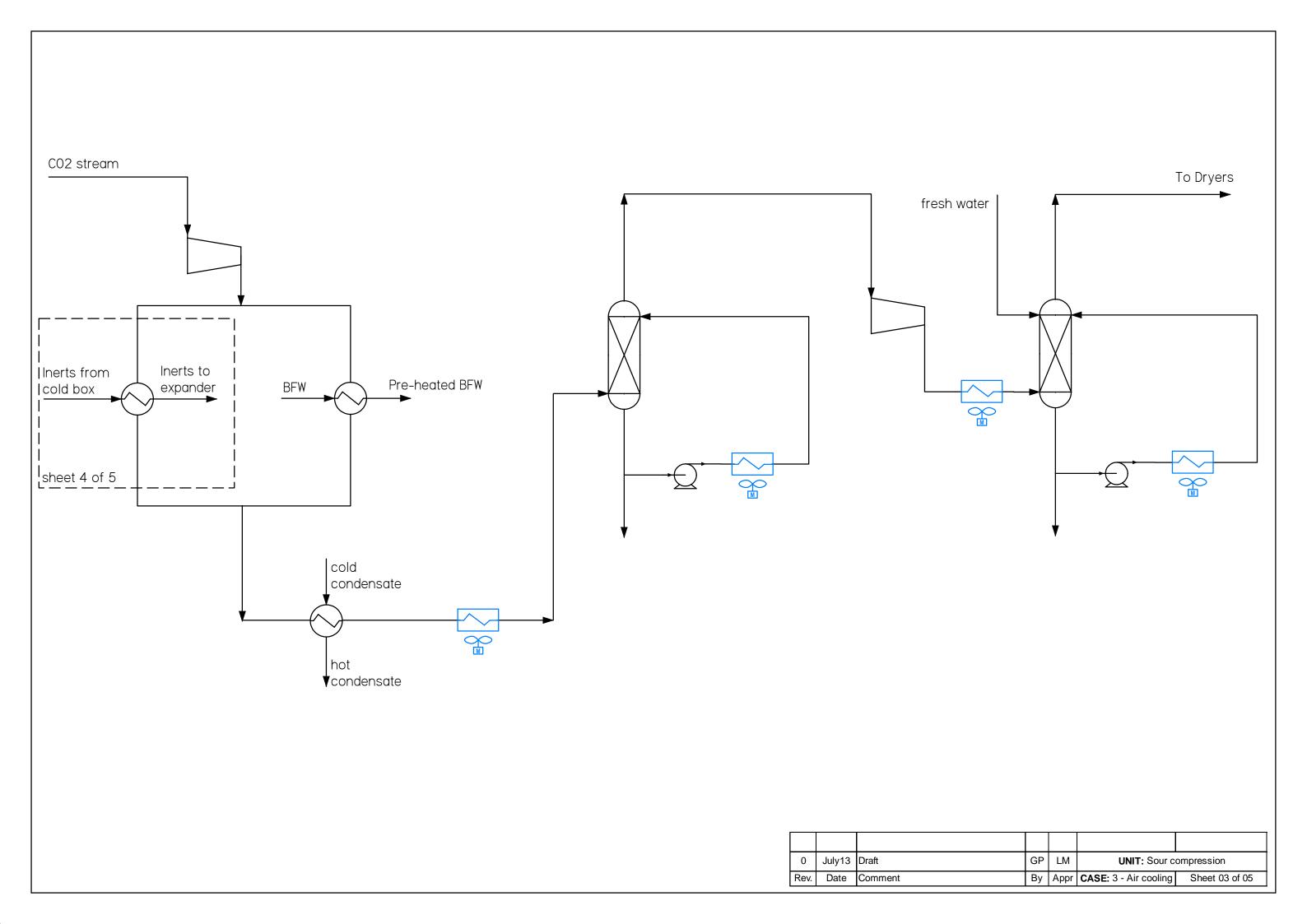
Simplified Process Flow Diagrams of this case, showing process modifications with respect to the reference case, are attached to this section.

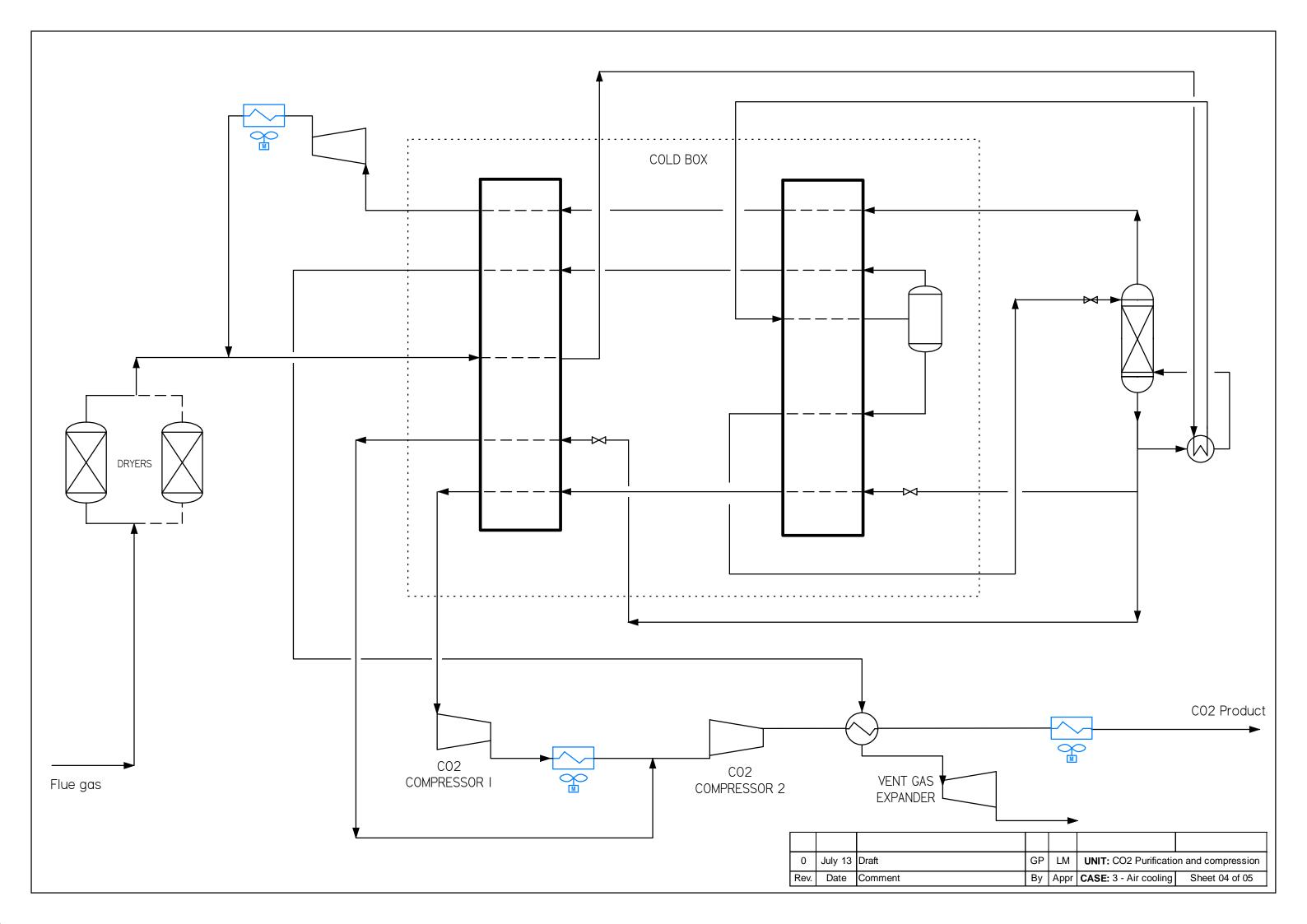
January 2014

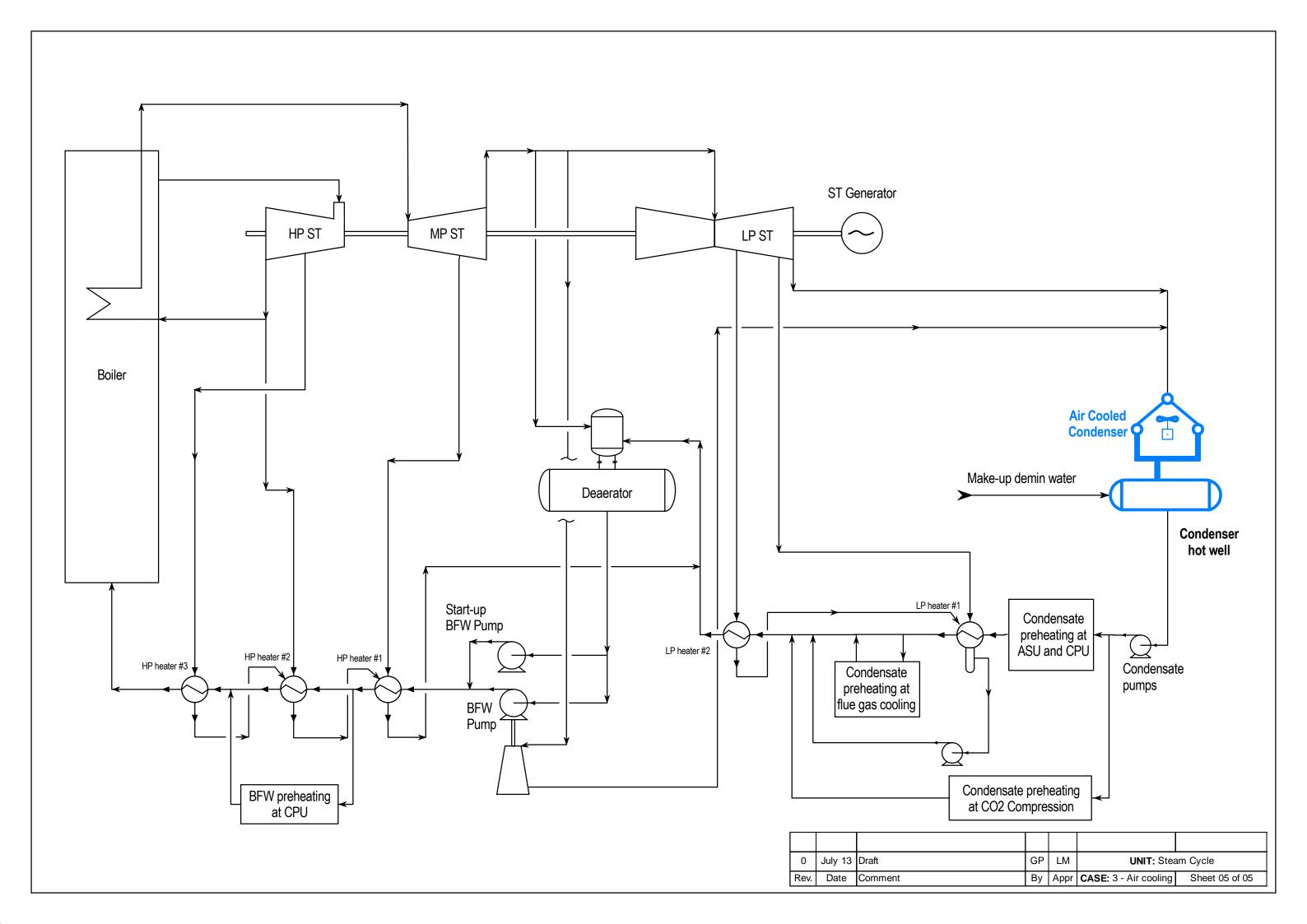







	0	July13	Draft	GP	LM	UNIT: Sour compression	
F	Rev.	Date	Comment	Ву	Appr	CASE: 3 - Sea water	Sheet 03 of 05





CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

4. Utility and chemicals consumption

Main utility consumption of the process and utility units is reported in the following tables, including data of the reference case. More specifically:

• Water consumption summary is reported in Table 1 and Table 2, respectively for the seawater cooling and air cooling systems (reference case consumptions shown in brackets).

Sheet: 8 of 15

• Electrical consumption summary is shown in Table 3 for both the seawater cooling and the air cooling systems.

With respect to the reference case, the following considerations can be made:

- For both the alternative systems, raw water requirement is significantly lower than the reference case, mainly because there is no cooling tower make-up. The raw water required by the demineralised water plant is totally recovered in the Waste Water Treatment, resulting in a zero raw water demand.
- The overall electrical consumption of the seawater system is slightly lower than the reference case with cooling tower. This is mainly related to the reduced compressor consumption in the CO_2 purification unit, due to the reduced flowrate and temperature of the CO_2 rich feed. Minor contributions are related to the reduced compressor consumption in the Air Separation Unit because of the increased cooling capacity. The cooling water system shows almost the same consumption as the higher cooling water flowrate, due to the lower ΔT allowed for the seawater, is compensated by the lower cooling water pump head required for pumping the cooling water to the users.
- The overall electrical consumption of the air cooling system is slightly lower than the reference case with cooling tower. The lower compressors consumption in both the CO₂ purification unit and the ASU, coupled with the absence of cooling water pumps, apart those of the closed circuit, more than offset the additional consumptions of the air coolers fans, mainly the air condenser in the steam cycle.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS Cooling system sensitivity

Date: January 2014

Sheet: 9 of 15

Table 1. Case 3 (Seawater Cooling) – Water consumption summary

CLIENT: IEAGHG

PROJECT NAME: CO2 capture at coal based power and H2 plants

PROJECT No.: 1-BD-0681 A

PROJECT NO.: 1-BD-0681 A

LOCATION: The Netherlands

PROJECT NO.: 1-BD-0681 A

APPROVED BY

LM

Case 3 (SW) - Water consumption								
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Sea Cooling Water DT = 7°C [t/h]	Machinery CW DT = 11°C [t/h]			
1000	FEEDSTOCK AND SOLID HANDLING	[4]	[4, 1.]	[4]	[4]			
1000	Solid Receiving, Handling and storage	5						
2000	Air Separation Unit Air Separation unit			2025				
	Air Separation unit			2025				
2000	BOILER ISALND and FLUE GAS TREATMENT							
	Boiler island			19530				
	Flue Cas Danielah witastian (CFDC)							
	Flue Gas Desulphurization (CFBS)							
	CO2 compression and purification			14570				
500	POWER ISLAND (Steam Turbine) Condenser			150770				
	Condenser			150770				
	Turbine and generator auxiliaries		5		5130			
ВоР	UTILITY and OFFSITE UNITS Cooling Water System			8480				
	Cooling water System			8480				
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	8	-5					
	Betwee Harra	42			100			
	Miscellanea	-13			100			
				105				
	BALANCE	0 <i>(2033)</i>	0.0	195,375 <i>(94,745)</i>	5230 (26525)			

Note: (1) Minus prior to figure means figure is generated

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS Cooling system sensitivity

Date: January 2014

Sheet: 10 of 15

Table 2. Case 3 (Air Cooling) – Water consumption summary

	CLIENT: IEAGHG	REVISION	0
FOSTERWHEELER	PROJECT NAME: CO2 capture at coal based power and H2 plants	DATE	Jul-13
	PROJECT No.: 1-BD-0681 A	MADE BY	NF
	LOCATION: The Netherlands	APPROVED BY	LM

	Cas	se 3 (AC) - Water	consumption		
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Machinery CW DT = 8°C	Primary cooling medium
		[t/h]	[t/h]	[t/h]	[t/h]
1000	FEEDSTOCK AND SOLID HANDLING				
	Solid Receiving, Handling and storage	5			Σ
)!C
2000	Air Separation Unit				<u> </u>
	Air Separation unit				2
					<u>¥</u>
2000	BOILER ISALND and FLUE GAS TREATMENT				5
	Boiler island				Ŏ L
					<u> </u>
	Flue Gas Desulphurization (CFBS)				NO PRIMARY COOLING WATER IS AVAILABLE. AIR IS USED AS PRIMARY COOLING MEDIUM
					<u></u>
	CO2 compression and purification				<u> </u>
500	POWER ISLAND (Steam Turbine)				SEI
	Condenser				j j
					~ ~ ~
	Turbine and generator auxiliaries		5	6870	A B
					i ii
BoP	UTILITY and OFFSITE UNITS				. BI
	Cooling Water System				
					▼
	Demineralized/Condensate Recovery/Plant and	8	-5		A
	Potable Water Systems	8	-5		SIS
					<u> </u>
	Waste Water Treatment	-13			
	Miscellanea			140	N N
					6
					, o
					, k
					Ĭ Š
					<u> </u>
					d
					ž
		0	0.0	7,010	
	BALANCE	(2,033)	0.0	(26,525)	(94,745)

Note: (1) Minus prior to figure means figure is generated

Revision no.: Final **IEAGHG**

 ${\rm CO_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

January 2014

Sheet: 11 of 15

Table 3. Case 3 (Cooling medium sensitivity) – Electrical consumption summary

FOSTER WHEELER

CLIENT: REVISION IEAGHG PROJECT NAME: CO2 capture at coal based power and hydrogen plants Jul-13 DATE PROJECT No. : 1-BD-0681 A MADE BY LOCATION : The Netherlands APPROVED BY

Case 3 - Electrical consumption Sensitivity to cooling system

		Absorbed Electric Power		wer
UNIT	DESCRIPTION UNIT	CASE 3	CASE 3	CASE 3
0.1111	DESCRIPTION ONLY	(Cooling tower)	(Sea Water)	(Dry air)
		[kW]	[kW]	[kW]
900	AIR SEPARATION UNIT			
	Main air compressors	111060	111060	111060
	Booster air compressors + pumps + air coolers	18280	17890	18060
1000	FEEDSTOCK AND SOLID HANDLING			
	Solid handling	3255	3255	3255
2000	BOILER ISLAND and FLUE GAS TREATMENT			
	Boiler island (including FGD)	14370	14300	15850
	Solici Island (Induding 195)	14370	14300	15050
3000	STEAM CYCLE			
3000	Steam Turbine Auxiliaries and condenser	4700	4700	4700
	Steam furbile Adminises and condenses	4700	4700	4700
	Steam turbine air condenser	_	_	8250
	Steam tarbine an condenser			0230
	Condensate and feedwater system	1250	1250	1250
	Condensate and reedwater system	1230	1230	1230
	B 61	600	600	600
	Miscellanea	600	600	600
4000	CO2 DUDIFICATION AND COMPRESSION			
4000	CO2 PURIFICATION AND COMPRESSION			
	Flue gas compression (up to 35 bar)	83390	80660	80660
	CO2 compression (up to 110 bar)	26790	26750	29000
	Overhead recycle	790	850	850
	Expander	-15110	-15110	-15110
BoP	UTILITY and OFFSITE UNITS			
	Cooling Water System	14290	13640	3010
	Other Units	1430	1430	1420
	BALANCE	265,095	261,275	262,855

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS Cooling system sensitivity

se3: Oxy-combustion SC PC with CCS
Sheet: 12 of 15

January 2014

5. Overall performance

The following Table shows the overall performance of the plant with the three different cooling systems assessed in the study.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Jul-13
PROJECT No.:	1-BD-0681 A	MADE BY	NF
LOCATION:	The Netherlands	APPROVED BY	LM

Case 3 - Oxy SC PC Plant Performance Sensitivity to cooling system

OVERALI	PERFORMANCES			
		CASE 3 (Cooling tower)	CASE 3 (Sea Water)	CASE 3 (Dry Air)
Fuel flow rate (A.R.)	t/h	325	325.0	325.0
Fuel HHV (A.R.)	kJ/kg	27060	27060	27060
Fuel LHV (A.R.)	kJ/kg	25870	25870	25870
THERMAL ENERGY OF FEEDSTOCK (based on LHV) (A)	MWth	2335	2335	2335
THERMAL ENERGY OF FEEDSTOCK (based on HHV) (A')	MWth	2443	2443	2443
Steam turbine power output (@ gen terminals)	MWe	1101	1112.8	1082.8
GROSS ELECTRIC POWER OUTPUT (C) (1)	MWe	1101	1112.8	1082.8
Boiler Island (including FGD)	MWe	14.4	14.3	15.9
Utility & Offsite Units consumption	MWe	15.7	15.1	4.4
Power Islands consumption	MWe	6.6	6.6	14.8
Air Separation Unit consumptions	MWe	129.3	129.0	129.1
CO2 purification and compression	MWe	95.9	93.2	95.4
Feedstock and solids handling	MWe	3.3	3.3	3.3
ELECTRIC POWER CONSUMPTION	MWe	265.1	261.3	262.9
NET ELECTRIC POWER OUTPUT	MWe	835.9	851.5	819.9
(Step Up transformer efficiency = 0.997%) (B)	MWe	833.4	849.0	817.5
Gross electrical efficiency (C/A x 100) (based on LHV)	%	47.1%	47.6%	46.4%
Net electrical efficiency (B/A x 100) (based on LHV)	%	35.7%	36.4%	35.0%
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	45.1%	45.6%	44.3%
Net electrical efficiency (B/A' x 100) (based on HHV)	%	34.1%	34.8%	33.5%
Fuel Consumption per net power production	MWth/MWe	2.80	2.75	2.86
CO2 emission per net power production	kg/MWh	92.2	90.5	93.9

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

Date: January 2014

Sheet: 13 of 15

By comparing the results of the reference case with those of the alternative cooling system type, the following considerations can be made:

- <u>Seawater system</u>: Net electrical efficiency increases of about 0.7 percentage points, due to the higher gross power production, related to the lower condensation pressure, and to the lower plant auxiliary power demand.
- <u>Air cooling system</u>. Net electrical efficiency decreases of about 0.7, due to the lower gross power production, related to the higher condensation pressure, and the lower heat recovery within the CO₂ purification and compression.

The overall CO₂ balance and removal efficiency is unchanged with respect to Case 3, as shown in the following.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
FUEL CARBON CONTENT (A)	17495
ОИТРИТ	
Carbon losses (B)	166
CO ₂ flue gas content	17329
Total to storage (C)	15584
Emission (inert + losses)	1745
TOTAL	17495
Overall Carbon Capture, % ((B+C)/A)	90.0

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

6. Environmental impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 14 of 15

6.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the inert vent streams from the CO_2 purification unit. No difference is expected in the flowrate and composition of this stream. The same minor and fugitive emissions, related to seal losses and handling of solid materials, are valid for these alternative systems.

6.2. Liquid effluents

As per the reference case, the plant does not produce significant liquid waste. Plant blow-downs (e.g. flue gas final contact cooler, CO₂ purification unit) are treated to maximise water recovery. As the amount of water that can be potentially recovered as raw water is higher than the plant requirements, the excess water is discharged.

Waste Water Treatment blow-down

Flowrate: 150 m³/h

6.2.1. Seawater system

For the seawater case, seawater is returned to the sea basin after exchanging heat in the plant, with a maximum temperature increase of 7°C. The main characteristics of the discharged seawater are listed below:

Maximum flow rate: 196,000 m³/h Temperature: 19 °C

6.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter D.3 - Case3: Oxy-combustion SC PC with CCS

Cooling system sensitivity

Date: January 2014

Sheet: 15 of 15

7. Main equipment design changes

The following equipment summary tables show the major impact on equipment design for the alternative cooling system types.

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE Case 3 - Oxycombustion boiler - Sea Water Sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	18-Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	I.M			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 900 - AIR SEPARATION UNIT					
PK - 901 A/B/C	Air Separation unit					
	Main Air Compressor				Intercooling: Sea Water Cooled Cooling Water	Intercooling medium changed (*)
	UNIT 2000 - BOILER					
PK - 2003	Indirect Contact Cooler Contact cooler exchanger	Sea Water Cooled Water cooled	146 MWth			Size changed Intercooling medium changed (*)
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		1115 MWe		Condensate pressure: 3.0 kPa	Size changed
PK- 3002 E- 3001 E- 3001	Steam Condenser Package Steam condenser Steam condenser	Water cooled Sea Water cooled	1210 MWth 1190 MWth			To be deleted (*) To be added (*)
	UNIT 4000 - CO ₂ PURIFICATION AND COMPRESSION					
PK - 4001	Sour compression section		Dry flue gas: 22,415 kmol/h 2.6% vol H ₂ O			Lower wet flue gas flowrate
	Including: - Raw flue gas compressors (two stages) - Flue gas cooler downstream compressor			2 x 46 MWe		Size changed
	BFW heater Condensate heater		10.6 MWth 22.4 MWth			Size changed Size changed
PK - 4003	Cold box for inerts removal					
	CO ₂ compressors aftercoolers	Sea Water Cooled Water cooled	110 MWth			Intercooling medium changed

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE Case 3 - Oxycombustion boiler - Sea Water Sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	18-Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	COOLING SYSTEM					
E - 6001	Closed Cooling Water cooler		67 MWth			To be added
P- 6001 A//H P- 6002 A/B	Sea Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system)	Centrifugal Centrifugal	16500 m3/h x 20 m 5500 m3/h x 35 m	1100 1250	Twelve in operation One in operation, one spare	To be added (*) Size changed
CT- 6001 A/B	Cooling Tower including: Cooling water basin	Natural draft	2 x 775 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A//F P- 6003 A/B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal Centrifugal	16000 m3/h x 35 m 2400 m3/h x 30 m	1900 300	Six in operation	To be deleted (*) To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 12300 m3/h			
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

^(*) Different material selection (titanium) is considered for the exchangers and pumps design (e.g. steam condenser, cooling water pumps, compressors intercoolers) to address corrosion issues related to the use of SW as cooling medium.

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE Case 3 - Oxycombustion boiler - Air cooled Sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 900 - AIR SEPARATION UNIT					
PK - 901 A/B/C	Air Separation unit Main Air Compressor				Intercooling: Air Cooled Cooling Water	Intercooling medium changed
	UNIT 2000 - BOILER					
PK - 2003	Indirect Contact Cooler Contact cooler exchanger	Air Cooler Water cooled	146 MWth	1860 kWe		Size changed Intercooling medium changed
	UNIT 3000 - STEAM CYCLE					
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		1085 MWe		Condensate pressure: 5.2 kPa	Size changed
PK- 3002 E- 3001 AC- 3001	Steam Condenser Package Steam condenser Steam condenser	Water cooled Air cooler	1210 MWth 1220 MWth	110 x 90 kWe		To be deleted To be added
	UNIT 4000 - CO ₂ PURIFICATION AND COMPRESSION					
PK - 4001	Sour compression section		Dry flue gas: 22,415 kmol/h 2.6% vol H ₂ O			Lower wet flue gas flowrate
	Including: - Raw flue gas compressors (two stages) - Flue gas cooler downstream compressor			2 x 46 MWe		Size changed
	BFW heater Condensate heater		10.6 MWth 22.4 MWth			Size changed Size changed
PK - 4003	Cold box for inerts removal					
	CO ₂ compressors aftercoolers	Air coolers Water cooled	110 MWth	2700 kWe		Intercooling medium changed

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE Case 3 - Oxycombustion boiler - Air cooled Sensitivity case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	Jun-13			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	COOLING SYSTEM					
AC - 6001	Closed loop air cooler		65 MWth	1770 kWe		To be added
P- 6002 A/B	Cooling Water Pumps (secondary system)	Centrifugal	7500 m3/h x 35 m	1700	One in operation, one spare	Size changed
CT- 6001 A/B	Cooling Tower including: Cooling water basin	Natural draft	2 x 775 MWth Diameter: 120 m each, Height: 210 m, Water inlet: 17 m			To be deleted
P- 6001 A//F P- 6003 A/B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal Centrifugal	16000 m3/h x 35 m 2400 m3/h x 30 m	1900 300	Six in operation	To be deleted To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 12300 m3/h			
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Sheet: 1 of 67

Date:

January 2014

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : BASIC INFORMATION OF IGCC PLANT

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO / L. CASTRONUOVO

CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E - Basic information of IGCC plant alternatives Date: January 2014

Sheet: 2 of 67

TABLE OF CONTENT

1.	Intr	roduction	4
2.	Bas	sic information of main process units	7
	2.1.	Feedstock and solids handling	7
	2.2.	Gasification Island	8
	2.3.		9
	2.4.		1 5
	2.5.	2.5.1. Selexol acid gas removal process	20
	2.6.	Sour Water Stripper	24
	2.7.	Sulphur Recovery Unit and Tail Gas Treatment	24
	2.8.	Carbon dioxide compression and dehydration	25
	2.9.	PSA unit (Hydrogen production cases)	26
	2.10	2.10.1. Gas Turbine 2.10.2. Heat Recovery Steam Generator. 2.10.3. Steam turbine and condenser.	28 32
	2.11	. Utility and Offsite units	40
		 2.11.1. Cooling water 2.11.2. Raw and Demineralised water 2.11.3. Fire fighting system 2.11.4. Instrument and plant air system 2.11.5. Waste Water Treatment 	40 40 41
3.	Gas	sification	45
	3.1.	Shell gasification	45

IEAGHG		Revision r	o.: Final
CO ₂ CAPTURE AT CO	OAL BASED POWER AND HYDROGEN PLANTS	Date:	January 2014
2	nformation of IGCC plant alternatives		Sheet: 3 of 67
3.1.3.	Process Data		50
3.1.4.	Plot Plan		52
3.1.5.	Capital Investment Costs		53
3.1.6.	Availability Data		53
3.1.7.	Technology Experience (References)		53

3.2.1.

3.2.2. 3.2.3.

3.2.4. 3.2.5.

3.2.6.

3.2.7.

3.3.1.

3.3.2. 3.3.3.

3.3.4.

3.2. GE Energy gasification55

Introduction55Process Description55

Technology Experience (references)......60

Introduction62Process Description62

References.......66

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 4 of 67

1. Introduction

The Integrated Gasification Combined Cycle (IGCC) Complex is a large production facility, converting coal to syngas in order to generate electric energy, with a low impact to the environment.

January 2014

The key and initial process step of the plant is the gasification of coal. Gasification is the partial oxidation of any fossil fuel to a gas, often identified as synthesis gas (syngas), in which the major components are hydrogen and carbon monoxide. Syngas generated by gasification is cleaned from acid gas components and then used in a combined cycle, which is today the most efficient thermal cycle for power generation. Therefore, gasification acts as a bridge between low quality fossil fuels and the gas turbines, with the target of high-energy efficiency and minimum emissions to the environment.

The IGCC Complex is a combination of several process units, different for each alternative of the study. The main process blocks are the following:

- Feedstock and solids handling;
- Gasification Island (GI);
- Air Separation Unit (ASU);
- Syngas treatment and conditioning line;
- Acid Gas Removal (AGR);
- Sulphur Recovery Unit and Tail Gas Treatment (SRU & TGT);
- Pressure Swing Adsorption (PSA, hydrogen cases only);
- CO₂ compression and dehydration;
- Combined Cycle (CC).

Other ancillary utilities, such as cooling water, flare, plant and instrument air, demineralised water and auxiliary fuels support the operation of these basic blocks.

The focus of this chapter E is to provide a general description of the major blocks of the IGCC Complex, common to the gasification-based cases of the study, and to summarize the information received from various gasification licensors on their technology, limited to those information that licensors have authorized for disclosure.

Chapters E.1 through E.9 of the report give basic engineering information for each alternative, with the support of specific heat and mass balances, utility consumption summaries, etc.

Table 1 and Table 2 provide key features of the gasification-based cases, technically and economically assessed in this study, respectively for the power production and the hydrogen and power co-production alternatives. In addition, some specific

Revision no.: Final **IEAGHG**

January 2014 CO₂ Capture at Coal Based Power and Hydrogen Plants Date: Sheet: 5 of 67

Chapter E - Basic information of IGCC plant alternatives

additional cases are developed to assess the performance and costs of near zero emission plants (around 98% CO₂ capture) and to assess the sensitivity to the cooling system type; the list of these cases is shown in Table 3.

Table 1. IGCC main study cases – power production

Case	Chapter	Description	Key features
Case 4.1	E.1	Shell-based IGCC	 Shell Coal Gasification process (Waste Heat Recovery, WHR) Hybrid CO shift scheme Two generic F-class Gas Turbines UOP Acid Gas Removal (Selexol) Cooling system: natural draft cooling tower
Case 4.2	E.2	GE-based IGCC	 GE Gasification process (Radiant Syngas Cooler, RSC) Sour CO shift scheme Two generic F-class Gas Turbines UOP Acid Gas Removal (Selexol) Cooling system: natural draft cooling tower
Case 4.3	E.3	MHI-based IGCC	 MHI air-blown gasification process Sour CO shift scheme Two MHI F-class Gas Turbines UOP Acid Gas Removal (Selexol) Cooling system: natural draft cooling tower

Table 2. Hydrogen and power co-production main study cases

Case	Chapter	Description	Key features
Case 5.1	E.4	IGCC + H ₂ production (PSA)	 GE Gasification process (same as case 4.2) PSA Two E-class Gas Turbines
Case 5.2	E.5	IGCC + H ₂ production (PSA)	 GE Gasification process (same as case 4.2) PSA Two equivalent Frame 6 Gas Turbines
Case 5.3	E.6	H ₂ production (Gasification + PSA) + boiler	 GE Gasification process (same as case 4.2) PSA PSA off-gas fired boiler to meet plant auxiliary demand

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 6 of 67

Table 3. Gasification-based additional study cases

Case	Chapter	Differences	
Case 3 – Sensitivity to cooling water system			
4.2 - (SW)	E.7	Cooling system: sea water	
4.2 - (AC)		Cooling system: air cooling	
Case 3 – Near zero emissions			
4.2.1	E.8	Around 98% CO ₂ capture	
5.3.1	E.9	Hydrogen production with 98% CO ₂ capture	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 7 of 67

2. Basic information of main process units

2.1. Feedstock and solids handling

2.1.1. <u>Coal storage and handling</u>

This unit is the same as the one described in chapter C for the air-fired boiler cases. Anyhow, the description of the unit is here below reported for clarity of the reader.

January 2014

The scope of the feedstock receiving, handling and storage unit is to unload, convey, prepare, and store the coal delivered to the plant.

The coal is delivered from a port to the plant by train. The unloading is done by a wagon tipper that unloads the coal to the receiving equipment. Coal from each hopper is fed directly into a vibratory feeder and subsequently discharged onto a belt extractor. A conveyor and transfer tower system finally delivers the coal to the open stockyard (as-received coal).

The storage pile is designed to hold an inventory of 30 days of design consumption to allow the facility to hedge against delivery disruptions.

From the storage piles, the coal is discharged onto enclosed belt conveyors to two elevated feed hoppers, each sized for a capacity equivalent to two hours. Coal is discharged from the feed hoppers, at a controlled rate, and transported by belt feeders to parallel crushers, each sized for 100% of the full capacity. The crushers are designed to break down big lumps and deliver a coal with lump size not exceeding 35 mm. Coal from the crushers is then transferred by enclosed belt conveyors to the day silos close to the boiler island (as-fired coal).

Two magnetic plate separators for removal of tramp iron and two sampling systems are supplied for both the as-received coal and the as-fired coal. The recovered iron from the separators is delivered to a reclaim pile, while data from the analyses are used to support the reliable and efficient operation of the plant.

Enclosed belt conveyors, storage hoppers and silos, flow control feeders and other equipment handling coal are potential sources of air pollution, due to dispersion of fine powder. To control the plant environment all these items of equipment are connected to bag filters and exhaust fans that permit the capture of any coal powder generated in the coal handling area.

The downstream coal handling and feed preparation system is different for each gasification technology; case-specific descriptions are reported in the relevant section of each technology licensor.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 8 of 67

2.1.2. Limestone handling

Depending on the gasification technology, limestone fluxant is used as an additive to the coal feed. Limestone is used as a moderator, affecting the ash fusion temperature of the feed to the gasifier, in order to ensure proper characteristics of the slag flow from the gasifier. Limestone is added to the coal feed before being fed to the mills for pulverization.

January 2014

Limestone is delivered to the plant site by train and stored in a rectangular stockyard building, equipped with stacking and reclaiming machines. The storage capacity is made to ensure the plant is capable of feeding at maximum capacity for approximately 30 days.

The limestone feeding system, from the storage building to the gasification unit, is the same type as that employed for coal, with conveyors transporting limestone firstly to the dedicated silo before being fed to the coal milling and drying.

2.2. Gasification Island

Reference is made to section 3, which summarizes information received from the different Gasification Island Licensors.

As listed in Table 1, three different gasification technologies have been assessed in the study, namely the Shell Coal Gasification Process (SCGP) with syngas cooler line-up, the GE's gasification process with the Radiant Syngas Cooler (RSC) and the MHI air blown gasification.

The general reasons for taking into considerations the above listed technologies are the following:

- Willingness of the Licensors to support the study effort at the time of the request, providing the most updated information on performance and costs for their proprietary technology.
- Assessment of the most referenced and well-proven gasification technologies.
- Investigation of CO₂ capture within an IGCC based on an air-blown gasification technology, as presently few techno-economic assessments of air blown IGCC/CCS plants are available in the public domain, while the interest in the technology is growing, like for the Kemper plant. The purpose is directly assessing the advantages of a lower size ASU with the disadvantages of higher gas volume and lower CO₂ partial pressure.

It is also noted that each gasification Licensor has provided information relevant to the technology option (e.g. quench, syngas cooler etc) that, at its judgement, was best suited for the specific requirements of the study case. As an example, Shell decided to propose their Syngas Cooler gasifier technology, coupled with

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

ate: January 2014

Sheet: 9 of 67

the proprietary shift catalyst to partially overcome the penalty due to the low syngas water content, while GE proposed the Radiant Syngas Cooler to enhance overall plant net electrical efficiency.

On the other hand, with reference to the hydrogen and power co-production cases, the GE gasification technology was considered mainly because the high gasification pressure allows the production of high pressure hydrogen, without need for final compression.

2.3. Air Separation Unit

The technology currently used for large oxygen (and nitrogen) production in gasification plants is based on the distillation of atmospheric air at cryogenic temperatures. This technology has been known for over 100 years and at present it is the most cost-effective one, with a number of international companies able not only to offer lump sum turnkey plants, but also often willing to build, own and operate the plant by themselves.

The Air Separation Unit (ASU) of this study is based on the high-pressure cryogenic distillation of ambient air; it is designed to produce high pressure oxygen at 95% mol O₂ purity for the gasification and a small quantity of low-pressure oxygen for the Sulphur Recovery Unit (SRU). Nitrogen is also produced at different pressure and purity levels, depending on its final use and the gasification technology:

- In the GE-based IGCC, medium pressure nitrogen is mixed with the syngas and injected in the combustion chamber of the gas turbine of the combined cycle for dilution and NOx control purpose.
- In the Shell-based IGCC, very high pressure nitrogen is also used as carrier
 gas for pneumatic transport of dried and pulverized coal from the feeding
 system to the gasifier.
- MHI technology considered in the study is the air-blown type; however, a small ASU is included in the gasification island battery limits, with the main purpose of producing nitrogen for coal transportation. In this case, oxygen is a by-product of the distillation, which is also used as oxidant for the partial oxidation reactions in the gasifier.

Table 4 lists the main process streams produced in the ASU, accordingly to the requirements of each gasification technology.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 10 of 67

Table 4. ASU product stream

Product type	Use (1)	Gasification technology	Purity (%)
Oxygen			
HP gaseous oxygen for gasification (HP GOX)	С	GE / Shell / MHI	> 95
LP gaseous oxygen for sulphur recovery unit (LP GOX)	С	GE / Shell / MHI	> 95
Nitrogen			
MP nitrogen for gas turbine injection	С	GE / Shell	> 98
MP nitrogen for syngas dilution	С	GE / Shell	> 98
High purity HP nitrogen for dried coal transport	С	Shell / MHI	> 99.99
High purity LP nitrogen for dried coal transport	С	Shell / MHI	> 99.99
LP nitrogen for syngas dilution to CMD	С	Shell / MHI	> 98
High purity LP nitrogen for blanketing and equipment purging	С	GE / Shell / MHI	> 99.99
High purity HP/LP nitrogen for purging during gasifier and gas turbine shutdown	I	GE / Shell / MHI	> 99.99

 $^{^{(1)}}$ C = Continuous; I = Intermittent

The following description refers to the Shell and GE based gasification technologies. For MHI, reference shall be made to the relevant section of the technology.

The ASU is arranged on the dual train configuration (2 x 50% trains) with a nominal capacity defined by the oxygen requirement of the gasification island and the sulphur plant. The unit is also marginally oversized to provide additional oxygen and nitrogen production capacity and maintain desired inventories of storage systems of liquid and gaseous products. These systems are common to both trains.

With reference to the simplified block flow diagram shown in Figure 1, the plant includes the main sections described hereinafter.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 11 of 67

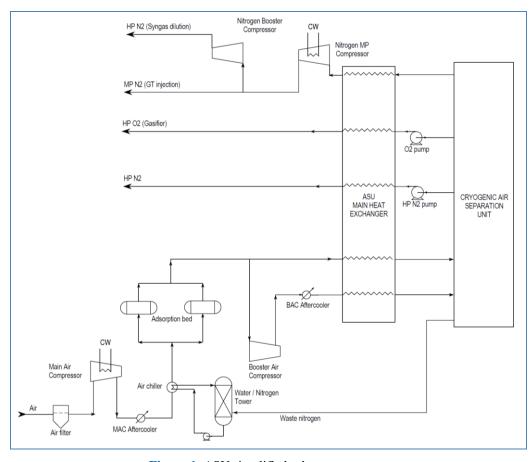


Figure 1. ASU simplified scheme

Air Compression and pre-cooling section

Ambient air is cleaned from dust and other particles by an intake air filter system and then compressed to the required process pressure of around 10 barg by multistage inter-cooled air compressors (Main Air Compressor, MAC) without direct oil contact.

The compressed air is cooled down by cooling water and chilled water from the nitrogen/water tower. In the nitrogen/water tower, water enters at the top whilst dry nitrogen is sent to the bottom. In the tower the water is cooled by vaporization which is taken up by the dry nitrogen gas. The water is recovered at the bottom of the nitrogen/water tower.

Adsorption front end air purification section

The air feed to the ASU needs monitoring for the air-borne contaminants.

An adsorption-type purification system is provided for removal of water, carbon dioxide and other impurities from the air feed before entering the cryogenic section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 12 of 67

The system is made up of two vessels containing alumina and molecular sieve adsorbents. By means of a set of automatically controlled switching valves, the compressed air passes alternately through one adsorber or the other.

January 2014

Moisture, carbon dioxide, and most of the other impurities are removed by adsorption. At the end of each period, air is switched to the other bed and the adsorbed impurities are removed by a heated waste nitrogen stream flowing through the bed counter-current to the normal airflow. The regeneration gas is purged to the atmosphere. Once the regeneration is completed, the bed is cooled down to be ready for the next adsorption cycle.

Booster and cold production section (cold box)

Air from the pre-purifier is then split into two streams and fed to the cold box. The main stream of purified air enters the cold box, where it is cooled in the main heat exchanger against the product and waste gas streams leaving the cold box. Downstream of the heat exchanger the main air stream is fed to the distillation column.

The remaining part of the air is compressed up to around 20 barg by a booster air compressor (BAC) and cooled and liquefied in the heat exchanger where it serves as heating medium to vaporize and warm up the internally compressed products, i.e. the liquid oxygen (LOX) and the liquid nitrogen (LIN) that are withdrawn from the distillation column and pumped to the required product pressure by internal pumps.

Downstream of the heat exchanger the stream from the BAC is sent to the distillation column. Part of the air stream from the BAC is also fed to an expansion turbine to provide the required cold production.

Air separation

In the cold box, the air is separated into oxygen and nitrogen. Oxygen is withdrawn from the distillation column as a liquid and pressurized by a cryogenic pump; pressurized liquid oxygen (LOX) is then vaporized and fed to the process units. Nitrogen is produced from the cold box at different purities and used in the plant as shown in the previous Figure 1.

For the GE-based alternative, all nitrogen products are withdrawn as gaseous product from the columns, heated up in the main heat exchanger, and are directly available as low pressure nitrogen. Part of this stream is further compressed to the level required for syngas dilution or injection in the gas turbine.

For the Shell-based alternative, part of the liquid nitrogen is also withdrawn from the distillation column and pumped to the pressure required by the final dried coal transportation system. Pressurised liquid nitrogen is then vaporised and warmed up in the main heat exchanger against the boosted air stream; finally it leaves the cold box as high pressure nitrogen.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 13 of 67

In both alternatives, liquid nitrogen and oxygen are produced in the distillation column at a pressure adequate to feed the respective liquid storage tanks.

January 2014

2.3.1. Back-up oxygen and nitrogen systems

The continuity of supply of oxygen and nitrogen to the IGCC Complex is extremely critical. Therefore, a back-up oxygen and nitrogen system is included to avoid gasifier shutdown for ASU outages of short duration. A back-up nitrogen system is also considered to allow the gas turbines to switch from nitrogen to steam for NOx emission control.

The ASU is also marginally oversized with respect to the oxygen requirement at 100% plant operational load and at the reference ambient temperature of the plant, in order to have additional spare capacity to refill the stores during normal operation.

Back-up oxygen system

The back-up oxygen system is mainly based on liquid oxygen (LOX) storage and a vaporization system. The system is sized to provide eight (8) hours at the design oxygen flow of one ASU train. At storage outlet, liquid oxygen is vaporised at the required pressure by a steam heated vaporiser.

The ASU also includes a high pressure gaseous oxygen (GOX) tank and system, sized to provide oxygen from two ASU trains during the time required to get the LOX vaporization system on-stream and this is capable of maintaining oxygen supply pressure at the unit battery limits within the required limits.

Back-up nitrogen system

The back-up nitrogen system is mainly based on liquid nitrogen (LIN) storage and a steam heated vaporization system. The system is sized to provide the following streams:

- Four (4) minutes at the design nitrogen flow for syngas dilution or turbine injection.
- Eight (8) hours at design nitrogen flow for one gasifier feed system and continuous blanketing/purging of the process units.

The ASU also includes a high pressure gaseous nitrogen (GAN) tank and system, sized to provide nitrogen from two ASU trains during the time required to get the LIN vaporization system on-stream and capable of maintaining nitrogen supply pressure at the unit battery limits within the required limits.

2.3.2. Impact on ASU design for high operational flexibility

The ASU significantly impacts the overall net electricity production of the plant, mainly due to its high auxiliary power demand. Therefore, if the plant were called to

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

operate flexibly with respect to the daily demand for electricity, a possibility could be to operate the ASU at partial load during peak hours, while the rest of the plant runs at full load, thus reducing the auxiliary consumption and increasing the overall net electricity production. Vice versa, during low-electricity demand periods, the ASU could be operated at load higher than that of the process unit, producing the extra oxygen and nitrogen required during peak demand period.

January 2014

Sheet: 14 of 67

In this respect, LOX and LIN storages become of primary importance because they allow decoupling the ASU from the rest of the IGCC plant, providing the buffer capacity required for balancing the cycling operation of the plant. Design changes and related costs mainly depend on the load demand cycle the plant is required to respect. The following Table 5 summarises the expected impact on performance and costs of the additional LOX and LIN storages required to follow two commonly requested power demand cycles, the first to cover daily peak demand and the second to follow a weekly cycle. For further details on the provision of LOX and LIN storage for enhancing plant operating flexibility, reference shall be made to IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

Case description	Delta performance	Delta costs
LOX / LIN covering daily peak	+6-10% NPO (2 hours per day)	+1-2%
LOX / LIN covering weekly peak	+5-8% NPO (60 hours per week)	+2-3%

Table 5. LOX/LIN storage option for IGCC flexible operation

Another aspect that should be considered in case the plants were required to operate flexibly is the possible air integration between the ASU and the gas turbine. In principle, there are several possible degrees of integration between the ASU and the gas turbines:

- In the case of total integration, 100% of the air required by the air separation is supplied by bleeding some of the air from the discharge of the gas turbine compressor.
- Alternatively, the air separation plant can be *stand-alone*, not integrated. In
 this case, the air separation plant includes its own full-size air compressor
 delivering air to the cryogenic process.
- The intermediate design between these two cases is the partially integrated air separation. Air is partly supplied by the gas turbine and partly by a separate air compressor. The percentage of air required by the air separation unit that is supplied by the gas turbine defines the degree of integration.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 15 of 67

The integration between the ASU and the gas turbine may potentially limit the capability of the IGCC to operate flexibly, especially in those operating modes where the ASU and the other units shall be maintained at different loads to meet variable power production. In particular, if the full-size main air compressor is not foreseen in the air-integrated alternatives, then the ASU cannot be operated at full load, when the power plant is operated at lower loads, as the air extracted from the gas turbine is not enough to meet the amount required by the air separation unit. That means that the main air compressor shall be adequately sized, by considering all the different operating scenarios of the plant. As written before, further details can be found in the IEAGHG report 2012/06 'Operating Flexibility of power Plant with CCS'.

January 2014

2.4. Syngas treatment and conditioning unit

Raw syngas leaving the gasification island is routed to the syngas treatment and conditioning unit. Syngas is hot, generally humid, and contaminated with acid gases (e.g. CO_2 and H_2S) and other species like carbonyl sulphide (COS), hydrogen cyanide (HCN) and ammonia (NH₃).

Before being fed to the gas turbines as fuel or to the PSA for hydrogen production, most of the acid gases and contaminants must be removed for several reasons, like: to meet the required carbon capture rate, respect project environmental targets, meet product purity requirements and have stable operation of the combustion process in the gas turbines.

Depending on the case of the study, the preparation of the syngas at the proper temperature and pressure conditions and composition may include the following processing steps:

- Catalytic conversion of CO and water to H₂ and CO₂, assisted by a sulphur tolerant catalyst (sour shift reaction);
- Syngas cooling in waste heat boilers, recovering heat while generating steam at different levels of pressure or pre-heating circulating water for the nitrogen/syngas saturator;
- Preheating of the cold process condensate from the steam condenser of the combined cycle;
- Mercury removal;
- Removal of the acid gases in the Acid Gas Removal Unit, as separately described in section 2.5:
- Conditioning of the fuel before combustion in the gas turbines. Depending on the alternative, final treatment of the fuel may consist of pre-heating, humidification, or nitrogen dilution.

Each of the cases examined in the study have a different combination and sequence of the above listed processing steps. For all cases, a specific description of the syngas

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 16 of 67

treatment and conditioning unit is provided in the case-specific reports, with the support of dedicated process flow diagrams. For all cases, the unit is composed of two parallel lines, each receiving the raw syngas from two equally-sized gasifiers.

January 2014

2.4.1. *CO* shift

CO shift unit is considered in order to convert carbon monoxide and water to hydrogen and carbon dioxide, in accordance to the following reaction:

$$CO + H_2O \rightarrow CO_2 + H_2$$

The reaction is performed over a catalyst in a fixed bed suitable to process syngas containing sulphur (sour shift).

The equilibrium constant for the water-gas shift is a function of the temperature, with greater shift occurring at lower temperature. As the shift reaction is exothermic and heats the gas as CO shifts to CO_2 , it tends to inhibit the conversion. While the shift reaction is favoured at low temperatures, the reaction rates and the catalyst reactivity at low temperature are low, so commercial water gas shift reactors generally operate at a practical compromise temperature, where the catalyst proves most effective.

The following process description makes reference to the conventional sour shift simplified process flow diagram shown in Figure 2. For the Shell-based alternative a different configuration including a hybrid shift reactor upstream of the two-stages of conventional shift has been considered to reduce the amount of steam to be injected in the raw syngas. Reference shall be made to chapter E.1 for further details on this configuration.

The conventional shift reaction takes place into two consecutive stages, with intermediate cooling for syngas pre-heating and steam generation between them. A two-stage process is generally required to reach an overall CO conversion higher than 85-90%. Hot syngas from the first reaction stage preheats the saturated syngas from the scrubber up to the minimum temperature required for the operation of the CO shift catalyst.

In order to maximize the conversion of the CO, the injection of steam might become necessary, in particular for non-water quenched gasification technology, to maintain the water content in the syngas higher than the minimum level required for proper catalyst operation.

Downstream of the CO shift reactors, syngas is cooled in a series of heat exchangers, whose configuration varies depending on the case, as explained in the case-specific chapters of the report.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 17 of 67

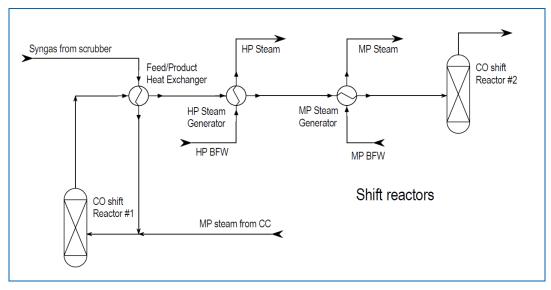


Figure 2. CO shift diagram (typical).

2.4.2. <u>Mercury removal</u>

The IGCC Complex includes a mercury removal system employed to eliminate mercury from the syngas before combustion in the gas turbine. This system uses sulphur-impregnated activated carbon beds capable of removing almost all the mercury in the syngas stream, thus meeting the environmental requirements.

The mercury removal package is located immediately upstream of the Acid Gas Removal unit, allowing operation of the system in its optimum conditions and enhancing the downstream AGR system performance and solvent life due to mercury and other contaminants removal.

Before entering the package, fuel gas is cooled to a temperature of about 34°C and the resulting process condensate is removed. Fuel gas is passed through one bed (one for each train) of sulphur-impregnated activated carbon.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 18 of 67

2.5. Acid Gas Removal

The primary purpose of the Acid Gas Removal (AGR) unit is the removal of acid gases, H_2S and CO_2 , to a level compatible with the plant environmental limits. Besides being a key unit for meeting the environmental performance of the plant, the AGR section is also a capital intensive unit and a large consumer of energy.

January 2014

H₂S shall be removed to meet the environmental requirements of the project, while CO₂ shall be partially removed to reach the target of 90% carbon capture.

The accurate selection of the process and solvent type for making the capture of the acid gases is important for the performance of the entire gasification plant.

Several different technologies are commercially available for the acid gas removal. They can be grouped into the following main categories:

- **Physical solvents**, capturing the acid gases in accordance with Henry's law, which states that "at a constant temperature, the amount of a given gas dissolved in a given type and volume of liquid is directly proportional to the partial pressure of that gas in equilibrium with that liquid". *Selexol* and *Rectisol* are typical examples of physical solvents.
- Chemical solvents, including many amines, which capture the acid gases through a chemical reaction. The amines are classified as either primary (MEA), secondary (DEA) or tertiary (MDEA). MEA can effectively remove virtually all hydrogen sulfide and carbon dioxide, but requires a large quantity of heat for regeneration. Secondary amines are suited for gas steams with less stringent product specifications. Tertiary amines are used selectively on gas streams with pressure higher than approximately 20 barg for deep hydrogen sulfide removal and only moderate carbon dioxide removal. MDEA is generally preferred for IGCC applications on account of its selectivity.
- **Physical-chemical or hybrids solvents,** which combine the high treated-gas purity offered by chemical solvents with the flash regeneration and lower energy requirements of physical solvents. *Sulfinol*, as an example, is a mixture of sulfolane (a physical solvent), diisopropanolamine (DIPA) or MDEA (chemical solvent), and water: *DIPA* is used when total acid gas removal is specified, while MDEA provides for selective removal of H₂S.
- Oxidative washes, in which the H₂S is oxidized to elemental sulfur in the solution. This type of washing has high operational costs and is limited to application with low sulfur production (about 15 t/d). Typical examples of this washing are *Crystasulf* and *Sulferox*.

Figure 3 shows equilibrium solubility data - expressed as standard cubic feet of gas per gallon liquid per atmosphere gas partial pressure - for H₂S and CO₂ in various representative solvents and the effects of temperature. More importantly, it shows

Revision no.: Final **IEAGHG**

CO₂ Capture at Coal Based Power and Hydrogen Plants

January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 19 of 67

Date:

how H₂S has solubility an order of magnitude higher than that of CO₂ at a given temperature, which increases the selective absorption of H₂S in physical solvents. It also illustrates that the acid gas solubility in physical solvents increases with lower solvent temperatures.

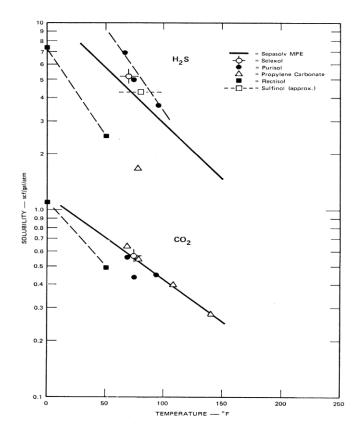


Figure 3. Equilibrium solubility data on H₂S and CO₂ in various solvents [DOE/NETL-2007/1281, Exhibit 3-8].

For the IGCC cases of the study, a physical solvent is deemed as the most adequate solution for separately removing H₂S and CO₂ from the syngas.

The most quoted, commercially available, physical solvents are Selexol (UOP) and Rectisol (Linde, Lurgi). For this study, Selexol solvent has been preliminary selected as the solvent of the AGR unit. The information received from UOP is covered by secrecy agreements. The part included in the following section and in the specific section of each case is limited to the information that UOP has authorized for disclosure.

The following section gives a general description of the process scheme used for the separation and removal of H₂S and CO₂. Case-specific data are shown in the technical descriptions of each case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 20 of 67

2.5.1. <u>Selexol acid gas removal process</u>

The following process description makes reference to the simplified process flow diagram shown in Figure 4.

Feed gas enters the unit battery limits, it is combined with recycle streams from the H₂S Flash Gas loop and Tail Gas Recovery Unit, cooled through a Feed/Product gas exchanger, and sent to the Feed Gas Knockout Drum. The gas stream is then routed to the bottom of the H₂S Absorber and flows upward through packed beds where it contacts chilled, loaded solvent entering at the top of the tower via three parallel Loaded Solvent Pumps. The loaded solvent is laden with CO₂ from three parallel CO₂ Absorbers, which improves the selectivity of the solvent for H₂S absorption. The contact between the gas phase and liquid phase is enhanced as they each pass through the packed beds, where primarily H₂S, CO₂, and other gases such as hydrogen, are transferred from the gas phase to the liquid phase. The treated gas passes through de-entrainment devices at the top of the packed bed and exits the tower.

The treated gas leaves the top of the H_2S Absorber and is sent to three parallel CO_2 Absorbers where the gas flows upward through packed beds and contacts chilled lean solvent entering at the top of the tower via the Lean Solvent Chiller and flash regenerated semi-lean solvent entering near the top of the tower via the Semi-Lean Solvent Pump. The contact between the gas phase and liquid phase is enhanced as they pass through the packed beds, where CO_2 plus some H_2S , hydrogen, and other gases are transferred from the gas phase to the liquid phase. The treated gas then passes through de-entrainment devices at the top of the towers, exits the top of the CO_2 Absorbers, is sent to the Feed/Product exchanger, and finally reaches the Selexol unit battery limits.

The solvent from the CO_2 Absorbers is collected at the bottom of the towers and becomes termed loaded solvent, as it is loaded with CO_2 . The loaded solvent is then split, with a portion routed to the H_2S Absorber for H_2S removal and the remaining portion sent to four successive flash drums to partially regenerate the solvent by removal of CO_2 .

The first flash drum is the CO_2 Recycle Flash Drum where H_2 , CO_2 and some dissolved and entrained gas are transferred to the gas phase by reduction of pressure. The separated gas is compressed and cooled before reintroduction into the CO_2 Absorbers.

The solvent from the CO₂ Recycle Flash Drum is sent to three consecutive Flash Drums characterized by decreasing pressure levels in order to maximize the CO₂ flashing process. The separated gas streams from the HP, MP, and LP CO₂ Flash Drums are sent to the Selexol battery limits as a HP, MP, and LP CO₂ product respectively. Possibility to recycle a portion or the whole HP CO₂ stream flowrate to minimise hydrogen losses in the captured CO₂ is also an option that could be

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

evaluated in more detail, in particular for the cases with high hydrogen content in this stream (e.g. MHI gasification based case).

January 2014

Sheet: 21 of 67

The flashed solvent from the HP and MP CO₂ Flash Drum is routed to the LP CO₂ Flash Drum which provides a deeper flash of CO₂ from the solvent. The flash regenerated semi-lean solvent is returned to the CO₂ Absorbers via the Semi-Lean Solvent Pump.

The rich solvent from the H₂S Absorber is sent to the Lean/Rich Exchanger via the H₂S Rich Solvent Pump in order to increase its temperature by heat exchange with the hot lean solvent from the Regenerator. The hot lean (regenerated) solvent is cooled in the Lean/Rich Exchanger before flowing to the Lean Solvent Cooler. By cross-exchanging these streams, the Lean/Rich Exchanger significantly reduces the duties of the Lean Solvent Cooler and the Regenerator Reboiler. The heated solvent stream is sent to the Concentrator followed by a series of flash drums to remove CO₂ and other dissolved components from the rich solvent before reaching the Regenerator for complete thermal regeneration.

The rich solvent and desorbed vapours from the Lean/Rich Exchanger are routed to the Concentrator, where some CO_2 and dissolved and entrained gas are stripped using a slipstream of treated gas. In the Concentrator, compounds such as CO_2 , H_2 , and CO with lower solubility in Selexol than H_2S are transferred from the liquid phase to the gas phase. Hydrogen sulphide has a high solubility in Selexol, and as such, has more of a tendency than most other gases to stay in the liquid phase. The gas exiting the Concentrator is primarily composed of CO_2 , N_2 , CO, and some H_2S . The gas stream joins the other flashed stream from the acid gas enrichment section for routing to the Stripped Gas Cooler and then recycled to the inlet of the H_2S Absorber tower.

The partially regenerated Selexol solvent from the Concentrator is sent to the H_2S Rich Flash Drum where additional non- H_2S components are flashed from the solvent, thereby increasing the H_2S concentration of the Acid Gas stream from the Regenerator. The flashed stream from the H_2S Rich Flash Drum is compressed and combined with the Concentrator off gas stream. The combined flash stream is recycled back to the H_2S Absorbers.

The arrangement of the Concentrator and recycle flash drums in series optimizes power consumption while maximizing the recovery of non-H₂S components and the H₂S content of the acid gas stream. The rich solvent from the Rich Solvent Flash Drum is sent to the Regenerator for complete thermal regeneration. Liquid from the H₂S Flash Gas knockout drums is combined with this rich solvent stream to the Regenerator.

Solvent regeneration is accomplished in the Regenerator, where the remaining H_2S , CO_2 and other compounds are transferred from the liquid phase to the gas phase by contact with the steam generated in the Regenerator Reboiler. The Regenerator is

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 22 of 67

composed of a lower section containing packed beds of Raschig Super Rings, and an upper section containing several reflux trays, in order to contact the overhead vapour with the reflux water.

The partially regenerated SELEXOLTM solvent enters the Regenerator above the upper packed bed. After flashing, the solvent passes through a liquid distributor, and then flows down the packed bed in the stripping section releasing H₂S, CO₂ and other components after contact with the steam generated in the Regenerator Reboiler.

The steam and liberated gases exit the upper section of the Regenerator, and then flow upward to the trayed section of the column. The gas first passes through a demister and then into the trayed section, where the rising gas is contacted with counter-current flowing reflux water to cool and condense the hot overhead vapour and reduce solvent entrainment. The overhead stream passes through a deentrainment device and exits the top of the column. The overhead gas then passes through the Reflux Condenser in order to recover the overhead steam. The liquid and vapor phases are separated in the Reflux Drum. The liquid is returned to the trayed section of the Regenerator via the Reflux Pump. The Acid Gas stream is typically sent to the Sulfur Recovery Unit outside the battery limits.

The Regenerator Reboiler generates vapour from the solvent. Solvent for the reboiler is collected in a trap-out tray located below the bottom packed section in the Regenerator. The resulting vapour generated in the reboiler re-enters the bottom of the Regenerator below the trap-out tray and travels up the column, stripping the acid gas from the down-flowing solvent.

The hot regenerated solvent from the Regenerator Reboiler is cooled through the Lean/Rich Exchanger and the Lean Solvent Chiller prior to being returned to the top of the CO₂ Absorbers via the LP Lean Solvent Pump and HP Lean Solvent Pump, thereby completing the thermal regeneration portion of the Selexol circuit.

After passing through the Lean / Rich Exchanger, a slipstream of the lean solvent is filtered prior to being sent to the CO_2 absorbers. The Solvent Filters (not shown on flow diagram) use automated back-flushed filters to remove solids from the Selexol Unit. Specifically, if any metal carbonyls are generated in the upstream gasification section, they are captured by the SELEXOLTM solvent and converted to insoluble metal sulphides. The filters capture the metal sulphides which are collected and sent back upstream to the gasification section for separation from the water.

The following Table 6 shows the main AGR performance data for a reference case of the study.

Table 6. Selexol AGR consumption summary

Case	%H ₂ S	%CO ₂	Steam	Electrical
	removed	removed	Consumption	Consumption
	%	%	t/h	kW
Case 4.1	99.97%	91.1%	81.5	21,400

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E - Basic information of IGCC plant alternatives Date: January 2014

Sheet: 23 of 67

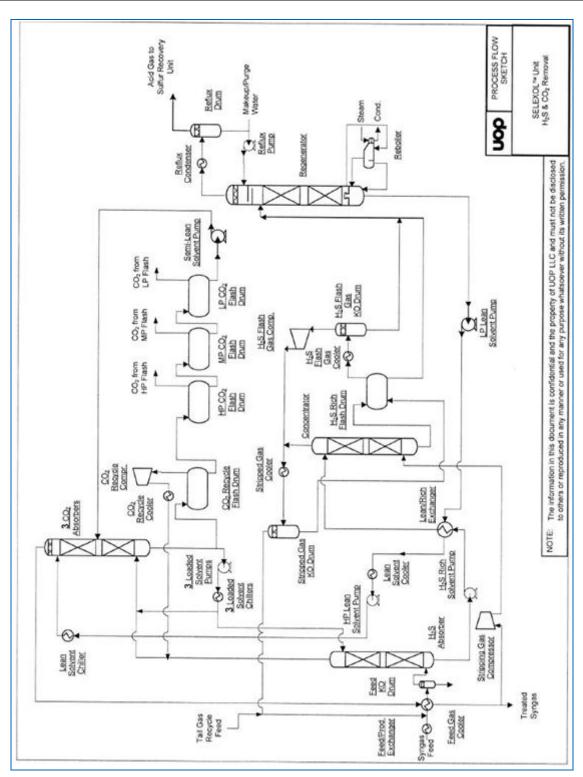


Figure 4. H₂S removal and CO₂ capture: Selexol process flow diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 24 of 67

2.6. Sour Water Stripper

The Sour Water Stripper (SWS) unit treats part of the contaminated condensate from the syngas treatment section and the blow-down from the AGR and the SRU, in order to avoid accumulation of ammonia and H₂S and other dissolved gases (e.g. CO₂, CO) in the water recycled to the gasification section. These dissolved gases, in particular the bulk of CO₂, H₂S and NH₃ contained in the sour water are removed by means of LP stripping steam supplied to the re-boiler.

Around 15% of the condensate from the syngas cooling is sent to the sour water stripper. All condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the stripper as solubility of NH₃ and H₂S increases at low temperature.

Before entering the stripper, sour condensate is heated against treated column bottoms, in order to enhance removal of gases from water. The warm stream enters via a distributor at the top of the stripper column.

The vapour stream from the top of the stripper is sent to an overhead system where vapour is condensed and the sour gases are separated from the condensate in the gas/liquid separator. The condensed water is routed back to the column as reflux, above the rectifying bed. The sour gases are routed to the SRU. The bottom from the column is pumped to the condensate collection vessel within the syngas treatment section, before being used as heating medium to pre-heat the stripper feed.

2.7. Sulphur Recovery Unit and Tail Gas Treatment

The Sulphur Recovery Unit (SRU) processes the main acid gas from the Acid Gas Removal unit, together with other small flash gas and ammonia containing off-gas streams coming from other units. The SRU consists of two Claus Units for each line, each sized for approximately 100% of the maximum sulphur production in order to assure a satisfactory service factor. Low-pressure oxygen is used as oxidant of the Claus reaction.

A typical diagram of the Claus process is shown in Figure 5. The Claus plant consists of a Claus furnace and two catalytic conversion stages. The high operating temperature of the Claus furnace (approx 1100-1200°C) allows the destruction of the residual ammonia in the gas fed to the unit.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014 Sheet: 25 of 67

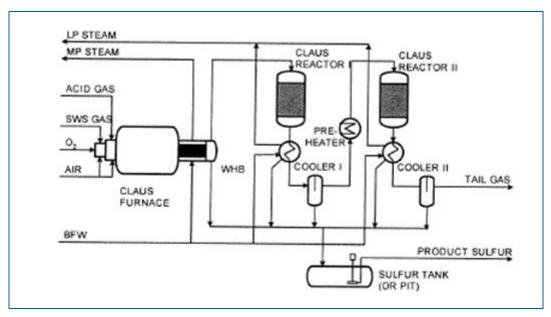


Figure 5. Claus unit diagram

The Claus process technology itself is limited by chemical equilibrium to approximately 98%, using multiple stages. To further enhance the sulphur recovery, it is therefore necessary to make provision for treating the tail gas, which contains the residual sulphur, in the Tail Gas Treatment Unit (TGT). This unit is designed as a single train, capable of processing 100% of the tail gas resulting from the possible SRU operating modes. The resulting overall sulphur recovery exceeds 98-99%.

The unit mainly includes a reduction reaction section, where the complete hydrogenation of SO_2 , residual COS, CS_2 , and elemental sulphur is achieved. The high hydrogen content in the shifted syngas results in a hydrogen content in the tail gas sufficient for complete hydrogenation of the tail gas stream itself. After quenching, tail gas is recycled back to the AGR by means of a tail gas recycle compressor.

2.8. Carbon dioxide compression and dehydration

The compression and dehydration unit consists of two parallel trains, including compressor, separation drums, coolers, dehydration system and final pump.

Carbon dioxide from the stripper of the CO₂ capture unit is compressed to a pressure of 80 bar by means of a two parallel eight-stage centrifugal compressor trains. Each CO₂ compressor is an integrally geared, electrically driven machine. The compression system includes anti-surge control, vent, inter-stage coolers, knockout drums and condensate draining facilities as appropriate.

The incoming streams to the CO₂ compression and dehydration unit are the combination of three streams at different pressures. The LP stream from the AGR is

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 26 of 67

firstly compressed in two stages to the pressure level of the MP stream, before being mixed with the MP stream itself. The resulting stream is compressed in a two-stage compressor up to the pressure level of the HP stream, and mixed with it. This stream requires treatment for water removal to the specified level.

At the discharge of each compressor stage, CO_2 is cooled against cooling water in a separate cooler, with free condensate being drained from the compressed gas. A further two-stage compression is foreseen before feeding the CO_2 stream to the dehydration unit, where humidity water is removed and the gas is dried. The driers are designed to produce CO_2 product with a final dew point temperature of $-40^{\circ}C$. The dehydration is carried out via a solid desiccant, like Activated Alumina and Molecular Sieves. The dehydration unit is composed of two beds for each parallel train of the unit. In normal operation one bed is used for drying, while the water-saturated bed is regenerated using a small part (ca.10%) of the dry product gas.

Final compression stages downstream of the driers increase the CO_2 pressure above the critical point of the fluid. The presence of non-condensable gases affects the behaviour of CO_2 resulting in an increased pressure requirement for the condensation of CO_2 . In particular the hydrogen in CO_2 has the largest effect on the phase equilibrium, increasing the final compression pressure from the critical point of the CO_2 (74 bar) up to 80 bar.

After being cooled, dried CO₂ in dense phase is finally pumped and delivered the to the battery limits of the plant at pipeline pressure of 110 bar.

2.9. PSA unit (Hydrogen production cases)

The hydrogen separation unit included in the hydrogen co-production cases is based on a Pressure Swing Adsorption (PSA) system for hydrogen purification, fed by hydrogen rich gas from the AGR unit.

The PSA system is based on the property of specific adsorbent materials to preferentially adsorb gaseous components different from hydrogen. The impurities retained by the adsorbents (PSA off-gas) are routed to the HRSG supplementary firing system in the combined cycle (Cases 5.1 and 5.3) or are fired as primary fuel in the gas-fired boilers in case 5.3.

The unit consists of multiple adsorber beds in cyclic operation. Each adsorber operates on a repeated cycle, consisting of adsorption and regeneration phases at constant temperature, with the exception of the variation due to the heat of adsorption and desorption. During the adsorption phase, a hydrogen rich stream is passed through static beds of selective adsorbents in a high pressure environment (molecular sieves, activated carbons). The impurities are retained on the available surfaces, while hydrogen is produced at the required purity. Before the impurities saturate the adsorbent material, the hydrogen rich stream is directed to a clean adsorber vessel. Meanwhile, the loaded adsorber is taken off line for a series of

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Sheet: 27 of 67

January 2014

depressurization cycle and counter current purging in order to clean the adsorption material. The impurities (PSA tail gas) are sent through the tail gas surge drum, before being routed to the supplementary firing system or to the boilers' burners in the power plant.

The PSA product gas is high purity hydrogen (> 99.5%) and is exported to battery limits at approximately 50 barg.

2.10. Combined Cycle

The combined cycle configuration selected for the power only alternatives is based on two parallel trains, each composed of one generic F-Class equivalent gas turbine and one Heat Recovery Steam Generator (HRSG) that generates steam at 3 levels of pressure, plus a LP integrated deaerator. The generated steam feeds one steam turbine (ST), common to the two parallel trains. A similar configuration with small size gas turbine (either 80 or 160 equivalent MWe) or a boiler is considered for the alternatives with hydrogen and power co-production.

The following description makes reference to the simplified process flow diagrams of the combined cycle of the power-only alternatives, attached to the end of this section. The main differences of the hydrogen and power co-production cases are also described, while case-specific characteristics are shown in the technical descriptions of the relevant case.

The combined cycle is thermally integrated with the other process units in order to maximize the net electrical efficiency of the plant. The following interfaces generally exist, though the combined cycle schemes may present some case-related differences:

- Air extraction from gas turbine compressor (MHI case);
- HP steam generated in the process units is superheated in the HRSG and processed in the steam turbine (ST);
- MP and LP steam are balanced between the steam cycle and the process unit;
- BFW for steam generation is supplied to the process units from the combined cycle;
- Steam condensate from the condenser in pumped to the syngas treatment line to be preheated against hot syngas;
- Process condensate, recovered from the process units, is recycled to the combined cycle, after polishing.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 28 of 67

2.10.1. Gas Turbine

Commercially available combustion turbines have been developed for the use of natural gas, i.e. a fuel with high calorific value (LHV). With the development of the gasification plants, these turbines have been adapted to the use of syngas, characterized by lower LHV (on volumetric basis), which leads to some significant design changes.

The main change is that, while with natural gas premix burners have become common practice for NOx control, they are not used with fuels having high content of H₂ (flash back risk), both in case of syngas and hydrogen rich fuel. For these fuel types diffusion burners are used and control of NOx is achieved by diluting the fuel with nitrogen, steam or carbon dioxide, thus reducing the flame peak temperature and consequently the rate of formation of NOx.

The use of diluent for NOx control increases substantially the overall mass flow (air + fuel + diluent) through the turbine expander, thus increasing the backpressure at the air compressor discharge, which may bring the air compressor operation close to pressure ratio limits and sometimes overload the turbine blades up to their mechanical limit. To better suit the gas turbine design to syngas or hydrogen rich fired operation, some turbine frames are designed with an expander oversized with respect to the air compressor, so that the extra mass flow of fuel and diluent can be easily accommodated without pressure ratio limits or mechanical problems. When this overcapacity is not provided, only a limited amount of diluents can be accepted, thus limiting the reduction of NOx to acceptable values, so that an SCR system shall be foreseen in the HRSG.

The normal operation of the gas turbine is with de-carbonized fuel, whilst the startup or back-up fuel can be either natural gas or a liquid fuel. The normal gas turbine firing temperature is generally de-rated on hydrogen rich fuel compared to natural gas, due to the combustion characteristics of the hydrogen, as explained in the following sections.

Main features of hydrogen combustion

The main characteristics of hydrogen combustion are:

- Low ignition energy;
- Low density;
- High flame speed;
- High flame temperature;
- Wide flammability range.

Table 7 summarizes the main properties of the hydrogen combustion with respect to the methane.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Sheet: 29 of 67

January 2014

Table 7. Comparison of methane and hydrogen combustion

Property	Methane	Hydrogen
Mass basis Low Heating Value (LHV) (kJ/kg)	50,030	119,910
Volume basis Low Heating Value (LHV) (kJ/Nm ³)	33,950	10,230
Flame speed (burning in air) (m/s) (1)	0.43	<u>3.5</u>
Minimum ignition energy (mJ)	0.33	0.18
Auto-ignition delay time (s) (17 atm 1000°K) (2)	0.0456	0.0062
Stoichiometric combustion temperature (°K)	2227	2370
Density (g/l)	0.71	0.09

⁽¹⁾ Velocity at which un-burnt gas mixture flows into a stable flame

The main considerations that can be drawn from the above table are the following:

- The flame speed is much faster and the auto-ignition delay time is much shorter for hydrogen, by an order of magnitude in both cases.

 As for that, hydrogen rich gas cannot be burnt in pre-mix combustion systems, but diffusion systems are needed to avoid potential flashback.
- On a mass basis, hydrogen has a high LHV, but not on a volume basis, and therefore a higher volumetric flowrate is required to satisfy the thermal requirement of the gas turbine. This effect is increased by the diluents required for NOx control.
 - This low volumetric heat content leads to the need for large fuel supply headers and fuel admission valves.
- The high flame temperature leads to extremely high NOx emissions and very expensive materials of construction. Therefore, diluents need to be added to the fuel to reduce the combustion temperature and limit the NOx emission (refer also to next section). Materials of construction must be suitable for hydrogen exposure.
- The extremely low flammability limit of hydrogen requires additional time and volume of purge gas to ensure that the lines are fuel free after shutdown.

In summary, hydrogen combustion properties are well known and, taking into account these characteristics in the design of the gas turbine, no particular technological barriers are foreseen for hydrogen combustion in the machine.

Gas turbine for study cases

The following combustion turbines, suited for operation with hydrogen-rich gas, are considered in this study.

⁽²⁾ Time from the instant of mixing hot streams of fuel and oxidant to the instant at which flame appears

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 30 of 67

F-class gas turbine (O_2 -blown IGCC alternatives)

The F-class machine (approximately 280 MWe ISO condition firing natural gas) is the most reasonable choice for an IGCC power plant of the capacity set for the project (around 1,000 MWe).

January 2014

Though E-class gas turbines are probably the most referenced ones for operation with these fuel types, their low efficiency and power production capability (approximately 160 MWe) would lead to need for a high number of gas turbines, thus resulting in a non-economic or non-attractive IGCC plant. On the other hand, G or H-class gas turbines are the newest generation machines, which have recently found application on natural gas, so their possible use on either syngas or hydrogen rich fuel could be deemed premature at the moment, in particular for the H-class turbine.

The following F-class gas turbine vendors and machinery types are currently available in the European market (50 Hz) for operation with either syngas or hydrogen-rich fuel:

- General Electric (GE) Energy: 9F and 6F gas turbine type;
- Mitsubishi Heavy Industries (MHI): M701F;
- Siemens: SGT5-4000F.

Among the above-listed suppliers, MHI provided the information on their F-class machine, but only for use in the case based on their gasification technology. Instead, other suppliers decided to not support the study effort.

Because of the above, it was decided to base the oxygen blown IGCC cases on a generic F-class machine, whose performance represents an average of the gas turbines available in the market, evaluated on the basis of data coming from the public domain or simulation tools.

Hydrogen and power co-production cases: E-class or Frame 6 equivalent

The study cases with power and hydrogen co-production use gas turbines with a power production lower than the F-class described above. With the same number and size of gasifiers, this makes available part of the generated syngas for the hydrogen production, while the remaining part is used for power generation, at least meeting the plant auxiliary consumptions and also ensuring adequate plant operating flexibility.

Two alternative gas turbine sizes, generating different amount of power, have been identified and assessed in the study cases:

- 160 MWe, i.e. E-class equivalent machine.
- 90 MWe, i.e. Frame 6 equivalent machine.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 31 of 67

The following gas turbine vendors and machinery types are currently available in the European market (50 Hz) for operation with either syngas or hydrogen-rich fuel in the above range:

January 2014

- General Electric (GE) Energy: 9E and 6F gas turbine types;
- Siemens: SGT5-2000E.

As for the F-class, gas turbine suppliers have not provided data to support the study, so reference to generic gas turbine performance was made for the assessments, evaluated on the basis of simulation tools or data available from the public domain.

NOx reduction systems

As stated in the above sections, the combustion of hydrogen rich fuel leads to a high flame temperature and consequent high NOx formation. Fuel dilution is therefore necessary to meet the desired emission limits. The increased diluted fuel mass flow results in power augmentation of the machine with respect to the natural gas standard performance.

The fuel can be diluted either with nitrogen, carbon dioxide (only for plant w/o CCS) or water (either fuel/diluent saturation or steam injection) or a simultaneous combination of the different streams. Depending on the gas turbine frame, the diluent shall be injected into the fuel combustion chamber, or added to either the fuel or the nitrogen in a saturation tower.

Figure 6 provides a representation of the above-mentioned alternatives for diluent addition.

For these study cases, the following have been assumed:

- Generic F-class gas turbine (IGCC cases 4.1 and 4.2): nitrogen is used for hydrogen dilution down to a molar concentration around 65%, before being fed to the combustion chamber. In addition, saturated nitrogen is injected directly into the gas turbine combustion chamber for final dilution.
- MHI F-class gas turbine (IGCC case 4.3): nitrogen already present in the hydrogen rich gas, as air is used as oxidant for the gasification reaction, provides sufficient diluent effect.
- Generic E-class Frame 6 gas equivalent turbine (Hydrogen cogeneration cases): moisturised nitrogen is used as fuel diluent, before injection in the gas turbine combustion chamber.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Steam
Syngas
Syngas
Syngas
Syngas
Naturator
Nitrogen
Nitrogen
Syngas
Make-up water
Make-up water

January 2014

Sheet: 32 of 67

Figure 6. Alternative for hydrogen-rich gas dilution

2.10.2. Heat Recovery Steam Generator

The exhaust gases from the gas turbine are conveyed to the Heat Recovery Steam Generators, located downstream of the machine and connected by means of an exhaust duct.

The simplified process flow diagram of the HRSG is shown in Figure 7.

The HRSG is a natural circulation type, with horizontal flue gas flow arrangement and vertical tubes generating steam at three pressure level, plus integral deaerator for BFW production. Further details on steam generation conditions are listed in chapter B, section 4.3.3.

Exhaust gases coming from the Gas Turbine enter the HRSG casing through the inlet duct, flow counter-current to steam/water and meet in sequence the following coils, before being discharged to the atmosphere through the stack:

- HP super-heater (2nd section) / MP re-heater (2nd section) (in parallel arrangement);
- HP super-heater (1st section) / MP re-heater (1st section) (in parallel arrangement);
- HP evaporator;
- HP economizer (3rd section);
- MP super-heater;
- MP evaporator;
- LP super-heater;
- HP economizer (2nd section) / MP economizer (2nd section) (in parallel arrangement);
- LP evaporator;
- HP economizer (1st section) / MP economizer (1st section) / LP economizer (in parallel arrangement);

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 33 of 67

• VLP Evaporator, with integral deaerator.

The above sequence of steam/water coils is typical for the combined cycle of IGCC plants. The same configuration is applicable also for the alternatives with coproduction of power and hydrogen. However, as the combined cycle is undersized with respect to the whole gasification capacity, the steam drum, in particular the HP steam drum generates a lower amount of steam, allowing to accommodate the significant amount of steam generated in the process units that has to be superheated before flowing to the steam turbine. In addition, part of the BFW pre-heating before being sent to the steam generation in the process unit is done in the syngas treatment against condensing syngas.

The pre-heated condensate coming back from the syngas treatment line is mixed with the polished hot condensate from the steam heaters in the IGCC process units and then fed to the VLP steam drum, equipped with a degassing tower to generate the Boiler Feed Water (BFW). The VLP steam drum is the last coil before the exhaust gases are released to atmosphere through the stack. The drum is designed to the minimum pressure that keeps the flue gas temperature and the temperature of the water in the bundles at least 10-15°C above the acid dew point of the flue gas.

For each case of the study, the acid dew point temperature is calculated using the following Müller-Totman equation ["Get acid dew point of flue gases" – A.G. Okkes, Badger B.V. – Hydrocarbon Processing – July 1987]:

$$T = 203.25 + 27.6 \cdot Log(pH_2O) + 10.83 \cdot Log(pSO_3) + 1.06 \cdot (Log(pSO_3) + 8)^{2.19}$$
 where pressure is shown as [atm] and T as [°C].

The above equation determines the dew point temperature as a function of the partial pressure of water and SO_3 in the flue gas. The study assumes 6% conversion SO_2 to SO_3 .

Degassed BFW for HP, MP, LP and VLP services is directly taken from the deaerator and delivered to the relevant sections by means of dedicated BFW pumps.

HP BFW from the deaerator is delivered to the HP economizer coils by means of the HP BFW pumps (one in operation and one in hot stand-by); flows through the HP economizer coils and then feeds the HP Steam Drum. From the outlet of the 1st section of the HP economizer coils a portion of hot water is exported at a temperature level of about 160 °C to the process units as HP BFW for steam generation.

The generated steam, together with the HP steam imported from the process units, is finally superheated to the maximum possible temperature level in two sections of HP super-heating coils and then sent to the HP module of the steam turbine. To control the maximum value of the HP superheated steam final temperature, a desuperheating station, located between the two HP super-heater coils, is provided. The cooling medium is HP BFW taken from the HP BFW pumps discharge and adjusted through a dedicated temperature control valve.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 34 of 67

MP BFW from the deaerator is delivered to the MP economizer coils of the HRSG by means of the MP BFW pumps (one operating and one in stand-by); it flows through the MP economizer coils and feeds the MP steam drum. From the outlet of the 1st section of the MP economizer coils a portion of hot water is exported at a temperature level of about 160 °C to the process units as MP BFW.

January 2014

The generated MP steam together, superheated in the dedicated coils and mixed with the exhaust steam coming from the HP module of the steam turbine, is reheated in the two sections of MP re-heating coils and then enters the MP module of the steam turbine. To control the reheated steam final temperature, a de-superheating station, located between the re-heater coils, is provided. The cooling medium is MP BFW, taken out from the MP BFW pumps discharge and adjusted through a dedicated temperature control valve. Depending on the IGCC case, MP steam imported from the process unit is mixed with the steam from the MP generator before the re-heating section or MP steam is to be exported from the combined cycle to the process unit.

For each design case of the study, the HP superheated steam and MP reheated steam temperature is selected in order to respect the most severe of the following design criteria:

- Minimum approach temperature between steam and exhaust gas temperature of 25°C to have an adequate heat transfer coefficient and limit the requirement of the surface.
- Maximum steam temperature of 565°C, to use material ASME A 335, 9Cr-1Mo-V, Grade P91 and avoid the use of more exotic materials.

LP BFW from the deaerator is delivered to the LP economizer coil by means of two LP BFW pumps (one operating and one in stand-by); it flows through the LP economizer coil and feeds the LP steam drum. Before entering the LP steam drum, a portion of hot water is exported at a temperature level of about 160°C to the process units as LP BFW. The excess superheated LP steam is mixed with the exhaust of the MP module and then flows to the steam turbine LP module.

Continuous HP and MP and LP blow-down flowrates from the HRSG are manually adjusted by means of dedicated angle valves; they are sent to the dedicated blow-down drum to flash and recover VLP steam, which is fed to the deaerator. The remaining flashed liquid is cooled down against cooling water by means of a dedicated blow-down cooler and delivered to the atmospheric blow-down drum, which also collects the possible overflows coming from HRSG's steam drums and the intermittent HP, MP and LP blow-down flowrates, which are manually adjusted by means of dedicated angle valves.

Figure 8 shows a typical Heat Transfer vs. Temperature of the HRSG (T-Q diagram). The red line (the upper curve) represents the exhaust gases from the GT (high temperature) to the stack. The blue lines represent the water path in the economizers

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 35 of 67

(at lower temperature), the steam generators (horizontal lines) and the superheater/re-heater (at higher temperature).

 ${\rm CO_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 36 of 67

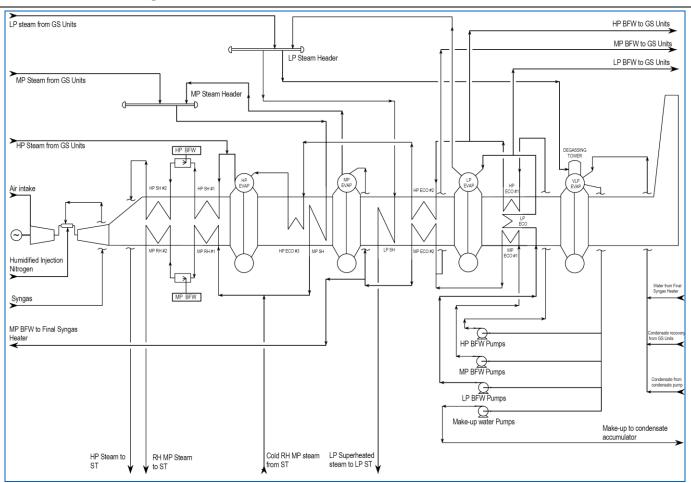


Figure 7. HRSG simplified process flow diagram

Date: January 2014 ${\rm CO_2}$ Capture at Coal Based Power and Hydrogen Plants

Sheet: 37 of 67 Chapter E - Basic information of IGCC plant alternatives

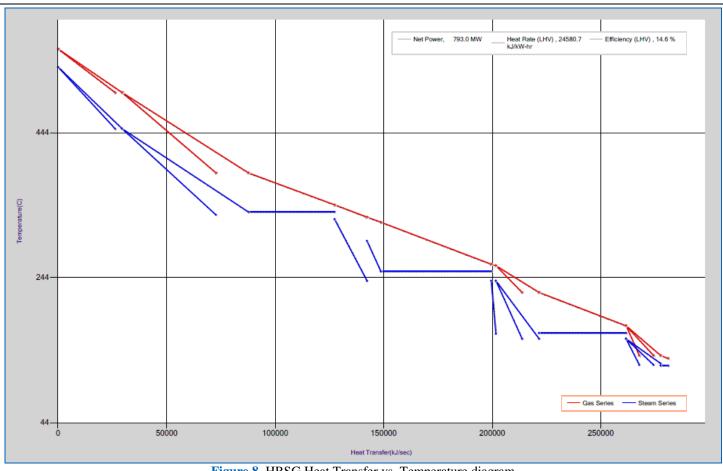


Figure 8. HRSG Heat Transfer vs. Temperature diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 38 of 67

2.10.3. Steam turbine and condenser

The following process description makes reference to the simplified process flow diagram shown in Figure 9.

The Steam Turbine consists of an HP section, MP section and a double-flow LP section, all connected to the generator by a common shaft. Depending on the alternative, the last stage bucket length of the LP section is selected to have an exhaust annulus velocity in the range of 220-300 m/s.

The superheated HP steam from each HRSG is combined in a header and then enters the HP section of the steam turbine. The exhaust steam from the HP module of the steam turbine is split between the HRSG's, mixed with the MP saturated steam coming from the relevant HRSG section, and reheated. The reheated steam from the HRSGs is combined in a header and then enters the MP section of the steam turbine. The exhaust steam from the MP module of the steam turbine is mixed with the superheated LP steam and delivered to the LP module.

The wet steam at the outlet of the LP module is routed to the steam condenser at 4.0 kPa, corresponding to 29°C. The cooling medium in the tube side of the surface condenser is cooling water from the cooling tower.

The condensate stream, extracted from the steam condenser by means of two, motor-driven and vertical condensate pumps (one operating and one in stand-by), is mixed with demineralised water makeup and sent to the IGCC process units, recovering the low temperature heat available from the syngas cooling.

In case of steam turbine trip, live HP steam is bypassed to the MP manifold by means of a dedicated letdown station, while MP steam and excess of LP steam are also let down and then sent directly into the condenser neck.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 39 of 67

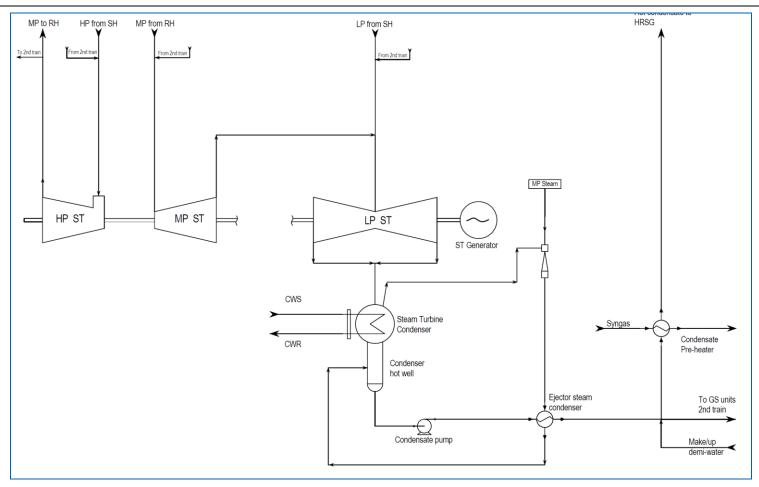


Figure 9. Steam Turbine simplified process flow diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 40 of 67

2.11. Utility and Offsite units

These units are the same as the ones described in Chapter C for the air-fired boiler cases. Anyhow, the description of the units is here below reported for clarity of the reader.

2.11.1. <u>Cooling water</u>

The cooling water system consists of raw water in a closed loop, with a natural draft, evaporative cooling tower. There are two circulation systems, depending on the pressure profile through the circuit. The primary system is used for the steam turbine condenser while the secondary system is used for the process units of the plant, machinery cooling and other users. Each circulation system is equipped with single-stage and vertical water pumps.

The maximum allowed cooling water temperature increase is 11°C. The blow-down is used to prevent the concentration of dissolved solids from increasing to the point where they may precipitate and scale-up heat exchangers and the cooling tower fill. The design concentrations cycles (CC) is 4.0.

A single concrete tower is considered, having different size depending on the alternative. The main cooling tower design details are summarised in the case-specific chapter of each gasification-based alternative.. The tower will be equipped with two distribution systems, one primary distribution system supplying water from a concrete duct, and one secondary system from PVC pipes equipped with sprayers, connected to the concrete ducts. Tower filling, with vertical channels, increases the cooling and thermal efficiency, allowing pollutants to be easily washed through. Drift eliminators guarantee a low drift rate and low pressure drop. To avoid freezing in winter ambient conditions, the fill pack is divided into zones to allow step by step reduction of cooling capacity while maintaining an excellent water distribution and spray sprinklers are installed to create a warm water screen on the air inlets to preheat the ambient air when freezing ambient conditions occurs.

2.11.2. Raw and Demineralised water

Raw water is generally used as make-up water for the power plant, in particular as make-up of the cooling tower. Raw water is also used to produce demineralised water. Raw water from an adequate storage tank is pumped to the demineralised water package that supplies make-up water with adequate physical-chemical characteristics to the combined cycle.

The treatment system includes the following:

- Filtering through a multimedia filter to remove solids.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 41 of 67

- Removal of dissolved solids: filtered water passes through the Reverse Osmosis (RO) cartridge filter to remove dissolved CO₂ and then to a reverse osmosis system to remove dissolved solids.

- <u>Demineralised water production</u>: an electro de-ionization system is used for final polishing of the water to further remove trace ionic salts of the Reverse Osmosis (RO) permeate.

Adequate demineralised water storage is provided by means of a dedicated demineralised water tank.

The demineralised water make-up supplies the make-up water to the combined cycle, whilst the demineralised water distribution pump supplies demineralised water to the other plant users or to the plant circuits for first filling.

2.11.3. Fire fighting system

This system consists of all the facilities able to locate possible fire and all the equipments necessary for its extinction. The fire detection and extinguishing system essentially includes the automatic and manual fire detection facilities, as well as the detection devices with relevant alarm system. An appropriate fire detection and suppression system is considered in each fire hazard area according to the applicable protection requirements. The fire fighting water is supplied by a water pumping station via a looping piping network consisting of a perimetrical circuit fed by water pumped from the cooling tower basin.

2.11.4. Instrument and plant air system

The air compression system supplies air to the different process and instrumentation users of the plant.

The system consists mainly of:

- Air compressors, one in operation, one in stand-by.
- Compressed air receiver drum.
- Compressed air dryer for the instrument air.

The ambient air compressed by means of the air compressor is stored in the air receiver in order to guarantee the hold-up required for emergency shutdown.

Plant air is directly taken from the air receiver, while air for instrumentation is sent to the air dryer where air is dried up to reach an adequate dew point, to ensure the proper operation of the instrumentation.

2.11.5. Waste Water Treatment

All the liquid effluents generated in the plant are treated in the wastewater treatment system in order to be discharged in accordance with the current local regulations.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

The following description gives an overview of the waste water treatment configuration, generally adopted in similarly designed power plants; it includes a

January 2014

Sheet: 42 of 67

configuration, generally adopted in similarly designed power plants; it includes a preliminary identification of the operations necessary to treat the different waste water streams generated in the power plant.

The Waste Water Treatment unit is designed to treat the following main waste water streams:

- Waste water from process unit, e.g. from gasification island
- Potentially oil-contaminated rain water
- Potentially dust-contaminated rain water
- Clean rain water
- Sanitary waste water.

Mainly, the above streams are collected and routed to the waste water treatment in different systems according to their quality and final treatment destination.

The WWT system is equipped mainly with the following treatment sections:

- Treatment facilities for the waste water from process unit, e.g. from gasification island
- Treatment facilities for the potentially oily contaminated water
- Treatment facilities for the potentially dust contaminated water
- Treatment facilities for not contaminated water
- Treatment facilities for the sanitary wastewater.

Waste water from process unit

The different contaminated streams from the process units of the IGCC plant are sent to an <u>equalization section</u> in order to make uniform the wastewater physical characteristic and optimize the following treatment units (e.g. pollutants concentration, temperature, etc.).

The equalization section consists of one or more ponds or tanks, generally at the front end of the treatment plant, where inlet streams are collected and mixed. Equalization basin is normally designed in order to guarantee a hydraulic retention time of 8-10 hours to smooth the peaks of pollution and maintain constant the treatments efficiency.

A <u>physical-chemical treatment section</u> consisting of two basins in series is foreseen, where chemicals are added for chemical coagulation, flocculation and for specific pollutants removal. The purpose of wastewater clariflocculation is to form aggregates or flocs from finely divided particles and from chemical destabilized particles in order to remove them in the following sedimentation step.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 43 of 67

In the first basin, coagulation basin, a coagulant as Ferric Chloride is added and a flash-mixing is performed. Simultaneously with ferric chloride, Ferrous Sulphate is added in order to remove H_2S . As the present reaction gives an acid contribution, NaOH is added in order to neutralize the sulphuric acid produced.

January 2014

In the second basin, flocculation basin, polyelectrolyte is added and slow-mixing is performed. In the flocculation basin H_2S oxidation and H_2SO_4 neutralization are also completed.

Effluent water from coagulation/flocculation section flows into a clarification basin where solids separation is performed and all setteable compounds are removed. The produced sludge, constituted by settled solids, is removed from the bottom of each clarifier by a scraper.

Chemical sludge from <u>chemical sludge settler</u> is subjected to a <u>chemical conditioning</u> in order to favour the sludge dewatering. Ferric Chloride and polyelectrolyte are added in order to favour solids aggregation and to improve the subsequent dewatering treatment. The conditioned sludge is so sent to a dewatering system (i.e. centrifugal system) in order to achieve a dry solids content of minimum 20%. The separated supernatant, sludge is sent to final disposal.

The clarified water from chemical sludge settler is sent to an <u>aerated lagoon</u> in order to remove the organic load, expressed as COD and BOD, still present in the polluted water. An aerated lagoon is an underground basin, equipped with mechanical aerators in order to provide oxygen for biological degradation and to permit to keep solids in suspension. Despite of the requirement of big areas, aerated lagoons guarantee management simplicity and a low maintenance.

The clarified water from aerated lagoon is delivered to the top of the <u>sand filter bed</u> in order to remove the remaining unsetteable solids. As the water passes through the filter bed, the suspended matter in the wastewater is intercepted. With the passage of time, as material accumulates within the interstices of the granular medium, the headloss through the filter start to build up beyond the initial value. When the operating headloss through the filter reaches a predetermined headloss value, the filter must be cleaned.

Potentially Dust Contaminated Water Treatment

Rain water and washing water from areas subject to potential dust contamination is treated in apposite water treatment systems prior to be sent to the "potentially oil contaminated" treatment system.

In particular, they are collected in a dedicated sewer, sent to a lamination tank and then to a chemical/physical treatment to remove the substances that are dissolved and suspended.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 44 of 67

The system includes also a neutralization system to modify potential acidity and/or alkalinity of washing water used for the air pre-heaters.

January 2014

Potentially Oil-Contaminated Water Treatment

Potentially oil-contaminated waters are:

- Washing water from areas where there is equipment containing oil.
- Rain water from areas where there is equipment containing oil.

After being mixed with treated water coming from "potentially dust contaminated" system, water is treated in a flotation and filtration system, where emulsified oil and suspended solids are respectively separated.

Treated effluent water will have the characteristics to respect the local regulations so that it can be consequently discharged.

Not Contaminated Water Treatment

Rainwater fallen on clean areas of the plant, such as roads, parking areas, building roofs, areas for warehouse/services/laboratory etc. where there is no risk of contamination, will be collected and disposed directly to the water discharge system.

A coarse solids trap is installed upstream the discharge point in order to retain coarse solids that may be carried together with the discharge water.

Sanitary Water Treatment

The sanitary waste water streams discharged from the different sanitary stations of the plant will be collected in a dedicated sewage and destined to the Sanitary Water Treatment system. This section generally involves the following main water treatment operations:

- Primary sedimentation for coarse solids removal.
- Biological treatment for BOD removal.
- Filtration for residual organic matter and suspended solids separation.
- Disinfection for bacteria inhibition.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 45 of 67

3. Gasification

This section summarizes information received from the different Gasification Island Licensors. Data are covered by a secrecy agreement and the information included in this section and in the specific section of each case is limited to the information that Licensors have authorized for disclosure.

It has to be noted that some differences may exist between figures in the vendors' information and those shown in the report of the specific study case. In fact, information in the attachments is based on preliminary stream properties and flowrates, as estimated during the early stages of the study; then, data have been slightly adjusted and optimised during study execution either by vendors or Foster Wheeler. Figures included in the report for each study case shall be considered as the final ones.

3.1. Shell gasification

3.1.1. <u>Introduction</u>

The purpose of this section is to summarize the information received from Shell on the Gasification Island (GI), representing the basic information on which the technical and economical analysis of the Shell gasification based IGCC alternative of the study (Case 4.1) has been performed.

The Shell Coal Gasification Process (SCGP) information provided here is a first estimation of SCGP performance and should not be used as final design information. Shell has to be consulted for any project specific application confirming data selected for SCGP application.

SCGP scope includes coal feeding up to and including syngas wet scrubbing. Shell has selected the syngas cooler option for this project based on experience on previous similar projects.

Additionally, Shell has recommended the use of a hybrid Water Gas Shift (WGS) scheme, followed by a sour tolerant 2-stage WGS in order to minimize the steam consumption of the unit.

3.1.2. Process Description

The study case is based on the proven Synthesis Gas Cooler concept option. Two SGCP units will be required to deliver the thermal power requested by two F-class gas turbines.

The key features of the Shell Coal Gasification Process (SCGP) are the following:

- Pressurized: compact equipment;
- Entrained flow: compact gasifier;

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E - Basic information of IGCC plant alternatives Date: January 2014

Sheet: 46 of 67

- Oxygen blown: compact equipment, high gasification efficiency;
- Membrane wall, slagging gasifier: robustness, high temperature, insulation by slag layer;
- Multiple burner design: good mixing, high conversion, scale-up possibility;
- Dry feed of pulverized coal: high gasification efficiency, high feed flexibility.

The SCGP process can handle and has been proven on a wide variety of solid fuels, ranging from bituminous to lignite, as well as petroleum coke in a coal mix. The SCGP also showed capability to handle coal feed with biomass/sewage sludge.

Figure 10 shows the block flow scheme for the coal gasification process with syngas cooler line-up. The general process description is given below.

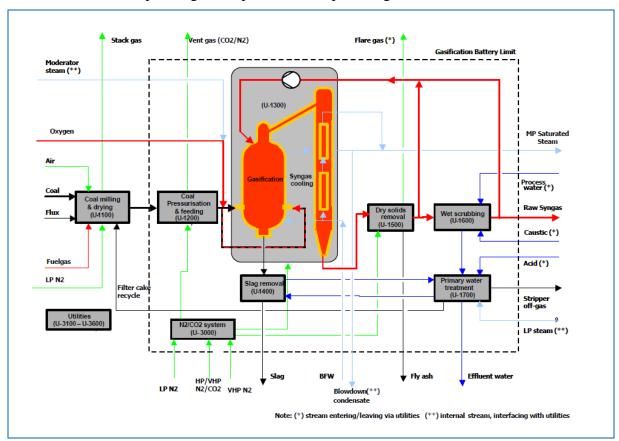


Figure 10. SCGP - Preliminary Block Flow Diagram

Coal is received from the coal yard by belt conveyor, milled and dried in the "Coal Milling and Drying" system (out of Shell's scope of work) and then fed, under pressure, to the burners of the gasifier via the "Coal Pressurization and Feeding" (lock hopper) system.

CO₂ Capture at Coal Based Power and Hydrogen Plants Da

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 47 of 67

The coal reacts in the gasifier with the blast (steam diluted oxygen) to form syngas and (fly) slag. The syngas leaving the gasifier at the top is quenched with "cold" recycled syngas to solidify entrained fly ash particles. The gas is further cooled in the syngas cooler vessel to typically 340°C.

The gasifier itself is a membrane wall reactor installed inside a pressure vessel. The membrane wall is made out of tubes leading to a very robust thermal design. Within tubes a forced water circulation is maintained, the absorbed heat being used to produce steam.

The majority of ash in the feedstock leaves the gasifier membrane wall via the bottom as molten inert slag which is then quenched with cooled water and subsequently scattered to small (on average approximately 5-10 mm) glassy granulates in the slag (water) bath. The slag collected in the slagbath is discharged via a lock-hopper system.

Coal Milling and Drying (out of Shell's scope of work)

In order to meet Shell SCGP specification for particle size distribution and moisture content, coal needs to be milled. The moisture content in combination with the particle size ensures proper flow properties of the pulverised coal in downstream equipment.

Shell recommends to let the entire coal milling and drying system be designed, installed and started up by, or under responsibility of, an experienced coal mill manufacturer to avoid interface problems between the various pieces of equipment. In view of the importance to ensure the proper flow properties of the coal and to give input for the design requirements of the coal milling and drying section, a fluidisation test of a coal test sample is generally required.

Multiple units have to be installed in order to ensure high process reliability, allowing maintenance work on one unit while the other unit is still in operation. During normal operation the units are fired with "clean" syngas drying the raw coal supplied from the coal yard.

Coal Pressurization and Feeding

Milled and dried coal from the coal milling and drying area is pneumatically transported to the coal pressurization and feeding system. This system consists of lock-hoppers and feed-hoppers. Once a lock-hopper has been charged with coal, it is pressurized with nitrogen and its content discharged into a feed vessel.

Pressurized coal is drawn from the feed hoppers and pneumatically conveyed with nitrogen to the gasifier's coal burners.

Lock-hoppers are widely used in materials handling application. They have proven to be a safe and reliable method for transferring solids under pressure. The valves

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Da

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 48 of 67

required for commercial scale lock hopper systems have been extensively demonstrated.

Gasification and Syngas Cooler

The coal feed is gasified with a blast consisting of a mixture of oxygen and (superheated) process steam. Fluxing components, which reduce the slag viscosity at a given temperature through the reaction with the slag, are typically added to the coal before the mills to ensure good mixing and conveying. Because of the entrained flow, high temperature, and ash slagging condition, an almost complete carbon conversion (>99%) is achieved. Moreover, the high temperature ensures essentially no organic components heavier than "C1" are present in the raw syngas.

Insulation of the gasifier membrane wall provided by the partially solidified slag layer in the gasifier minimizes heat losses such that cold gas efficiencies are high and CO₂ levels in the syngas are very low. This slag layer also protects the gasifier wall against high heat load variations during upsets since the solidified slag layer will react by melting or solidifying.

The pressurized coal, oxygen, and steam enter the gasifier through two pairs of opposed burners. During normal operation load-following operation should be done with all four burners balanced. The capacity of the gasifier and syngas cooler is mainly determined by the amount of $(CO + H_2)$ in the syngas to be produced, which depends on the coal type.

The operating syngas pressure of the gasifier is about 2.3-4.3 MPag. The gasifier membrane wall steam pressure is, for safety reasons, always, at least, some 1.5 MPag above the maximum operating syngas pressure.

The syngas cooler is of the water pipe type, typically containing both evaporating and superheating surfaces. The syngas cooler is designed according to Licensee's steam pressure and temperature requirements.

The water quench vessel is of the dip leg type where the ash laden syngas from the gasifier is quenched with water to cool the syngas close to saturation temperature and also to capture the fly ash in water bath.

Slag Removal

Depending on the ash content in the feedstock, and the fresh ash addition, about 70-80% of the mineral content of the coal/fresh ash leaves the gasification zone in the form of molten slag. The high gasification temperature above the ash melting point ensures that the slag flows freely down the membrane wall. The heat from the molten slag is removed in the slag bath and transferred to the water via a slagbath-water circulation loop with an external water-cooled cooler.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 49 of 67

Finally, slag is separated from water via a drag chain, or a de-watering screw, and is transported offsite via a conveyor belt. Fines are removed via the clarifier/thickener system, and the clarified water is recycled in the Primary Water Treatment System.

Slag is depressurized in a lock-hopper system, which is controlled with a sequence program (on the basis of hourly slag make). The slag is non-leachable and classified as non-hazardous (Dutch and US regulations).

Dry Solids Removal

The target for overall solids removal from the syngas has a maximum value of 1 mg/Nm³ of solids in the syngas after the Wet Scrubber. This target is reached by means of a commercially demonstrated high pressure, high temperature (HPHT) filter system that will remove 99.9% of the entrained solids in the syngas stream.

The lock-hopper operation is controlled with a sequential program as a part of the DCS of the plant. Proper tracing is required to avoid dew-point corrosion and to avoid sluicing problems. Properties of the dry fly ash are dependent on ash composition. Nevertheless, the carbon content of the dry fly ash is low allowing selling the ash to cement or ceramic industry.

Wet Scrubbing

The gas leaving the dry solids removal in the SGC configuration is further processed by passing through a wet scrubbing system which consists of a venturi scrubber and a packed bed wash column. The only specific design aspects are material of construction and selection/design of packing, water (circulation) lines, water distributor and circulation pump, such that they can handle solids containing water streams during upsets. Caustic is injected into the scrubber to keep the pH in the circulation loops close to neutral.

Residual solids, as well as halide contents are reduced to <<1 ppmv. Other acidic compounds, like formic acid, are removed to a large extent, while ammonia removal is minimal. The design capacity is based on the maximum syngas flow.

Primary Waste Water Treatment

The primary waste water treatment system contains one slurry stripper and a solid/liquid separation step. The design capacity is set, in principle, by the maximum bleed from slag bath and wet scrubbing systems.

The only specific design aspect for this system is the selection/design of packing, water (circulation) lines, water distributor, and circulation pumps such that they can handle slurries. Acid is injected to prevent scale formation in these systems.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

ate: January 2014

Sheet: 50 of 67

Recommendation on Water Gas Shift

The water gas shift, also called CO shift, $CO + H_2O \rightarrow CO_2 + H_2$, is well known as a common industrial process. In IGCC with carbon capture, its main function is to convert CO in the syngas to CO_2 so that CO_2 can be captured via the gas treating unit. The steam consumption in the WGS unit leads to a considerable energy efficiency penalty of IGCC with carbon capture.

Shell proposes a hybrid WGS scheme for the application of SCGP IGCC with carbon capture. The first WGS reactor is low steam shift reactor, converting about 35% of CO to CO₂; the catalyst is designed to completely suppress unwanted methanation under these relatively dry conditions. This is followed by a conventional sour tolerant 2-stage WGS to convert the rest CO. Such a scheme is designed to minimize the steam consumption of the WGS unit, and amount of condensate to Sour Water Stripper.

With the proposed scheme, the overall CO conversion ratio is above 98% and water content at the third shift reactor outlet is about 19.30 %mol.

3.1.3. Process Data

This section contains the feed and product information for the normal operating conditions (NOC) case.

Syngas composition and conditions at wet scrubber outlet, dry basis (gasifier B.L.)

Syngas at wet scrubber outlet				
	% mol, dry basis			
H_2O	0.00			
H_2	29.63			
CO	58.03			
CO_2	3.03			
N_2	8.09			
Ar	0.84			
H ₂ S	0.27			
	ppm			
COS	<310			
NH ₃	<310			
HCN	<310			
$\mathrm{CH_4}$	<125			
Pressure, barg	40			

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 51 of 67

Syngas at wet scrubber outlet			
Syngas to B.L., kmol/s	3.96		
Syngas to B.L., kg/s	82.70		
CO + H ₂ to B.L., kNm ³ /h	279.6		
Syngas LHV, MWth	940.8		

Notes:

Main Input and output streams to CMD unit (per gasifier)

	T (°C)	P (MPa)	Flow (t/d)	Note
Input				
Raw Coal AR basis	ambient	ambient	3,867	
Fluxant	ambient	ambient	112	2
Output				•
Coal from CMD to Coal Pressurization and Feeding	105	5.3	3,757	3

Notes:

- 1) Slag fines from Gasification Island is recycled to CMD, dry basis
- 2) Limestone will be used as fluxing agent with assumed composition of CaCO3 100%
- 3) Coal will be dried to 1.3 % moisture content at exit of the dryer.

Main Input and output streams to SCGP unit (per gasifier)

	T (°C)	P (MPa)	Flow (t/d)	Note
Input				
Coal from CMD to Coal Pressurization and Feeding	105	5.3	3,757	
Oxygen	25	4.7	3,074	2
Moderator Steam	300	5.2	221	
Condensate to scrubber	95	5.0	1,814	1
Gasification and CMD power consumption	13 MW			
Output				
Crude Syngas, at gasification island outlet	167	4.0	8,628	
Slag	<80	ambient	337	

¹⁾ Syngas exit of wet scrubber is saturated by water. Moisture content will be determined by syngas pressure and temperature.

²⁾ All process condensate available downstream the gas treating section should be sent back to the gasification unit after ammonia (NH_3 <200 ppm wt) stripping and without cooling. This ensures that the syngas can be saturated with water vapour at the estimated temperature and pressure.

Revision no.: Final **IEAGHG**

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

January 2014 Sheet: 52 of 67

Chapter E - Basic information of IGCC plant alternatives

Fly ash (dry)	<100	ambient	197	
Effluent water	< 50	0.5	340	1

Notes:

1) Preliminary figure.

2) O₂ purity: 95%

Main Input and output BFW / steam / condensate streams (per gasifier)

	T (°C)	P (MPa)	Flow (t/d)	Note
Input				
HP BFW	160	14.9	5,800	
MP BFW	160	5.9	1,332	
Output				
HP Saturated Steam (at B.L.)	332	13.0	5,703	
MP Saturated Steam (at B.L.)	265	5.2	1,051	

Main Input and output utilities streams to gasification island (per gasifier)

	T (°C)	P (MPa)	Flow (t/d)	Note	
Input					
Fresh Water	Ambient	0.4	52	1	
Cooling Water supply	32	0.4	36,667	1	
LP Steam	148	0.35	164	1	
Caustic, 20% wt	Ambient	5.0	7	1	
Acid, 15% wt HCl	Ambient	0.35	3	1	
Output					
Cooling Water return	42	0.25	36,667	1	

3.1.4. Plot Plan

Reference plot areas for the main process blocks (single train) are indicated in the following table.

Reference project	Plot dimensions L X W (m x m)	Capacity Feedstock (t/d)	Scope
Buggenum, the Netherlands	300 x 250	2000	Power block, Gasification (including CMD), ASU, Gas treating, Water treating
Dongting, China	200 x 200	2000	ASU, Gasification (including CMD), Slag yard

¹⁾ Preliminary figure.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 53 of 67

3.1.5. <u>Capital Investment Costs</u>

The capital cost estimate reported in the following table, with an accuracy range of 35% / +35%, is based on the investment cost of other Shell gasification projects in China (2012).

It is assumed that the currency exchange rate of Euro/RMB is 8, and the cost factor of the Rest of the world vs. China is 2.0.

	Direct Investment, Million Euro (2012)			
Syngas capacity	Single gasifier train 940 MWth	Total two trains 1880 MWth		
Total direct cost, MM€	237.5	475		

Direct costs of the plant include Coal Milling and Drying, Coal pressurization and feeding, Gasification and SC, Slag and dry solids removal, Wet scrubbing, Primary water treatment, gasification utilities, coal yard, handling / conveying facilities and gasification facilities.

3.1.6. Availability Data

Based on the track record of SCGP, Shell expects the following availability data:

1st year 60 %

2nd year 80 %

3rd year 90 %

The above mentioned values include scheduled maintenance.

3.1.7. <u>Technology Experience (References)</u>

The following table details the SCGP reference list on various applications; such as power, hydrogen, ammonia and methanol plants.

Plants in operation:

Owner	Location	Feedstock (t/d)	Syngas x10 ⁶ Nm ³ /d	Final Product	Start-up date
Shell/Koppers	Harburg, Germany	150	0.2	Syngas	1980°
Shell	Houston, USA	200	0.3	Syngas	1985°
NUON Power	Buggenum, The Netherlands	2000	3.4	Power	1994
Shuanghuan Chem.	Yingcheng, Hubei, PRC	900	1.3	Ammonia	Q2 2006
Sinopec/Shell	Dongting, Hunan, PRC	2000	3.4	Ammonia	Q4 2006
Sinopec Hubei	Zhijiang, Hubei, PRC	2000	3.4	Ammonia	Q4 2006
Sinopec	Anqing, Anhui, PRC	2000	3.4	Ammonia	Q4 2006

January 2014

Sheet: 54 of 67

Date:

IEAGHG Revision no.: Final

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Anqing					
Liuhua Chem.	Liuzhou, Guanxi, PRC	1200	1.7	Ammonia	Q1 2007
Yuntianhua	Anning, Yunnan, PRC	2700	3.4	Ammonia	Q2 2008
Yunzhanhua	Huashan, Yunnan, PRC	2700	3.4	Ammonia	Q2 2008
Shenhua DCL	Majiata, Inner Mongolia, PRC	2x2250	7.3	Hydrogen	Q2 2008
Yongcheng Chem	Yongcheng, Henan, PRC	2150	3.1	Methanol	Q2 2008
Zhongyuan Dahua	Puyang, Henan, PRC	2100	3.1	Methanol	Q2 2008
Kaixiang	Yima, Henan, PRC	1100	1.7	Methanol	Q3 2008
Dahua Chem.	Dalian, Liaoning, PRC	1100	1.7	Methanol	Q4 2009
Datang	InnerMongolia, PRC	3x4000	11.3	Methanol	Q4 2010
Tianjin Soda	Tianjin, PRC	2x2050	6.4	Methanol	Q4 2010
Tianfu	GuiZhou, PRC	2050	3.1	Ammonia/ DME	Q4 2010
Vinachem	Ninh Puc, Vietnam	1350	2.2	Ammonia	Q2 2012
Shuifu	Shuifu, Yunnan, PRC	1100	1.7	Methanol	Q2 2012

2750

4.0

Methanol

2013

Hebi

Plants under start-up / construction / design:

Hebi City, Henan, PRC

Owner	Location	Feedstock (t/d)	Syngas x10 ⁶ Nm ³ /d	Final Product	Start-up date
Datong	Datong, Shanxi, PRC	2750	4.0	Methanol	2013
Wison	Nanjing, PRC	900	Not disclosed	Chemicals	2013
Habac fertilizer	Ha Bac, Vietnam	1350	2.0	Ammonia	2014
KOWEPO	Teaen-Eub, Korea	2650	4.2	IGCC	2015
Not disclosed	Shanxi Province, PRC	4x3000	19.8	Liquids	2015
Kaixiang Phase II	Yima, Henan, PRC	1100	1.7	Methanol	2015
2Co Energy	Hatfield, UK	Not disclosed	Not disclosed	Power	t.b.a
Perdaman	Australia	2x4000	9.4	Ammonia	t.b.a

[°] Plant now scrapped

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 55 of 67

3.2. GE Energy gasification

3.2.1. <u>Introduction</u>

The purpose of this section is to summarize the information received from GE Energy on the Gasification Island (GI), constituting the basic information on which the technical and economical analysis of the GE Energy IGCC cases of the study have been performed.

3.2.2. <u>Process Description</u>

The Gasification Island employs the GE's gasification process to convert coal into syngas. In the study, the Radiant Syngas Cooler (RSC) is analyzed.

The Gasification Island includes the following units, briefly described in the following sections making reference to the block flow diagram in Figure 11.

- Coal Grinding & Slurry Preparation;
- Gasification (RSC) & Scrubbing;
- Black Water Flash & Coarse Slag Handling;
- Grey Water & Fines Handling.

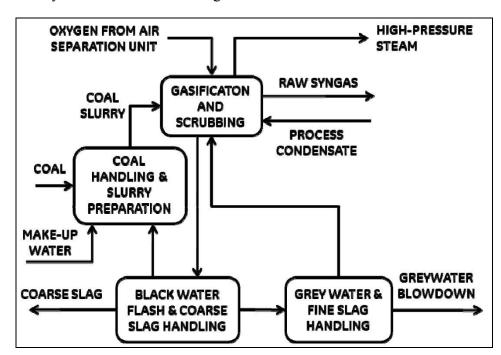


Figure 11. GE RSC - Preliminary Block Flow Diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 56 of 67

Coal Grinding & Slurry Preparation

The coal grinding and slurry preparation system is dedicated to the preparation of the coal slurry feed for the gasifier.

January 2014

Solid feedstock from offsite is continuously conveyed to a weigh feeder system that regulates the solid feed rate to the grinding mill. Fine slag may also be recycled into the grinding mill, which provides a means to prepare the solid as slurry feed for the gasifier. Grey water and/or fresh water are then used to slurry the grinding mill feed.

A fluxant system may be required based upon feedstock properties or if desired for future feedstock flexibility.

The slurry is transferred to a gasifier train by the slurry charge pump which provides a controlled flow of slurry to the gasifier feed injector.

Gasification & Scrubbing

A Gasification and Scrubbing train includes a Radiant-only Gasifier with high-pressure steam production, followed by a direct water quench cooling system.

The radiant-only gasifier is a refractory lined vessel capable of withstanding high temperatures and pressures. The coal slurry from the slurry run tank and oxygen from the air separation unit are fed and mixed through a gasifier feed injector and react at very high temperatures (approximately 1400°C). The pursuing partial oxidation reaction generates slag and syngas with a high hydrogen and carbon monoxide content, lesser content of water vapor, carbon dioxide, hydrogen sulfide, methane, nitrogen, and traces of carbonyl sulfide (COS) and ammonia. The ash content of the coal feed melts in the gasifier and transforms into slag.

The tip of the Feed Injector is protected from the high temperatures in the Gasifier by a water jacket and cooling coils through which cooling water is continuously circulated.

From the gasifier vessel, the hot syngas and slag from the reaction chamber flow down into the Radiant Syngas Cooler (RSC) chamber. The RSC is a high-pressure steam generator equipped with a circulating boiler feed water wall to protect the vessel shell. Heat is transferred primarily by radiation from the hot syngas to the circulating BFW. The high-pressure steam flows to a liquid disengagement system and then to the high-pressure steam header for Power Generation and/or export to other applications. In the RSC chamber, the raw syngas from the radiant section is first cooled by direct contact with water, and then sent to the Syngas Scrubber for cooling, condensation of water vapor, and removal of particulates by scrubbing with water.

The syngas from the overhead of the Syngas Scrubber is routed to the Low Temperature Gas Cooling section (out of the GE's scope). The bottom of the RSC vessel receives a portion of the syngas scrubber bottoms for cooling of the raw

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 57 of 67

syngas and solidification of the molten slag. The water also wets the slag solids and assists its removal to the Lock Hopper.

January 2014

Black Water & Coarse Slag Handling

The purpose of the black water flash system is to recover heat from the black water and to remove dissolved syngas, possibly requiring a deaerator (or sour water stripper) to provide deaerated return water to the syngas scrubber.

Black water from the RSC chamber and from the syngas scrubber is letdown and partially flashed through a series of flash stages the last of which is a vacuum flash stage. The flash stages serve to remove dissolved gases from the black water and to lower the black water temperature. The removed dissolved gases are routed to either a sour water stripper or offsite for treatment. Following the flashes, the black water is pumped to the gravity settler, which is part of the grey water handling system.

Black water from the vacuum flash vessel flows to the gravity settler where the solids are concentrated. A small amount of flocculent may be added upstream of the gravity settler to improve the settling efficiency. The gravity settler contains a slow moving rake that keeps the concentrated fine slag solids moving towards the bottom outlet. The concentrated gravity settler bottoms is either recycled to the grinding mill or pumped to filter feed tank in the fines filtration system.

The overflow water from the gravity settler (grey water) flows to the grey water tank. A slag crusher at the bottom of the radiant syngas cooler crushes the coarse slag which then gravity flows into the lockhopper, where an automated batch process is used for the collection of the solids. Once a solids collection cycle is complete, the lockhopper is isolated from the radiant gasifier, depressurized, flushed into a slag sump, re-pressurized, and opened to the radiant syngas cooler.

In the slag sump, slag settles onto a submerged slag drag conveyor, which separates the slag from the water. The coarse slag is dumped into trucks for removal offsite while the water removed from the slag is pumped to the black water flash system.

Grey Water & Fines Handling

The purpose of the grey water handling system is to concentrate solids in black water and to provide surge capacity for the grey water.

Black water from the vacuum flash vessel flows to the gravity settler where solids are concentrated. A small amount of flocculant may be added upstream of the gravity settler to improve settling efficiency.

The gravity settler contains a slow moving rake that keeps the concentrated fine slag solids moving towards the bottom outlet. The concentrated gravity settler bottoms is either sent to the filter (to be discharged as soot) and/or recycled to the grinding mill

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 58 of 67

(to reduce soot disposal cost). The overflow water from the gravity settler (grey water) flows to the grey water tank, essentially free of particulates.

A low pressure grey water pump returns part of grey water to the lockhopper flash drum and the remaining water is blown down as grey water blowdown.

The high pressure grey water pump re-circulates grey water to the syngas scrubber through the deaerator.

3.2.3. Process Data

This section contains the feed and product information for the normal operating conditions (NOC) case.

Configuration and Charge to Gasifiers

Total Number of Gasifier Trains	2 operating + 0 spare
Feed charge rate	7728 t/d (dry basis)
Fluxant rate (100% ash)	114 t/d
Oxygen feed (pure basis)	220893 Nm ³ /h
Gasifier operating pressure	65.5 barg

Syngas Product at Scrubber Overhead

Raw syngas composition	% mol
CO	22.6
H_2	18.9
CO_2	9.4
H_2O	47.2
$Ar + N_2$	1.7
$H_2S + COS$	0.2
Total	100.0
H ₂ + CO flowrate	$13.4 \cdot 10^6 \text{ Nm}^3/\text{d}$
Temperature	229°C
Pressure	63.6 barg

High-pressure Steam produced

HP Steam flowrate	19330 t/d
Temperature	336°C
Pressure	138 barg

CO₂ Capture at Coal Based Power and Hydrogen Plants

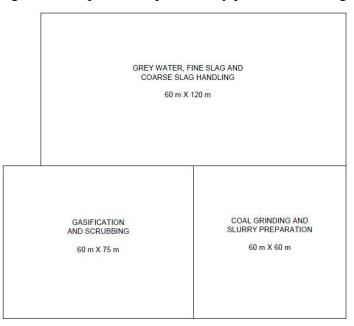
Chapter E - Basic information of IGCC plant alternatives

Revision no.. I mai

Date: January 2014

Sheet: 59 of 67

Other major by-products


Coarse Slag	1086 t/d (dry basis)	
Slag	45200 kg/h	
Water	45200 kg/h	
Grey Water Blow-down	1630 l/d	

Preliminary Utility summary

Boiler Feed Water	810 t/h
Cooling Water	4400 t/h
Process Make-up Water	150 t/h
Electricity	9100 kWe

3.2.4. <u>Preliminary Plot Area</u>

The following scheme represents a preliminary plot area for the gasification island.

3.2.5. Plant Cost Estimate

The Capital Cost Estimate for the GE's Radiant gasification technology is reported in the following table, reflective of two (2) gasification trains and limited to GE Energy's gasification package as described in Section 3.2.2.

In addition to the process units listed above, the estimates include a Balance of Plant (BOP) category to account for utilities, interconnecting piping, pipe rack, roads, and

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 60 of 67

buildings for GE's estimate scope. In these estimates, BOP is calculated based on a ratio of the direct cost estimates.

January 2014

DESCRIPTION	1Q2013 Million US Dollars (USGC basis)
Gasification Process Blocks	640
Balance of Plant (BOP)	210
Subtotal Direct Costs	850
Indirect Construction Costs, Engineering	
& Home Office Services, Contingency,	630
EPC Fee	
Sales/Use/Local Taxes/Owner's Cost	Excluded
Total Estimated Cost	1480

The capital cost estimates are factored estimates within an accuracy range of and have been developed by GE Energy by comparing these configurations to other GE Energy projects of similar feed, capacity, trains, and scope.

Indirect construction costs reflect such things as construction equipment, temporary facilities, craft payroll taxes & social security, contractor home office and field staff, small tools, etc.

3.2.6. <u>O&M Costs</u>

The solid-fed Gasification Operating & Maintenance (O&M) budget consists of fixed and variable costs which generally correspond to 3-5% of all-in plant cost for the facility.

3.2.7. Technology Experience (references)

The total number of facilities licensed by GE Energy is 90, which includes 21 licensed facilities in engineering, design, and construction phase.

The following table details the licensed facilities based on solid feedstock.

 ${
m CO}_{\scriptscriptstyle 2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E - Basic information of IGCC plant alternatives

January 2014 Date:

Sheet: 61 of 67

	Location	Feedstock	End Product	Startup	Mode ¹
1	USA	Coal	Methanol/Acetic Acid	1983	Α
2	Japan	Pet. Coke	Ammonia	1984	Α
3	China	Coal	Ammonia 1993		Α
4	China	Coal	Town Gas/Chemicals 1995		Α
5	China	Coal	Ammonia	1996/2010	Α
6	USA	Coal/Pet. Coke ²	Power	1996	В
7	China	Coal	Ammonia	2000	Α
8	USA	Petroleum Coke	Ammonia	2000	Α
9	China	Coal	Ammonia/Urea	2004	A
10	China	Coal	Ammonia/Hydrogen	2005	Α
11	China	Coal	Methanol	2005/2008	Α
12	China	Coal	Ammonia/Urea	2006	Α
13	China	Coal	Methanol	2007/2009	Α
14	China	Coal	Methanol	2007	Α
15	China	Coal/Pet. Coke	Methanol	2008	A
16	China	Coal	Methanol	2008	A
17	China	Coal	Methanol	2009	A
18	China	Cogl	Ammonia	2009	A
19	China	Cogl	Methanol	2010	A
20	China	Coal	Oxochemicals	2010	A
21	China	Cogl	Methanol	2010	A
	- Crimic	24	ring, Design & Construction	2010	
22	Russia	Petroleum Coke	Power & Steam	2015*	Α
23	China	Coal	Methanol/Ammonia	2011*	Α
24	China	Cogl	Ammonia/Urea	2011*	A
25	China	Cogl	Methanol	2011*	A
26	China	Coal	Oxochemicals/Methanol	2011*	A
27	USA	Petroleum Coke	Methanol/Hydrogen	2014*	A
28	USA	Coal	Power & SNG	2012*	В
29	USA	Coal	Substitute Natural Gas	2012*	A
30	USA	Coal	Power	2012*	В
31	USA	Coal	Gasoline	2013*	A
32	USA	Petroleum Coke	Ammonia	2013*	Α
33	USA	Petroleum Coke	Substitute Natural Gas	2013*	Α
34	China	Coal	Methanol	2012*	Α
35	China	Coal	Methanol	2013*	Α
36	China	Coal	Ammonia 2012*		Α
37	USA	Coal/Pet. Coke	Power/Hydrogen/CO2	2015*	Α
38	China	Coal	Methanol	2012*	Α
39	China	Coal	Methanol 2013*		Α
40	China	Coal	Ammonia/Urea	2014*	Α
41	China	Petroleum Coke / Coal	Hydrogen	2014*	Α

Syngas cooling mode: A – direct water quench; B – syngas cooler; C – combination of A & B
 Originally configured for coal; then converted to pet coke

^{*} Expected start-up date

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E - Basic information of IGCC plant alternatives Sheet: 62 of 67

3.3. Mitsubishi gasification

3.3.1. Introduction

The purpose of this section is to summarize the information received from Mitsubishi on the MHI gasification technology, representing the basic information on which the technical and economical analysis of the MHI gasification based IGCC alternative of the study (Case 4.3) have been performed.

January 2014

3.3.2. <u>Process Description</u>

The Gasification Unit includes the following main sub-units, which are described briefly in the next sections:

- Coal Handling and Preparation.
- Gasifier.
- Syngas Cooler and Char Removal.
- Air Separation Unit.
- Gasification Air Booster Compressor.

Coal Handling and Preparation

The milling of the coal is part of the MHI scope and aimed at reducing the size of the raw coal to the requirement of the gasifier.

For each gasifier, coal is stored in three coalbunkers which feed associated 43% capacity pulverizers. After pulverizing process, the pulverized coal flows to lockhoppers. From the distribution hoppers, the coal is transported into the gasifier by nitrogen from the Air Separation Unit (ASU).

Gasifier

The MHI gasifier uses a dry feed design that avoids the need for mixing the pulverized coal feedstock with water as would otherwise be required by slurry transport designs. The MHI air-blown system also reduces the auxiliary power that would otherwise be consumed by a full-sized ASU required for oxygen-blown gasifiers and the high investment cost that goes with those larger ASU-based configurations. Since the nitrogen in the air (gasification agent) lowers the syngas temperature in the gasifier, special attention is required to ensure both the proper discharge of molten ash and maintaining a sufficiently high heat content in the syngas for stable burner operation in the gas turbine. MHI has adopted a two-stage gasification process as a solution to these issues.

MHI's gasifier design features an up-flow two-stage configuration that consists of two chambers: a lower combustor chamber and an upper reductor chamber. A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 63 of 67

description of the major features of this configuration is provided below, and illustrated in the Figure 12. The MHI gasifier configuration enables continuous molten slag discharge from the bottom of the gasifier, and overall higher carbon conversion to syngas, both within the same pressure vessel.

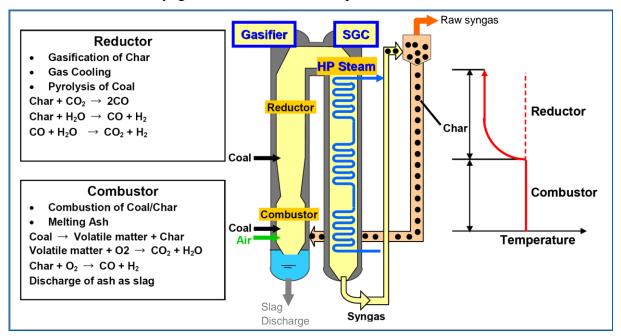


Figure 12. Operating principle of MHI Air-Blown two-stage entrained-bed gasifier

Gasifier – Stage one: Combustor

In the first stage, coal and recycled char are fed to the combustor chamber, along with the oxygen-enriched air at a relatively high air/fuel ratio. Both full and partial oxidation reactions take place to generate a mixture of gases, primarily CO and CO₂. Water vapour needed for "water shift" gasification reactions in the second stage is also generated here.

Water vapour is formed as a product of combustion involving the hydrocarbons contained in the coal volatile matter that are liberated from the coal by the intense heating in this stage. High temperatures enable the coal ash to separate from the gas stream in the form of molten slag.

The molten slag flows down to the bottom of the chamber, where it is quenched in water. The slag is recovered in the form of a glassy bead-like by-product with less than 0.1 percent unburned carbon. The slag is removed from the slag hopper and transported by conveyor to an outdoor storage pile. The slag is in a glassy form and contains virtually no leachable trace elements. The slag has a relatively high density, so the volume of slag is only about half that of the fly ash from a conventional

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 64 of 67

pulverized coal plant. This slag has possible commercial applications as road paving materials or as a fine aggregate for concrete.

The air feed to the combustor section is enriched with oxygen to enhance this part of the process. Oxygen enrichment adds to the operating flexibility of the gasifier, and also increases the heating value of the syngas ultimately delivered to the gas turbine combustor. The gasifier has a "membrane water wall" configuration that eliminates the need for a refractory lining. An initial startup refractory lining is applied only for the inner surface of the combustor for protection until it is gradually replaced by the formation of a solid-state slag layer.

<u>Gasifier – Stage two: Reductor</u>

In the second stage, more coal is fed to the hot gas stream flowing upwards into the reductor, but no additional air is supplied. In this fuel-rich, low-oxygen environment, the key reactions take place such as gasification of char to CO, reduction of CO_2 to CO, reduction of CO_2 to CO_2 to CO_2 to CO_3 reduction of CO_3 to CO_4 additional pyrolysis of coal, and subsequent gasification of products. These reactions are generally endothermic in nature, resulting in a drop in gas mixture temperature before the gas stream exits at the top the gasifier.

At this reduced temperature, solid particles containing char or ash carryover are hardened so that sticking and fouling of downstream heat exchanger surfaces is minimal.

Syngas Cooler and Char Removal

From the gasifier, the syngas flows to the syngas cooler where the gas is cooled and high-pressure (HP) steam is generated for further superheating and use in the power steam cycle. The cooler includes an economizer section, an evaporator section with steam drum, and two superheater sections. From the syngas cooler, the gas flows to the char recovery and feed system. This system removes the ash and char in the syngas and recycles it back into the gasifier. The system consists of a cyclone, a set of porous filters, storage bin and distribution lockhoppers.

Air Separation Unit

For MHI's air-blown gasifier, the majority of the gasification agent is supplied as air extracted from the gas turbine compressor. Nitrogen is also required for pneumatic coal feed to the gasifier from the distribution hoppers. Basically, the amount of oxygen that is generated as a by-product of ASU when required amount of nitrogen is withdrawn is fed to the combustor stage of the gasifier.

One full capacity air separation unit is provided to supply oxygen and nitrogen for both gasifier trains. Ambient air is compressed, cooled and dried by molecular sieves. By expansion and cooling, the temperature is lowered and the air is partially liquefied. The air is then distilled in a distillation column. This process produces oxygen at 95 percent purity and high purity nitrogen (<1 percent O_2). The oxygen is

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 65 of 67

fed to the gasification unit to supplement the air. For each train, the nitrogen and oxygen are fed to the gasifier from the ASU by one full capacity compressor for each stream. A liquid nitrogen system is provided as a backup to the ASU for coal feeding.

Gasification Air Booster Compressor

Air is provided to the gasifier for the combustion/reduction processes by a motor drive booster air compressor. The air is supplied to the compressor from an extraction from the compressor of the gas turbine. One compressor is provided for each train.

3.3.3. <u>Process Flow Diagrams</u>

The simplified process flow diagram including details of each unit of the MHI Gasification Island is shown in Figure 13.

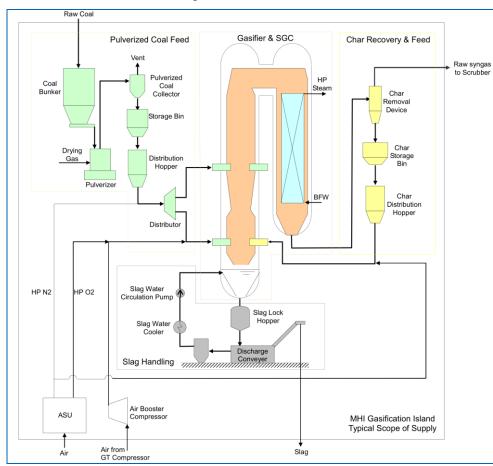


Figure 13. Typical Gasification Plant Process Flow Diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E - Basic information of IGCC plant alternatives Sheet: 66 of 67

3.3.4. References

The operation experience of MHI air-blown gasifier is shown in following table.

Owner	Plant Name	Country	Site	Yr Start	Coal input t/day
CRIEPI	2t/d PDU	Japan	Yokosuka	1984	2.4
IGC Association	200t/d Pilot Plant	Japan	Nakoso	1993	200
MHI (R&D center)	24t/d pilot test plant	Japan	Nagasaki	1999	24
Clean Coal Power	IGCC Demo. Plant	Japan	Nakoso	2007	1,700

The IGCC Demo. Plant, evaluated as 'very successful' by the owner and the Japanese government, finished its demonstration operation, and was shifted to the first commercial plant in Japan in April of 2013. Its new owner and the plant name are 'Joban Joint Company, Ltd.' and 'Nakoso Unit No. 10 IGCC Plant'.

Here below the performance details of the IGCC Demo plant of Nakoso based on MHI's two-stage entrained-bed, pressurized, air-blown gasifiers. The experience of the MHI gasifier with different types of coal is shown in the Figure 14 and includes the tests done in the Nakoso plant.

		Targets	Achievements	Note
	Output	250MW	250MW	
Performance	Efficiency (Net, LHV)	> 42.0%	42.9%	
	Carbon Conversion	> 99.9%	> 99.9%	
Emission (@dry, 16%O2)	SOx NOx Dust	< 8 ppm < 5 ppm < 4 mg/m ³ N	1.0 ppm 3.4 ppm < 0.1 mg/m³N	
Operational	Coal Kinds	Bituminous Sub-bituminous	Chinese, Canadian 2 US (includ. PRB) 3 Indonesian Subs Colombian, Russian	Continuously expanding
Flexibility	Start-up Time	< 18 hr	15 hr	
	Minimum Load	50%	36%	
	Ramping Rate	3%/min	3%/min	
	Long-term Continuous Operation	2,000 hr	2,238 hr	
Reliability	Long-Term Reliability Run	5,000 hr	5,013 hr	Accumulated operating hours exceeded 20,000 hrs.
	Availability (Feb.2011-Jan.2012)	-	84 %	Except Tsunami and scheduled shutdown

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS
Chapter E - Basic information of IGCC plant alternatives

Date: January 2014

Sheet: 67 of 67

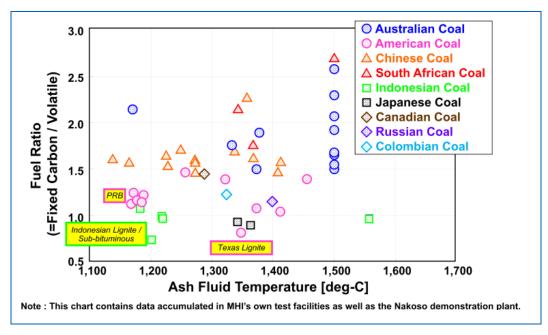


Figure 14. Coal types tested in the MHI Air-Blown Gasifier

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Sheet: 1 of 22

January 2014

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants document name : $CASE\ 4.1$: IGCC with CCS – SHELL gasification technology

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : L. CASTRONUOVO

CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Date: January 2014

Sheet: 2 of 22

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	.3
2.	Process description	5
	2.1. Overview	.5
	2.2. Unit 900 – Solid Handling & Storage	.5
	2.3. Unit 1000 – Gasification Island	.5
	2.4. Unit 2100 – Air Separation Unit	.5
	2.5. Unit 2200 – Syngas Treatment and Conditioning line	.6
	2.6. Unit 2300 – Acid Gas Removal (AGR)	.7
	2.7. Unit 2400 – SRU and TGT	.8
	2.8. Unit 2500 – CO ₂ compression and drying	.8
	2.9. Unit 3000 – Combined cycle	.8
	2.10. Utility Units	.9
3.	Process Flow Diagrams1	.0
4.	Heat and Material Balance1	1
5.	Utility consumption1	3
6.	Overall performance1	7
7.	Environmental impact 1	9
	7.1. Gaseous emissions	19
	7.2. Liquid effluents2	20
	7.3. Solid effluents	20
8.	Preliminary plot plan2	1
9.	Equipment list2	22

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 3 of 22

1. Introduction

This Chapter of the report includes all technical information relevant to Case 4.1 of the study, which is an IGCC plant based on the Shell gasification technology. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce electric power for export to the external grid, with capture of the generated carbon dioxide.

January 2014

The configuration of the plant is based on the following main features:

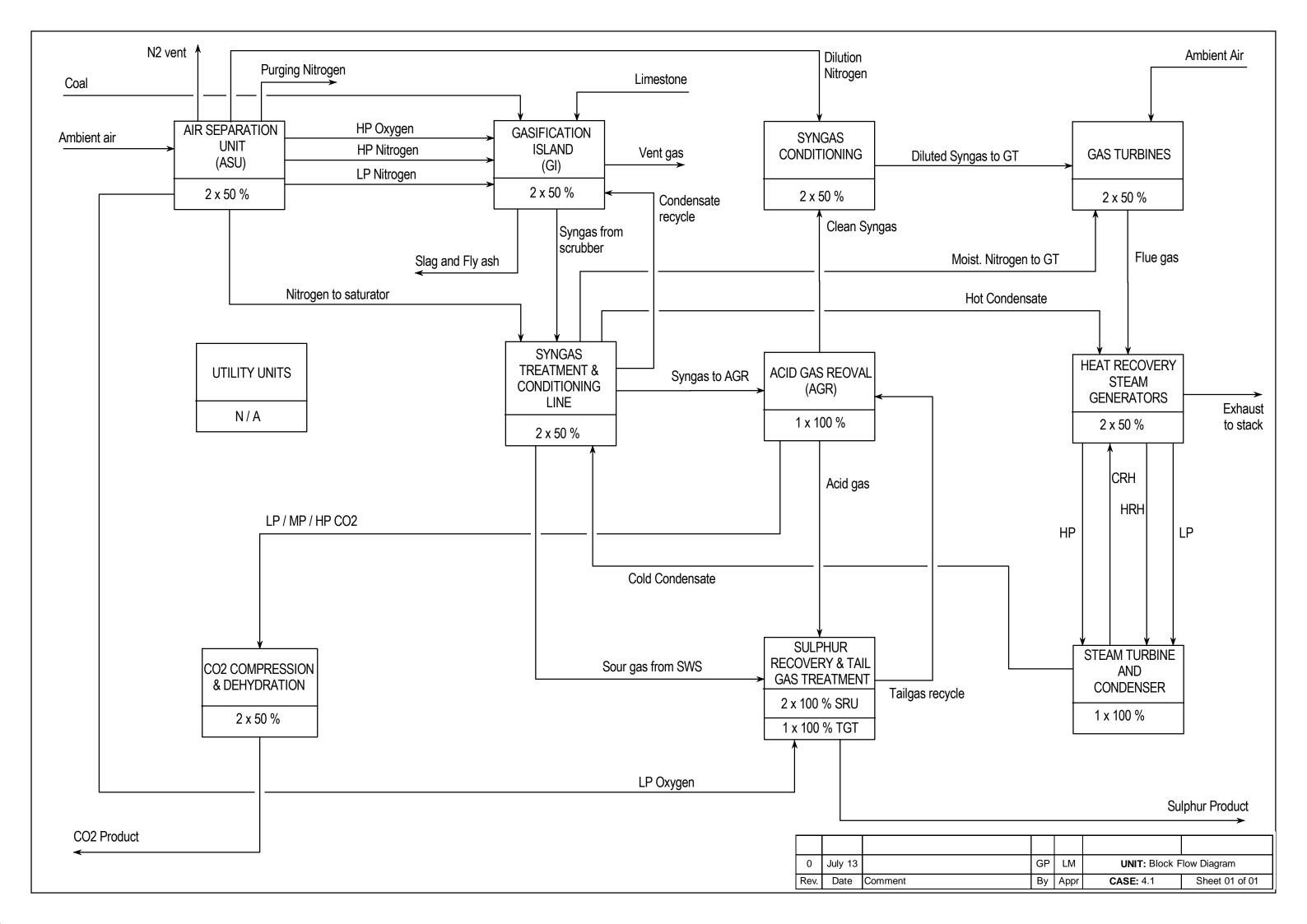
- Medium-pressure (40 barg) Shell Coal Gasification Process (SCGP), with dry-feed system and Synthesis Gas Cooler;
- Hybrid CO shift stage, as recommended by Shell, followed by 2-stages sour shift;
- Removal of acid gases (H₂S and CO₂), based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and dehydration unit;
- Combined cycle based on two F-class gas turbines.

The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Unit	Description	Trains
900	Solid Handling & Storage	N/A
1000	Coal Milling and Drying	4 x 33%
	Gasification	2 x 50%
	Coal Pressurization and Feeding	
	Gasification and Syngas Cooler	
	Slag Removal	
	Dry solids removal	


Table 1. Case 4.1 – Unit arrangement

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Date: January 2014

Sheet: 4 of 22

Unit	Description	Trains
	Wet Scrubbing	
	Primary Waste Water Treatment	
2100	Air Separation Unit	2 x 50%
2200	Syngas Treatment and Conditioning Line	2 x 50%
2250	Sour Water Stripper (SWS)	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
3000	Combined Cycle	
	Gas Turbine	2 x 50%
	HRSG	2 x 50%
	Steam Turbine	1 x 100%
4000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 5 of 22

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Solid Handling & Storage

The unit is composed of the following systems:

- Coal storage and handling
- Limestone storage and handling
- Fly ash collection and storage
- Slag storage

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Island

This unit is mainly composed of the Coal Milling and Drying unit and the Shell Gasification Island (including Coal pressurization and feeding, Gasification and syngas cooling, syngas scrubber, slag removal, dry solids removal, primary waste water system, etc.). Technical information relevant to these packages is reported in chapter E, section 3.1.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Air Separation Unit

Technical information relevant to this packaged unit is reported in chapter E, section 2.3. The main process information of the unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The sizing capacity of the Air Separation Unit is determined by the oxygen requirement of the gasification island and the SRU. The total required oxygen flowrate for the case is approximately 250 t/h.

The Air Separation unit supplies very high pressure nitrogen, used as carrier gas for the feed pneumatic transport system of the gasifier, and medium pressure nitrogen, used as diluent for the syngas or injected in the gas turbine for NOx suppression and power production augmentation.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 6 of 22

2.5. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. The main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

Date:

January 2014

Saturated raw syngas from the gasification scrubber, at approximately 40 barg, is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H₂ and CO₂ and COS is converted to H₂S. Shell proposes a hybrid water gas shift (WGS) scheme for this case of the study. The first WGS reactor is low steam shift reactor, converting about 35% of CO to CO₂; the catalyst is designed to completely suppress unwanted methanation under these relatively dry conditions. This is followed by a conventional sour tolerant 2-stage WGS to convert the remaining CO. Such a scheme is designed to minimize the steam consumption of the WGS unit and amount of condensate to Sour Water Stripper, achieving an overall CO conversion greater than 98%.

Downstream the first shift reactor, after the feed/product heat exchanger, syngas is mixed with MP steam and BFW in order to ensure that the minimum water content in the syngas at third shift reactor outlet is around 20% mol, corresponding to a steam to dry gas ratio of about 0.25. Water injection has also the effect of reducing syngas temperature down to the level required for feeding the second shift reactor.

The partially-shifted syngas temperature is increased by the exothermic shift reaction, allowing for further thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the third reactor stage:

- HP Steam Generator,
- MP Steam Generator,
- LP Steam Generator #1.

After being cooled, the syngas is directed to the third and last shift reactor. The hot shifted syngas outlet from the last stage is again cooled in the following series of heat exchangers, to thermally recover heat and increase the power generation of the plant:

- LP Steam Generator #2,
- Nitrogen Saturator Circulating Water Heater,
- Condensate Pre-heater.

Final cooling of the syngas is made against clean syngas coming from the AGR, in a gas—gas exchanger, and against cooling water, before passing through a sulphur-impregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas then enters the AGR unit.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 7 of 22

During the cooling of the syngas, the process condensate is separated and collected in the process condensate accumulator. Before being sent to the accumulator, the condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the Sour Water Stripper in order to avoid accumulation of ammonia and H₂S and other dissolved gases in the water recycle to the gasification section. Part of the condensate from the accumulator is sent to the Gasification Island, while the remainder condensate is sent to Waste Water Treatment Unit.

From the AGR unit, cool hydrogen rich gas returns to the syngas treatment and conditioning line as de-carbonized fuel gas after H₂S and CO₂ removal. The decarbonized fuel gas is preheated in the syngas/syngas exchanger and against LP steam after being mixed with nitrogen, coming from the ASU, up to maximum hydrogen content of 65% molar. Finally, the diluted syngas is sent to the combined cycle at 155°C, for final heating against boiler feed water and combustion in the gas turbine.

The unit includes nitrogen saturator, generating moisturised nitrogen to be injected in the gas turbine. Nitrogen humidification is achieved by means of hot water heated in the syngas cooling line. The humidified nitrogen is finally heated using MP steam and then injected in the gas turbine combustion chamber.

2.6. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H_2S and CO_2 in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit:

- The H₂S+COS concentration of the treated gas exiting the unit is around 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 2%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.06% mol).
- The acid gas H₂S concentration is about 35% dry basis, suitable to feed the oxygen blown Claus process.

The CO₂ removal rate is 91.8% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 90% with respect to the carbon

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Pate: January 2014

Sheet: 8 of 22

in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.7. Unit 2400 – SRU and TGT

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The SRU is designed to process the acid gas from the AGR and other minor acid streams, like the acid off-gas from the primary water treatment within the gasification island and the sour gases from the SWS, using low pressure oxygen from the ASU. In the furnace, H₂S is catalytically oxidized to SO₂ which is further reacted with H₂S to form H₂O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 35 barg by means of a dedicated compressor.

The overall sulphur production is approximately 65 tons per day.

2.8. Unit $2500 - CO_2$ compression and drying

This unit is mainly composed of a compression and dehydration package, followed by last stage CO₂ pumps, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Three different streams of CO₂ from the Acid Gas Removal unit are routed to the CO₂ compression unit, delivered at approximately 9 barg, 2 barg, and 0.1 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 30 barg and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 80 barg.

The resulting stream of CO₂ is pumped to the required pressure of 110 barg. The CO₂ product (approximately 97.9 % mol purity) is transported to the plant battery limits for final sequestration.

2.9. Unit 3000 – Combined cycle

Technical information relevant to these packages is reported in chapter E, section 2.10. The main process information of this unit and the interconnections with the

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 9 of 22

other units are shown in the process flow diagram and in the heat and mass balance tables.

The diluted syngas exiting the syngas treatment and conditioning line is finally heated in the combined cycle using MP boiler feed water before entering the burners of the gas turbine at 210°C.

The gas turbine compressors provide combustion air to the burner only, i.e. no air integration with the ASU is foreseen. The exhaust gases from the gas turbine enter the HRSG at 560°C. The HRSG recovers heat available from the exhaust gas producing steam at three different pressure levels for the steam turbine, plus an additional steam generator with integral deaerator. The final exhaust gas temperature to the stack of the HRSG is 133°C. The calculated acid gas dew point temperature of the exhaust flue gas is around 90°C.

The Heat Transfer vs. Temperature of the HRSG (T-Q diagram) of case 4.1 is shown in Figure 1. The red line (the upper curve) represents the exhaust gases from the GT to the stack. The blue lines represent the water path in the economizers (at lower temperature), the steam generators (horizontal lines) and the super-heater/re-heater (at higher temperature).

The combined cycle is thermally integrated with the process unit, in order to maximize the net electrical efficiency of the plant. The main steam and water interfaces with the process units are given in Table 2.

2.10. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

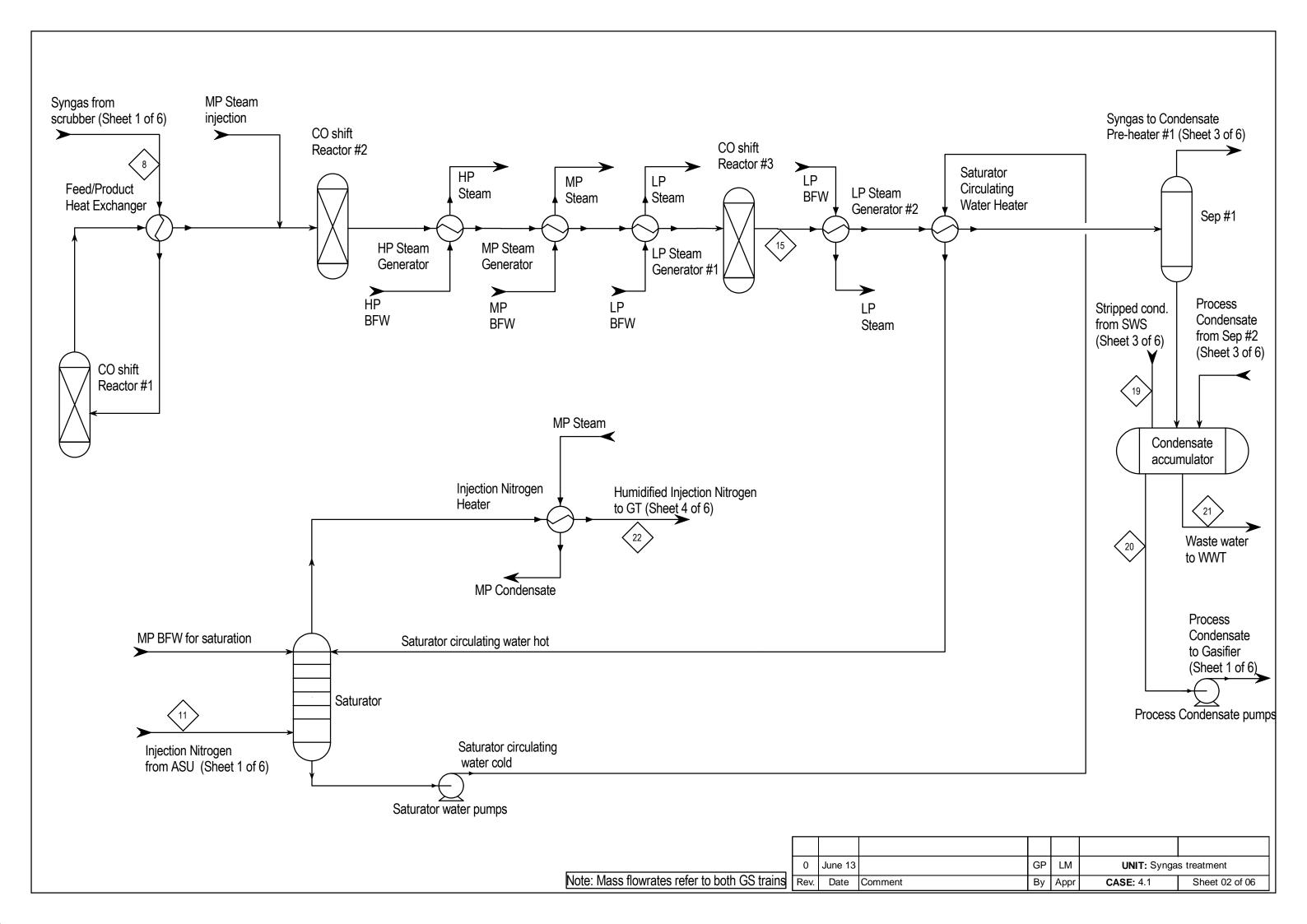
Basin diameter	145 m
Cooling tower height	210 m
Water inlet height	17 m

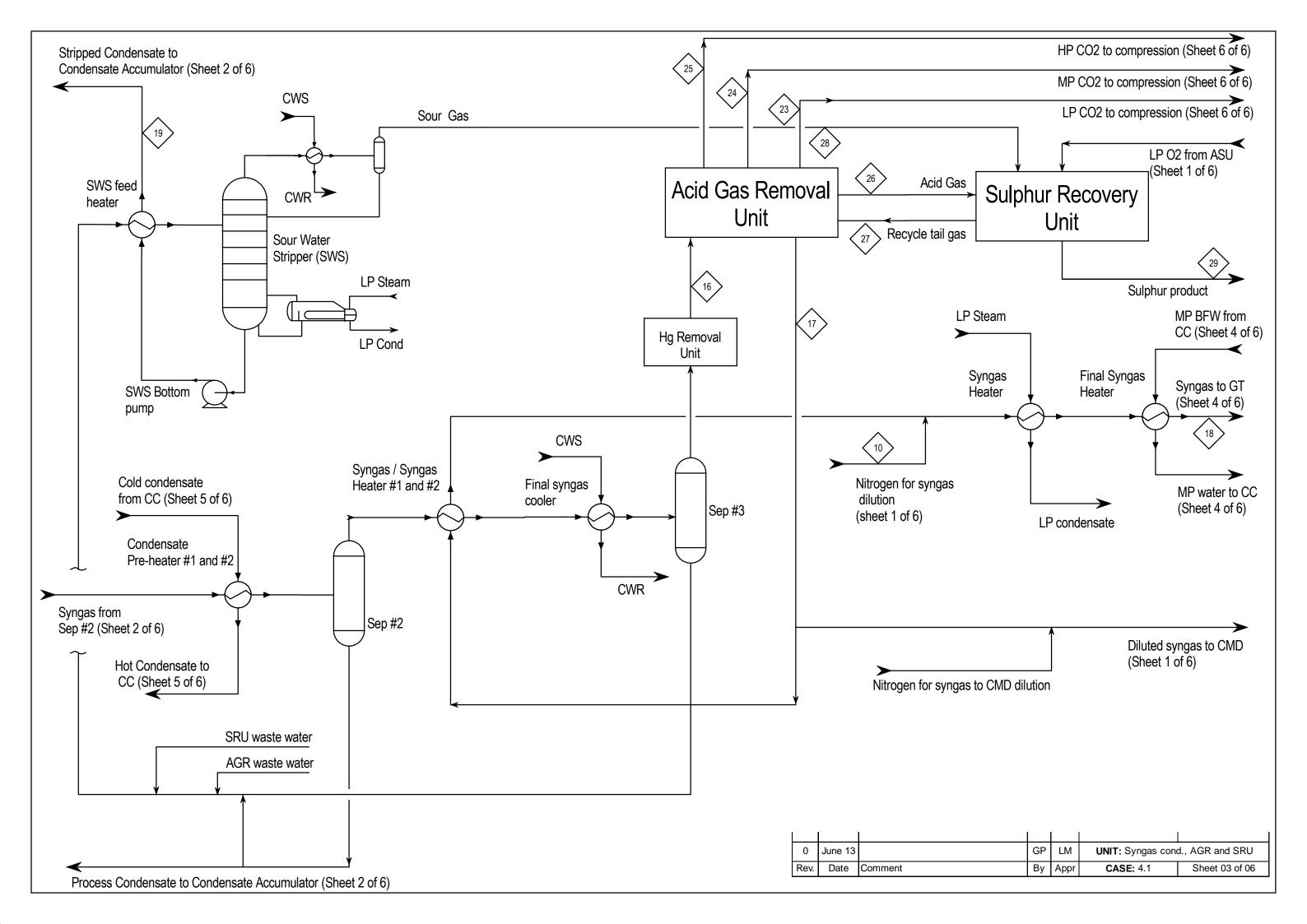
- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

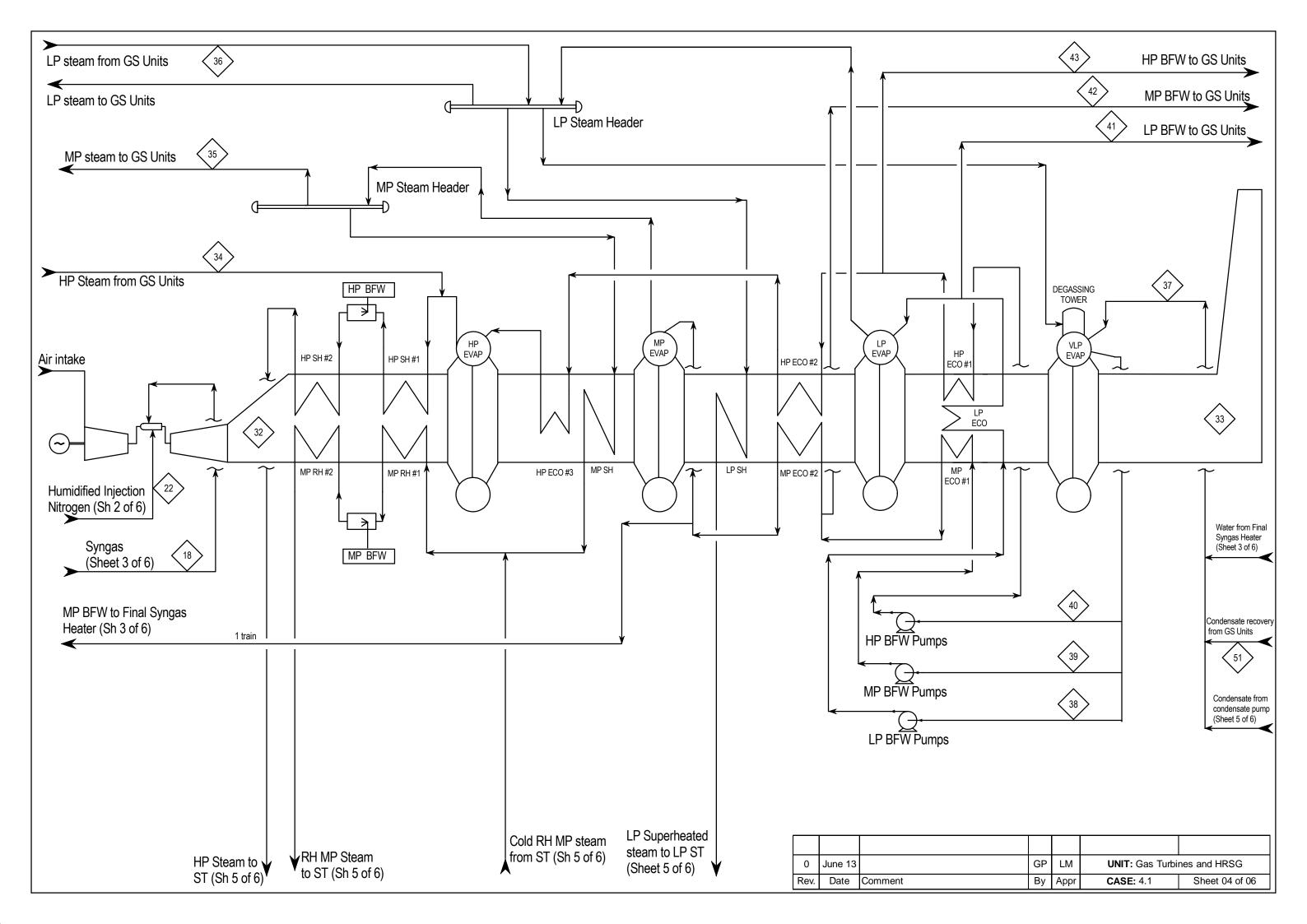
Process descriptions of the above systems are enclosed in chapter E, section 2.11.

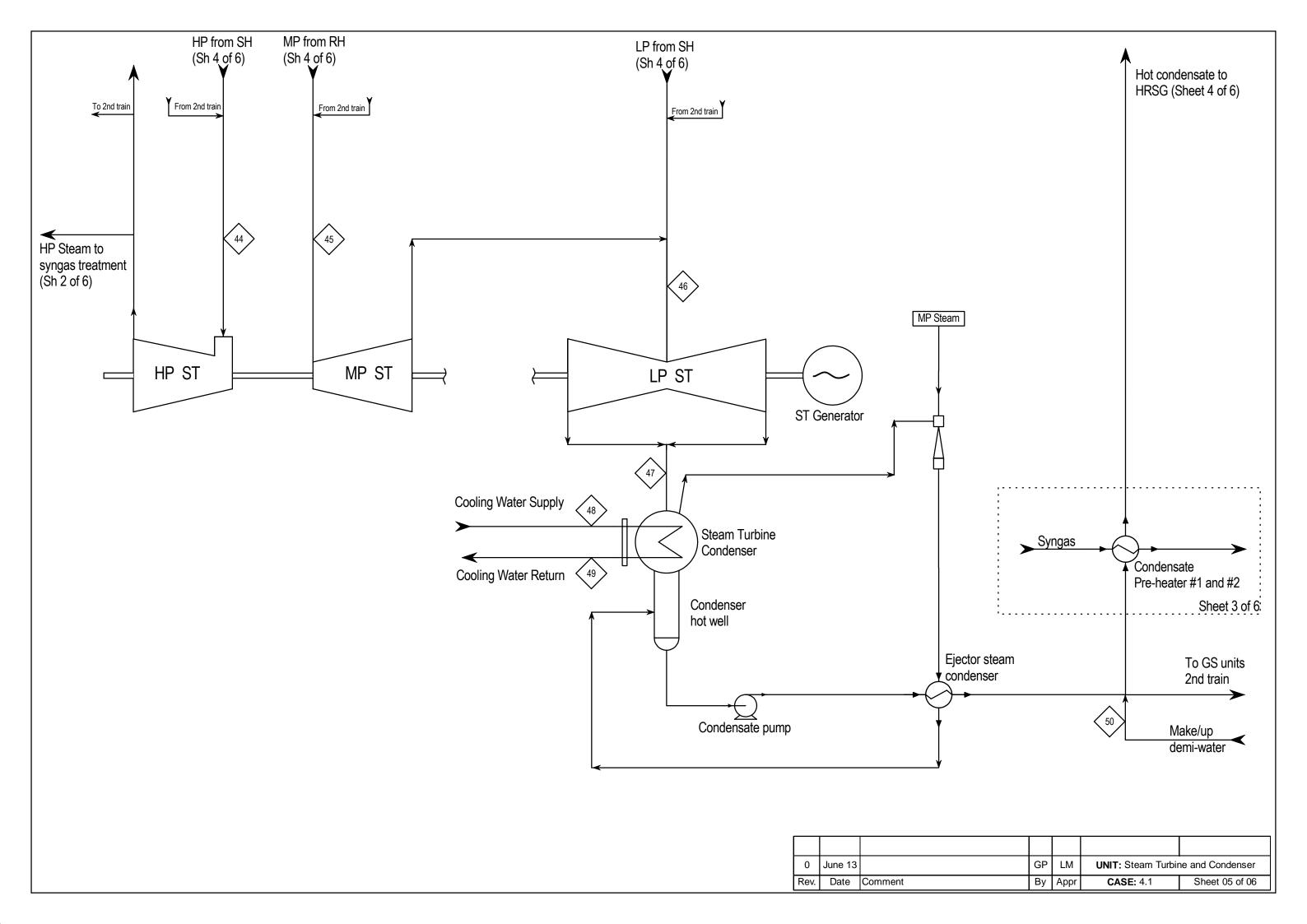
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date

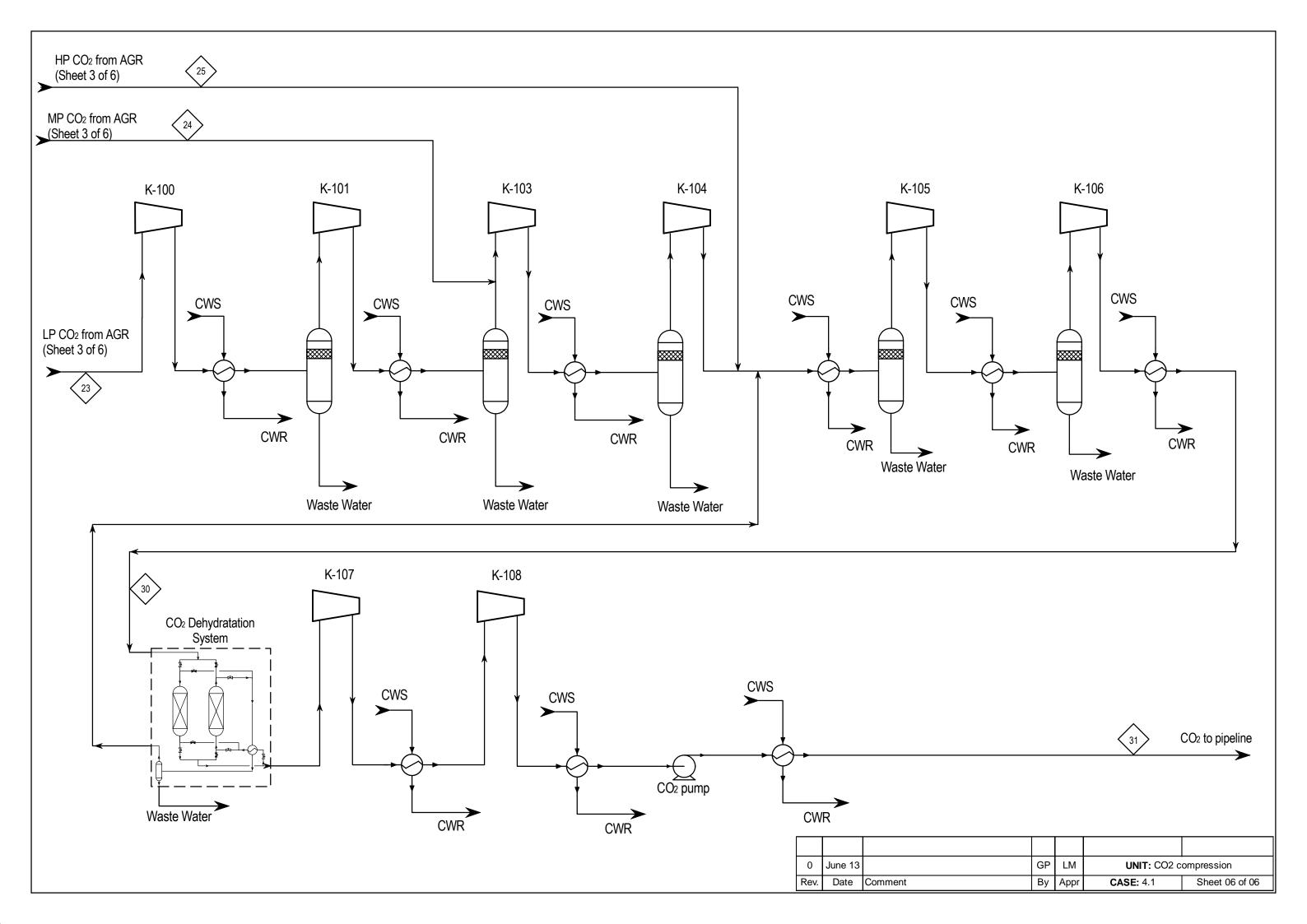

Date: January 2014


Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification


Sheet: 10 of 22


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

eate: January 2014

Sheet: 11 of 22

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

		Case 4.1 - SHE	LL-BASED IGCC -	REVISION	0	1	2			
	CLIENT :		IEA GHG				PREP.	GP		
FOSTER WHEELER	PROJECT NAME:		CO ₂ capture at coa	l based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A			APPROVED	LM			
	LOCATION:	The Netherlands					DATE	July 2013		
					TERIAL BALANCE sification Island					
	1	2	3	4	5	6	7	8		
STREAM	Coal to Gasification Island	Fluxant	HP Oxygen to Gasification	Nitrogen to Gasification	Slag from Gasification	Fly Ash from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor		

	1	2	3	4	5	ь	/	8	
STREAM	Coal to Gasification Island	Fluxant	HP Oxygen to Gasification	Nitrogen to Gasification	Slag from Gasification	Fly Ash from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	
Temperature (°C)	AMB	AMB	25	N/D	80	100	50	N/D	
Pressure (bar)	ATM	ATM	48	N/D (1)	ATM	ATM	ATM	41	
TOTAL FLOW	Solid				Dry solid	Dry solid			
Mass flow (kg/h)	314,900	9.1	250,285	N/D	27,400	16,000	27,700	581,973	
Molar flow (kmol/h)			7,768	N/D				27,832	
LIQUID PHASE									
Mass flow (kg/h)	-		-	-			27,700	-	
GASEOUS PHASE									
Mass flow (kg/h)			250,285	N/D				581,973	
Molar flow (kmol/h)			7,768	N/D				27,832	
Molecular Weight			32.2	28.0				20.9	
Composition (vol %)	%wt	100% CaCO₃						(dry basis)	
H ₂	C: 64.6%		-	-				29.64	
СО	H: 4.38%		-	-				58.05	
CO ₂	O: 7.02%		-	-				3.03	
N ₂	S: 0.86%		1.50	99.999				8.09	
O ₂	N: 1.41%		95.00	0.001				0.00	
CH₄	CI: 0.03%		-	-				0.01	
H ₂ S + COS	Moisture: 9.5%		-	-				0.30	
Ar	Ash: 12.20%		3.50	-				0.84	
HCN			-	-				0.03	
NH ₃			-	-				0.03	
H ₂ O			-	-				-	

	Case 4.1 - SHELL-BASED IGCC - HEAT AND MATERIAL BALANCE							0	1	2			
	CLIENT:		IEA GHG				PREP.	GP					
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power and	d hydrogen plants		CHECKED	NF					
	PROJECT NO:		1-BD-0681 A				APPROVED	LM					
	LOCATION: The Netherlands						DATE	July 2013					
	HEAT AND MATERIAL BALANCE UNIT 2100 - Air Separation Unit												
	9	3	4	10	11	12	13	14					

	9	3	4	10	11	12	13	14	
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	Nitrogen to Gasification	MP Nitrogen for Syngas Dilution	MP Nitrogen to saturator for NOx Control	Oxygen to SRU	LP N ₂	N ₂ vent	
Temperature (°C)	AMB	25	N/D	122	122	AMB	N/D	AMB	
Pressure (bar)	ATM	48	N/D (1)	32	28	6	N/D	ATM	
TOTAL FLOW									
Mass flow (kg/h)	1,076,775	250,285	N/D	238,402	308,864	1,611	33,344	11,490	
Molar flow (kmol/h)	37,304	7,768	N/D	8,506	11,020	50	1,190	410	
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	-	-	-	-	
GASEOUS PHASE									
Mass flow (kg/h)	1,076,775	250,285	N/D	238,402	308,864	1,611	33,344	11,490	
Molar flow (kmol/h)	37,304	7,768	N/D	8,506	11,020	50	1,190	410	
Molecular Weight	28.9	32.2	28.0	28.0	28.0	32.2	28.0	28.0	
Composition (vol %)									
H ₂	-	-	-	-	-	-	-	-	
со	-	-	-	-	-	-	-	-	
CO ₂	0.04	-	-	0.05	0.05	-	-	0.05	
N_2	77.32	1.50	99.999	98.00	98.00	1.50	99.999	98.00	
O ₂	20.75	95.00	0.001	1.00	1.00	95.00	0.001	1.00	
CH₄	-	-	-	-	-	-	-	-	
H ₂ S + COS	-	-	-	-	-	-	-	-	
Ar	0.92	3.50	-	0.25	0.25	3.50	-	0.25	
HCN	-	-	-	-	-	-	-	-	
NH ₃	-	-	-	-	-	-	-	-	
H ₂ O	0.97	-	-	0.70	0.70	-	-	0.70	

	Case 4.1 - S	HELL-BASED IGCC - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEA GHG	PREP.	GP		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	8	15	16	17	18	19	20	21	11	22
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas from CO shift	Raw Syngas to Acid Gas Removal	Purified Syngas from Acid Gas Removal	Diluted Syngas to Combined Cycle	Condensate from SWS	Return Condensate to Gasification	Waste water to WWt	MP Nitrogen to saturator	Moist. N ₂ to Combined Cycle
Temperature (°C)	N/D	231	34	15	210	115	95	78	122	210
Pressure (bar)	41	37.6	35	33.5	31.0	7	50	36	28.0	27.0
TOTAL FLOW										
Mass flow (kg/h)	581,973	1,063,296	868,184	188,947	425,147	30,700	147,700	50,460	308,864	387,047
Molar flow (kmol/h)	27,832	54,520	43,741	27,920	36,055	1,707	8,188		11,020	15,360
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-	30,700	147,700	50,460	-	-
GASEOUS PHASE										
Mass flow (kg/h)	581,973	1,063,296	868,184	188,947	425,147	-	-		308,864	387,047
Molar flow (kmol/h)	27,832	54,520	43,741	27,920	36,055	-	-		11,020	15,360
Molecular Weight	20.9	19.5	19.8	6.8	11.8	-	-		28.0	25.2
Composition (vol %)	(dry basis)									
H ₂	29.64	44.16	55.02	85.08	65.00	-	-		-	0.00
СО	58.05	0.61	0.76	1.14	0.88	-	-		-	0.00
CO ₂	3.03	30.59	38.08	4.91	3.77	-	-		0.05	0.04
N_2	8.09	4.13	5.14	8.00	29.22	-	-		98.00	70.29
O ₂	0.00	0.00	-	-	0.24	-	-		1.00	0.72
CH₄	0.01	0.01	0.01	0.01	0.01	-	-		-	0.00
H₂S + COS	0.30	0.16	0.19	0.00	0.00	-	-		-	0.00
Ar	0.84	0.43	0.54	0.81	0.69	-	-		0.25	0.18
HCN	0.03	0.02	0.00	0.00	0.00	-	-		-	-
NH_3	0.03	0.02	0.01	0.01	0.01	-	-		-	-
H ₂ O	-	19.90	0.24	0.02	0.18	-	-		0.70	28.77

		Case 4.1 - SHE	LL-BASED IGCC -	REVISION	0	1	2					
	CLIENT :		IEA GHG			PREP.	GP					
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	NF				
	PROJECT NO:		1-BD-0681 A				APPROVED	LM				
	LOCATION:						DATE	July 2013				
				HEAT AND MAT	ERIAL BALANCE							
	UNIT 2300 - Acid Gas Removal											
	16	17	23	24	25	26	27					

	16	17	23	24	25	26	27		
STREAM	Raw SYNGAS from Syngas Cooling	Purified Syngas to Syngas Cooling	LP CO ₂ to Compression	MP CO ₂ to Compression	HP CO ₂ to Compression	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU		
Temperature (°C)	34	15	-1	3	10	20	20		
Pressure (bar)	35.0	33.5	1.0	3.0	10.0	2.0	35.0		
TOTAL FLOW									
Mass flow (kg/h)	868,184	188,947	149,211	372,190	153,330	8,317	5,310		
Molar flow (kmol/h)	43,741	27,920	3,395	8,482	3,757	254	150		
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	-	-	-		
GASEOUS PHASE									
Mass flow (kg/h)	868,184	188,947	149,211	372,190	153,330	8,317	5,310		
Molar flow (kmol/h)	43,741	27,920	3,395	8,482	3,757	254	150		
Molecular Weight	19.8	6.8	44.0	43.9	40.8	32.8	35.4		
Composition (vol %)									
H ₂	55.02	85.08	0.00	0.22	7.29	17.17	19.14		
СО	0.76	1.14	0.00	0.00	0.22	0.36	0.00		
CO ₂	38.08	4.91	99.77	99.63	91.80	45.09	76.20		
N_2	5.14	8.00	0.00	0.01	0.47	1.01	1.70		
02	-	-	0.00	0.00	0.00	-	0.00		
CH₄	0.01	0.01	0.00	0.00	0.00	0.00	0.00		
H ₂ S + COS	0.19	0.00	0.00	0.00	0.00	34.96	2.95		
Ar	0.54	0.81	0.00	0.01	0.14	0.23	0.00		
HCN	-	-	-	-	-	-	-		
NH ₃	0.01	0.01	-	-	-	-	-		
H ₂ O	0.24	0.02	0.23	0.12	0.08	1.19	0.00		

	Case 4.1 - S	HELL-BASED IGCC - HEAT AND MATERIAL BALANCE	REVISION	0	1	2		
	CLIENT:	IEA GHG	PREP.	GP				
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF				
	PROJECT NO:	1-BD-0681 A	APPROVED	LM				
	LOCATION:	The Netherlands	DATE	July 2013				
	HEAT AND MATERIAL BALANCE							

UNIT 2400 - Sulfur Recovery Unit (SRU) & Tail Gas Treatment (TGT)

	26	28	27	29	12			
STREAM	Acid Gas from AGR Unit	Sour Gas from SWS	Claus Tail Gas to AGR Unit	Product Sulphur	Oxygen to SRU			
Temperature (°C)	20	80	20	-	АМВ			
Pressure (bar)	2.0	3.8	35.0	-	6			
TOTAL FLOW								
Mass flow (kg/h)	8,317	59	5,310	2,700	1,611			
Molar flow (kmol/h)	254	3	150	-	50			
LIQUID PHASE								
Mass flow (kg/h)	-	-	-	-	-			
GASEOUS PHASE								
Mass flow (kg/h)	8,317	59	5,310	-	1,611			
Molar flow (kmol/h)	254	3	150	-	50			
Molecular Weight	32.8	20.4	35.4	-	32.2			
Composition (vol %)								
H ₂	17.17	0.28	19.14	-	-			
со	0.36	0.19	0.00	-	-			
CO ₂	45.09	40.38	76.20	-	-			
N ₂	1.01	0.26	1.70	-	1.50			
O ₂	-	-	0.00	-	95.00			
CH₄	0.00	0.00	0.00	-	-			
H ₂ S + COS	34.96	0.86	2.95	-	-			
Ar	0.23	0.00	0.00	-	3.50			
HCN	-	-	-	-	-			
NH ₃	-	45.73	-	-	-			
H ₂ O	1.19	12.45	0.00		-			

		Case 4.1 - SHE	LL-BASED IGCC -	HEAT AND MATE	ERIAL BALANCE		REVISION	0	1	2
	CLIENT :		IEA GHG				PREP.	GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MAT	ERIAL BALANCE					
			Uni	t 2500 - CO2 Con	pression and Dry	ying				
	23	24	25	30	31					
STREAM	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	CO ₂ to drying package	CO ₂ to storage					
Temperature (°C)	-1	3	10	26	30					
Pressure (bar)	1.0	3.0	10.0	30.0	110.0					
TOTAL FLOW										
Mass flow (kg/h)	149,211	372,190	153,330	374,818	673,921					
Molar flow (kmol/h)	3,395	8,482	3,757	8,689	15,602					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	374,818	673,921					
GASEOUS PHASE										
Mass flow (kg/h)	149,211	372,190	153,330	374,818	673,921					
Molar flow (kmol/h)	3,395	8,482	3,757	8,689	15,602					
Molecular Weight	44.0	43.9	40.8	43.1	43.2					
Composition (vol %)										
H_2	0.00	0.22	7.29	1.87	1.88					
СО	0.00	0.00	0.22	0.06	0.06					
CO ₂	99.77	99.63	91.80	97.69	97.91					
N_2	0.00	0.01	0.47	0.12	0.12					
O_2	0.00	0.00	0.00	0.00	0.00					
CH ₄	0.00	0.00	0.00	0.00	0.00					
H ₂ S + COS	0.00	0.00	0.00	0.00	0.00					
Ar	0.00	0.01	0.14	0.04	0.04					
HCN	-	-	-	-	-					
NH_3	-	-	-	-	-					

H₂O

0.23

0.12

0.08

0.22

<50ppm

FOSTER WHEELER

Case 4.1 - SHELL-BASED IGCC - H&M BALANCE - Case 4.1

CLIENT: IEA GHG

PROJECT NAME: CO₂ capture at coal based power and H2 plants

PROJECT NO: 1-BD-0681 A LOCATION: The Netherlands

REVISION	0	1
PREP.	GP	
CHECKED	NF	
APPROVED	LM	
DATE	July 2013	

HEAT AND MATERIAL BALANCE Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
18	Treated Syngas from Syngas Cooling (*)	212.4	210	30.8	-
22	Moisturized Nitrogen for NOx control (*)	193.6	210	26.90	-
32	Flue gas from GT (*)	2780	560	1.02	-
33	Flue gas at stack (*) (1)	2780	133	atm	-
34	HP Steam from Process Units (*)	241.3	332	130.0	2663
35	MP Steam to Process Units (*)	43.1	260	46.5	2797
36	LP Steam from Process Units (*)	40.2	168	7.5	2766
37	Condensate to Deaerator (*)	903.4	113	4.2	474
38	BFW to LP BFW Pumps (*)	123.9	123	2.2	518
39	BFW to MP BFW Pumps (*)	363.8	123	2.2	518
40	BFW to HP BFW Pumps (*)	429.8	123	2.2	518
41	LP BFW to Process Units (*)	54.1	160	19.2	676
42	MP BFW to Process Units (*)	187.8	160	50.7	678
43	HP BFW to Process Units (*)	246.4	160	184.0	686
44	HP Steam to Steam Turbine	847.7	532	125.5	3428
45	Hot RH Steam to Steam Turbine	894.8	532	34.8	3524
46	LP Steam to Steam Turbine	947.0	260	5.7	2980
47	Steam to Condenser	947.0	29	0.04	2299
48	Water Supply to Steam Condenser	44180	15	4.0	63
49	Water Return from Steam Condenser	44180	26	3.5	109
50	Make-up water	506.1	15	6.0	64
51	Condensate return from Process Units	176.7	94	4.2	394

^(*) Flowrate figure refers to one train (50% capacity)

⁽¹⁾ Flue gas molar composition: N₂: 72.9%; H₂O: 14.5%; O₂: 10.9%; CO₂: 0.9%; Ar: 0.9%.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 12 of 22

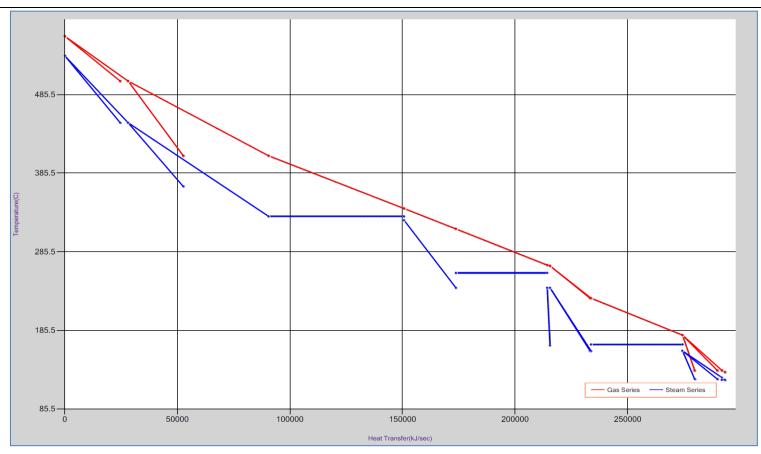


Figure 1 – Case 4.1 – HRSG T-Q diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 13 of 22

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

January 2014

- Steam / BFW / condensate interface summary is reported in Table 2.
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 14 of 22

Table 2. Case 4.1 – Steam/BFW/condensate interface summary

FO:	STERDWHEELER	PROJECT: LOCATION: FWI Nº:	CLIENT: IEAGHG PROJECT: CO2 capture at coal based power and H2 plants LOCATION: 1-BD-0681 A FWI Nº: The Netherlands Case 4.1 - Shell based IGCC - Steam and water balance			REVISION DATE ISSUED BY CHECKED BY APPROVED BY	Rev.0 April 2013 GP NF LM		
UNIT	DESCRIPTION UNIT	HP Steam barg	MP Steam barg	LP Steam barg	HP BFW	MP BFW	LP BFW	condensate recovery	Losses
		130	47.0	8.0	f. // 1	5. // 1	5. // 1	5. (1.)	5, 4, 3
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS								
900	Air Separation Unit (ASU)								
1100	Gasification Section	-463.7	-67.6	13.4	473.6	108.5		-2.0	-62.1
2000	Syngas Treating and Conditioning Line	-18.9	191.3	-40.2	19.1	260.7	108.2	-79.9	-440.3
2100	Acid Gas Removal			79.8				-79.8	0.00
2200	Sulphur Recovery (SRU)		-6.3			6.4		0.00	-0.06
3000	POWER ISLANDS UNITS	482.6	-117.4	-67.9	-492.7	-375.6	-108.2	176.7	
	UTILITY and OFFSITE UNITS			15.0				-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-502.5

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Date: January 2014

Sheet: 15 of 22

Table 3. Case 4.1 – Water consumption summary

	CLIENT:				Rev.0 Date: April 2013
FOS	TER PROJECT:	CO2 capture at coal	based power and hy	drogen plants	ISSUED BY: GP
	LOCATION:	1-BD-0681 A			CHECKED BY: NF
	FWI №:	The Netherlands			APPR. BY: LM
	Case 4.1 - Shell based IGCC -	Water consumption	on summary		
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water 1° syst. [DT = 11°C]	Cooling Water 2° syst. [DT = 11°C
	AIR SEPARATION UNIT (ASU)				
900	Air Separation Unit				10150
	GASIFICATION SECTION (GS)				
1100	Gasification				2720
2000	Syngas treatment and conditioning line				840
2100	Acid Gas Removal		0.6		6910
2200	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				120
	CO ₂ COMPRESSION				
2300	CO ₂ Compression				6300
	COMBINED CYCLE (CC)				
3100	Gas Turbines and Generator auxiliaries				780
3200	Heat Recovery Steam Generator				
				44180	
3300	Steam Turbine and Generator auxiliaries		506		1730
	Miscellanea				
	UTILITY UNITS (UU)				
	Cooling Water System	1340			
	<u> </u>				
	Demineralized/Condensate Recovery/Plant and				
	Potable Water Systems	760	-507		
	Waste Water Treatment	-80			
	Balance of Plant (BOP)				440
	TOTAL CONSUMPTION	2020	0		29990

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Date: January 2014

Sheet: 16 of 22

Table 4. Case 4.1 – Electrical consumption summary

(FOSTE	CLIENT: IEAGHG PROJECT: LOCATION: 1-BD-0681 A FWI Nº: The Netherlands Case 4.1 - Shell based IGCC - Electrical consumption summary	Rev.0 Date: April 2013 ISSUED BY: GP CHECKED BY: NF APPR. BY: LM
UNIT	DESCRIPTION UNIT	Absorbed Electric Power [kW]
2100	AIR SEPARATION UNIT (ASU) MAC consumptions	06510
	MAC consumptions	96510
	BAC consumptions	9930
	Nitrogen compressor and miscellanea	33240
	GASIFICATION SECTION (GS)	
900	Coal Receiving Handling and Storage	370
1000	Gasification	25400
2200	Syngas treatment and conditioning line	430
2300	Acid Gas Removal	20970
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	580
2500	CO ₂ Compression	45280
	COMBINED CYCLE (CC)	
3100	Gas Turbines auxiliaries	2000
3200	Steam Cycle	7160
3300	Steam Turbine auxiliaries and excitation system	710
3300	Miscellanea	3210
	UTILITY UNITS (UU)	
	Cooling Water System	9200
	Device will ad (Condensate Decourse (Disable 12)	700
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	730
	Balance of Plant (BOP)	1110
	TOTAL CONSUMPTION	256830

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 17 of 22

6. Overall performance

The following table shows the overall performance of Case 4.1.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	May 2013
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 4.1 - IGCC Plant Performance Summary

OVERALL PERFORMANCES		
Coal Flowrate (as received)	t/h	314.9
Coal LHV (as received)	kJ/kg	25870
Coal HHV (as received)	kJ/kg	27060
THERMAL ENERGY OF FEEDSTOCK(A)	MWth (LHV)	2263
THERMAL ENERGY OF FEEDSTOCK(A')	MWth (HHV)	2367
Thermal Power of Raw Syngas exit Scrubber	MWth (LHV)	1838
Thermal power of syngas to AGR	MWth (LHV)	1657
Thermal Power of Clean Syngas to Gas Turbines	MWth (LHV)	1600
Syngas treatment efficiency	% (LHV)	88.3
Gas turbines total electric power output	MWe	688.0
Steam turbine electric power output	MWe	375.2
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX (C)	MWe	1063.2
Gasification Section units consumption	MWe	47.8
ASU consumption	MWe	139.7
Combined Cycle units consumption	MWe	13.1
CO ₂ Compression and Dehydration unit consumption	MWe	45.3
Utility Units consumption	MWe	11.0
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	256.8
NET ELECTRIC POWER OUTPUT OF IGCC	MWe	806.4
(Step-up transformer Eff. = 0.997) (B)	MWe	804.0
Gross electrical efficiency (C/A x 100)	% (LHV)	47.0
Net electrical efficiency (B/A x 100)	% (LHV)	35.5
Gross electrical efficiency (C/A' x 100)	% (HHV)	44.9
Net electrical efficiency (B/A' x 100)	% (HHV)	34.0
Fuel Consumption per net power production	MWth/Mwe	2.81
CO ₂ emission per net power production	kg/MWh	92.6

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 18 of 22

The following table shows the overall CO_2 balance and CO_2 removal efficiency of Case 4.1.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
Fuel Mix (Carbon AR)	16936
Flux (CaCO ₃)	91
TOTAL (A)	17027
ОUТРUТ	
Slag (B)	38
CO ₂ product pipeline	
со	9
CO ₂	15288
CH ₄	0.0
cos	0.0
Total to storage (C)	15297
Emission	
CO ₂ + CO (Combined Cycle)	1668
CO2 + CO (fuel drying)	24
TOTAL	17027
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 19 of 22

7. Environmental impact

The IGCC plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

January 2014

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 5 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air or nitrogen containing particulate.

Table 5. Case 4.1 – Plant emission during normal operation

Flue gas to HRSG stack				
Emission type	Continuous			
Conditions				
Wet gas flowrate, kg/h	2,780,000			
Flow, Nm ³ /h (1)	2,681,100			
Temperature, °C	133			
Composition	(% vol)			
Ar	0.88			
N_2	72.87			
O_2	10.92			
CO_2	0.86			
H ₂ O	14.47			
Emission	mg/Nm ^{3 (1)}			
NOx	< 50			
SOx	< 1			
CO	< 100			
Particulate	< 10			

⁽¹⁾ Dry gas, O₂ content 15% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Dates

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification

Date: January 2014

Sheet: 20 of 22

Table 6. Case 4.1 – Plant minor emission

Emission source	Emission type	Temperature	
Coal milling and drying system	Continuous	ambient	Air: 10 mg/Nm ³ particulate
Coal feeding system	Intermittent	ambient	Nitrogen: 10 mg/Nm³ particulate
Limestone milling and preparation	Intermittent	ambient	Air: 10 mg/Nm ³ particulate

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Cooling Tower blow-down

Flowrate : $295 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate: $255 \text{ m}^3/\text{h}$

7.3. Solid effluents

The IGCC plant is expected to produce the following solid by-products:

Fly ash from gasifier

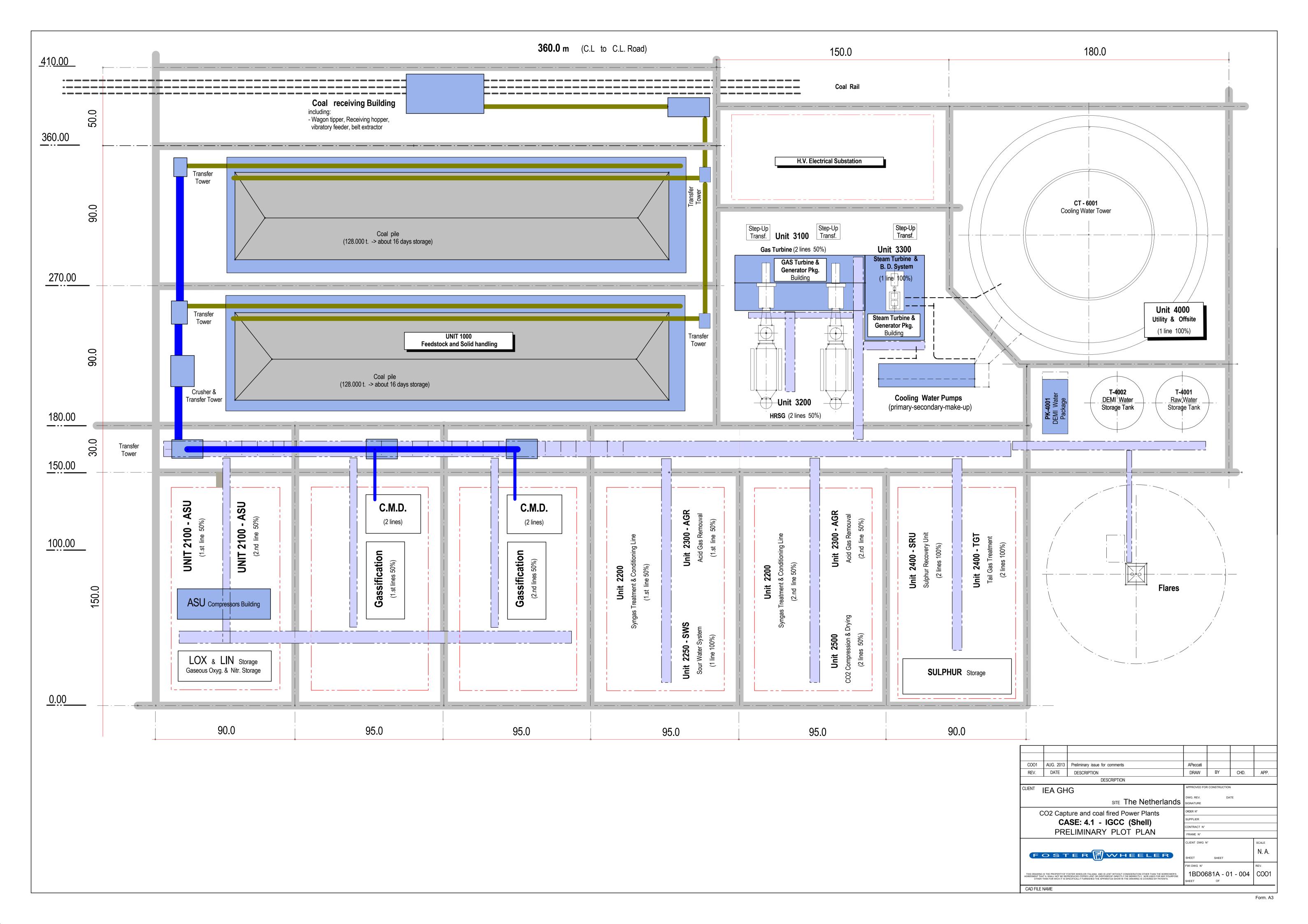
Flowrate : 16 t/h (dry)

Fly ash can be dispatched to the cement industries, if local market exists, or sent to disposal.

Slag from gasifier

Flowrate: 28 t/h

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 21 of 22

8. Preliminary plot plan

Plot plan at block level of Case 4.1 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.1 - Case 4.1: IGCC with CCS - Shell Gasification Sheet: 22 of 22

January 2014

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 - IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 900 - Coal handling and storage

	DESCRIPTION			motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	COAL HANDLING SYSTEM							
	Including		Coal flowrate: 315 t/h				İ	30 days storage
	Wagon tipper							Storage piles: 2 x 124,000 t each
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Crushers Towers	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 4800 m3					for daily storage
	LIMESTONE HANDLING SYSTEM							
	Including		Limestone flowrate: 9.0 t/h					
	Wagon tipper		Limestone Storage volume: 5700 m3					30 days storage capacity
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Limestone storage	Silos						
	Conveyors	Belt						
	Limestone Sampling System	Swing hammer						
	Separator System	Magnetic Plates						
	Transfer Towers	Enclosed						
	Conveyors	Belt with tipper						
	1 *	1	l .		I	ı	1	For daily storage

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

Rev. Draft Rev.0 REVISION Rev.1 Rev.2 DATE may 13 January 2014 ISSUED BY GP GP CHECKED BY NF NF APPROVED BY LM LM

EQUIPMENT LIST

Unit 1000 - Gasification (2 x 50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-1001	Coal milling and drying		4 x 2270 t/d raw coal, AR basis Water content at dryer outlet: 1.3%					3 Operating, one spare
Z-1002	SHELL Coal gasification package							
	Coal pressurization and feeding							Included in Z-1002
	Gasifiers		2 x 3780 t/d coal to burners, as received 2 x 920 MWth (LHV basis) syngas at scrubber outlet					Included in Z-1002 2x50% design capacity
	Syngas Cooler							Included in Z-1002
	Slag Removal System							Included in Z-1002
	Dry Fly Ash Removal System							Included in Z-1002
	Wet Scrubbing							Included in Z-1002
	Primary Water Treatment							Included in Z-1002
	Nitrogen + Blowback Systems							Included in Z-1002
	Flare headers and fuel distribution systems							Included in Z-1002
-	LP cooling water system							Included in Z-1002
	Process water systems							Included in Z-1002
	Steam/Condensate systems							Included in Z-1002
	Plant/Instrument Air Systems							Included in Z-1002
	NaOH/HCl Distribution Systems							Included in Z-1002

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2100 - Air Separation Unit (2x50%)

		=	motor rating	P design	T design		
DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
ASU PACKAGE							
ASU Package including:							
Cold Box	Cryogenic	125 t/h of 95% purity O2, each					
Main Air compressors	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 231200 Nm3/h	2 x 26750 kW				Included in Z-2101
Booster air compressors	Electric motor driven, centrifugal, with intercooling	Flowrate: 185000 Nm3/h	5500 kW				Included in Z-2101
MP N2 compressors	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 120350 Nm3/h	2 x 8750 kW				Included in Z-2101
MP N2 compressors - booster	Electric motor driven, centrifugal, with intercooling	Flowrate: 104900 Nm3/h	850 kW				Included in Z-2101
O2 pumps	centrifugal						Included in Z-2101
HP N2 pumps	centrifugal						Included in Z-2101
VHP N2 pumps	centrifugal						Included in Z-2101
Back-up oxygen vaporiser	Shell and tube						Included in Z-2101
its to both trains:			•				
LOX (liquid oxygen) storage	Fixed roof storage tank						8 hour storage for 1 gasification train Normal operating p: 5 bar a Normal operating T: -165 °C
LIN (liquid nitrogen) storage	Fixed roof storage tank						8 hour storage for 1 Gasifier & 4 min storage for Syngas dilution and NOX control Normal operating p: 5 bar a Normal operating T: -180 °C
Gaseous oxygen storage							2 min storage for 2 Gasifiers
Gaseous nitrogen storage							2 min storage for 2 Gasifiers & for Syngas dilution and NOX control
	ASU PACKAGE ASU Package including: Cold Box Main Air compressors Booster air compressors MP N2 compressors - booster O2 pumps HP N2 pumps VHP N2 pumps VHP N2 pumps Back-up oxygen vaporiser ts to both trains: LOX (liquid oxygen) storage LIN (liquid nitrogen) storage Gaseous oxygen storage	ASU Package including: Cold Box Main Air compressors Booster air compressors Belectric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal Coupamps Booster air compressors Belectric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal Coupamps Booster air compressors Belectric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal Coupamps C	ASU Package including: Cold Box Main Air compressors Booster air compressors MP N2 compressors MP N2 compressors Centrifugal, with intercooling Electric motor driven. centrifugal with intercooling Electric motor driven. centrifugal, with intercooling Electric motor driven. centrifugal, with intercooling Electric motor driven. centrifugal Thowrate: 2 x 120350 Nm3/h Electric motor driven. Centrifugal Flowrate: 2 x 120350 Nm3/h Centrifugal Thowrate: 104900 Nm3/h Centrifugal Thowrate: 2 x 120350 Nm3/h Centrifugal Thowra	ASU PACKAGE ASU PACKAGE ASU Package including: Cold Box Cryogenic Electric motor driven, centrifugal, with intercooling Electric motor driven, centrifugal with intercooling Electric motor driven, centrifugal with intercooling Electric motor driven, centrifugal with intercooling Centrifugal with intercooling Electric motor driven, centrifugal with intercooling Centrifugal with intercooling Centrifugal with intercooling Centrifugal Ce	ASU PACKAGE ASU P	ASU PACKAGE ASU PACKAGE ANU Package including: Cold Box Cryogenic Plactic motor driven, centrifugal, with intercooling Place and Province and Prov	DESCRIPTION TYPE SIZE IkW Iburg I'C Materials ASU PACKAGE

CLIENT: IEA GHG	REVISION	Rev. Draft
LOCATION: The Netherlands	DATE	may 13
PROJ. NAME: CO2 capture at coal based power and hydrogen plants	ISSUED BY	GP
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF

Rev.0

January 2014

GP

NF

LM

LM

APPROVED BY

Rev.1

Rev.2

EQUIPMENT LIST

CASE: Case 4.1 -IGCC (Shell)

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

	U1	nit 2200 - Syr	ngas Treatment and Condi	tioning Line (2	2x50%)			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	HEAT EXCHANGERS							
E-2201	Feed/Product Heat Exchanger	Shell & Tube						
E-2202	HP steam generator	Kettle						
E-2203	MP steam generator	Kettle						
E-2204	LP steam generator	Kettle						
E-2205	LP steam generator	Kettle						
E-2206 A/B	Circulating Water Heater	Shell & Tube						
E-2207 A/B	Condensate preheater	Shell & Tube						
E-2208	Raw Syngas / Treated Syngas Heat Exchanger	Shell & Tube						
E-2209	Final sygas cooler	Shell & Tube						
E-2210	Final Syngas heater	Shell & Tube						
E-2211	Saturated Nitrogen heater	Shell & Tube						
	DRUMS							
D-2201	Condensate Separator	Vertical						
D-2202	Condensate Separator	Vertical						
D-2203	Condensate Separator	Vertical						
D-2204	Condensate accumulator	Horizontal						Common for both syngas tratment and conditiong line trains

CLIENT: IEA GHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	may 13	January 2014		
PROJ. NAME: CO2 capture at coal based power and hydrogen plants	ISSUED BY	GP	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: Case 4.1 -IGCC (Shell)	APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	COLUMN							
C-2201	Nitrogen saturator	Vertical						
	REACTOR	verticai						
R-2201	1st Shift Catalyst Reactor	low steam shift						
R-2202	2nd Shift Catalyst Reactor	vertical conventional WGS						Overall CO conversion: 98%
R-2203	3rd Shift Catalyst Reactor	vertical conventional WGS						
	PUMPS							
P-2201	Saturator Circulating Water Pump							
	MISCELLANEA							
X-2201	Mercury Adsorber	Sulfur-impregnated activated carbon beds						
Note: Equipment	list refers to one train only							

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2250 - Sour Water System (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2251	SWS PACKAGE							
C-2251	Sour Water Stripper	Vertical						
	SWS Reboiler							
	SWS Condenser							
E-2251	Sour water heat exchanger (SWS feed / purified)							
P-2251	SWS Pump							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

			int 2500 - Meia Gas		(11110070)			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2301	Acid Gas Removal Unit - Absorption section (Acid Gas Removal Unit, sized for 50% of the capacity)	Solvent Selexol	Feed gas: 980420 Nm3/h; 34 barg; 34 °C					One H2S removal column, 3 CO2 removal columns, CO2 removal: 91.78% Separated removal of CO2 and H2S Total carbon capture: 90 %
Z-2302	Acid Gas Removal Unit - Solvent regeneration (One Acid Gas Removal Unit, sized for 100% of the capacity)							Total CO2 removal= 16150 t/d; 10 ppm H2S (dry) in combined CO2
Z-2303	Chiller Unit	electrical driven						T= -10 °C

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

	Unit 2	400 - Suipii	ui Kecovery Omi (2x1)	0 70) & Tan	Gas Treatmen	t (1X100 /0)		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package - two Sulphur Recovery Unit, each sized for 100% of the capacity - one Tail Gas Treatment Unit sized for 100% of capacity (including Reduction Reactor and Tail Gas Compressor)		Sulphur Prod.= 65 t/d Acid Gas from AGR: 5760 Nm3/h; Sulphur content: 35 % mol (wet basis) Expected Treated Tail Gas =3025 Nm3/h					Sulphur content > 99,9 % mol min (dry basis)

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2500 - CO2 Compression and Drying (2x50%)

	Unit 2500 - CO2 Compression and Drying (2x50%)									
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks		
	COMPRESSORS									
C-2501	CO ₂ Compressor	Centrifugal, Electrical Driven, 8 intercooled Stages	175210 Nm3/h p in: 1 bar a p out: 80 bar a	21930 kW				water cooled		
	PUMPS		Q,m3/h x H,m							
P-2501	CO ₂ Pump	centrifugal	600 x 560	800 kW				liquid CO2 product, per each train: flowrate: 343.2 t/h; 110 bar a; 30°C		
	PACKAGE									
PK-2501	CO ₂ drying package									

Note: Equipment list refers to one train only

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3100 - Gas Turbine (2x 50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-3101 GT-3101	Gas Turbine & Generator Package Gas turbine	F Class GT	344 MW					Included in Z-3101
G-3101	Gas turbine Generator		450 MVA					Included in Z-3101

Note: Equipment list refers to one train only

CLIENT: IEA GHG

LOCATION: The Netherlands

PROL NAME: CO2 capture at coal based power and hydrogen pla

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

				motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	HEAT RECOVERY STEAM GENERATOR							
HRSG-3201	Heat Recovery Steam Generator	Horizontal, Natural Circulated, 4 Pressure Levels. Simple Recovery, Reheated.						
Each HRSG inclu	ıding:							
D-3201	HP steam Drum							
D-3202	MP steam Drum							
D-3203	LP steam Drum							
D-3204	VLP steam Drum with degassing section							
E-3201	HP Superheater 2nd section							Included in HRSG-3201
E-3202	HP Superheater 1st section							Included in HRSG-3201
E-3203	HP Evaporator							Included in HRSG-3201
E-3204	HP Economizer 3rd section							Included in HRSG-3201
E-3205	HP Economizer 2nd section							Included in HRSG-3201
E-3206	HP Economizer 1st section							Included in HRSG-3201
E-3207	MP Reheater 2nd section							Included in HRSG-3201
E-3208	MP Reheater 1st section							Included in HRSG-3201
E-3209	MP Superheater							Included in HRSG-3201
E-3210	MP Evaporator							Included in HRSG-3201
E-3211	MP Economizer 2nd section							Included in HRSG-3201
E-3212	MP Economizer 1st section							Included in HRSG-3201
E-3213	LP Superheater							Included in HRSG-3201
E-3214	LP Evaporator							Included in HRSG-3201
E-3215	LP Economizer							Included in HRSG-3201
E-3216	VLP Evaporator							Included in HRSG-3201

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PUMPS		Q,m³/h x H,m					
P-3201 A/B	HP BFW Pumps	centrifugal	503 x 1695	2700			İ	One operating, one spare
P-3203 A/B	MP BFW Pumps	centrifugal	425 x 620	900				One operating, one spare
P-3205 A/B	LP BFW Pumps	centrifugal	145 x 130	75				One operating, one spare
	MISCELLANEA		D,mm x H,mm					
X-3201	Flue Gas Monitoring System						i	NOx, CO, SO ₂ , particulate, H ₂ O,
STK-3201	CCU Stack							
SL-3201	Stack Silencer							
DS-3201	HP Steam Desuperheater							Included in HRSG-3201
DS-3202	MP Steam Desuperheater							Included in HRSG-3201
	PACKAGES							
Z-3201	Fluid Sampling Package							
Z-3202	Phosphate Injection Package							
D-3204	Phosphate storage tank							Included in Z - 3202
P-3205 A/B	Phosphate dosage pumps							Included in Z - 3202 One operating , one spare
Z-3203							1	One operating, one spare
D-3205	Oxygen Scavanger Injection Package							Included in Z - 3203
	Oxygen scavanger storage tank							Included in Z - 3203
P-3206 A/B	Oxygen scavanger dosage pumps							One operating , one spare
Z-3204	Amines Injection Package							
D-3206	Amines Storage tank							Included in Z - 3204
P-3207 A/B	Amines Dosage pumps							Included in Z - 3204
							1	One operating , one spare
N . E								

Note: Equipment list refers to one train only

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3300 - Steam Turbine and Blow Down System (1x100%)

				motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3301	Steam Turbine and Generator Package							
ST-3301	Steam Turbine		375 MWe					Including: Lube oil system Cooling system Idraulic control system Drainage system Seals system
G-3402	Steam Turbine Generator		493 MVA					Drainage system Including relevant auxiliaries
	Inter/After condenser							
E-3302	Gland Condenser	1						
Z-3302	Steam Condenser Package							
E-3303	Steam Condenser	Water cooled	565 MWt					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
Z-3303	Steam Turbine by-pass system							
	PUMPS		Q,m ³ /h x H,m					
P-3301A/B	Condensate Pumps	Centrifugal, vertical	1895 x 90	630				One operating, one spare
	HEAT EXCHANGERS		S, m2					
E-3304	Blow-Down Cooler	Shell & Tube						
	DRUMS		D,mm x TT,mm					
D-3301	Continuous Blow-down Drum	vertical						
D-3302	Discontinuous Blow-down Drum	vertical						

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility & Offsite

Unit 4000 - Utility & Offsite									
TODION A	DECODIDATION	ТҮРЕ	SIZE	motor rating	P design	T design	Matadala	Remarks	
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Acmai As	
Z-4001	COOLING WATER SYSTEM								
CT-4001	Cooling Tower	Evaporative, Natural draft	Total heat duty 942 MWth				concrete	Included in Z-4001	
	Including:	Natural draft	Diameter: 145 m,						
	Cooling water basin		Height: 210 m,						
			Water inlet: 17 m						
	Pumps								
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	14725 m3/h x 35 m	1600 kW				Included in Z-4001	
1 4001111B/C/D	Cooling Water pumps (primary system)	Vorticus	1 1 / 25 HB/H X 55 H	1000 KW				3 operating	
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14770 m3/h x 45 m	2250 kW				Included in Z-4001	
	to the grant proof (continuity system)				ļ		-	2 operating, one spare Included in Z-4001	
P-4003A/B	Cooling tower make-up pumps	centrifugal	1465 m3/h x 30 m	185 kW				1 operating, one spare	
	Packages	+						1 operating, one space	
		+					+		
	Cooling Water Filtration Package		Capacity: 7380 m3/h						
	Cooling Water Sidestream Filters				<u> </u>				
	Sodium Hypochlorite Dosing Package								
	Sodium Hypochlorite storage tank								
	Sodium Hypochlorite dosage pumps								
	Antiscalant Package								
	Dispersant storage tank								
	Dispersant dosage pumps								
Z-4002	RAW WATER SYSTEM								
T-4001	Raw Water storage tank		13320 m3					Included in Z-4002 24 hour storage	
								Included in Z-4002	
P-4004A/B	Raw Water Pumps	centrifugal	555 m3/h x 50 m	110 kW				One operating, one spare	
								one operating, one spate	
Z-4003	DEMI WATER SYSTEM								
PK-4001	Demin Water Package, including:								
	- Multimedia filter								
	- Reverse Osmosis (RO) Cartidge filter								
	- Electro de-ionization system								
T-4002			13370 m3					Included in Z-4002	
1-4002	Demi Water storage tank		155 /U III5					24 hour storage	

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.1 -IGCC (Shell)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	may 13	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility & Offsite

Cint 4000 - Ctinty & Offsite									
ITEM	DESCRIPTION		SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks	
P-4005A/B	Demi Water Pumps	centrifugal	557 m3/h x 36 m	90 kW				Included in Z-4002 One operating, one spare	
Z-4004	FIRE FIGHTING SYSTEM								
	Fire water storage tank								
	Fire pumps (diesel)								
	Fire pumps (electric)								
	FW jockey pump								
	1 W Joekey pump								
	MISCELLANEA								
	Natural Gas (Back-up fuel)								
	Natural Gas (Dack-up ruci)								
	Waste Water Treatment								
	Sulphur Storage/Handling		65 t/d S prod.					30 days storage	
	Flare system								
	Interconnecting								
	Instrumentation								
	DCS								
	Piping								
	Electrical								
	Plant Air								
	Buildings								
	1				1	I	I	1	

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Sheet: 1 of 22

January 2014

Date:

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants document name : $CASE\ 4.2$: IGCC with CCS – GE gasification technology

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : L. CASTRONUOVO

CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Date: January 2014

Sheet: 2 of 22

TABLE OF CONTENT

1.	Introduction	.3
	1.1. Process unit arrangement	3
2.	Process description	. 5
	2.1. Overview	5
	2.2. Unit 900 – Coal Handling & Storage	5
	2.3. Unit 1000 – Gasification Island	5
	2.4. Unit 2100 – Air Separation Unit	5
	2.5. Unit 2200 – Syngas Treatment and Conditioning line	5
	2.6. Unit 2300 – Acid Gas Removal (AGR)	
	2.7. Unit 2400 – SRU and TGT	7
	2.8. Unit 2500 – CO ₂ compression and drying	8
	2.9. Unit 3000 – Combined cycle	8
	2.10. Utility Units	9
3.	Process Flow Diagrams	10
4.	Heat and Material Balance	11
5.	Utility consumption	13
6.	Overall Performance	17
7.	Environmental impact	19
	7.1. Gaseous emissions	19
	7.2. Liquid effluents	20
	7.3. Solid effluents	20
8.	Preliminary plot plan	21
9.	Equipment list	22

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 3 of 22

1. Introduction

This chapter of the report includes all technical information relevant to Case 4.2 of the study, which is an IGCC plant based on the GE gasification technology. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce electric power for export to the external grid, with capture of the generated carbon dioxide.

The configuration of the plant is based on the following main features:

- High-pressure (65 barg) GE Energy Gasification process, with slurry-feed system and Radiant Syngas Cooler (RSC);
- 2-stages sour shift;
- Removal of acid gases (H₂S and CO₂) based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and dehydration unit;
- Combined cycle based on two F-class gas turbines.

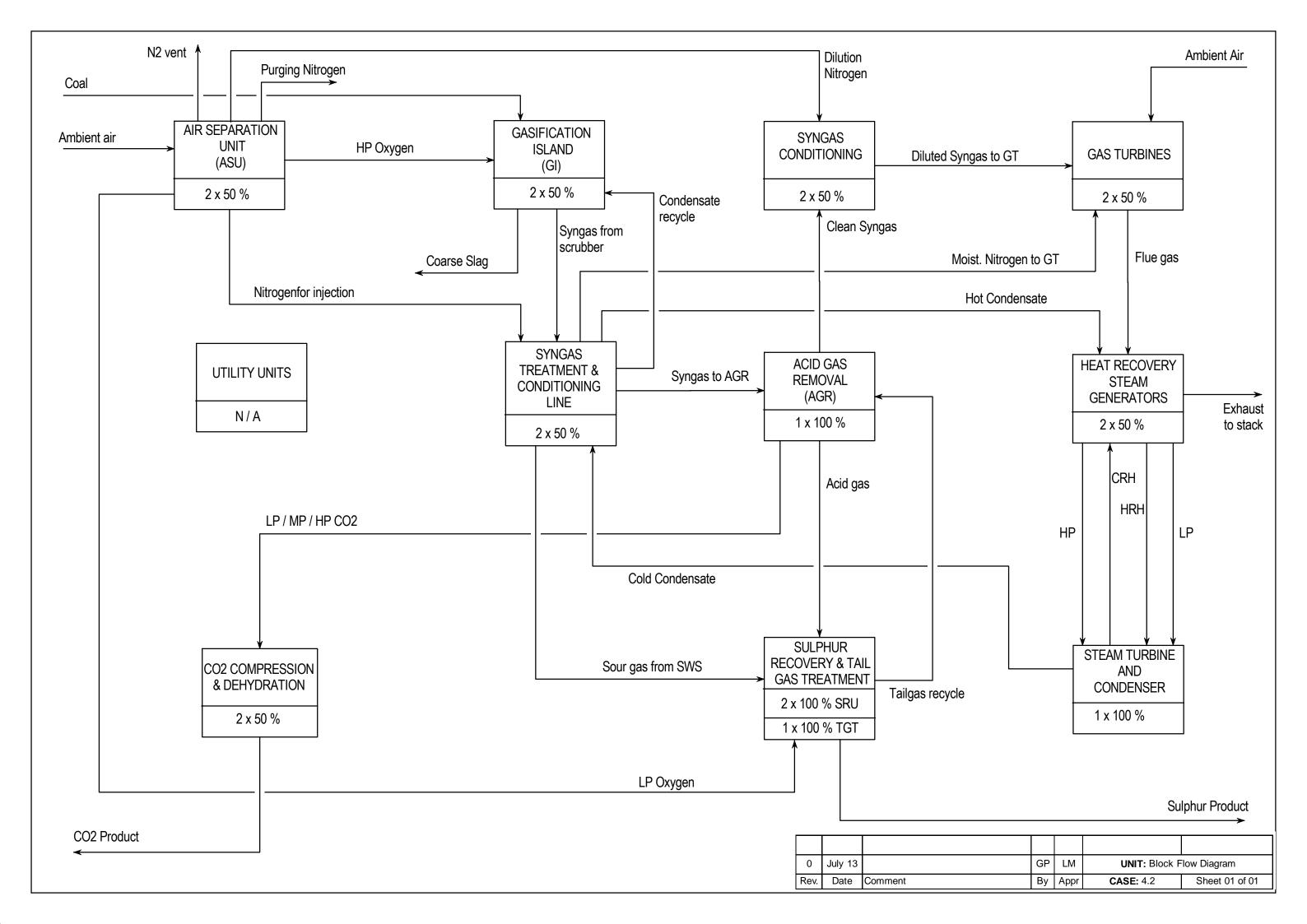
The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Unit	Description	Trains
900	Coal Handling & Storage	N/A
1000	Gasification	2 x 50%
	Coal Grinding & Slurry Preparation	
	Gasification (Radiant Syngas Cooler) and scrubber	
	Black Water Flash & Coarse Slag Handling	
	Grey Water & Fines Handling	
2100	Air Separation Unit	2 x 50%
2200	Syngas Treatment and Conditioning Line	2 x 50%

Table 1. Case 4.2 – Unit arrangement


CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 4 of 22

January 2014

Date:

Unit	Description	Trains
2250	Sour Water Stripper (SWS)	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
3000	Combined Cycle	
	Gas Turbine	2 x 50%
	HRSG	2 x 50%
	Steam Turbine	1 x 100%
4000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 5 of 22

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Coal Handling & Storage

The unit mainly consists of the coal storage and handling.

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Island

The gasification island based on GE gasification mainly includes the coal grinding and slurry preparation section, the gasification (RSC) and the scrubber, the Black Water Flash and Coarse Slag Handling, and Grey Water & Fines Handling. Technical information relevant to these packages is reported in chapter E, section 3.2.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Air Separation Unit

Technical information relevant to this packaged unit is reported in chapter E, section 2.3. The main process information of the unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The sizing capacity of the Air Separation Unit is determined by the oxygen requirement of the gasification island and the SRU. The total required oxygen flowrate for the case is approximately 325 t/h.

The Air Separation unit supplies medium pressure nitrogen, used as diluent for the syngas or injected in the gas turbine for NOx suppression and power production augmentation.

2.5. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. The main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 6 of 22

Saturated raw syngas from the gasification scrubber, at approximately 64 barg, is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H_2 and CO_2 and CO_3 is converted to H_2S . A double stage shift, containing sulphur tolerant shift catalyst (sour shift) is selected in order to increase the H_2 content in the fuel and maximize the degree of CO_2 removal. The overall CO conversion is approximately 98%. The water content in the syngas is adequate for the shift reaction to take place with no additional steam injection.

The partially-shifted syngas temperature is increased by the exothermic shift reaction, allowing for thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the second reactor stage:

- Feed/Product Heat Exchanger,
- HP Steam Generator,
- MP Steam Generator #1.

After being cooled, the syngas is directed to the second and last shift reactor. The hot shifted syngas outlet from the second stage is cooled in the following series of heat exchangers, to thermally recover heat and increase the overall power generation:

- MP Steam Generator #2,
- LP Steam Generator,
- Saturator Circulating Water Heater #1 and #2,
- Condensate Pre-heater #1 and #2.

Final cooling of the syngas is made cooling water, before passing through a sulphurimpregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas is then directed to the AGR.

During the cooling of the syngas, the process condensate is separated and collected in the process condensate accumulator. Before being sent to the accumulator, the condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the Sour Water Stripper in order to avoid accumulation of ammonia and H₂S and other dissolved gases in the water recycle to the gasification section. The condensate from the accumulator is sent to the gasification scrubber for syngas saturation. Boiler Feed Water from the deaerator of the combined cycle provides the make-up water to substitute the steam reacted in the shift unit.

From the AGR unit, cool hydrogen-rich gas returns to the syngas treatment and conditioning line as de-carbonized fuel gas after H₂S and CO₂ removal. The decarbonized fuel gas is preheated against circulating water coming from the nitrogen

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 7 of 22

saturator and then expanded down to the pressure required from the gas turbine, thus producing additional electric power.

Downstream the expander, the syngas is diluted with nitrogen from the ASU in order to reduce the H₂ content of the fuel gas to maximum 65% (molar basis).

Finally, the diluted syngas is preheated against LP steam and sent to the combined cycle at around 155°C, for final heating against boiler feed water and combustion in the gas turbine.

The unit includes nitrogen saturator, providing moisturised nitrogen to be injected in the gas turbine. Nitrogen humidification is achieved by means of hot water heated in the syngas cooling line. The humidified nitrogen is finally heated using MP steam and then injected in the gas turbine combustion chamber.

2.6. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H₂S and CO₂ in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit:

- The H₂S+COS concentration of the treated gas exiting the unit is around 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 2%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.06% mol).
- The acid gas H₂S concentration is about 41% dry basis, suitable to feed the oxygen blown Claus process.

The CO_2 removal rate is 91.7% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 90% with respect to the carbon in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.7. Unit 2400 – SRU and TGT

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 8 of 22

The SRU is designed to process the acid gas from the AGR and other minor acid streams like the acid off-gas from the black water flash within the gasification island and the sour gases from the SWS, using low pressure oxygen from the ASU. In the furnace, H₂S is catalytically oxidized to SO₂ which is further reacted with H₂S to form H₂O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 60 barg by means of a dedicated compressor.

The overall sulphur production is approximately 72 tons per day.

2.8. Unit $2500 - CO_2$ compression and drying

This unit is mainly composed of a compression and dehydration package, followed by last stage CO₂ pumps, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Three different streams of CO₂ from the Acid Gas Removal unit are routed to the CO₂ compression unit, delivered at approximately 19 barg, 6 barg, and 1.5 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 40 barg and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 80 barg.

The resulting stream of CO_2 is pumped to the required pressure of 110 barg. The CO_2 product (approximately 97.9 % wt purity) is transported to the plant battery limits for final sequestration.

2.9. Unit 3000 – Combined cycle

Technical information relevant to these packages is reported in chapter E, section 2.10. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The diluted syngas exiting the syngas treatment and conditioning line is finally heated in the combined cycle using MP boiler feed water before entering the burners of the gas turbine at 210°C.

The gas turbine compressors provide combustion air to the burner only, i.e. no air integration with the ASU is foreseen. The exhaust gases from the gas turbine enter

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 9 of 22

the HRSG at 560°C. The HRSG recovers heat available from the exhaust gas producing steam at three different pressure levels for the steam turbine, plus an additional steam generator with integral deaerator. The final exhaust gas temperature to the stack of the HRSG is 133°C. The calculated acid gas dew point temperature of the exhaust flue gas is around 90°C.

The Heat Transfer vs. Temperature of the HRSG (T-Q diagram) of case 4.2 is shown in Figure 1. The red line (the upper curve) represents the exhaust gases from the GT to the stack. The blue lines represent the water path in the economizers (at lower temperature), the steam generators (horizontal lines) and the super-heater/re-heater (at higher temperature).

The combined cycle is thermally integrated with the process unit, in order to maximize the net electrical efficiency of the plant. The main steam and water interfaces with the process units are given in Table 2.

2.10. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

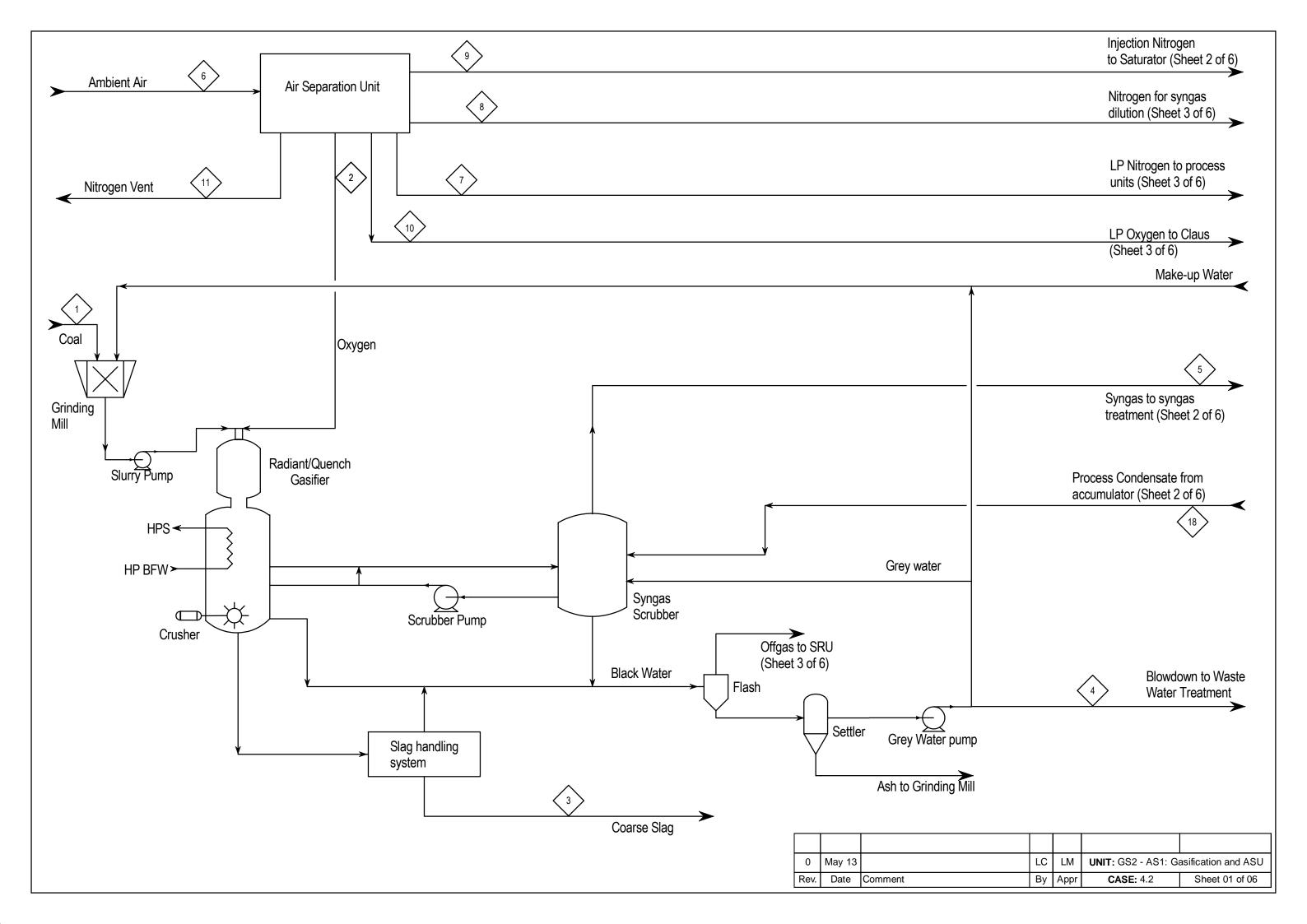
- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

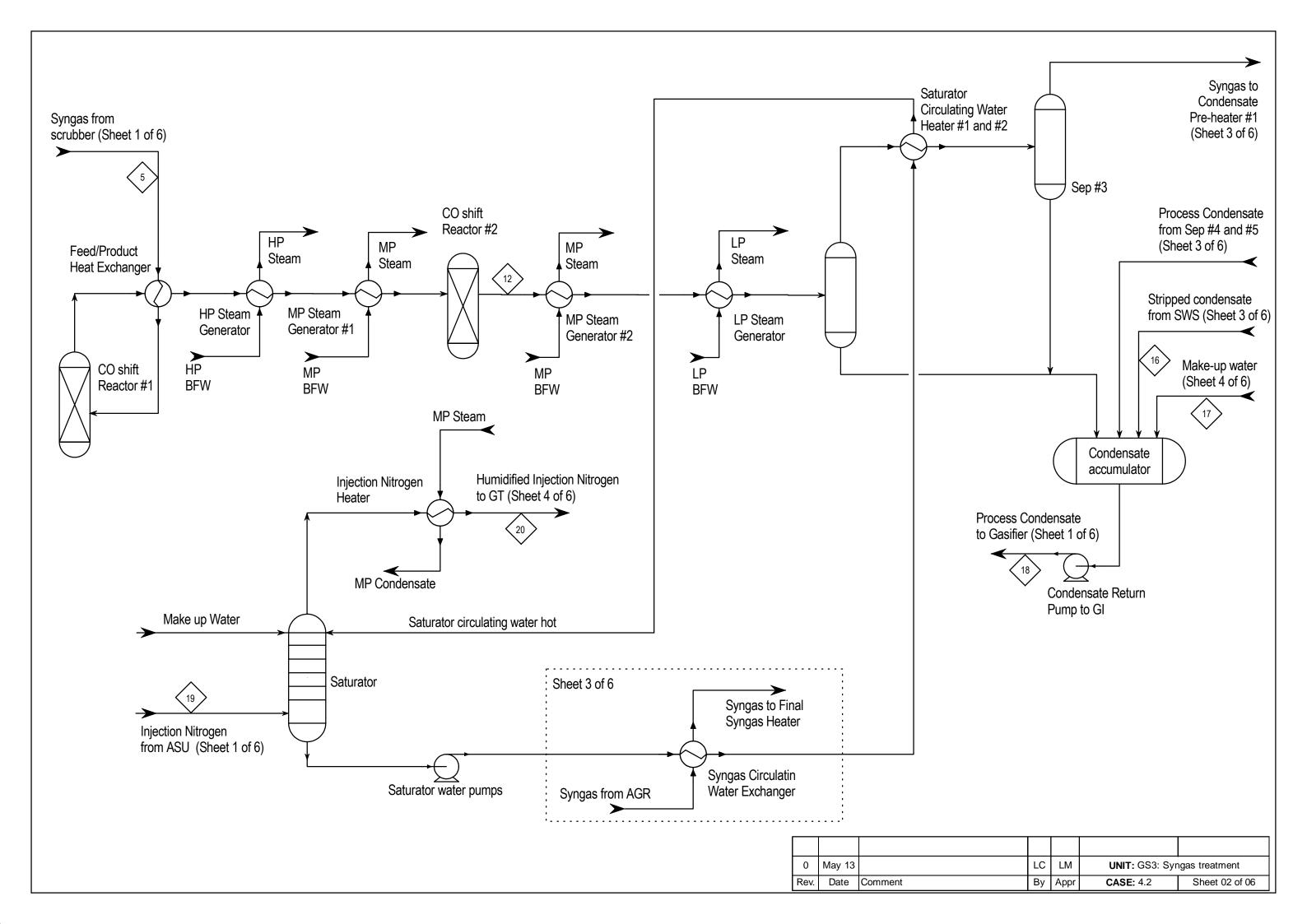
Basin diameter	150 m
Cooling tower height	210 m
Water inlet height	17 m

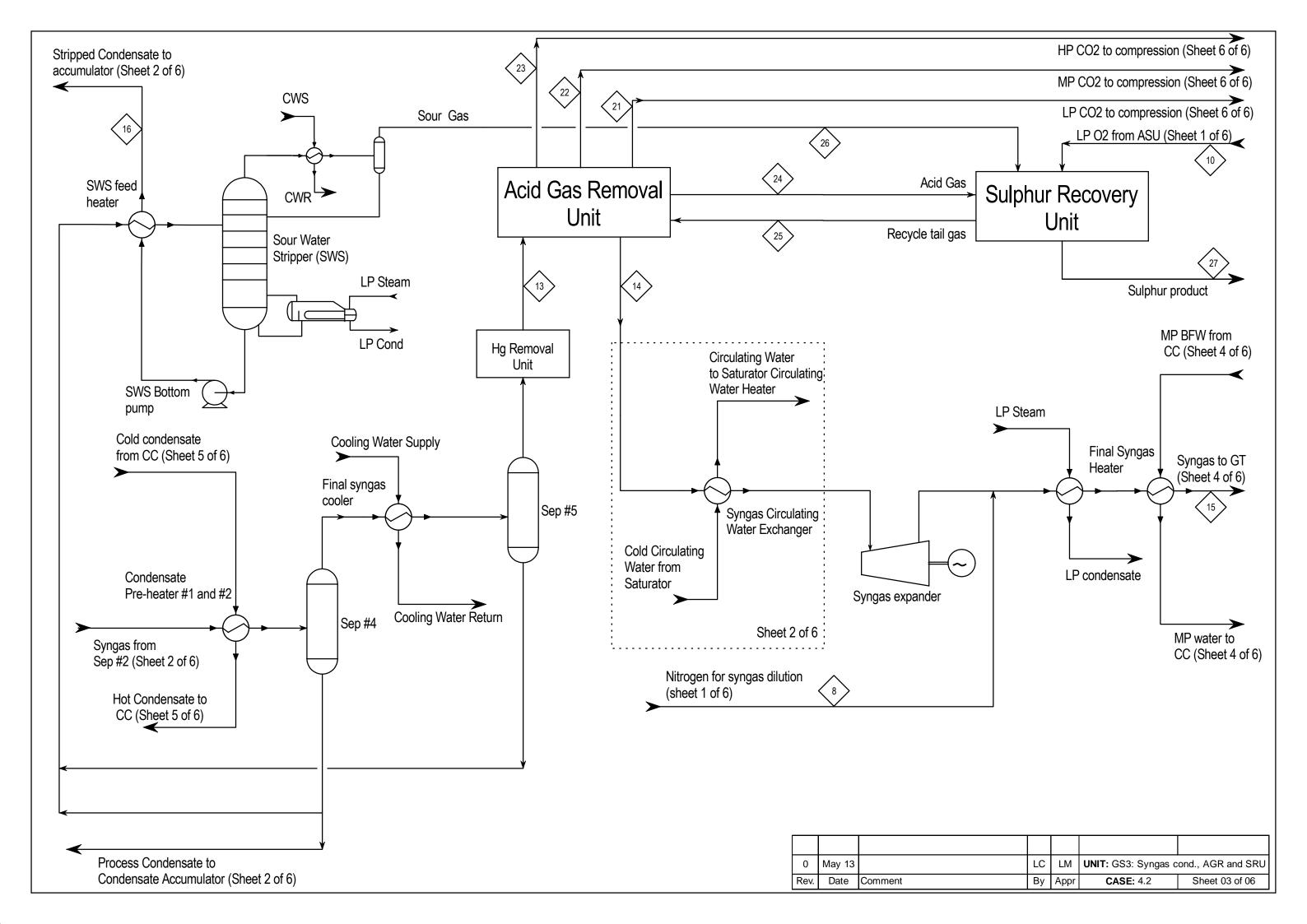
- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

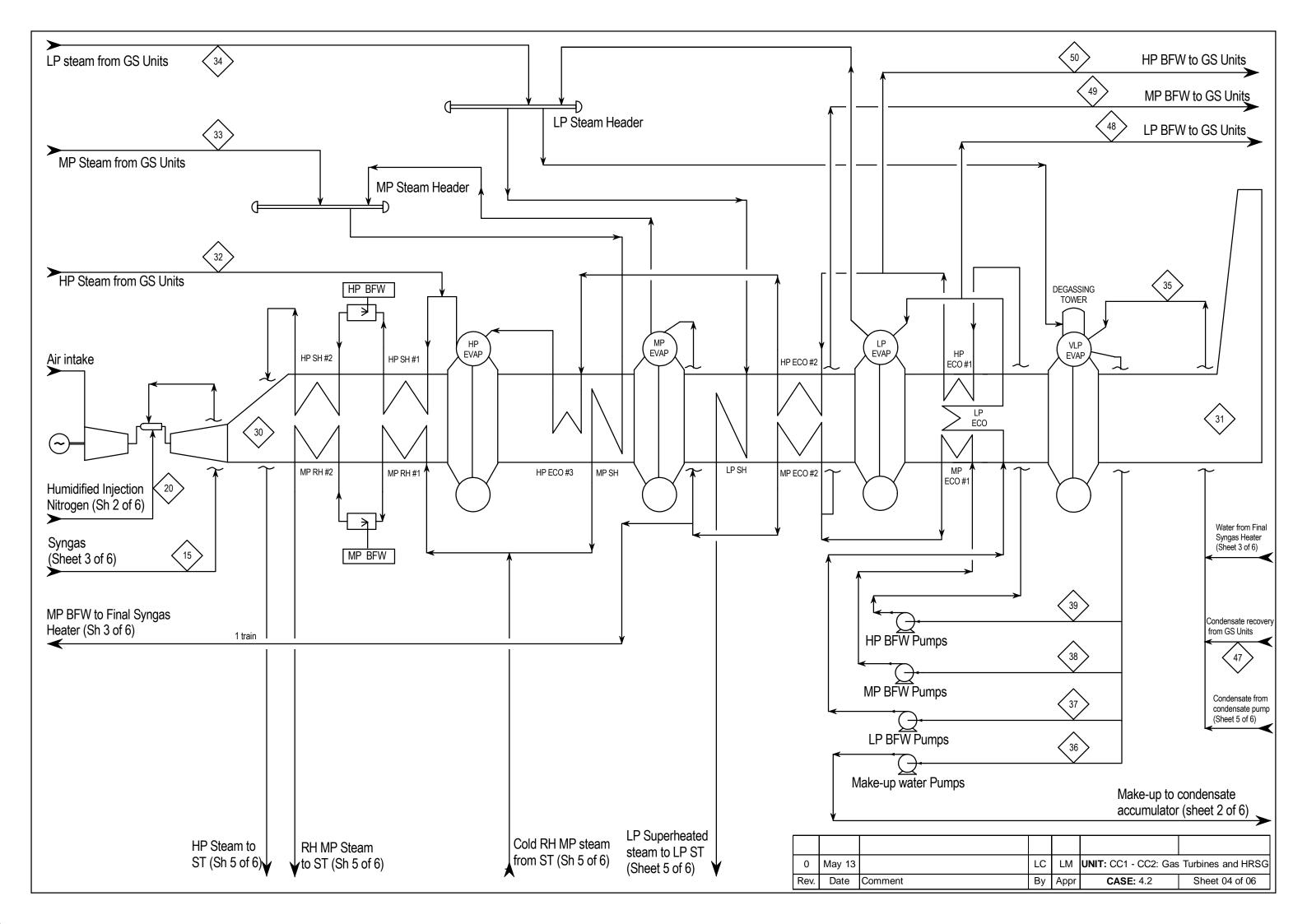
Process descriptions of the above systems are enclosed in chapter E, section 2.11.

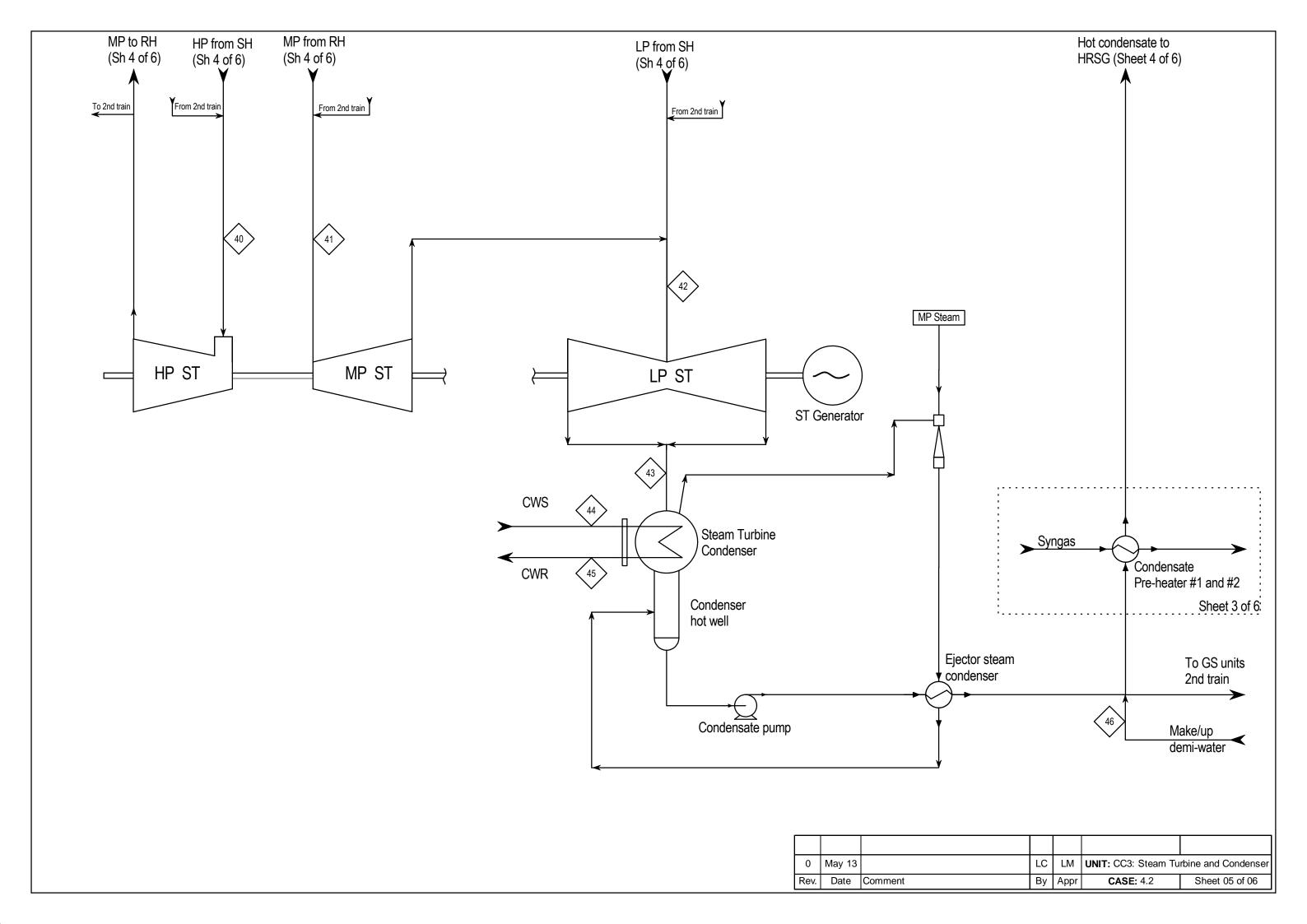
CO₂ Capture at Coal Based Power and Hydrogen Plants D

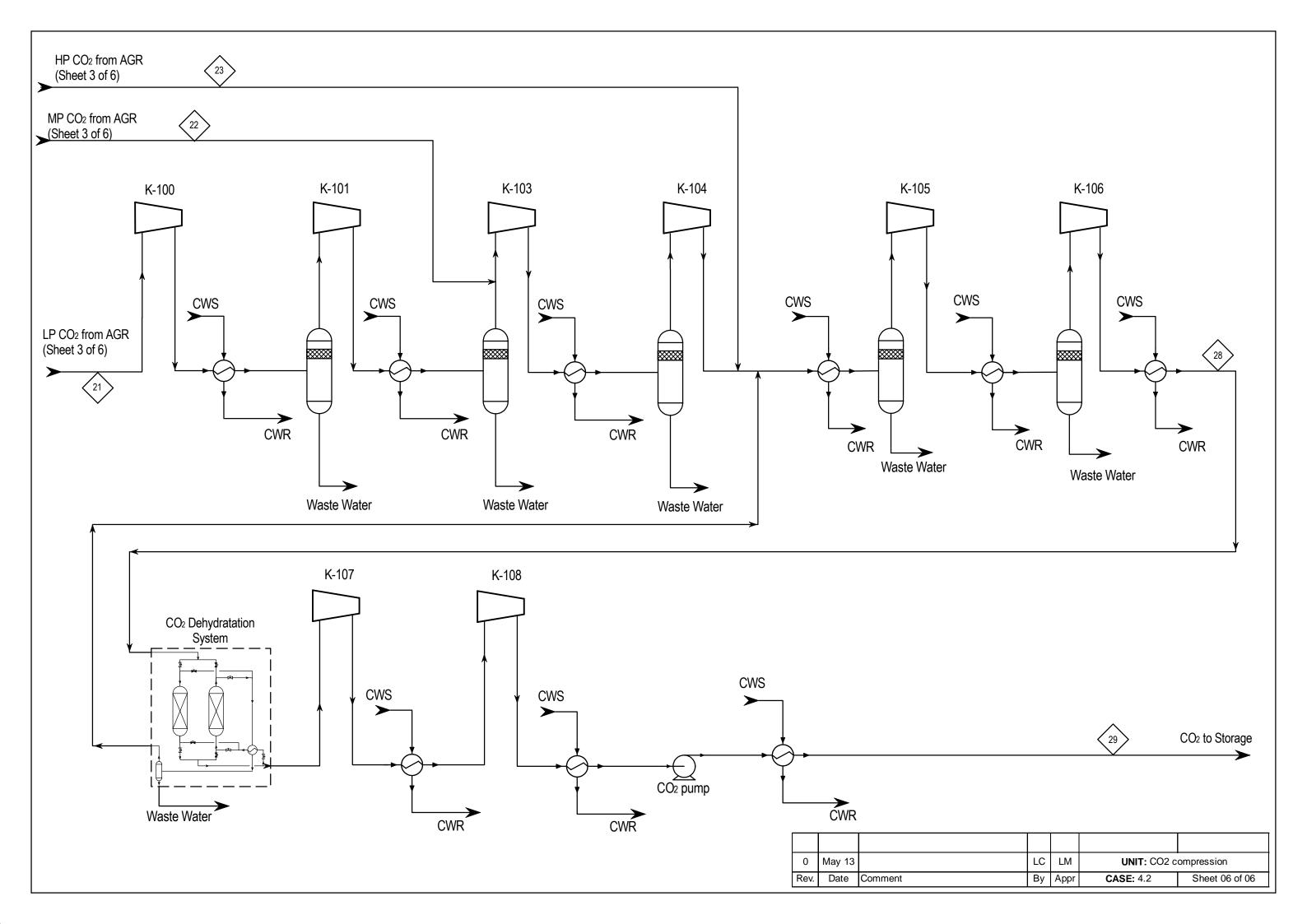

Date: January 2014


Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification


Sheet: 10 of 22


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



CO₂ Capture at Coal Based Power and Hydrogen Plants Date

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 11 of 22

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

		Case 4.2 - GE	-BASED IGCC - H	EAT AND MATERI	AL BALANCE		REVISION	0	1	2
	CLIENT :		IEAGHG	PREP.	LC					
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coa	al based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MAT	ERIAL BALANCE			•		
				UNIT 1000 - Ga	sification Island					
	1	2	3	4	5	18				
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification				
Temperature (°C)	AMB	10	80	AMB	N/D	144				
Pressure (bar)	ATM	75-80 ⁽¹⁾	ATM	ATM	64.6	70				
TOTAL FLOW	Solid		Solid + water							
Mass flow (kg/h)	349,100	323,000	87,400	94,500	1,154,000	493,200				
Molar flow (kmol/h)		10,025		5,250	58,004	27,385				
LIQUID PHASE										
Mass flow (kg/h)			43,700	94,500	-	493,200				
GASEOUS PHASE										
Mass flow (kg/h)		323,000			1,154,000					
Molar flow (kmol/h)		10,025			58,004					
Molecular Weight		32.22			-					
Composition (vol %)	%wt		50% moisture		dry basis					
H_2	C: 64.6%	-			35.80					
CO	H: 4.38%	-			42.80					
CO ₂	O: 7.02%	-			17.80					
N_2	S: 0.86%	1.50			3.22					
O_2	N: 1.41%	95.00			0.00					
CH₄	CI: 0.03%	-			0.00					
H ₂ S + COS	Moisture: 9.5%	-			0.38					
Ar	Ash: 12.20%	3.50			0.00					
HCN		-			0.00					
NH ₃		-			0.00					
H ₂ O		-		<u> </u>	-			<u> </u>	<u> </u>	
Notes	1. FW assumption									

		Case 4.2 - GE	-BASED IGCC - H	EAT AND MATER	AL BALANCE		REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	LC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coal based power and hydrogen plants					NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
	•			HEAT AND MAT	ERIAL BALANCE			L		
				UNIT 2100 - Air	Separation Unit					
	6	2	7	8	9	10	11			
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	MP Nitrogen forSyngas Dilution	MP Nitrogen for NOx Control	Oxygen to SRU	Nitrogen vent			
Temperature (°C)	Ambient	10	Ambient (°)	135	122	Ambient	Ambient			
Pressure (bar)	Ambient	75-80 (°)	7,5 (°)	32	28	6	Atmospheric			
TOTAL FLOW										
Mass flow (kg/h)	1,394,750	323,000	25,220	277,810	306,450	1,933	445,990			
Molar flow (kmol/h)	48,320	10,025	900	9,912	10,934	60	15,912			
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-		-	-			
GASEOUS PHASE										
Mass flow (kg/h)	1,394,750	323,000	25,220	277,810	306,450	1,933	445,990			
Molar flow (kmol/h)	48,320	10,025	900	9,912	10,934	60	15,912			
Molecular Weight	28.86	32.22	28.02	28.03	28.03	32.22	28.03			
Composition (vol %)										
H ₂	-	-	-	-	-	-	-			
СО	-	-	-	-	-	-	-			
CO ₂	0.04	-	-	0.05	0.05	-	0.05			
N_2	77.32	1.50	99.999	98.00	98.00	1.50	98.00			
O_2	20.75	95.00	0.001	1.00	1.00	95.00	1.00			
CH ₄	-	-	-	-	-	-	-			
H ₂ S + COS	-	-	-	-	-	-	-			
Ar	0.92	3.50	-	0.25	0.25	3.50	0.25			
H ₂ O	0.97	-	-	0.70	0.70	-	0.70			

Notes

1. FW assumption

	Case 4.2	- GE-BASED IGCC - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	LC		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		
		LICAT AND MATERIAL DALANCE				-

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	12	13	14	15	16	17	18	19	20
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from Acid Gas Removal	Diluted Syngas to Power Island	Stripped condensate from SWS	BFW make-up to condensate accumulator	Return condensate to gasification	Nitrogen to saturator	Moist. Nitrogen to combined cycle
Temperature (°C)	N/D	323	34	15	210	132	123	144	122	210
Pressure (bar)	64.6	61.6	57	53	31.0	70.0	2.2	70.0	28.0	27.0
TOTAL FLOW										
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	425,861	43,225	227,000	492,600	306,481	384,099
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	36,150	2,400	12,600	27,350	10,935	15,243
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-	43,225	227,000	492,600	-	
GASEOUS PHASE										
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	425,861	-	-	-	306,481	384,099
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	36,150	-	-	-	10,935	15,243
Molecular Weight	-	19.90	20.50	5.65	11.78	-	-	-	28.03	25.20
Composition (vol %)	dry basis									
H ₂	35.80	41.04	54.74	89.55	65.00	-	-	-	0.00	0.00
СО	42.80	0.46	0.61	0.98	0.71	-	-	-	0.00	0.00
CO ₂	17.80	31.54	41.98	5.73	4.17	-	-	-	0.05	0.04
N_2	3.22	3.22	2.27	3.73	29.57	-	-	-	98.00	70.29
O_2	0.00	0.00	-	-	0.27	-	-	-	1.00	0.72
CH ₄	0.00	0.00	-	-	0.00	-	-	-	0.00	0.00
H ₂ S + COS	0.38	0.38	0.26	0.00	0.00	-	-	-	0.00	0.00
	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-
	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-
Ar	0.00	0.00	-	-	0.07	-	-	-	0.25	0.18
H ₂ O	-	25.06	0.14	0.01	0.20	-	-	-	0.70	28.77

CLENT:			Case 4.2 - GE-	BASED IGCC - H	EAT AND MATE	RIAL BALANCE		REVISION	0	1	2
PROJECT NO: 1-80-0681 A The Netherlands		CLIENT :		IEAGHG				PREP.	LC		
Note Pressure (bar)	FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	nd hydrogen plan	nts	CHECKED	NF		
HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal 13 14 21 22 23 24 25		PROJECT NO:		1-BD-0681 A				APPROVED	LM		
HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal		LOCATION:		The Netherlands				DATE	July 2013		
STREAM				Н	IEAT AND MATE	RIAL BALANCE			·		
STREAM Raw Syngas from Syngas to Syngas LP CO2 to Syngas to Syngas to Syngas LP CO2 to Syngas to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas to Syngas LP CO2 to Syngas				ι	JNIT 2300 - Acid	Gas Removal					
Raw Syngas Form Syngas to Syngas Cooling Syngas to Syngas Cooling Syngas to Syngas Cooling Compression Compression Compression Recycle Tail Gas	13	14	21	22	23	24	25				
Pressure (bar) 57 53 2.5 6.6 20.3 1.6 56.5	STREAM	•	Syngas to Syngas					1 '			
TOTAL FLOW Mass flow (kg/h) Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 LQUID PHASE Mass flow (kg/h) 891,750 148,235 163,504 407,928 4,068 293 161 CASEOUS PHASE Mass flow (kg/h) 891,750 148,235 163,504 407,928 167,385 9,831 5,804 407,928 167,385 9,831 5,804 Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 Molecular Weight 20.5 5.6 44.0 43.9 407,928 167,385 9,831 5,804 Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 Molecular Weight 20.5 5.6 44.0 43.9 41.1 33.6 36.1 Composition (vol %) H ₂ 54,74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO ₂ 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N ₂ 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O ₂ 0.00 0.00	Temperature (°C)	34	15	-9	-1	8	20	35			
Mass flow (kg/h)	Pressure (bar)	57	53	2.5	6.6	20.3	1.6	56.5			
Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 LIQUID PHASE Mass flow (kg/h) -	TOTAL FLOW										
LIQUID PHASE Mass flow (kg/h) -	Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,831	5,804			
Mass flow (kg/h) -	Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161			
GASEOUS PHASE Mass flow (kg/h) 891,750 148,235 163,504 407,928 167,385 9,831 5,804 Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 Molecular Weight 20.5 5.6 44.0 43.9 41.1 33.6 36.1 Composition (vol %) H2 54.74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO2 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N2 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O2 - - 0.00 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	LIQUID PHASE										
Mass flow (kg/h) 891,750 148,235 163,504 407,928 167,385 9,831 5,804 Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 Molecular Weight 20.5 5.6 44.0 43.9 41.1 33.6 36.1 Composition (vol %) H2 54,74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO2 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N2 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O2 - - 0.00 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	Mass flow (kg/h)	-	-	-	-	-	-	-			
Molar flow (kmol/h) 43,496 26,243 3,718 9,290 4,068 293 161 Molecular Weight 20.5 5.6 44.0 43.9 41.1 33.6 36.1 Composition (vol %) H2 54.74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO2 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N2 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O2 - - 0.00 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	GASEOUS PHASE	1									
Molecular Weight 20.5 5.6 44.0 43.9 41.1 33.6 36.1 Composition (vol %) H2 54.74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO2 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N2 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O2 - - 0.00 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,831	5,804			
Composition (vol %) H ₂ 54.74 89.55 0.00 0.20 6.66 14.47 17.65 CO CO 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N ₂ 0.227 3.73 0.00 0.00 0.19 0.38 0.69 O ₂ CH ₄ - 0.00	Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161			
H2 54.74 89.55 0.00 0.20 6.66 14.47 17.65 CO 0.61 0.98 0.00 0.00 0.16 0.25 0.00 CO2 41.98 5.73 99.87 99.74 92.95 43.29 77.90 N2 2.27 3.73 0.00 0.00 0.19 0.38 0.69 O2 - - 0.00 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	Molecular Weight	20.5	5.6	44.0	43.9	41.1	33.6	36.1			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Composition (vol %)										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	H ₂	54.74	89.55	0.00	0.20	6.66	14.47	17.65			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	СО	0.61	0.98	0.00	0.00	0.16	0.25	0.00			
O2 - - 0.00 0.00 - 0.00 CH4 - - 0.00 0.00 0.00 0.00 0.00	CO ₂	41.98	5.73	99.87	99.74	92.95	43.29	77.90			
CH ₄ - 0.00 0.00 0.00 0.00		2.27	3.73				0.38				
		-	-								
I H₂S+CUS											
		0.26	0.00	0.00	0.00	0.00	40.70	3.76			
Ar - 0.00 0.00 0.00 0.00		-	-	0.00	0.00	0.00	0.00	0.00			
HCN NH ₃ 0.11 -				_	_	_	0.11	_			
H_2O 0.14 0.01 0.13 0.06 0.04 0.80 0.00											

		(Case 4.2 - GE-B	ASED IGCC - HEAT AND MATERIAL BALANCE		REVISION	0	1	2
		CLIENT :	ı	EAGHG		PREP.	LC		
FOSTER	WHEELER	PROJECT NAME:	(O ₂ capture at coal based power and hydrogen plants		CHECKED	NF		
		PROJECT NO:	1	-BD-0681 A		APPROVED	LM		
		LOCATION:	T	he Netherlands		DATE	July 2013		
				HEAT AND MATERIAL BALANCE	_	_	_	_	

UNIT 2400 - Sulfur Recovery Unit (SRU) & Tail Gas Treatment (TGT)

	UNIT 2400 - Sulfur Recovery Unit (SRU) & Tail Gas Treatment (TGT)												
	8	24	25	26	27								
STREAM	Oxygen to SRU	Acid Gas from AGR Unit	Claus Tail Gas to AGR Unit	Sour Gas from Sour water stripper	Product Sulphur								
Temperature (°C)	Amb	20	35	80	-								
Pressure (bar)	6	1.6	56.5	4	-								
TOTAL FLOW													
Mass flow (kg/h)	1,933	9,831	5,804	170	3,000								
Molar flow (kmol/h)	60	293	161	4.5	-								
LIQUID PHASE													
Mass flow (kg/h)		-	-	-	-								
GASEOUS PHASE													
Mass flow (kg/h)	1,933	9,831	5,804	170	-								
Molar flow (kmol/h)	60	293	161	4.5	-								
Molecular Weight	32.2	33.6	36.1	37.7	-								
Composition (vol %)													
H_2	-	14.47	17.65	0.49	-								
СО	-	0.25	0.00	0.03	-								
CO ₂	-	43.29	77.90	74.16	-								
N_2	1.50	0.38	0.69	0.19	-								
O ₂	95.00	-	0.00	-	-								
CH₄	-	0.00	0.00	-	-								
H ₂ S + COS	-	40.70	3.76	3.57	-								
Ar	3.50	0.00	0.00	-	-								
HCN													
NH ₃	-	0.11	-	9.14	-								
H₂O	-	0.80	0.00	12.42	-								

		Case 4.2 - GE	-BASED IGCC - H	EAT AND MATER	IAL BALANCE		REVISION	0	1	2
	CLIENT :		IEAGHG			<u> </u>	PREP.	LC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MAT	ERIAL BALANCE		<u> </u>		1	l
			Unit	t 2500 - CO2 Com	pression and Dry	ying				
	21	22	23	28	29					
STREAM	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	CO₂ to drying package	CO₂ to storage					
Temperature (°C)	-9	-1	8	26	30					
Pressure (bar)	2.5	6.6	20.3	39.8	110.0					
TOTAL FLOW										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
Molecular Weight	44	43.9	41.1	43.3	43.3					
Composition (vol %)										
H ₂	0.0	0.20	6.66	1.61	1.61					
СО	0.0	0.00	0.16	0.04	0.04					
CO ₂	99.9	99.74	92.95	98.18	98.30					
N_2	0.0	0.00	0.19	0.05	0.05					
O_2	0.0	0.00	0.00	0.00	0.00					
CH₄	0.0	0.00	0.00	0.00	0.00					
H ₂ S + COS	0.0	0.00	0.00	0.00	0.00					
Ar	0.0	0.00	0.00	0.00	0.00					
HCN	0.0	0.00	0.00	0.00	0.00					
NH3	0.0	0.00	0.00	0.00	0.00					
H₂O	0.1	0.06	0.04	0.12	0.00					

1

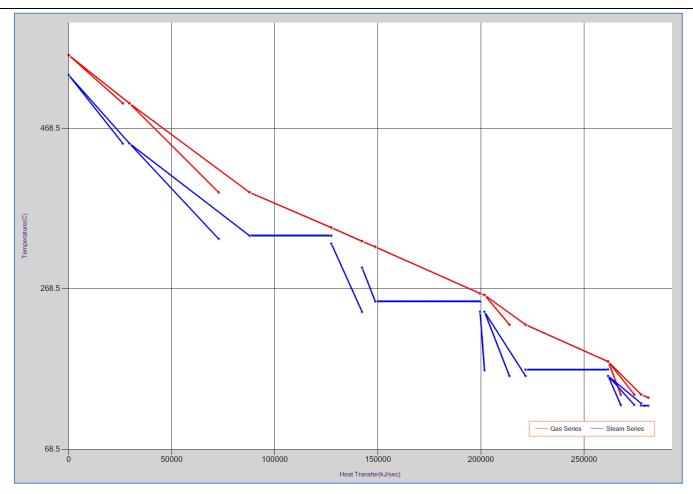
	Case 4.2 - GE-BASED IGCC - HEAT AND MATERIAL BALANCE	REVISION	0	
CLIENT:	IEAGHG	PREP.	LC	

CO₂ capture at coal based power and H2 plants PROJECT NAME:

CHECKED NF PROJECT NO: 1-BD-0681 A APPROVED LM DATE LOCATION: The Netherlands July 2013

Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
15	Treated Syngas from Syngas Cooling (*)	201.0	210	30.8	-
20	Moisturized Nitrogen for NOx control (*)	192.0	210	26.9	-
30	Flue gas from GT (*)	2780	560	1.05	-
31	Flue gas at stack (*) (1)	2780	133	atm	-
32	HP Steam from Process Units (*)	267.7	335	137.0	2646
33	MP Steam from Process Units (*)	52.5	253	41.0	2801
34	LP Steam from Process Units (*)	23.1	168	7.5	2766
35	Condensate to Deaerator (*)	896.1	94	2.2	394
36	BFW to Make-up Water Pumps (*)	113.5	123	2.2	518
37	BFW to LP BFW Pumps (*)	138.8	123	2.2	518
38	BFW to MP BFW Pumps (*)	296.4	123	2.2	518
39	BFW to HP BFW Pumps (*)	390.9	123	2.2	518
40	HP Steam to Steam Turbine	772.2	532	132.0	3421
41	Hot RH Steam to Steam Turbine	1088.3	532	34.8	3524
42	LP Steam to Steam Turbine	1179.1	283	5.7	3027
43	Steam to Condenser	1179.1	29	0.04	2299
44	Water Supply to Steam Condenser	55731	15	4.0	63
45	Water Return from Steam Condenser	55731	26	3.5	109
46	Make-up water	313.2	15	6.0	64
47	Condensate return from Process Units	129.2	94	4.2	394
48	LP BFW to Process Units	140.0	160	19	676
49	MP BFW to Process Units	197.6	160	56	678
50	HP BFW to Process Units	538.7	160	180	686


^(*) Flowrate figure refers to one train (50% capacity)

⁽¹⁾ Flue gas molar composition: N₂: 73.8%; H₂O: 13.7%; O₂: 10.9%; CO₂: 0.8%; Ar: 0.8%.

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Date: January 2014

Sheet: 12 of 22

Figure 1 – Case 4.2 – HRSG T-Q diagram

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 13 of 22

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

January 2014

- Steam / BFW / condensate interface summary is reported in Table 2.
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 14 of 22

Table 2. Case 4.2 – Steam/BFW/condensate interface summary

FOS	STER WHEELER	plants	REVISION DATE ISSUED BY CHECKED BY APPROVED BY	Rev.0 May 2013 LC NF LM						
		Case	4.2 - GE base	ed IGCC - Stea	m and water	balance				
UNIT	DESCRIPTION UNIT	HP Steam barg	MP Steam barg	LP Steam barg	HP BFW	MP BFW	LP BFW	VLP BFW	condensate recovery	Losses
		137	40	6.5	5.4.2	5.0.3	5. 0. 3	5.4.3	5.0.3	r. r
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS									
2100	Air Separation Unit (ASU)									
1000	Gasification Section	-444.1			446.7					-2.5
2200	Syngas Treating and Conditioning Line	-91.2	-97.2	-102.2	92.1	188.9	140.1	227.0	-49.5	-308.0
2300	Acid Gas Removal			64.0					-64.0	0.00
2400	Sulphur Recovery (SRU)		-7.9			8.7			-0.75	-0.08
3000	POWER ISLANDS UNITS	535.3	105.1	23.2	-538.7	-197.6	-140.1	-227.0	129.2	
4000	UTILITY and OFFSITE UNITS			15.0					-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-310.6

 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

January 2014

Date:

Sheet: 15 of 22

Table 3. Case 4.2 – Water consumption summary

FOSTER	WHEELER	

PROJECT: CO2 capture at coal based power and H2 plants
OCATION: The Netherlands
FWI Nº: 1-BD-0681 A

Revision	0
Date	May 2013
ISSUED BY	LC
CHECKED BY	NF
APPR. BY	LM

Case 4.2 - GE based IGCC - Water consumption summary

UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system	Cooling Water Secondary System
		[t/h]	[t/h]	[t/h]	[t/h]
	AIR SEPARATION UNIT (ASU)				
2100	Air Separation Unit				11220
2100	7 III CO PARIO II CIII C				
	GASIFICATION SECTION (GS)				
1000	Gasification	145			3870
2200	Syngas treatment and conditioning line				490
2300	Acid Gas Removal		0.6		6870
2000	Total Gas Homora.		0.0		5575
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160
	CO ₂ COMPRESSION				
2500	CO ₂ Compression				5850
	COMBINED CYCLE (CC)				
3100	Gas Turbines and Generator auxiliaries				780
3200	Heat Recovery Steam Generator				
3300	Steam Turbine and Generator auxiliaries		313.3	55510	2050
3300	Steam furbine and Generator auxiliaries		515.5	_	2030
	Miscellanea				
	UTILITY UNITS (UU)				
4000	Cooling Water System	1598			
4000	Demineralized/Condensate Recovery/Plant and				
	Potable Water Systems	471	-314		
4000	Waste Water Treatment	-91.7			
4000	Balance of Plant (BOP)				410
	TOTAL CONSUMPTION	2122	0	55510	31700

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Shoots 16 of 22

Date:

Sheet: 16 of 22

January 2014

Table 4. Case 4.2 – Electrical consumption summary

FOST	CLIENT: PROJECT: CO2 capture at coal based power and hydrogen plants The Netherlands FWI Nº: 1-BD-0681 A	Rev.0 Date: May 2013 ISSUED BY: LC CHECKED BY: NF APPR. BY: LM
	Case 4.2 - GE based IGCC - Electrical consumption summary	
UNIT	DESCRIPTION UNIT	Absorbed Electric Power [kW]
	AIR SEPARATION UNIT (ASU)	
2100	MAC consumptions	124220
	BAC consumptions	12270
	Nitrogen compressor and miscellanea	35530
	GASIFICATION SECTION (GS)	
900	Coal Receiving Handling and Storage	410
1000	Gasification	8790
2200	Syngas treatment and conditioning line	1250
2300	Acid Gas Removal	20850
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700
2500	CO ₂ Compression	33970
	COMBINED CYCLE (CC)	
3100	Gas Turbines auxiliaries	2000
3200	Heat Recovery Steam Generator	7530
3300	Steam Turbine auxiliaries and excitation system	850
3300	Miscellanea	3120
4000	UTILITY UNITS (UU) Cooling Water System	10490
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	730
4000	Balance of Plant (BOP)	1090
	. ,	
	TOTAL CONCUMENTON	20222
	TOTAL CONSUMPTION	263800

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 17 of 22

6. Overall Performance

The following table shows the overall performance of Case 4.2.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	May 2013
PROJECT No. :	1-BD-0681 A	MADE BY	LC
LOCATION:	The Netherlands	APPROVED BY	LM

Case 4.2 - IGCC Plant Performance Summary

OVERALL PERFORMANCES						
Coal Flowrate (as received)	t/h	349.1				
Coal LHV (as received)	kJ/kg	25870				
Coal HHV (as received)	kJ/kg	27060				
THERMAL ENERGY OF FEEDSTOCK (A)	MWth (LHV)	2509				
THERMAL ENERGY OF FEEDSTOCK (A')	MWth (HHV)	2624				
Thermal Power of Raw Syngas exit Scrubber (D)	MWth (LHV)	1785				
Thermal power of syngas to AGR	MWth (LHV)	1638				
Thermal Power of Clean Syngas to Gas Turbines (E)	MWth (LHV)	1600				
Syngas treatment efficiency (E/D x 100)	% (LHV)	89.6				
Gas turbines total electric power output	MWe	688.0				
Steam turbine electric power output	MWe	443.8				
Syngas expader	MWe	9.0				
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX (C)	MWe	1140.8				
Gasification Section units consumption	MWe	32.0				
ASU consumption	MWe	172.0				
Combined Cycle units consumption	MWe	13.5				
CO ₂ Compression and Dehydration unit consumption	MWe	34.0				
Utility Units consumption	MWe	12.3				
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	263.8				
NET ELECTRIC POWER OUTPUT OF IGCC	MWe	877.0				
(Step Up transformer efficiency = 0.997%) (B)	MWe	874.3				
Gross electrical efficiency (C/A x 100)	% (LHV)	45.5				
Net electrical efficiency (B/A x 100)	% (LHV)	34.9				
Gross electrical efficiency (C/A' x 100)	% (HHV)	43.5				
Net electrical efficiency (B/A' x 100)	% (HHV)	33.3				
Fuel Consumption per net power production	MWth/MWe	2.87				
CO ₂ emission per net power production	kg/MWh	93.7				

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 18 of 22

The following table shows the overall CO_2 balance and CO_2 removal efficiency of Case 4.2.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
Fuel Mix (Carbon AR)	18730
TOTAL (A)	18730
OUTPUT	
Slag + Waste water (B)	101
CO ₂ product pipeline	
СО	7
CO ₂	16759
CH ₄	0
COS	0
Total to storage (C)	16766
Emission	
CO ₂ + CO (Combined Cycle)	1862
TOTAL	18730
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 19 of 22

7. Environmental impact

The IGCC plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

January 2014

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 5 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air or nitrogen containing particulate.

Table 5. Case 4.2 – Plant emission during normal operation

Flue gas to HRSG stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	2,780,000
Flow, Nm ³ /h (1)	2,679,300
Temperature, °C	133
Composition	(% vol)
Ar	0.77
N_2	72.92
O_2	10.92
CO ₂	0.90
H ₂ O	14.49
Emission	mg/Nm ^{3 (1)}
NOx	< 50
SOx	< 1
СО	< 100
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 15% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Date: January 2014

Sheet: 20 of 22

Table 6. Case 4.2 – Plant minor emission

Emission source	Emission type	Temperature		
Coal handling and storage	Continuous	ambient	Air: 10 mg/Nm ³ particulate	

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Cooling Tower blow-down

Flowrate: $380 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate : $160 \text{ m}^3/\text{h}$

7.3. Solid effluents

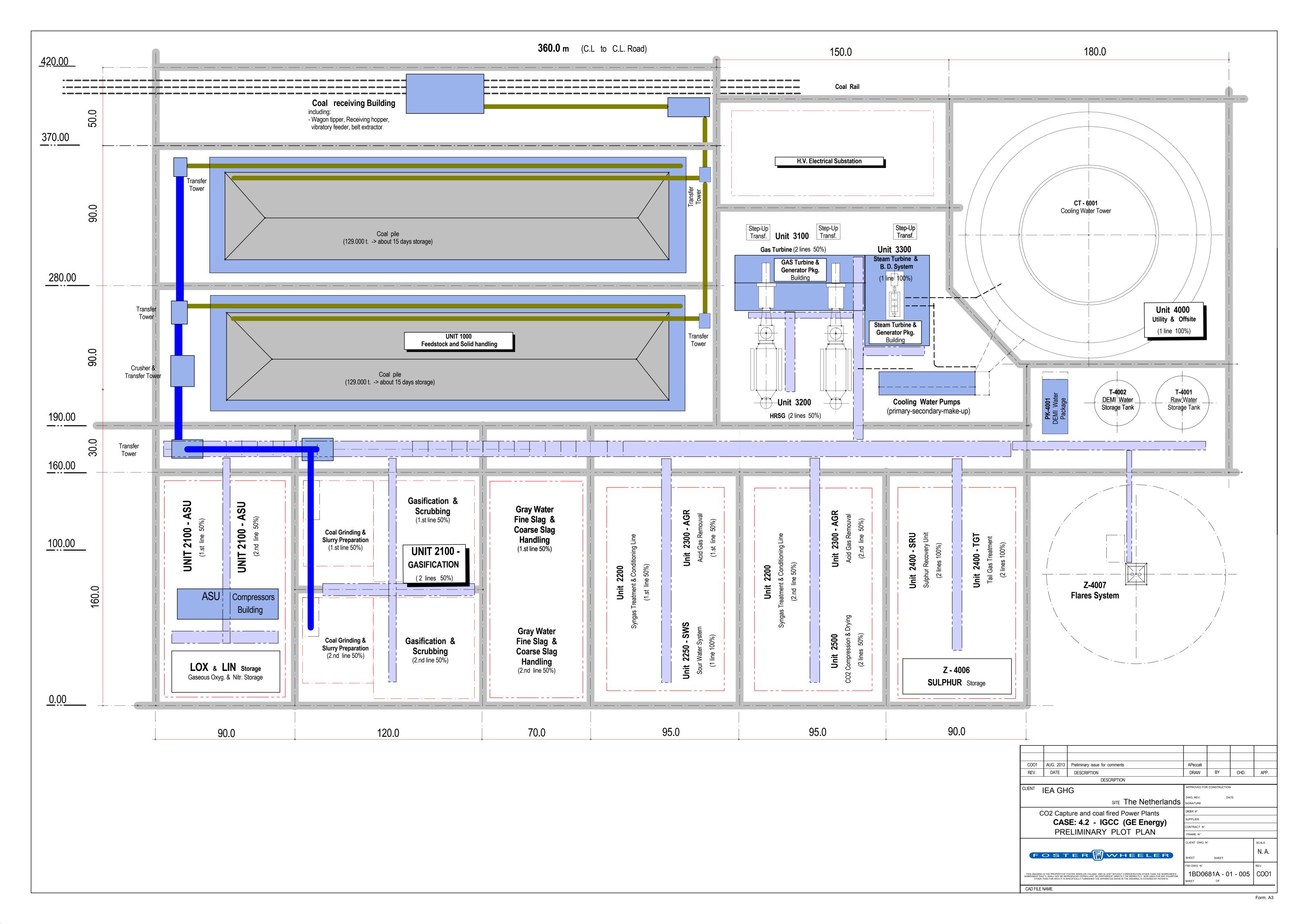
The IGCC plant is expected to produce the following solid by-product:

Slag from gasifier

Flowrate : 45 t/h (dry basis)

Moisture content : 50%

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 21 of 22

8. Preliminary plot plan

Plot plan at block level of Case 4.2 is attached to this section, showing the area occupied by the main units and equipment of the plant.

January 2014

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.2 - Case 4.2: IGCC with CCS - GE Gasification

Sheet: 22 of 22

9. Equipment list

The list of main equipment and process packages is included in this section.

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	I.M		

EQUIPMENT LIST

Unit 900 - Coal Handling & Storage (NA)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	DA CIVA CEC							
7.001	PACKAGES							
Z-901	Coal Handling		Coal flowrate: 349 t/h					30 days storage
	Wagon tipper							Storage piles: 2 x 137,000 t each
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Crushers Towers	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 5300 m3					for daily storage

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Gasification Island (2x50%)

Unit 1000 - Gashication Island (2x50%)								
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-1002	GE Energy Coal gasification package							
	Coal grinding and slurry preparation							Included in Z-1002
	Gasifiers (RSC)		2 x 4200 t/d coal (as received) to burners 2 x 900 MWth (LHV basis) syngas at scrubber outlet					Included in Z-1002
	Scrubber							Included in Z-1002
	Black Water flash							Included in Z-1002
	Coarse slag handling							Included in Z-1002
	Grey water systeam and fines handling							Included in Z-1002
		-						
		l					l	

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION Rev. Draft Rev.0 Rev.1 Rev.2 DATE May 2013 January 2014 ISSUED BY LC GP CHECKED BY NF NF APPROVED BY LM LM

EQUIPMENT LIST

Unit 2100 - Air Separation Unit (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2101	ASU Package including:							
	Cold Box	Cryogenic	162 t/h of 95% purity O2 each train					Included in Z-2101
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297800 Nm3/h	2 x 35250 kW				Included in Z-2101
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW				Included in Z-2101
	MP N2 compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 128500 Nm3/h	2 x 9500 kW				Included in Z-2101
	MP N2 compressors - booster (GAN)	Electric motor driven, centrifugal	Flowrate: 122200 Nm3/h	1120 kW				Included in Z-2101
	O2 pumps	Centrifugal						Included in Z-2101
	Back-up oxygen vaporiser	Shell and tube						Included in Z-2101
ommon units to	both trains:							
	LOX (liquid oxygen) storage	Fixed roof storage tank						8 hour storage for 1 gasification tra Normal operating p: 5 bar a Normal operating T: -165 °C Included in Z-2101
	LIN (liquid nitrogen) storage	Fixed roof storage tank						8 hour storage for 1 Gasifier & 4 n storage for Syngas dilution and NOX contr Normal operating p: 5 bar a Normal operating T: -180 °C Included in Z-2101
	Gaseous oxygen storage							
	Gaseous nitrogen storage				_	_		

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

	Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)									
TOTAL A	DECORPON	(EV/DE	CLAE	motor rating	P design	T design	24	ъ .		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks		
	HEAT EXCHANGERS				Shell/tube	Shell/tube				
E-2201	Feed/Product Heat Exchanger	Shell & Tube								
E-2202	HP steam generator	Kettle								
E-2203	MP steam generator #1	Kettle								
E-2204	MP steam generator #2	Kettle								
E-2205	LP steam generator	Kettle								
E-2206 A/B	Circulating Water Heater	Shell & Tube								
E-2207 A/B	Condensate preheater	Shell & Tube								
E-2208	Syngas heater / Circulating water cooler	Shell & Tube								
E-2209	Final sygas cooler	Shell & Tube								
E-2210	Syngas final heater	Shell & Tube								
E-2211	Saturated Nitrogen heater	Shell & Tube								
	DDIMC									
D-2201	DRUMS Condensate Separator	Vertical								
D-2202	Condensate Separator	Vertical								
		Vertical								
D-2203	Condensate Separator	-								
D-2204	Condensate Separator	Vertical								
D-2205	Condensate Separator	Vertical								
D-2206	Condensate accumulator	Horizontal						Common for both syngas tratment and conditiong line trains		
		<u> </u>								

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks	
	COLUMN								
C-2201	Nitrogen saturator	Vertical							
	REACTOR								
R-2201	1st Shift Catalyst Reactor	vertical						Overall CO conversion - 080/	
R-2202	2nd Shift Catalyst Reactor	vertical						Overall CO conversion = 98%	
	PUMPS								
P-2201	Saturator Circulating Water Pump								
P-2202	Condensate Pump (to Gasifiers)								
	EXPANDER								
EX-2201	Syngas Expander		Flowrate = 590000 Nm ³ /h	10000 kW					
	MISCELLANEA								
X-2201	Mercury Adsorber	Sulfur-impregnated activated carbon beds							

Note: equipment list referred to one train only

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2250 - Sour Water System (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2251	SWS PACKAGE							
C-2251	Sour Water Stripper	Vertical						
	SWS Reboiler							
	SWS Condenser							
E-2251	Sour water heat exchanger (SWS feed / purified)							
P-2251	SWS Pump							

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2301	Acid Gas Removal Unit - Absorption section	Solvent: Selexol	Feed gas: 974900 Nm3/h; 56 barg; 34 °C					One H2S removal column, 3 CO2 removal columns, CO2 removal =91.78% Total Carbon Capture =90.5% Separated removal of CO2 and H2S
Z-2303	Acid Gas Removal Unit - Solvent regeneration							Total CO2 removal= 17700 t/d; 10 ppm H2S (dry) in combined CO2
Z-2304	Chiller Unit	Electrical driven						T= -10 °C

CLIENT: IEA GHG	
LOCATION: The Netherlands	
PROJ. NAME: CO2 capture at coal based power and H2 plants	
CONTRACT N. 1-BD-0681 A	Г

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package		Sulphur Prod.= 72 t/d					Sulphur content > 99,9 % mol min (dry basis)
	 two Sulphur Recovery Unit, each sized for 100% of the capacity one Tail Gas Treatment Unit sized for 100% of capacity 		Acid Gas from AGR = 6680 Nm3/h					
	(including Reduction Reactor and Tail Gas Compressor)		Expected Treated Tail Gas =3602 Nm3/h					

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2500 - CO₂ Compression Package (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	COMPRESSORS							
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	190000 Nm3/h p in: 2,45 bar a p out: 80 bar a	18000 kW				Water cooled
	PUMPS		Q,m3/h x H,m					
P-2501	CO ₂ Pump	Centrifugal	640 x 530	800 kW				Liquid CO ₂ product, per each train: Flowrate: 370 t/h; 110 bar a; 30°C
	PACKAGE							
PK-2501	CO ₂ drying package							

CLIENT: IEA GHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	May 2013	January 2014		
PROJ. NAME: CO2 capture at coal based power and H2 plan	ISSUED BY	LC	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: Case 4.2 -IGCC (GE Energy)	APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3100 - Gas Turbine (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-3101	Gas Turbine & Generator Package							
GT-3101	Gas turbine	F-Class Gas Turbine	344 MW					Included in Z-3101
G-3101	Gas turbine Generator		450 MVA					Included in Z-3101

CLIENT: IEA GHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	May 2013	January 2014		
PROJ. NAME: CO2 capture at coal based power and H2 plants	ISSUED BY	LC	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: Case 4.2 -IGCC (GE Energy)	APPROVED BY	LM	LM		

EQUIPMENT LIST
Unit 3200 - Heat Recovery Steam Generator (2x50%)

Unit 3200 - Heat Recovery Steam Generator (2x50%)									
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks	
	HEAT RECOVERY STEAM GENERATOR	lan i							
HRSG-3201	Heat Recovery Steam Generator	Horizontal, Natural Circulated, 4 Pressure Levels. Simple Recovery, Reheated.							
Each HRSG inclu	uding:								
D-3201	HP steam Drum								
D-3202	MP steam Drum								
D-3203	LP steam Drum								
D-3204	VLP steam Drum with degassing section								
E-3201	HP Superheater 2nd section							Included in HRSG-3201 / 2	
E-3202	HP Superheater 1st section							Included in HRSG-3201 / 2	
E-3203	HP Evaporator							Included in HRSG-3201 / 2	
E-3204	HP Economizer 3rd section							Included in HRSG-3201 / 2	
E-3205	HP Economizer 2nd section							Included in HRSG-3201 / 2	
E-3206	HP Economizer 1st section							Included in HRSG-3201 / 2	
E-3207	MP Reheater 2nd section							Included in HRSG-3201 / 2	
E-3208	MP Reheater 1st section							Included in HRSG-3201 / 2	
E-3209	MP Superheater							Included in HRSG-3201 / 2	
E-3210	MP Evaporator							Included in HRSG-3201 / 2	
E-3211	MP Economizer 2nd section							Included in HRSG-3201 / 2	
E-3212	MP Economizer 1st section							Included in HRSG-3201 / 2	
E-3213	LP Superheater							Included in HRSG-3201 / 2	
E-3214	LP Evaporator							Included in HRSG-3201 / 2	
E-3215	LP Economizer							Included in HRSG-3201 / 2	
E-3216	VLP Evaporator							Included in HRSG-3201 / 2	

CLIENT: IEA GHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	May 2013	January 2014		
PROJ. NAME: CO2 capture at coal based power and H2 plant	ISSUED BY	LC	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: Case 4.2 -IGCC (GE Energy)	APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design	Materials	Remarks
				[]	[433-8]	[-]		
	PUMPS		Q,m ³ /h x H,m					
	HP BFW Pumps	centrifugal	440 x 1800	2800				One operating, one spare
P-3203 A/B	MP BFW Pumps	centrifugal	350 x 600	750				One operating, one spare
	LP BFW Pumps	centrifugal	160 x 130	75				One operating, one spare
P-3207 A/B	VLP BFW Pumps	centrifugal	140 x 815	400				One operating, one spare
	MISCELLANEA							
X-3201	Flue Gas Monitoring System							NOx, CO, SO ₂ , particulate, H ₂ O, O ₂
STK-3201	CCU Stack							
SL-3201	Stack Silencer							
DS-3201	HP Steam Desuperheater							Included in HRSG-3201
DS-3202	MP Steam Desuperheater							Included in HRSG-3201
	PACKAGES							
Z-3201	Fluid Sampling Package							
Z-3202	Phosphate Injection Package							
D-3204	Phosphate storage tank							Included in Z - 3202
P-3205 A/B	Phosphate dosage pumps							Included in Z - 3202
		_						One operating , one spare
Z-3203	Oxygen Scavanger Injection Package							In aludad in 7, 2202
D-3205	Oxygen scavanger storage tank							Included in Z - 3203 Included in Z - 3203
P-3206 A/B	Oxygen scavanger dosage pumps							One operating, one spare
Z-3204	Amines Injection Package							one operating, one spare
D-3206	_							Included in Z - 3204
	Amines Storage tank							Included in Z - 3204
P-3207 A/B	Amines Dosage pumps							One operating , one spare

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3300 - Steam Turbine and Blow Down System (1x100%)

				motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3301	Steam Turbine and Generator Package							
ST-3301	Steam Turbine		444 MWe					Including:
								Lube oil system Cooling system
								Idraulic control system
								Drainage system
								Seals system
								Drainage system
G-3402	Steam Turbine Generator		580 MVA					Including relevant auxiliaries
E 2201 A /D	T . /A.C. 1							
E-3301A/B E-3302	Inter/After condenser Gland Condenser							
E-3302	Grand Condenser							
Z-3302	Steam Condenser Package							
E-3303	Steam Condenser	Water cooled	710 MWt					Including:
								Hot well
								Vacuum pump (or ejectors)
								Start up ejector (if required)
7, 2202	G. The state of th							
Z-3303	Steam Turbine by-pass system							
	PUMPS		$Q,m^3/h \times H,m$					
P-3301A/B	Condensate Pumps	Centrifugal, vertica	1940 x 110	800				One operating, one spare
	HEAT EXCHANGERS							
E-3304	Blow-Down Cooler	Shell & Tube						
	DRUMS							
D-3301	Continuous Blow-down Drum	vertical						
D-3302	Discontinuous Blow-down Drum	vertical						
	İ							

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility and Offsite

		T		motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	9			Materials	Remarks
				[kW]	[barg]	[°C]		
Z-4001	COOLING WATER SYSTEM							
CT-4001	Cooling Tower	Evaporative,	Total heat duty				concrete	Included in Z-4001
C1 1001	Including Cooling water basin	Natural draft	1070 MWth					
	mending cooming water busin		Diameter: 150 m,					
			Height: 210 m,					
			Water inlet: 17 m					
	Pumps							
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	13880 m3/h x 35 m	1600 kW				Included in Z-4001
								4 operating Included in Z-4001
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14710 m3/h x 45 m	2200 kW				2 operating, one spare
								Included in Z-4001
P-4003A/B	Raw water pumps (make-up)	centrifugal	1690 m3/h x 35 m	200 kW				1 operating, one spare
	Packages							
	Cooling Water Filtration Package							
	Cooling Water Sidestream Filters		Capacity: 8500 m3/h					
	Sodium Hypochlorite Dosing Package							
	Sodium Hypochlorite storage tank							
	Sodium Hypochlorite dosage pumps							
	Antiscalant Package							
	Dispersant storage tank							
	-							
_	Dispersant dosage pumps	+						
Z-4002	RAW WATER SYSTEM							
TF 4001	D. W		12720 2					Included in Z-4002 24 hour storage
T-4001	Raw Water storage tank		12720 m3					24 Hour storage
		+						Included in Z-4002
P-4004A/B	Raw Water Pumps to gasification island	centrifugal	150 m3/h x 50 m	30 kW				One operating, one spare
		+						Included in Z-4002
P-4005A/B	Raw Water Pumps to demi plant	centrifugal	380 m3/h x 50 m	75 kW				One operating, one spare
								One operating, one spare

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 -IGCC (GE Energy)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility and Offsite

			Omt 4000 -	Utility and Offs	ite			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
7 4002	DEMI WATED SYSTEM							
Z-4003	DEMI WATER SYSTEM							1
PK-4001	Demin Water Package, including:							
	- Multimedia filter							
	- Reverse Osmosis (RO) Cartidge filter							
	- Electro de-ionization system							
	Electro de folización system							Included in Z-4003
T-4002	Demi Water storage tank		8400 m3					24 hour storage
D 4006A/D	D 'W . D		250 24 25	55.1W				Included in Z-4003
P-4006A/B	Demi Water Pumps	centrifugal	350 m3/h x 35 m	55 kW				One operating, one spare
Z-4004	FIRE FIGHTING SYSTEM							
	Fire water storage tank							
	Fire pumps (diesel)	+				<u> </u>		
	Fire pumps (electric)	+				<u> </u>		
	FW jockey pump							
	1 W Joekey pump							
	MISCELLANEA							
	Natural Gas system							
	Waste Water Treatment							
	waste water Freatment							
	Sulphur Storage/Handling		72 t/d S prod.					30 days storage
								, ,
	Flare system							
	<u> </u>							
	Interconnecting	+						
	Instrumentation							
	DCS							
	Piping							
	Electrical							
	Plant Air							
	Duildings	+				-		
	Buildings	+				-		
	ı		·	ı	1	1	1	ı

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Sheet: 1 of 22

January 2014

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants document name : $CASE\ 4.3$: IGCC with CCS – MHI gasification technology

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : M. CARLONI CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Date: January 2014

Sheet: 2 of 22

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	
2.	Process Description	5
	2.1. Overview	
	2.2. Unit 900 – Coal Handling & Storage	
	2.3. Unit 1000 – Gasification Unit	
	2.4. Unit 2200 – Syngas Treatment and Conditioning line	5
	2.5. Unit 2300 – Acid Gas Removal (AGR)	7
	2.6. Unit 2400 – SRU and TGT	
	2.7. Unit 2500 – CO ₂ compression and drying	
	2.8. Unit 3000 – Combined cycle	
	2.9. Utility Units	
3.	Process Flow Diagram	10
4.	Heat and Material Balance	11
5.	Utility consumption	13
6.	Overall performance	16
7.	Environmental impact	19
	7.1. Gaseous emissions	19
	7.2. Liquid effluents	20
	7.3. Solid effluents	20
8.	Preliminary plot plan	21
9.	Equipment list	22

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

1 x 100%

Sheet: 3 of 22

1. Introduction

This chapter of the report includes all technical information relevant to Case 4.3 of the study, which is an IGCC plant based on the MHI gasification technology. The plant is designed to process coal, whose characteristic is shown in Chapter B, and produce electric power, exported to the external grid, with capture of the generated carbon dioxide.

The configuration of the plant is based on the following main features:

- MHI Air-Blown Gasification process, with dry feed system;
- Coal Nitrogen Dry Feed;
- Double stage sour CO shift;
- Removal of acid gases (H₂S and CO₂) based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and drying.

Air Separation unit

• Combined cycle based on two MHI M701F4 gas turbines.

The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

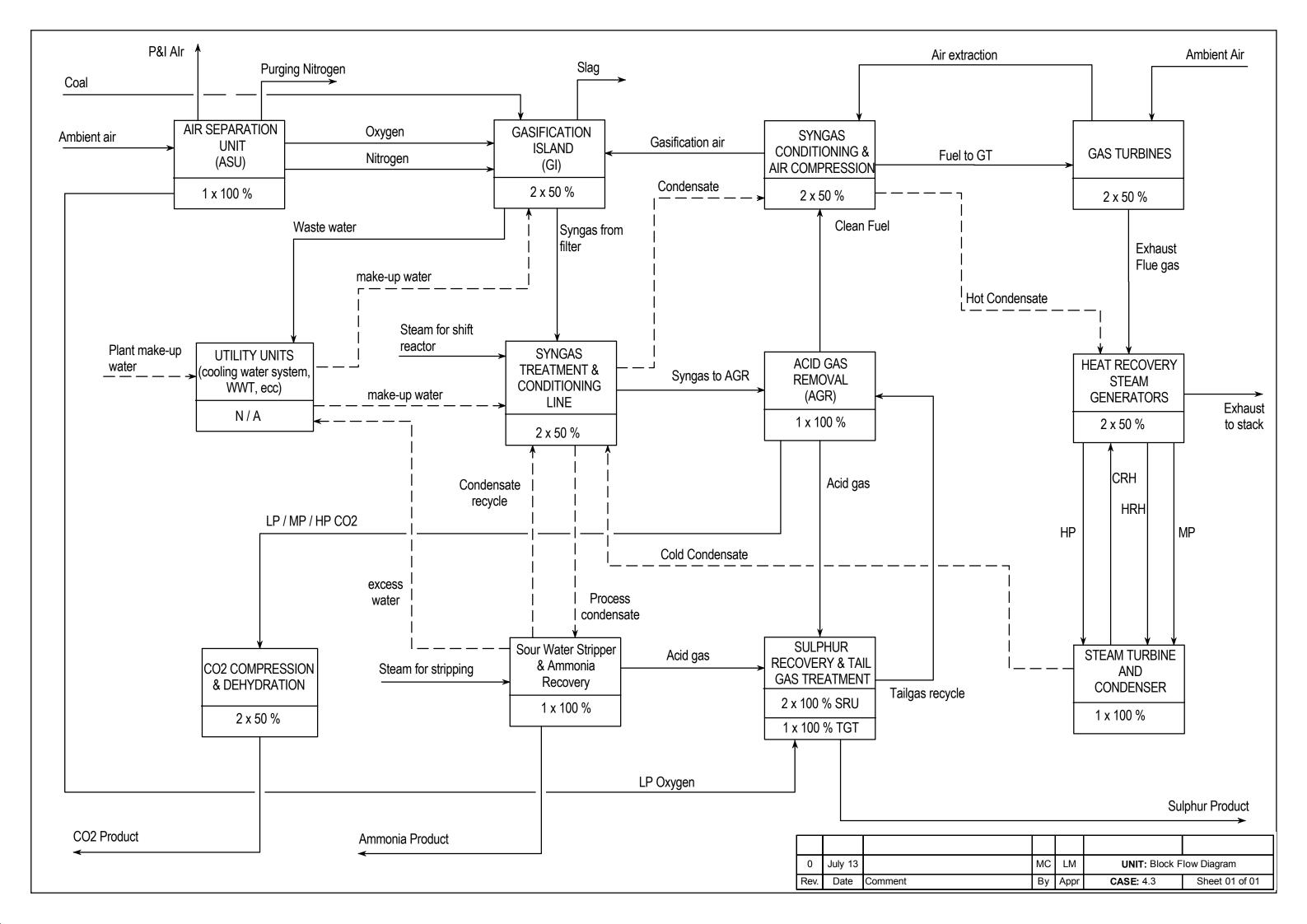
1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Unit **Description Trains** 900 Coal Handling & Storage N/A 1000 Gasification Coal Milling 3 x 43% Pulverised Coal Feeding system 3 x 43% Gasifiers 2 x 50% Syngas Cooler and Char Removal 2 x 50% Slag Discharge 2 x 50%

Table 1. Case 4.3 – Unit arrangement

Revision no.: Final **IEAGHG**


 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date:

Sheet: 4 of 22

January 2014

Unit	Description	Trains
2200	Syngas Treatment and Conditioning Line	2 x 50%
	Air Booster Compressor	2 x 50%
	Ammonia scrubber	2 x 50%
2250	Ammonia Recovery unit	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
3000	Combined Cycle	
	Gas Turbine	2 x 50%
	HRSG	2 x 50%
	Steam Turbine	1 x 100%
4000	<u>Utility and Offsite</u>	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Pate: January 2014

Sheet: 5 of 22

2. Process Description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Coal Handling & Storage

The unit mainly consists of the coal storage and handling.

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Unit

The gasification island based on MHI gasification mainly includes the coal preparation section, the gasification and syngas cooler and char removal section and the slag discharge from the gasifier. This Air Separation unit is also included as a packaged unit supplied by MHI, sized to produce the nitrogen required by the feed transportation system of the gasifier. Technical information relevant to these packages is reported in chapter E, section 3.3.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. The main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

Filtered raw syngas from gasification is first cooled in the HP Steam Generator for HP Steam production and then enters the saturator to increase its water content. The partially humidified syngas is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H₂ and CO₂ and COS is converted to H₂S. A double stage shift, containing sulphur tolerant shift catalyst (sour shift) is selected in order to increase the H₂ content in the fuel and maximize the degree of CO₂ removal. The overall CO conversion is approximately 98%. The required dry syngas/H₂O molar ratio for the shift reaction is achieved by means of MP steam injection after syngas heating in the Feed/Product Heat Exchanger, upstream the first stage reactor.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Pate: January 2014

Sheet: 6 of 22

The partially-shifted syngas temperature is increased at approximately 420°C by the exothermic shift reaction, allowing for thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the second reactor stage:

- Feed/Product Heat Exchanger
- HP Steam Generator #2
- MP Steam Generator

After being cooled, the syngas is directed to the second and last shift reactor. The hot shifted syngas exiting from the second stage at approximately 285°C is first cooled in two dedicated heat exchangers to heat the circulating water coming from the desaturator and then further cooled and condensed in a de-saturator column that reduces the number of exchangers and drums. The process condensate and make-up demineralised water recovered in the de-saturator are mixed to the circulating water.

Final cooling of the syngas is made against cooling water before passing through the Ammonia Scrubber. After the scrubber, syngas passes through a sulphur-impregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas then enters the AGR unit.

The blowdown of the circulating water and the process condensate from the ammonia scrubber are collected in a condensate accumulator. This process condensate is sent to the Ammonia Recovery and Waste Water Treatment which recover water at different purity level for re-use in the plant.

From the AGR unit, cool hydrogen rich gas returns to the syngas treatment and conditioning line as de-carbonized fuel gas after H₂S and CO₂ removal. The decarbonized fuel gas is preheated in the Syngas Circulating Water Exchanger and then in the Syngas Final Heater with LP steam before entering the Combined Cycle for final heating and combustion.

This unit includes also compression of the air required by Gasifiers. The air extracted from gas turbines is cooled in the following exchangers before entering the air booster compressor:

- Gasification Air Exchanger
- LP Steam Generator
- Condensate Preheater
- Final Air Cooler.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS D

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 7 of 22

2.5. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H_2S and CO_2 in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit.

- The H₂S+COS concentration of the treated gas exiting the unit is lower than 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 4%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.08% mol).
- The acid gas H₂S concentration is about 35% dry basis, suitable to feed the oxygen blown Claus process.

The CO_2 removal rate is 92% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 89% with respect to the carbon in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.6. Unit **2400** – **SRU** and **TGT**

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The SRU is designed to process the acid gas from the AGR, and minor acid stream as the sour gases from the stripper, using low pressure oxygen from the ASU. In the furnace, H_2S is catalytically oxidized to SO_2 which is further reacted with H_2S to form H_2O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 35 barg by means of a dedicated compressor.

The overall sulphur production is approximately 70 tons per day.

2.7. Unit 2500 – CO₂ compression and drying

This unit is mainly composed of a compression and dehydration package, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the

 CO_2 Capture at Coal Based Power and Hydrogen Plants

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 8 of 22

interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Three different streams of CO_2 from the Acid Gas Removal unit are routed to the CO_2 compression unit, delivered at approximately 9 barg, 2 barg, and 0.1 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 30 bar and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 110 barg. Due to the higher nitrogen content, the CO₂ stream is compressed up to the pressure level required at plant battery limits.

The CO₂ product is transported to the plant battery limits for final sequestration.

2.8. Unit 3000 – Combined cycle

Technical information relevant to these packages is reported in chapter E, section 2.10. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Hydrogen rich syngas exiting the syngas treatment and conditioning line is finally heated in the combined cycle using MP boiler feed water before entering the burner of the MHI gas turbine M701F.

The gas turbine compressors provide combustion air to the burner and also to the combustion/reduction sections of the gasifiers.

The exhaust gases from the gas turbine enter the HRSG, where the heat available is recovered producing steam at three different pressure levels for the steam turbine, plus an additional steam generator with integral deaerator. The HRSG also provides HP BFW for cooling of the combustion air (Turbine Cooling Air, TCA). Hot BFW is then recycled back to the HRSG for steam generation. The final exhaust gas temperature to the stack of the HRSG is 140°C. The calculated acid gas dew point temperature of the exhaust flue gas is 93°C.

The Heat Transfer vs. Temperature of the HRSG (T-Q diagram) of case 4.3 is shown in Figure 1. The red line (the upper curve) represents the exhaust gases from the GT to the stack. The blue lines represent the water path in the economizers (at lower temperature), the steam generators (horizontal lines) and the super-heater/re-heater (at higher temperature).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 9 of 22

The combined cycle is thermally integrated with the process unit, in order to maximize the net electrical efficiency of the plant. The main steam and water interfaces with the process units are given in Table 2.

2.9. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

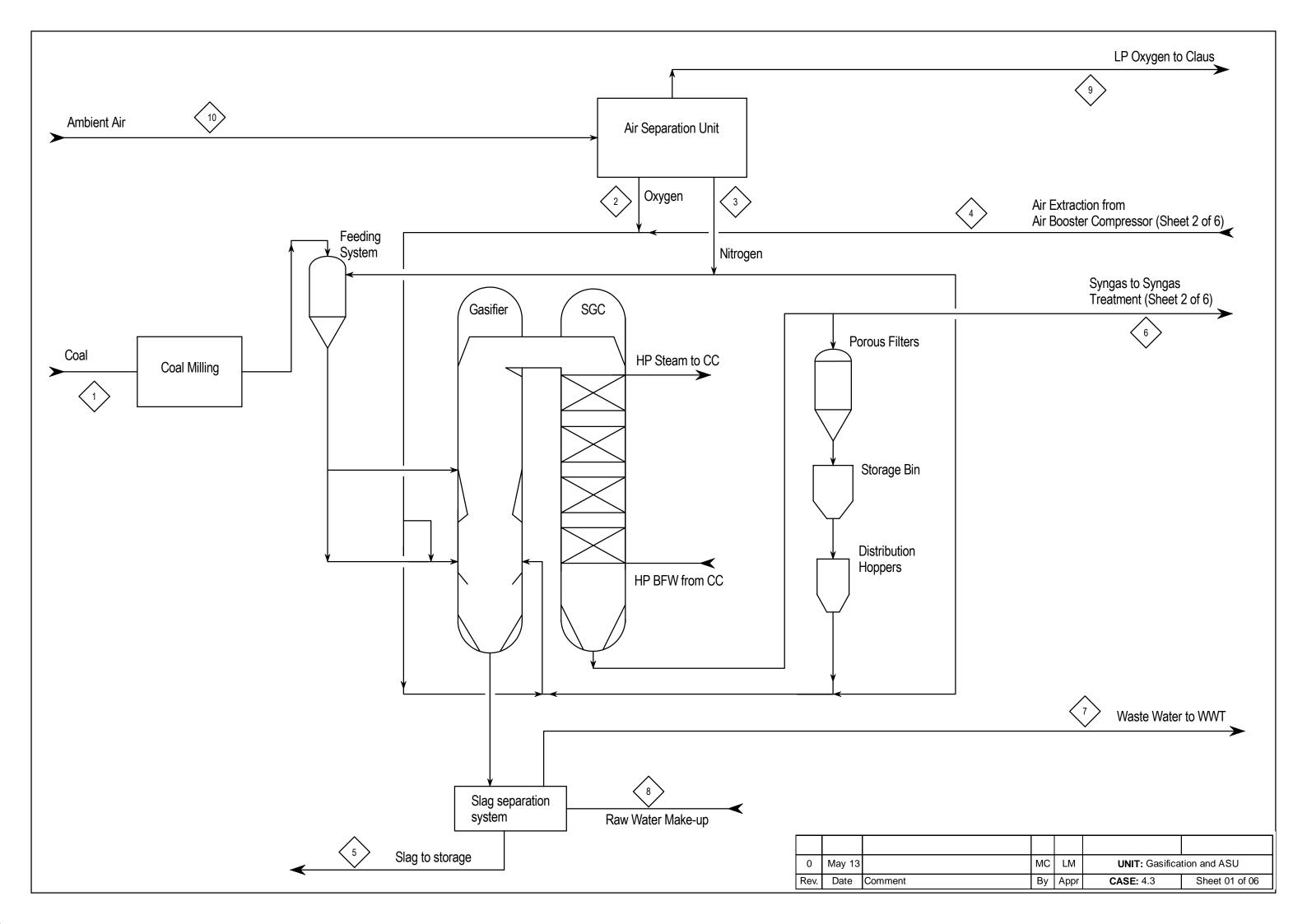
- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

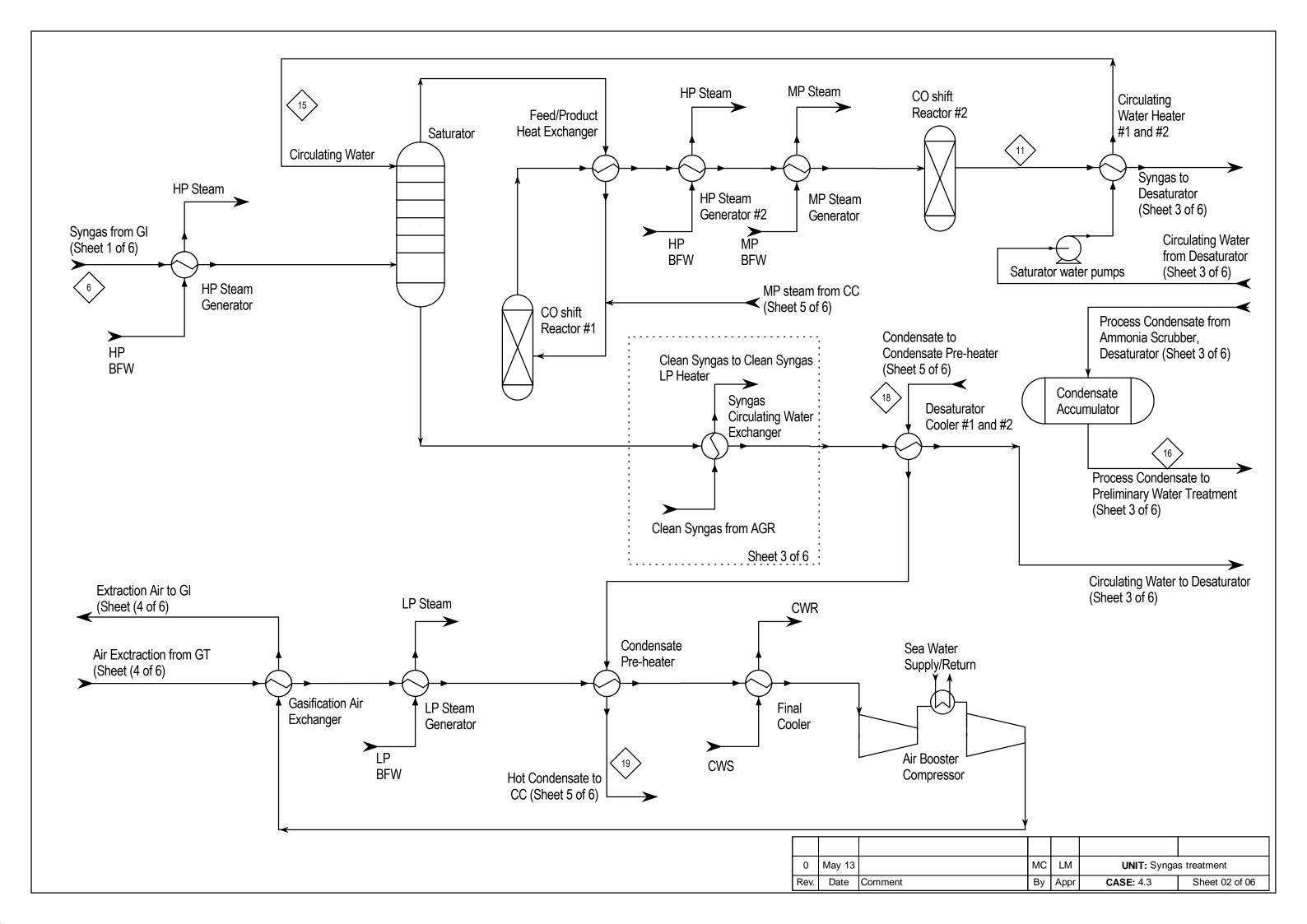
Basin diameter	160 m
Cooling tower height	210 m
Water inlet height	17 m

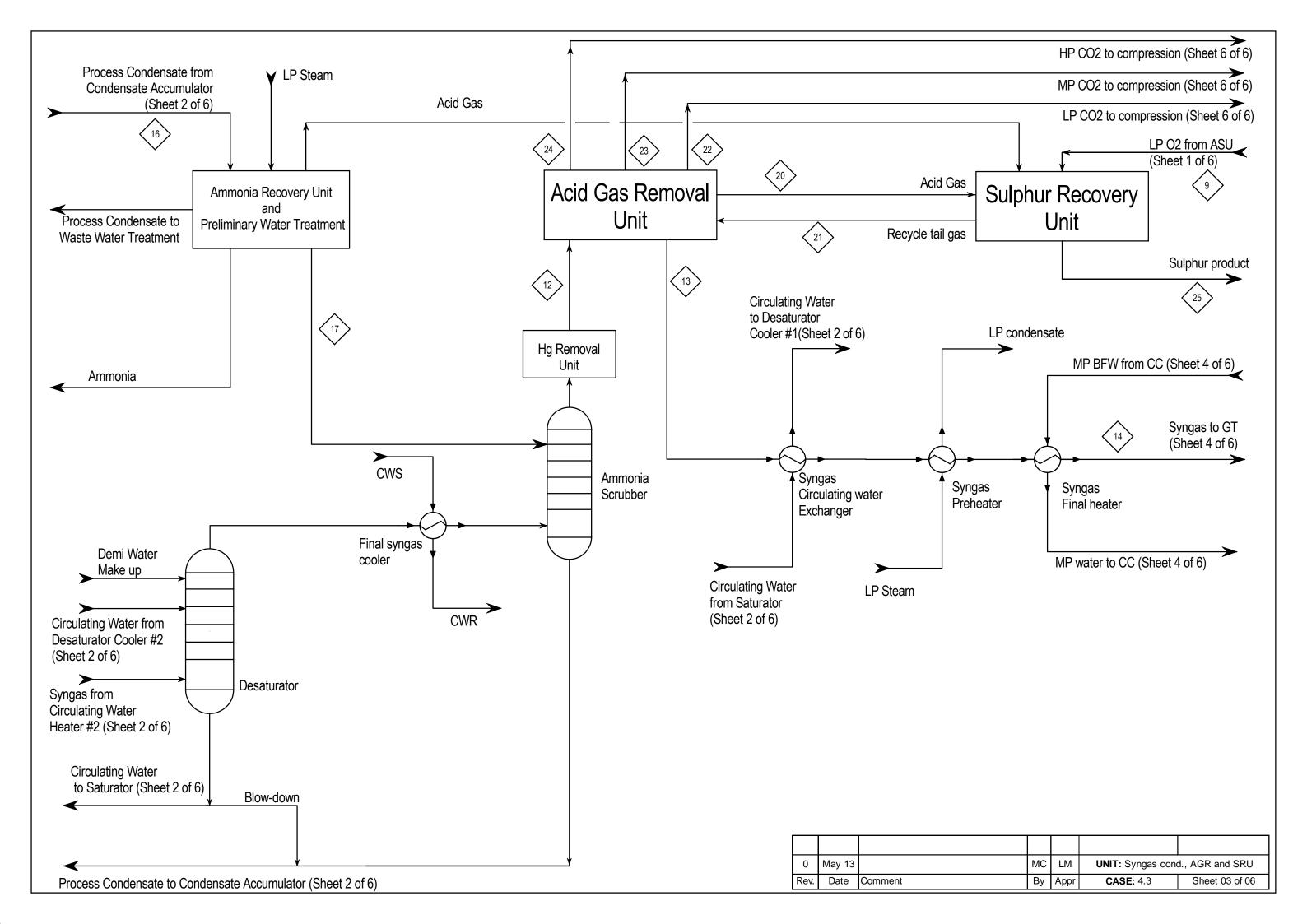
- Raw water system;
- Demineralised water plant,
- Fire fighting system,
- Instrument and Plant air.

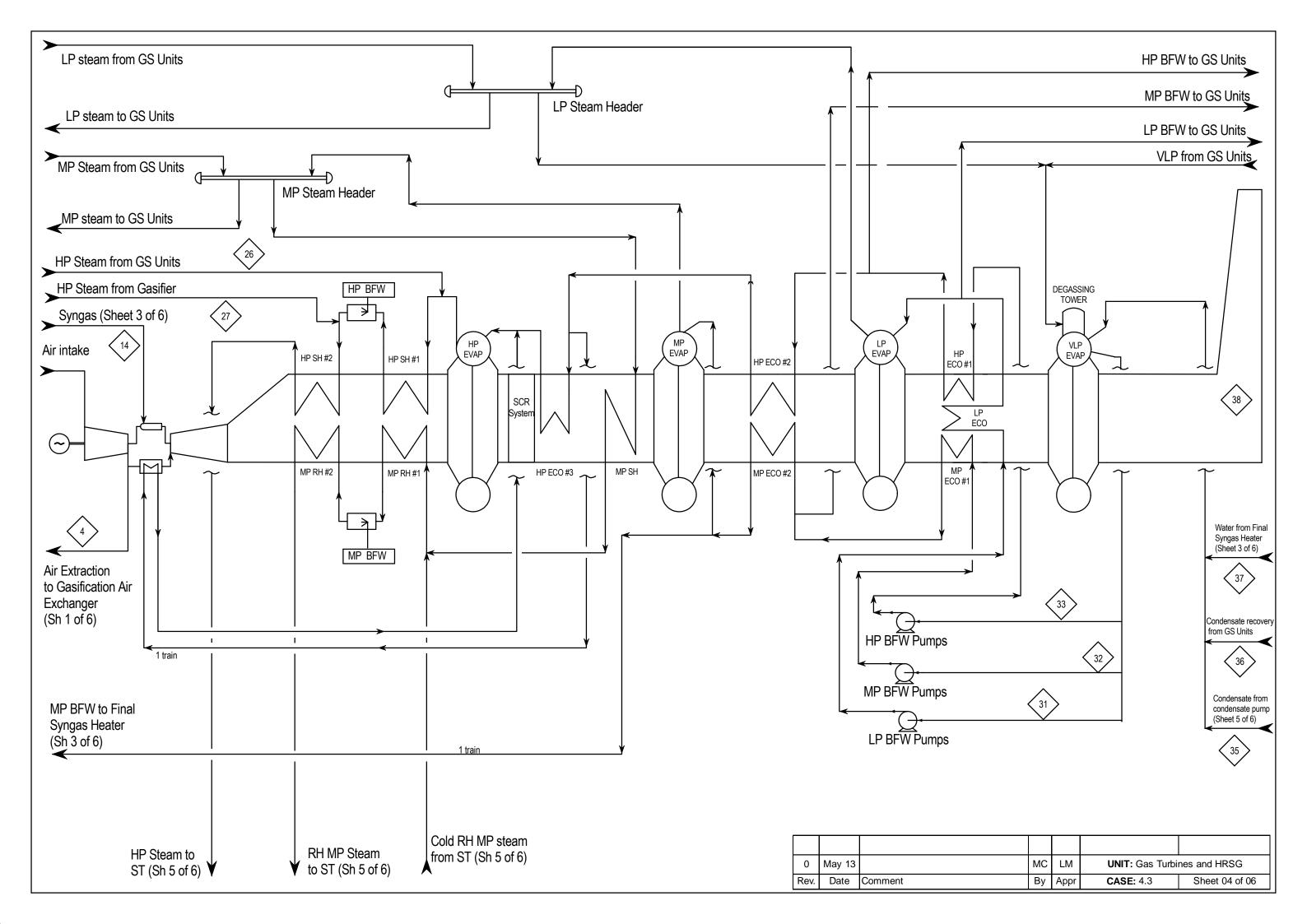
Process descriptions of the above systems are enclosed in chapter E, section 2.11.

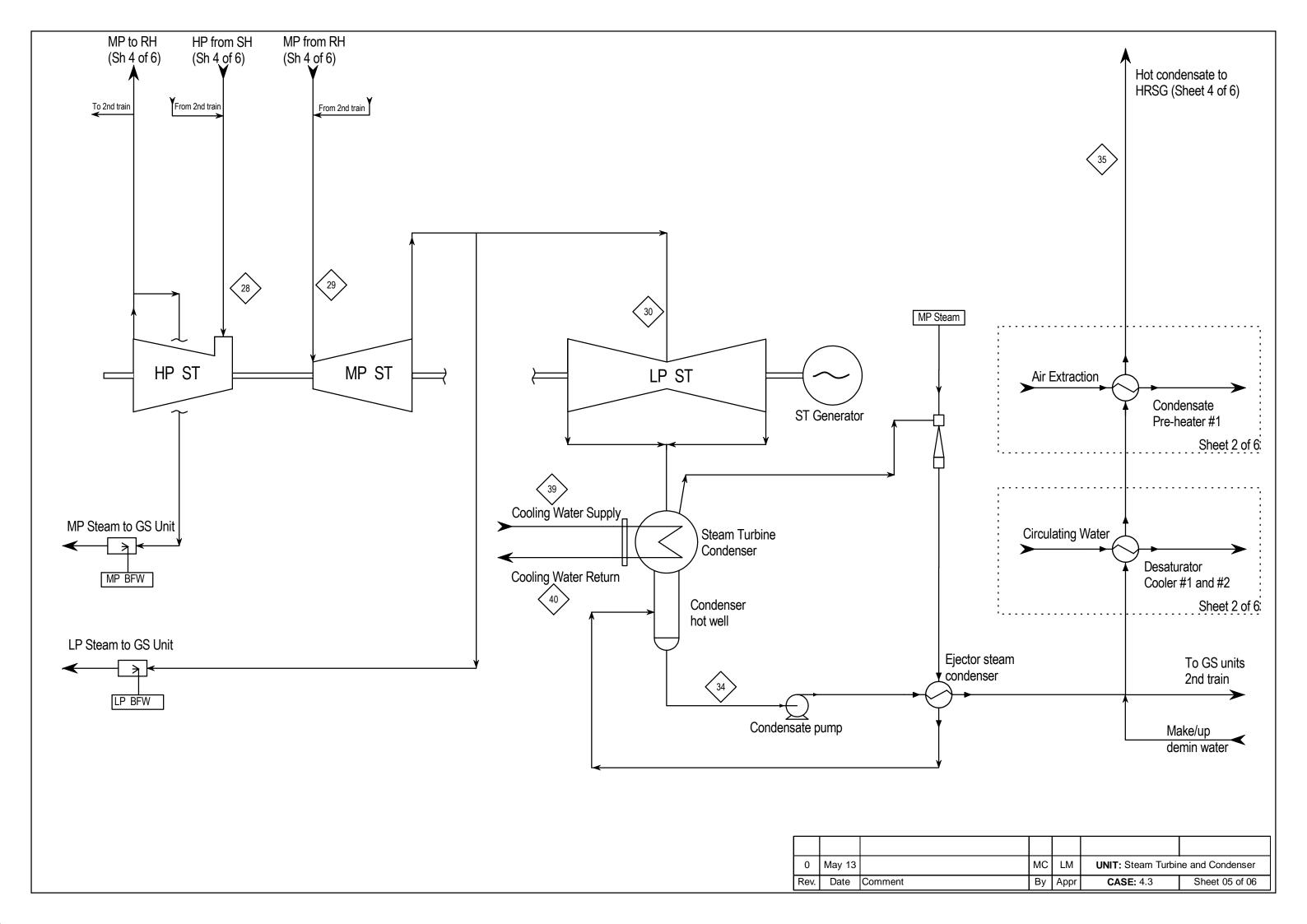
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

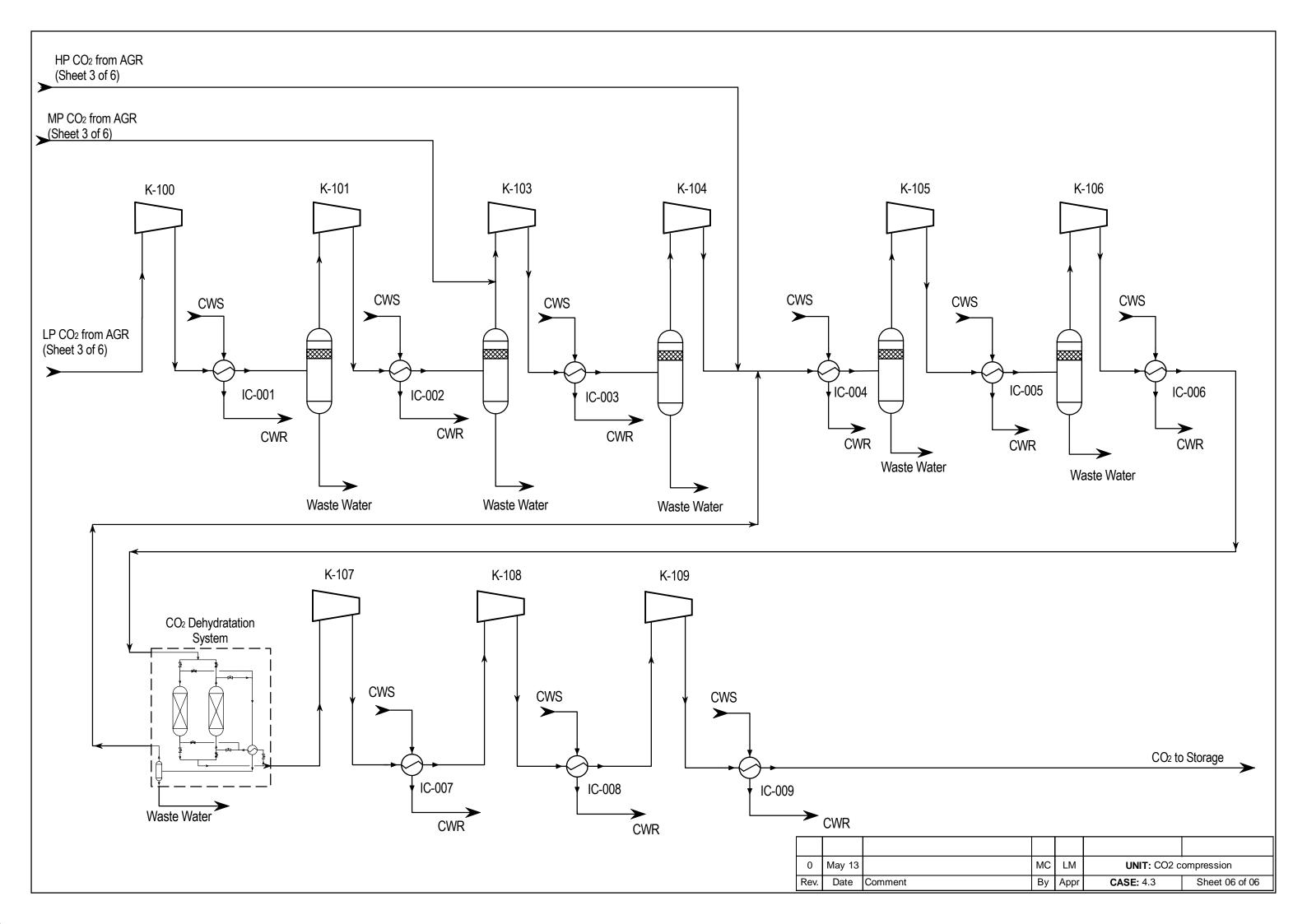

Date: January 2014


Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification


Sheet: 10 of 22


3. Process Flow Diagram


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

January 2014

Sheet: 11 of 22

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

		IGCC HEAT AND MATERIAL BALANCE - Case 4.3	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	MC		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	May 2013		
		UNIT 1000 - Gasification Island				

	1	2	3	4	5	6	7	8	
	Coal to Gasification Island (Total)	HP OXYGEN from ASU	HP NITROGEN from ASU	Air extraction from Compressors	Slag (Total)	SYNGAS at Gasifier Outlet to Shift Reactor (Total)	Waste Water	Makeup Water	
Temperature (°C)		N/D	N/D	N/D	N/D	N/D	N/D	N/D	
Pressure (bar)		N/D	N/D	N/D	N/D	N/D	N/D	N/D	
TOTAL FLOW									
Mass flow (kg/h)	345100	N/D	N/D	N/D	42102	1365540	N/D	N/D	
Molar flow (kgmole/h)		N/ D	N/D	N/D		55240			
LIQUID PHASE									
Mass flow (kg/h)							N/D	N/D	
GASEOUS PHASE									
Mass flow (kg/h)		N/D	N/D	N/D		1365540			
Molar flow (kgmole/h)		N/D	N/D	N/D		55240			
Molecular Weight		N/D	N/D	N/D		N/D			
Composition (vol %)									
H ₂						N/D			
СО						N/D			
CO ₂				0.04		N/D			
N_2		1.50	N/D	1.50		N/D			
O_2		95.00	N/D	20.71		N/D			
CH ₄						N/D			
H ₂ S + COS						N/D			
Ar		3.50	N/D	0.92		N/D			
H ₂ O				1.17		N/D			
NH_3						N/D			

Note: (1) N/D: Not Displayable.

		IGCC	HEAT AND MATE	RIAL BALANCE - C	ase 4.3		REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	MC		
FOSTERWHEELER	PROJECT NAME:	:	CO ₂ capture at coa	I based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A	•			APPROVED	LM		
	LOCATION:		The Netherlands				DATE	May 2013		
				NIT 2100 Air Sor	paration Unit (ASL	1)		<u>.</u>	1	
	_	1	- Oi	Г	iaiation onit (ASC	· · · · · · · · · · · · · · · · · · ·	<u> </u>		<u> </u>	
CTDFANA	2	3	9	10						
STREAM	HP OXYGEN to Gasification	HP NITROGEN to Gasific.	LP OXYGEN to SRU	Air Intake from Atmosphere						
Temperature (°C)	N/D	N/D	15	AMB.						
Pressure (bar)	N/D	N/D	7.5	AMB.						
TOTAL FLOW										
Mass flow (kg/h)	N/D	N/D	1535	N/D						
Molar flow (kgmole/h)	N/ D	N/D	48	N/D						
LIQUID PHASE										
Mass flow (kg/h)										
GASEOUS PHASE										
Mass flow (kg/h)	N/D	N/D	1535	N/D						
Molar flow (kgmole/h)	N/D	N/D	48	N/D						
Molecular Weight	N/D	N/D	32.22	N/D						
Composition (vol %)										
H ₂										
CO										
CO ₂				0.04						
N_2	1.50	N/D	1.50	1.50						
02	95.00	N/D	95.00	20.71						
CH ₄										
H ₂ S + COS	2.50	N/5	2.50	0.00						
Ar	3.50	N/D	3.50	0.92						
H_2O NH_3				1.17						

Note: (1) N/D: Not Displayable.

	IGCC	HEAT AND MATERIAL BALANCE - Case 4.3	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	MC		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	May 2013		

UNIT 2200 - Syngas cooling & Conditioning line

	6	11	12	13	14	15	16	17	18	19
STREAM	SYNGAS at Gasifier Outlet to Shift Reactor (2 Trains)	SYNGAS at Shift Reactor Outlet (2 Trains)	RAW SYNGAS to Acid Gas Removal (2 Trains)	HP Purified SYNGAS from Acid Gas Removal (Total)	Treated SYNGAS to Power Island (Total)	Circulating Water to Saturator (2 Trains)	Contaminated Condensate to Stripping (2 Trains)	Condensate Recovered from Stripping (2 Trains)	Cold Condensate from Unit 4200 (2 Trains)	Hot Condensate to Unit 4200 (2 Trains)
Temperature (°C)	N/D	258	38	14	165	193	104	35	25	123
Pressure (bar)	N/D	38.3	35	33.1	34.6	45.0	36.3	37.0	14.5	10.1
TOTAL FLOW										
Mass flow (kg/h)	1365540	2043696	1642315	N/D	N/D	2587906	277112	101806	1493767	1493767
Molar flow (kgmole/h)	55240	92771	70664	N/D	N/D					
LIQUID PHASE										
Mass flow (kg/h)						2587906	277112	101806	1493767	1493767
GASEOUS PHASE										
Mass flow (kg/h)	1365540	2043696	1642315	N/D	N/D					
Molar flow (kgmole/h)	55240	92771	70664	N/D	N/D					
Molecular Weight	N/D	22.0	23.2	N/D	N/D					
Composition (vol %)										
H ₂	N/D	25.84	33.92	N/D	43.99					
СО	N/D	0.36	0.46	N/D	0.57					
CO ₂	N/D	31.50	25.33	N/D	2.68					
N_2	N/D	29.63	38.90	N/D	51.47					
O_2	N/D	0.00	0.00	N/D	0.00					
CH₄	N/D	0.36	0.47	N/D	0.57					
$H_2S + COS$	N/D	0.09	0.12	N/D	0.00					
Ar	N/D	0.42	0.55	N/D	0.69					
H ₂ O	N/D	23.71	0.25	N/D	0.02					
NH_3	N/D	0.16	0.00	N/D	0.00					

Note: (1) N/D: Not Displayable.

		IGCC H	IEAT AND MATE	RIAL BALANCE - Ca	ase 4.3		REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	MC		
FOSTERWHEELER	PROJECT NAME:	:	CO ₂ capture at coa	al based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A	, , , , , , , , , , , , , , , , , , , ,	, s 50 s p s		APPROVED	LM		
	LOCATION:		The Netherlands				DATE	May 2013		
	LOCATION.		The Netherlands				DAIL	Way 2013		
			UI	NIT 2300 - Acid Ga	s Removal (AGR)					
	12	13	20	21	22	23	24			
STREAM	Raw SYNGAS from Syngas Cooling	HP Purified Syngas to Syngas Cooling	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression			
Temperature (°C)	38	14	20	20	6.1	8.8	11.6			
Pressure (bar)	35.3	33.1	1.6	35.7	1.1	3.2	10.2			
TOTAL FLOW										
Mass flow (kg/h)	1642315	N/D	8942	5807	320421	363816	46569			
Molar flow (kgmole/h)	70664	N/D	261	158	7303	8435	1456			
LIQUID PHASE										
Mass flow (kg/h)										
GASEOUS PHASE										
Mass flow (kg/h)	1642315	N/D	8942	5807	320421	363816	46569			
Molar flow (kgmole/h)	70664	N/D	261	158	7303	8435	1456			
Molecular Weight	23.2	N/D	34.3	36.8	43.9	43.1	32.0			
Wolcedidi Welgiti	25.2	14,5	34.3	30.0	43.3	45.1	32.0			
Composition (vol %)										
H ₂	33.92	N/D	11.00	12.01	0.03	1.49	27.61			
со	0.46	N/D	0.24	0.00	0.00	0.07	0.64			
CO ₂	25.33	N/D	44.46	73.50	99.49	97.10	69.88			
N_2	38.90	N/D	7.00	11.58	0.02	0.94	0.19			
O_2	0.00	N/D	0.00	0.00	0.00	0.00	0.00			
CH₄	0.47	N/D	0.52	0.00	0.01	0.14	0.86			
H₂S + COS	0.12	N/D	35.24	2.90	0.00	0.00	0.00			
Ar	0.55	N/D	0.26	0.00	0.00	0.07	0.71			
H ₂ O	0.25	N/D	1.27	0.00	0.44	0.19	0.10			
NH ₃	0.00	N/D	0.00	0.00	0.00	0.00	0.00			

		IGCC H	IEAT AND MATER	RIAL BALANCE - C	ase 4.3		REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	MC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coa	al based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	May 2013		
		•		. D	CDUI) O Tail Can T		<u> </u>	,		
		U	JNIT 2400 - Sulfur	Recovery Unit (oku) & Tali Gas T	reatment (IGI)				
	20	21	9	25						
STREAM	Acid Gas from AGR Unit	Claus Tail Gas to AGR Unit	LP OXYGEN from ASU	Product Sulphur						
Temperature (°C)	20	20	15							
Pressure (bar)	1.6	35.7	7.5							
TOTAL FLOW										
Mass flow (kg/h)	8942	5807	1535	2763						
Molar flow (kgmole/h)	261	158	48							
LIQUID PHASE										
Mass flow (kg/h)										
GASEOUS PHASE										
Mass flow (kg/h)	8942	5807	1535							
Molar flow (kgmole/h)	261	158	48							
Molecular Weight	34.3	36.8	32.22							
Composition (vol %)										
H ₂	11.00	12.01								
со	0.24	0.00								
CO ₂	44.46	73.50								
N_2	7.00	11.58	1.50							
02	0.00	0.00	95.00							
CH₄	0.52	0.00								
H₂S + COS	35.24	2.90								
Ar	0.26	0.00	3.50							
H ₂ O	1.27	0.00								
NH ₃	0.00	0.00								

IGCC HEAT AND MATERIAL BALANCE - Case 4.3

CLIENT: IEAGHG

PROJECT NAME: CO₂ capture at coal based power and hydrogen plants

PROJECT NO: 1-BD-0681 A LOCATION: The Netherlands

REVISION	0	1
PREP.	MC	
CHECKED	NF	
APPROVED	LM	
DATE	May 2013	

Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Enthalpy kJ/kg
14	Treated SYNGAS from Syngas Cooling (*) (1)	N/D	165	34.6	66.7
4	Extraction Air to Gasifier (*)	N/D	N/D	N/D	-
26	Saturated HP Steam from Process Units (*)	59.3	331	131.0	2660
27	Superheated HP Steam from Gasifier (*)	N/D	N/D	N/D	N/D
28	HP Steam to Steam Turbine	1099.1	558	126.0	3495
29	Hot RH Steam to Steam Turbine	1130.0	558	41.3	3576
30	LP Steam to Steam Turbine	1057.2	340	9.0	3138
31	BFW to LP BFW Pumps (*)	83.8	132	2.9	554
32	BFW to MP BFW Pumps (*)	209.9	132	2.9	554
33	BFW to HP BFW Pumps (*)	547.1	132	2.9	554
34	LP Steam Turbine exhaust	1057.2	29.0	0.040	2303
35	Hot Condensate to HRSG (*)	1493.8	123	10.1	517
36	Recovered Condensate from process units(*)	157.8	111	5.5	466
37	Condensate from Final Syngas Heater (*)	30.4	168	45.5	711
38	Flue Gas at stack (*) (2)	N/D	140	AMB.	135
39	Cooling Water Supply to Steam Condenser	50198.4	15	4.0	63.3
40	Cooling Water Return from Steam Condenser	50198.4	26	3.5	109.3

^(*) flowrate for one train

⁽¹⁾ Syngas composition as per stream 14 of Material Balance for Unit 2200.

⁽²⁾ Flues gas molar composition: N2:74.8%, H2O: 13%; O2: 9.6%; CO2: 1.6%; Ar: 1%.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Sheet: 12 of 22

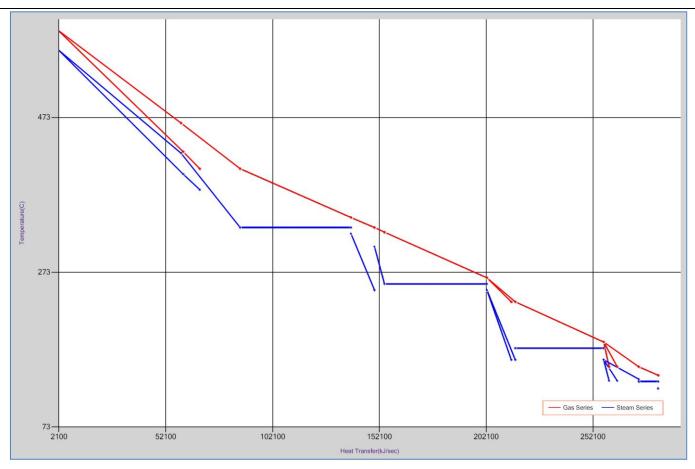


Figure 1 – Case 4.3 – HRSG T-Q diagram

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 13 of 22

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Steam / BFW / condensate interface summary is reported in Table 2
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

Chapter E.3 - 4.3: IGCC with CCS - MHI Gasification Sheet: 14 of 22

Date:

January 2014

Table 2. Case 4.3 – Steam/BFW/condensate interface summary

							REVISION	Rev.0	Rev.1		
	CLIENT:	IEAGHG					DATE	May 2013			
(FO			based power and hydro	gen plants			ISSUED BY	MC			
		The Netherlands					CHECKED BY	NF			
	FWI №:	1-BD-0681A					APPROVED BY	LM			
Case 4.3 - Steam and water balance											
UNIT	DESCRIPTION UNIT	HP Steam 130 barg	MP Steam 44.5 barg	LP Steam 8 barg	HP BFW	MP BFW	LP BFW	condensate recovery	Losses		
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]		
	PROCESS UNITS										
1000/2100	Gasification Section/ Air Separation Unit	N/D	N/D	N/D	N/D			N/D	N/D		
2200	Syngas Treating and Conditioning Line	-118.6	199.8	88.2	119.7	151.9	14.9	-15.1	-440.9		
2300	Acid Gas Removal			119.5				-119.5			
2400	Sulphur Recovery (SRU)- Tail gas treatment (TGT)		-6.0			6.0		-0.1	0.0		
3000	POWER ISLANDS UNITS	N/D	N/D	N/D	N/D	-158.0	-14.9	N/D			
4000	UTILITY and OFFSITE UNITS			12.8				-12.8			
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-444.3		

Note: (1) Minus prior to figure means figure is generated

(2) N/D: Not Displaylable.

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

January 2014 Date:

Sheet: 15 of 22

Table 3. Case 4.3 – Water consumption summary

CLIENT: IEA GHG Date: May - 13 ISSUED BY: MC FOSTER WHEELER PROJECT: CO2 capture at coal based power and hydrogen plants LOCATION: 1-BD-0681 A CHECKED BY: NF FWI Nº: The Netherlands APPR. BY: LM WATER CONSUMPTION SUMMARY

UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water 1 system	Cooling Wate 2 system
		[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS				
1000	Gasification Section	N/D			N/D
2100	Air Separation Unit				N/D
2200	Syngas treatment and conditioning line		103		11447
2300	Acid Gas Removal				11864
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				163
2500	CO2 Compression and drying				7335
	POWER ISLANDS UNITS				
3100/3400	Gas Turbines and Generator auxiliaries				1409
3200	Heat Recovery Steam Generator				
				50198	
3300/3400	Steam Turbine and Generator auxiliaries		444		2348
3500	Miscellanea				
	UTILITY and OFFSITE UNITS 4000/5200				
4000	Cooling Water System	1785			
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	821	-547.5		
4000	Waste Water Treatment	-282			
4000	Balance of Plant (BOP)				428
	BALANCE including CO2 compression	N/D	0	50198	N/D

Note: (1) Minus prior to figure means figure is generated.

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Date: January 2014

Sheet: 16 of 22

Table 4. Case 4.3 – Electrical consumption summary

		Rev.0
	CLIENT: IEAGHG	May-13
		ISSUED BY: MC
FOSTE	PROJECT: CO2 capture at coal based power and H2 plants LOCATION: The Netherlands	CHECKED BY: NF
	FWI №: 1-BD-0681A	APPR. BY: LM
	ELECTRICAL CONSUMPTION SUMMARY - MHI IGCC - CASE 4.3	
UNIT	DESCRIPTION UNIT	Absorbed Electri
Oitii	DESCRIPTION ONLY	[kW]
	PROCESS LIMITS	
	PROCESS UNITS	
900	Coal Handling and Storage	837
1000	Carification Castion	11 /m
1000	Gasification Section	N/D
2100	Air Congration Unit	N/D
2100	Air Separation Unit	N/D
2200	Syngas treatment and conditioning line	32628
2200	Syngas treatment and conditioning line	32028
2300	Acid Gas Removal	44013
2500	Note dus nomeral	44013
2400	Sulphur Recovery (SRU)- Tail gas treatment (TGT)	639
2400	Carpinal recovery (error rain gas areasment (101)	000
2500	CO2 Compression and Drying	54300
2500		0.000
	POWER ISLANDS UNITS	
3100/3400	Gas Turbines, Generator auxiliaries and Step-up transformer losses	N/D
3100/3400	das turbines, deficiator auxiliaries and step-up transformer rosses	N/D
3200	Heat Recovery Steam Generator	8902
3200	Treat necestry steam deficiation	0302
3300/3400	Steam Turbines, Generator auxiliaries and Step-up transformer losses	864
3300/3100		
3500	Miscellanea	2757
	UTILITY and OFFSITE UNITS 4000/5200	
4100	Cooling Water (Sea Water / Machinery Water)	12687
.200		
4200	Demineralized/Condensate Recovery/Plant and Potable Water Systems	494
.200	η,	
	Other Units	1467
	TOTAL CONSUMPTION	226983
	•	

Notes: (1) Minus prior to figure means figure is generated

(2) N/D: Not displaylable.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 17 of 22

6. Overall performance

The following Table shows the overall performance of Case 4.3.

CLIENT:	IEA GHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	May 2013
PROJECT No. :	1-BD-0681 A	MADE BY	MC
LOCATION:	The Netherlands	APPROVED BY	LM

Case 4.3 - IGCC Plant Performance Summary

OVERALL PERFORMANCES						
Coal Flowrate (as received)	t/h	345.1				
Coal LHV (as received)	kJ/kg	25870				
Coal HHV (as received)	kJ/kg	27060				
THERMAL ENERGY OF FEEDSTOCK(A)	MWth (LHV)	2480				
THERMAL ENERGY OF FEEDSTOCK(A')	MWth (HHV)	2594				
Thermal Power of Raw Syngas exit Gasification Island (D)	MWth (LHV)	1914				
Thermal power of syngas to AGR	MWth (LHV)	1723				
Thermal Power of Clean Syngas to Gas Turbines (E)	MWth (LHV)	1667				
Syngas treatment efficiency (F/E*100)	% (LHV)	87.1				
Gas turbines total electric power output	MWe	630.0				
Steam turbine electric power output	MWe	462.7				
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX (C)	MWe	1093				
Gasification Section units & ASU consumption	MWe	144.5				
Combined Cycle units consumption	MWe	13.6				
CO ₂ Compression and Dehydration unit consumption	MWe	54.3				
Utility Units consumption	MWe	14.6				
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	227				
NET ELECTRIC POWER OUTPUT OF IGCC	MWe	865.6				
(Step Up transformer efficiency = 0.997%) (B)	MWe	863.0				
Gross electrical efficiency (C/A x 100)	% (LHV)	44.1				
Net electrical efficiency (B/A x 100)	% (LHV)	34.8				
Gross electrical efficiency (C/A' x 100)	% (HHV)	42.1				
Net electrical efficiency (B/A' x 100)	% (HHV)	33.3				
Fuel Consumption per net power production	MWth/MWe	2.87				
CO ₂ emission per net power production	kg/MWh	104.1				

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Sheet: 18 of 22

The following Table shows the overall CO_2 balance and CO_2 removal efficiency of Case 4.3.

January 2014

CO ₂ removal efficiency	Equivalent flow of CO ₂
	kmol/h
INPUT	
Fuel Mix (Carbon AR)	18577
TOTAL (A)	18577
ОUТРUТ	
Slag (B)	21
CO ₂ product pipeline	
со	15
CO ₂	16473
CH ₄	25
cos	0
Total to storage (C)	16514
Emission	
CO ₂ + CO (Combined Cycle)	2042
TOTAL	18577
Overall Carbon Capture, % ((B+C)/A)	89.0

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Sheet: 19 of 22

7. Environmental impact

The IGCC plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

January 2014

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 5 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle. A continuous emissions monitoring system will be provided on the stack to monitor flowrate and concentration of main components.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6 these emission mainly consists of air or nitrogen containing particulate.

Table 5. Case 4.3 – Plant emission during normal operation

Flue gas to HRSG stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	N/D ⁽²⁾
Flow, Nm ³ /h (1)	N/D ⁽²⁾
Temperature, °C	140
Composition	(% vol)
Ar	N/D ⁽²⁾
N_2	N/D ⁽²⁾
O_2	$N/D^{(2)}$
CO ₂	N/D ⁽²⁾
H ₂ O	N/D ⁽²⁾
Emission	mg/Nm ^{3 (1)}
NOx	< 50
SOx	<1
CO	< 31
Particulate	< 4

⁽¹⁾ Dry gas, O₂ content 15% vol.

⁽²⁾ Not displayable

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Date: January 2014

Sheet: 20 of 22

Table 6. Case 4.3 – Plant minor emission

Emission source	Emission type	Temperature	
Coal milling and drying system	Continuous	ambient	Air: 10 mg/Nm ³ particulate
Coal feeding system	Intermittent	ambient	Nitrogen: 10 mg/Nm ³ particulate

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Cooling Tower blow-down

Flowrate: $425 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate : $275 \text{ m}^3/\text{h}$

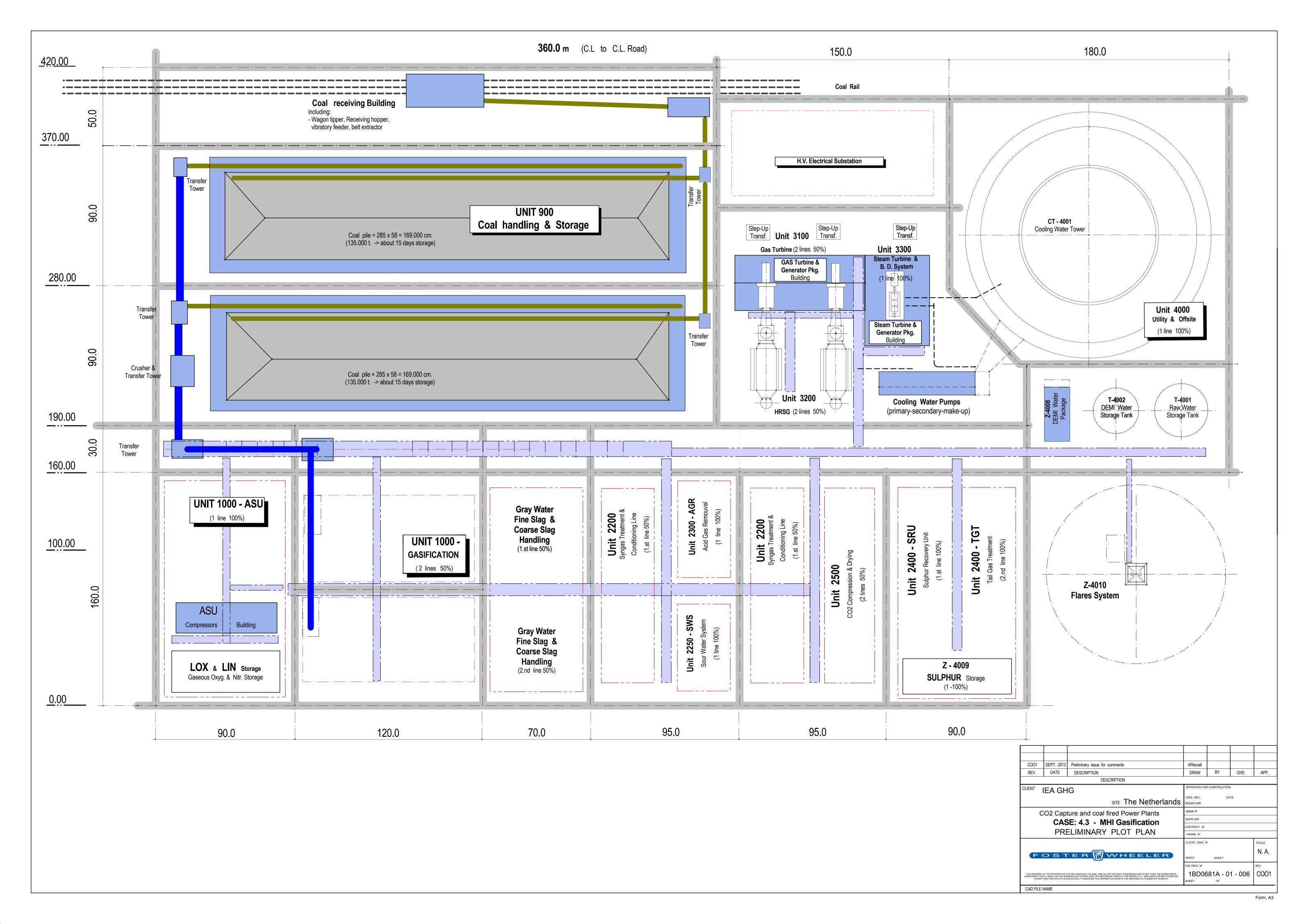
7.3. Solid effluents

The IGCC plant is expected to produce the following solid by-product:

Slag from gasifier

Flowrate : 42 t/h

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification Sheet: 21 of 22

8. Preliminary plot plan

Plot plan at block level of Case 4.3 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.3 - Case 4.3: IGCC with CCS - MHI Gasification

Sheet: 22 of 22

January 2014

9. Equipment list

The list of main equipment and process packages is included in this section.

CLIENT: IEAGHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 900 - Coal handling and storage

			o - Coai nanunng and sio	uge				
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating	P design	T design	Materials	Remarks
				[kW]	[barg]	[°C]		
	PACKAGES							
Z-901	Coal Handling							30 days storage
	Wagon tipper		Coal flowrate: 345 t/h					Storage piles: 2 x 135,000 t ed
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyor	Belt						
	Transfer Tower	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyor	Belt						
	Transfer Tower	Enclosed						
	Crushers Tower	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 5200 m3					for daily storage

CLIENT: IEAGHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST Unit 1000 - Gasification

ITEM	DESCRIPTION	TYPE SIZE	motor rating	P design	T design	Materials	Remarks	
TIENI	DESCRIPTION	TIFE	SIZE	[kW]	[barg] [°C]		Materiais	Kelliai Ks
	PACKAGES							
Z-1001	MHI Coal gasification package		2 x 4140 t/d coal as received.					
	Coal Milling							Included in Z-1001
	Pulverized Coal Feeding System							Included in Z-1001
	Gasification Reactor		2 x 960 MWth (LHV basis) syngas at filters outlet of gasifier reactor					Included in Z-1001
	Syngas Cooler and Char Removal							Included in Z-1001
	Slag Discharge							Included in Z-1001
	Black Water Treatment Plant							Included in Z-1001
	Air Booster Compressor							Included in Z-1001
	ASU							Included in Z-1001
	1	I	ı	I	1		I	

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	I M			

EQUIPMENT LIST

Unit 2100 - Air Separation Unit

ITEM	DESCRIPTION	TYPE	SIZE	motor rating	P design	T design	Meteriale	Remarks
				[kW]	[barg]	[°C]	Materials	
	PACKAGES							
Z-2101	ASU	_	N/D				_	Included in Z-1001

CLIENT: IEAGHG

LOCATION: The Netherlands

PROL NAME: CO2 centure at coal based power and by

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)								
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	HEAT EXCHANGERS							
E-2201	Feed/Product Heat Exchanger	Shell & Tube						
E-2202	HP steam generator #1	Kettle						
E-2203	HP steam generator #2	Kettle						
E-2204	MP steam generator	Kettle						
E-2205	Circulating Water Heater #1	Shell & Tube						
E-2206	Circulating Water Heater #2	Shell & Tube						
E-2207	Desaturator Cooler #1	Shell & Tube						
E-2208	Desaturator Cooler #2	Shell & Tube						
E-2209	Final Syngas Cooler	Shell & Tube						
E-2210	Syngas Circulating Water Exchanger	Shell & Tube						
E-2211	Syngas Preheater	Shell & Tube						
E-2212	Syngas Final Heater	Shell & Tube						
E-2213	Gasification Air Exchanger	Shell & Tube						
E-2214	LP Steam Generator	Kettle						
E-2215	Condensate Pre-heater	Shell & Tube						
E-2216	Final Cooler	Shell & Tube						

CLIENT: IEAGHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

		Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)						
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	DRUMS							
D-2201	Condensate accumulator	Horizontal						
	COLUMN							
C-2201	Syngas saturator	Vertical						
C-2202	Syngas desaturator	Vertical						
C-2203	Ammonia Scrubber	Vertical						
	REACTOR							
R-2201	1st Shift Catalyst Reactor	vertical						
R-2202	2nd Shift Catalyst Reactor	vertical						
	PUMPS							
P-2201 A/B	Saturator Circulating Water Pump	centrifugal						
	MISCELLANEA							
X-2201	Mercury Adsorber	Sulfur- impregnated activated carbon beds						

Note: Equipment list refers to one train only

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2301	Acid Gas Removal Unit - Absorption Section (Acid Gas Removal Unit, sized for 100% of the capacity)	Solvent Selexol	1 x 100%, Multiple absorbers Feed gas: 1583900 Nm3/h; 35 barg; 38 °C					CO2 removal =92% Separated removal of CO2 and H2S Total carbon capture: 0%"
Z-2302	Acid Gas Removal Unit - Regeneration Section (Acid Gas Removal Unit, sized for 100% of the capacity)		1x100 %					Total CO2 removal= 731 t/d; 8 ppm H2S (dry) in combined CO2
Z-2303	Chiller Unit	electrical driven						T= -10 °C

CLIENT: IEAGHG
LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package - two Sulphur Recovery Unit, each sized for 100% of the capacity - one Tail Gas Treatment Unit sized for 100% of capacity (including Reduction Reactor and Tail Gas		Sulphur Prod.= 72 t/d Acid Gas from AGR = 5900 Nm3/h Expected Treated Tail Gas =3600					Sulphur content > 99.9 % mol min (dry basis) Sulphur content = 35.1% mol (wet basis)
	Compressor)		Nm3/h					

CLIENT: IEAGHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 2500 - CO2 Compression and Drying (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design	Materials	Remarks
	GOMPREGGORG							
	COMPRESSORS							
C-2501	CO ₂ compression package	Centrifugal, Electrical Driven, 9 intercooled Stages	192140 Nm3/h p in: 1 bar a p out: 110 bar a	29900 MWe				Water Cooled
	PACKAGE							
PK-2501	CO ₂ drying package							

CLIENT: IEAGHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	May 2013			
PROJ. NAME: CO2 capture at coal based power and H2 plant	ISSUED BY	MC			
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF			
CASE: Case 4.3 - MHI Gasification	APPROVED BY	LM			

EQUIPMENT LIST

Unit 3100 - Gas Turbine (2x 50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-3101	Gas Turbine & Generator Package							
GT-3101	Gas turbine	MHI 701 F	315 MW					Included in Z-3101
G-3101	Gas turbine Generator		413 MVA					Included in Z-3101

CLIENT: IEAGHG

LOCATION: The Netherlands

PROL NAME: CO2 century at coal based power and H2 plants

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A
CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

	T		- Heat Recovery S	motor rating	P design	T design	1	I
ITEM	DESCRIPTION	TYPE	SIZE				Materials	Remarks
				[kW]	[barg]	[°C]		
	HEAT RECOVERY STEAM GENERATOR							
		Horizontal, Natural Circulated,						
HRSG-3201	Heat Recovery Steam Generator	4 Pressure Levels.						
111150 0201		Simple Recovery,						
		Reheated.						
Each HRSG include	ling:							
D-3202	HP steam Drum							
D-3203	MP steam Drum							
D-3204	LP steam Drum							
D-3205	VLP steam Drum with degassing section							
E-3201	HP Superheater 2nd section							Included in HRSG-3201
E-3202	HP Superheater 1st section							Included in HRSG-3201
E-3203	HP Evaporator							Included in HRSG-3201
E-3204	HP Economizer 3rd section							Included in HRSG-3201
E-3205	HP Economizer 2nd section							Included in HRSG-3201
E-3206	HP Economizer 1st section							Included in HRSG-3201
E-3207	MP Reheater 2nd section							Included in HRSG-3201
E-3208	MP Reheater 1st section							Included in HRSG-3201
E-3209	MP Superheater							Included in HRSG-3201
E-3210	MP Evaporator							Included in HRSG-3201
E-3211	MP Economizer 2nd section							Included in HRSG-3201
E-3212	MP Economizer 1st section							
E-3213	LP Evaporator							Included in HRSG-3201
E-3214	LP Economizer							Included in HRSG-3201
E-3215	VLP Evaporator							Included in HRSG-3201

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

 REVISION
 Rev. Draft
 Rev.0
 Rev.1
 Rev.2

 DATE
 May 2013
 ...
 ...
 ...

 ISSUED BY
 MC
 ...
 ...
 ...

 CHECKED BY
 NF
 ...
 ...
 ...

 APPROVED BY
 LM
 ...
 ...
 ...

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

MISCELLANEA Nox, CO, SO ₂ , particulate, H ₂ O, O ₂ STK-3201 CCU Stack Nox, CO, SO ₂ , particulate, H ₂ O, O ₂ STK-3201 CCU Stack SL-3201 HP Steam Desuperheater Included in HRSG-3201 HP Steam Desuperheater Included in HRSG-3201 Included in HR			CIII 3200	- Heat Recovery		` ′			_
PUMPS Qum/h x H.m.					motor rating	P design	T design		
Two operating & one spare 292 x 1590 2000 Two operating & one spare 292 x 1590 2000 Two operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 225 x 670 Color 225 x 670	ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
Two operating & one spare 292 x 1590 2000 Two operating & one spare 292 x 1590 2000 Two operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 224 x 670 600 One operating & one spare 225 x 670 Color 225 x 670				2					
P. 3202 A/B MP BFW Pumps centringal 224 x 670 600 One operating & one spare P. 3203 A/B LP BFW Pumps centringal 89 x 110 45 One operating & one spare MISCELLANEA X-3201 Flue Gas Monitoring System SIK-3201 CCU Stack SL-3201 Stack Silencer SS-3202 MP Steam Desuperheater DS-3203 LP Steam Desuperheater DS-3203 LP Steam Desuperheater SS-3204 Phosphate dosage pumps DS-3202 Phosphate Injection Package D-3203 Oxygen Scavanger Injection Package D-3203 Oxygen Scavanger Injection Package D-3204 Amines Injection Package D-3204 Amines Injection Package D-3204 Amines Injection Package D-3204 Amines Injection Package D-3205 A/B Oxygen scavanger dosage pumps D-3206 Amines Injection Package D-3207 Amines Injection Package D-3208 Amines Injection Package D-3209 Amines Injection Package D-3204 Amines Injection Package D-3205 A/B Oxygen scavanger dosage pumps D-3206 Amines Injection Package D-3206 Amines Injection Package D-3206 Amines Injection Package D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank D-3206 Amines Storage tank Included in Z - 3204 Include									
P-3203 A/B		<u> </u>							
MISCELLANEA Nox. CO, SO ₂ , particulate, H ₂ O, O ₂ STK-3201 CCU Stack SI-3201 Stack Silencer Included in PRSG-3201 Stack Silencer Included in PRSG-3201 Stack Silencer Included in PRSG-3201 MP Steam Desuperheater Included in PRSG-3201 Included in PACKAGES Included in PRSG-3201 Include			centrifugal						
X-3201 Flue Gas Monitoring System Nox, CO, SO ₂ , particulate, H ₂ O, O ₂ STK-3201 CCU Stack Stack Silencer Included in HRSG-3201 DS-3201 HP Steam Desuperheater Included in HRSG-3201 DS-3202 MP Steam Desuperheater Included in HRSG-3201 DS-3203 LP Steam Desuperheater Included in HRSG-3201 X-3204 SCR System Ammonia Injection Ammonia Injection	P-3203 A/B	LP BFW Pumps	centrifugal	89 x 110	45				One operating & one spare
X-3201 Flue Gas Monitoring System Nox, CO, SO ₂ , particulate, H ₂ O, O ₂ STK-3201 CCU Stack Stack Silencer Included in HRSG-3201 DS-3201 HP Steam Desuperheater Included in HRSG-3201 DS-3202 MP Steam Desuperheater Included in HRSG-3201 DS-3203 LP Steam Desuperheater Included in HRSG-3201 X-3204 SCR System Ammonia Injection Ammonia Injection		MISCELLANEA							
STK-3201 Stack Silencer SI-3201 Stack Silencer SI-3202 MP Steam Desuperheater SI-3203 Steam Desuperheater SI-3203 Steam Desuperheater SI-3204 Steam Desuperheater SI-3204 Steam Desuperheater SI-3204 Steam Desuperheater SI-3205 Steam Desuperheater SI-3206 SI-3206 SI-3207 SI-3	X-3201	Flue Gas Monitoring System	İ				İ	İ	NOx, CO, SO ₂ , particulate, H ₂ O, O ₂
Stack Silencer	STK-3201								
DS-3202 MP Steam Desuperheater DS-3203 LP Steam Desuperheater DS-3204 Namines Injection Package DS-3205 Namines Injection Package DS-3206 Namines Injection Package DS-3207 Namines Injection Package DS-3208 Namines Injection Package DS-3209 Namines Injection Package DS-3201 Namines Injection Package DS-3202 Namines Injection Package DS-3203 Namines Injection Package DS-3204 Namines Injection Package DS-3205 Namines Injection Package DS-3206 Namines Injection Package DS-3207 Namines Injection Package DS-3208 Namines Injection Package DS-3209 Namines Injection Package DS-3204 Namines Injection Package DS-3205 Namines Injection Package DS-3206 Nami									
DS-3202 MP Steam Desuperheater DS-3203 LP Steam Desuperheater DS-3204 LP Steam Desuperheater DS-3205 SCR System Ammonia Injection PACKAGES Z-3201 Fluid Sampling Package D-3202 Phosphate Injection Package D-3202 Phosphate storage tank P-3204 A/B Phosphate dosage pumps DS-3203 Oxygen Scavanger Injection Package D-3203 Oxygen scavanger storage tank DS-3205 A/B Oxygen scavanger dosage pumps DS-3206 A/B Oxygen scavanger dosage pumps DS-3207 A/B Oxygen scavanger dosage pumps DS-3208 A/B Oxygen scavanger dosage pumps DS-3209 A/B Oxygen scavanger dosage pumps DS-3204 A/B Included in Z-3203 Oxygen scavanger dosage pumps DS-3204 A/B Oxygen scavanger dosage pumps DS-3205 A/B Oxygen scavanger dosage pumps DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank DS-3206 A/B Oxygen Storage tank	DS-3201	HP Steam Desuperheater							Included in HRSG-3201
X-3202 SCR System PACKAGES Z-3201 Fluid Sampling Package D-3202 Phosphate Injection Package P-3204 A/B Phosphate dosage pumps P-3203 Oxygen Scavanger Injection Package D-3203 Oxygen Scavanger Injection Package D-3204 A/B Oxygen scavanger dosage pumps D-3205 A/B Oxygen scavanger dosage pumps Z-3204 Amines Injection Package D-3204 Amines Storage tank D-3204 Amines Storage tank P-3205 A/B Oxygen scavanger Injection Package D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Storage tank D-3205 A/B Oxygen scavanger Dosage pumps Included in Z - 3203 Included in Z - 3203 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204	DS-3202								Included in HRSG-3201
PACKAGES Z-3201 Fluid Sampling Package D-3202 Phosphate Injection Package P-3204 A/B P-3205 A/B P-3206 A/B P	DS-3203	LP Steam Desuperheater							Included in HRSG-3201
Z-3201 Fluid Sampling Package	X-3202	SCR System	Ammonia Injection						
Z-3201 Fluid Sampling Package		PACKAGES							
Phosphate Injection Package D-3202 Phosphate storage tank Phosphate dosage pumps D-3203 Oxygen Scavanger Injection Package D-3203 Oxygen scavanger storage tank Oxygen scavanger dosage pumps D-3205 A/B Oxygen scavanger dosage pumps D-3204 Amines Storage tank Included in Z - 3204 Included in	Z-3201								İ
D-3202 Phosphate storage tank Phosphate dosage pumps Z-3203 Oxygen Scavanger Injection Package D-3203 Oxygen scavanger storage tank Oxygen scavanger dosage pumps D-3205 A/B Oxygen scavanger dosage pumps D-3204 Amines Injection Package D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Docage pumps Included in Z - 3203 Included in Z - 3203 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204		1 5 5							
P-3204 A/B Phosphate dosage pumps Included in Z - 3202 One operating , one spare Z-3203 Oxygen Scavanger Injection Package D-3203 Oxygen scavanger storage tank Oxygen scavanger dosage pumps Oxygen scavanger dosage pumps Z-3204 Amines Injection Package D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Storage tank D-3204 Amines Design pumps Included in Z - 3204 Included in Z - 3204 Included in Z - 3204 Included in Z - 3204									
D-3203 Oxygen scavanger storage tank P-3205 A/B Oxygen scavanger dosage pumps Comparison of the compa	P-3204 A/B	1							
P-3205 A/B Oxygen scavanger dosage pumps Consider the properties of the properties	Z-3203	Oxygen Scavanger Injection Package							
P-3205 A/B Oxygen scavanger dosage pumps C-3204 Amines Injection Package D-3204 Amines Storage tank D-3206 A/B Amines Dosage pumps Included in Z - 3203 One operating, one spare	D-3203	Oxygen scavanger storage tank							
D-3204 Amines Storage tank Included in Z - 3204 Included in Z - 3204 Included in Z - 3204	P-3205 A/B	Oxygen scavanger dosage pumps							
D-3204 Amines Storage tank Included in Z - 3204 Included in Z - 3204 Included in Z - 3204	Z-3204	Amines Injection Package							
P 3206 A/P Aminos Dosago numps		_							
	P-3206 A/B								

CLIENT: IEAGHG
LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST

Unit 3300 - Steam Turbine and Blow Down System (1x100%)

			tani Turbine and L	motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3301	Steam Turbine & Condenser Package							
ST-3301	Steam Turbine		470 MW					Including: Lube oil system Cooling system Idraulic control system Drainage system Seals system
G-3402	Steam Turbine Generator		610 MVA					Drainage system Including relevant auxiliaries
U-3402	Steam Further Generator		OIO WIVA	1				
E-3301A/B	Inter/After condenser							
E-3302	Gland Condenser							
Z-3302	Steam Condenser Package	777	707 NOV.					7 1 1:
E-3303	Steam Condenser	Water cooled	737 MWt					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
Z-3303	Steam Turbine by-pass system							
2 3303	Steam Further by pass system							
	PUMPS		O,m ³ /h x H,m					
P-3301A/B	Condensate Pumps	Centrifugal, vertical	1500 x 220	1260				One operating, one spare
	1							
	HEAT EXCHANGERS							
E-3301	Blow-Down Cooler	Shell & Tube						
	DRUMS							
D-3301	Continuous Blow-down Drum	vertical						
D-3302	Discontinuous Blow-down Drum	vertical						

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST Unit 4000 -Utility & Offsite

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
7 4004	COOLING WATER GUGTEN							
Z-4001	COOLING WATER SYSTEM							
PK-4001	Cooling Water System							
CT-4001	Cooling Tower Including: Cooling water basin	Evaporative, Natural draft	Total heat duty 1270 MWth Diameter: 160 m, Height: 210 m, Water inlet: 17 m				concrete	Included in Z-4001
	Pumps							
P-4001A/B/C/D/E	Circulating pump to condensers	Vertical	12600 m3/h x 35 m	1600				Included in Z-4001 4 operating
P-4002A/B/C/D/E	Circulating pump to other users	Vertical	N/D	2200				Included in Z-4001 4 operating, one spare
P-4003A/B	Cooling tower make-up pumps	centrifugal	1785 m3/h x 30 m	kW				Included in Z-4001 1 operating, one spare
	Packages							
	Cooling Water Filtration Package Cooling Water Sidestream Filters		N/D					
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps							
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps							
Z-4002	RAW WATER SYSTEM							
T-4001	Raw Water storage tank		27400 m3					Included in Z-4002 24 hour storage
P-4004A/B	Raw Water Pumps		N/D	100				Included in Z-4002 One operating, one spare

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants CONTRACT N. 1-BD-0681 A

CASE: Case 4.3 - MHI Gasification

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013			
ISSUED BY	MC			
CHECKED BY	NF			
APPROVED BY	LM			

EQUIPMENT LIST Unit 4000 - Utility & Offsite

	DESCRIPTION		CHAP	motor rating	P design	T design	35.4.1.1	Remarks
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Kemai Ks
Z-4003	DEMI WATER SYSTEM							
L-4003								
PK-4001	Demin Water Package, including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system							
T-4002	Demi Water storage tank		13200 m3					Included in Z-4003 24 hour storage
P-4005A/B	Demi Water Pumps to C.C.	centrifugal	444 m3/h x 61 m	110 kW				Included in Z-4003 "One operating, one spare
P-4006A/B	Demi Water Pumps to Syngas Cooling	centrifugal	52 m3/h x 428 m	90 kW				Included in Z-4003 "Two operating, two spare
Z-4004	FIRE FIGHTING SYSTEM							
	Fire water storage tank Fire pumps (diesel)							
	Fire pumps (electric)							
	FW jockey pump							
	MISCELLANEA							
	Ammonia Recovery system		277 t/h of treated water					
	Natural Gas (Back-up fuel)							
	Waste Water Treatment							
	Sulphur Storage/Handling		72 t/d S prod.					30 days storage
	Flare system							
	Interconnecting							
	Instrumentation							
	DCS							
	Piping							
	Electrical							
	Plant Air							
	Buildings							

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Sheet: 1 of 23

January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production

Power Island: 2 x E-class Gas Turbine

CLIENT : IEA GHG

PROJECT NAME : CO, CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

DOCUMENT NAME: CASE 5.1 - HYDROGEN AND POWER CO-PRODUCTION

POWER ISLAND: 2 X E-CLASS GAS TURBINE

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : N. FERRARI
CHECKED BY : L. MANCUSO
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

 ${\rm CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Chapter E.4 - Case 5.1: Hydrogen and power co-production

Power Island: 2 x E-class Gas Turbine

January 2014 Date:

Sheet: 2 of 23

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	3
2.	Process description	5
	2.1. Overview	5
	2.2. Unit 900 – Coal Handling & Storage	
	2.3. Unit 1000 – Gasification Island	
	2.4. Unit 2100 – Air Separation Unit	5
	2.5. Unit 2200 – Syngas Treatment and Conditioning line	5
	2.6. Unit 2300 – Acid Gas Removal (AGR)	
	2.7. Unit 2400 – SRU and TGT	8
	2.8. Unit 2500 – CO ₂ Compression and Drying	8
	2.9. Unit 2600 – Hydrogen Production Unit	9
	2.10. Unit 3000 – Combined Cycle	9
	2.11. Utility Units	9
3.	Process Flow Diagrams	11
4.	Heat and Material Balance	12
5.	Utility consumption	14
6.	Overall performance	18
7.	Environmental impact	20
	7.1. Gaseous emissions	20
	7.2. Liquid effluents	
	7.3. Solid effluents	
8.	Preliminary plot plan	
9.		
フ.	Equipment list	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 3 of 23

Power Island: 2 x E-class Gas Turbine

1. Introduction

This chapter of the report includes all technical information relevant to Case 5.1 of the study, which is a gasification plant based on the GE technology, designed for the co-production of hydrogen and power from coal, whose characteristic is shown in chapter B, and with capture of the generated carbon dioxide. Both power and hydrogen are exported outside plant battery limits respectively to the external electrical grid and to a hydrogen distribution network.

Plant capacity is the same of the GE technology based IGCC case, for power production only (refer to Case 4.2 in chapter E.2 of this report).

The configuration of the plant is based on the following main features:

- High-pressure (65 barg) GE Energy Gasification process, with slurry-feed system and Radiant Syngas Cooler (RSC);
- 2-stages sour shift;
- Removal of acid gases (H₂S and CO₂) based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and dehydration unit;
- Hydrogen production unit based on Pressure Swing Adsorption (PSA);
- Combined cycle based on two E-class gas turbines.

The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

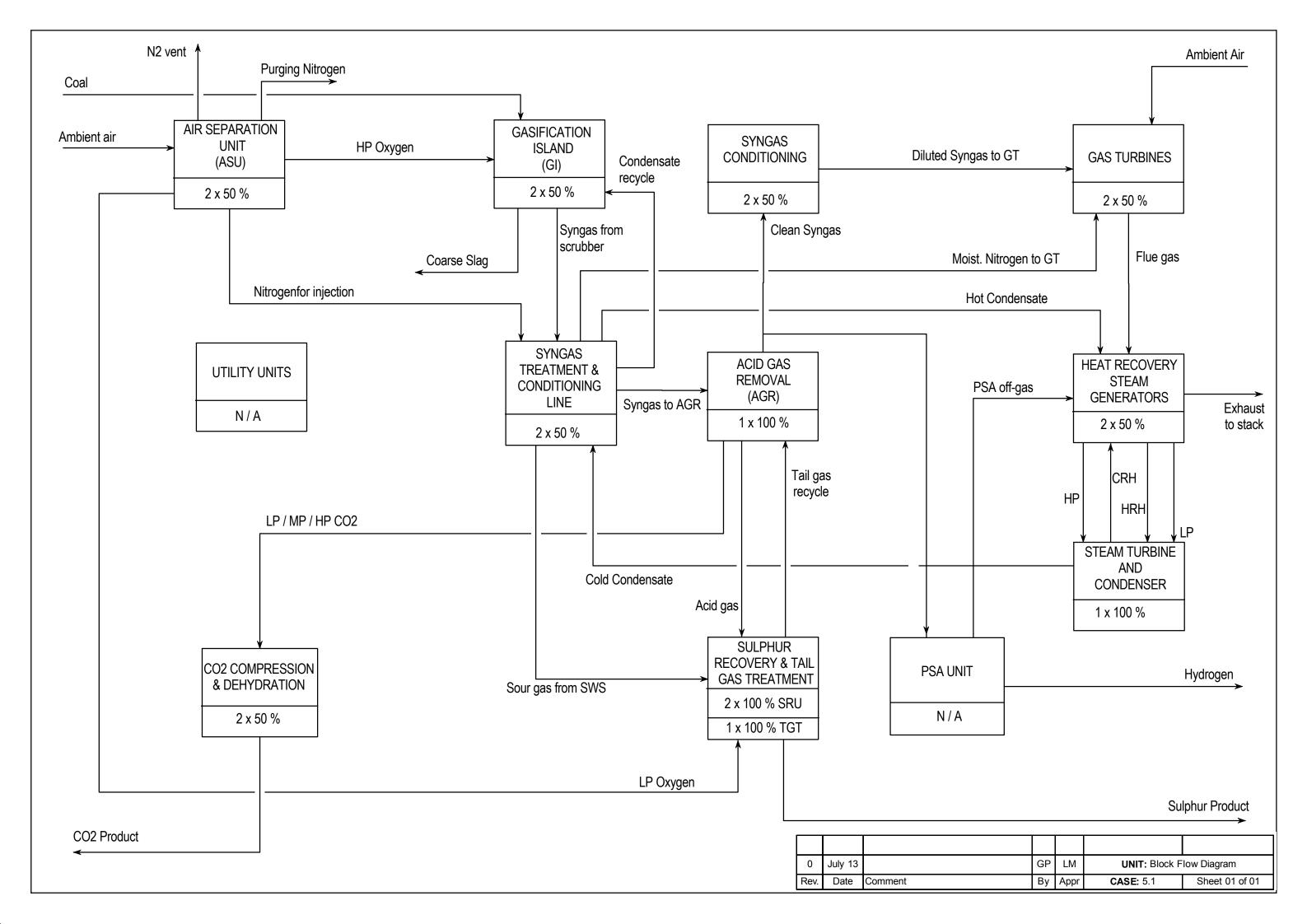
1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Unit	Description	Trains
900	Coal Handling & Storage	N/A
1000	Gasification	2 x 50%
	Coal Grinding & Slurry Preparation	
	Gasification (Radiant Syngas Cooler) and scrubber	

Table 1. Case 5.1 – Unit arrangement

January 2014


IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 4 of 23

Power Island: 2 x E-class Gas Turbine

Unit	Description	Trains
	Black Water Flash & Coarse Slag Handling	
	Grey Water & Fines Handling	
2100	Air Separation Unit	2 x 50%
2200	Syngas Treatment and Conditioning Line	2 x 50%
2250	Sour Water Stripper (SWS)	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
2600	Hydrogen production unit (PSA)	N/A
3000	Combined Cycle	
	Gas Turbine (E-class equivalent)	2 x 50%
	HRSG	2 x 50%
	Steam Turbine	1 x 100%
4000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 5 of 23

Power Island: 2 x E-class Gas Turbine

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Coal Handling & Storage

The unit mainly consists of the coal storage and handling.

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Island

The gasification island based on GE gasification mainly includes the coal grinding and slurry preparation section, the gasification (RSC) and the scrubber, the Black Water Flash and Coarse Slag Handling, and Grey Water & Fines Handling. Technical information relevant to these packages is reported in chapter E, section 3.2.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Air Separation Unit

Technical information relevant to this packaged unit is reported in chapter E, section 2.3. The main process information of the unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The sizing capacity of the Air Separation Unit is determined by the oxygen requirement of the gasification island and the SRU. The total required oxygen flowrate for the case is approximately 325 t/h.

The Air Separation unit supplies medium pressure nitrogen, injected in the gas turbine, after being moisturised, for NOx suppression and power production augmentation.

2.5. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. It has to be noted that syngas treatment line from the gasification scrubber to the AGR exit is almost the same of case 4.2. The

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 6 of 23

Power Island: 2 x E-class Gas Turbine

main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

Saturated raw syngas from the gasification scrubber, at approximately 64 barg, is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H_2 and CO_2 and CO_3 is converted to H_2S . A double stage shift, containing sulphur tolerant shift catalyst (sour shift) is selected in order to increase the H_2 content in the fuel and maximize the degree of CO_2 removal. The overall CO conversion is approximately 98%. The water content in the syngas is adequate for the shift reaction to take place with no additional steam injection.

The partially-shifted syngas temperature is increased by the exothermic shift reaction, allowing for thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the second reactor stage:

- Feed/Product Heat Exchanger,
- HP Steam Generator,
- MP Steam Generator #1.

After being cooled, the syngas is directed to the second and last shift reactor. The hot shifted syngas outlet from the second stage is cooled in the following series of heat exchangers, to thermally recover heat and increase the overall power generation:

- MP Steam Generator #2,
- LP Steam Generator,
- Saturator Circulating Water Heater #1 and #2,
- Condensate Pre-heater #1 and #2.

Final cooling of the syngas is made against cooling water, before passing through a sulphur-impregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas is then directed to the AGR.

During the cooling of the syngas, the process condensate is separated and collected in the process condensate accumulator. Before being sent to the accumulator, the condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the Sour Water Stripper in order to avoid accumulation of ammonia and H_2S and other dissolved gases in the water recycle to the gasification section. The condensate from the accumulator is sent to the gasification scrubber for syngas saturation. Boiler Feed Water from the deaerator of the combined cycle provides the make-up water to substitute for the steam reacted in the shift unit.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 7 of 23

Power Island: 2 x E-class Gas Turbine

From the AGR unit, part of the cool hydrogen-rich gas returns to the syngas treatment and conditioning line as de-carbonized fuel gas after H₂S and CO₂ removal for final treatment before being fed to the combined cycle. This syngas flow is preheated against circulating water coming from the nitrogen saturator and then expanded down to the pressure required from the gas turbine, thus producing additional electric power.

Then, the hydrogen-rich syngas necessary to saturate the thermal demand of the gas turbines at the reference ambient temperature of the project, which corresponds to about 52% of the total syngas flowrate coming from the AGR, is preheated against LP and MP steam and sent to the combined cycle at around 230°C, for combustion in the gas turbine.

The balancing syngas from the AGR is sent to the PSA unit for high-purity hydrogen production.

The unit includes nitrogen saturator, providing moisturised nitrogen to be injected in the gas turbine. Nitrogen humidification is achieved by means of hot water heated in the syngas cooling line. The humidified nitrogen is finally heated using MP steam and then injected in the gas turbine combustion chamber.

2.6. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H₂S and CO₂ in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit:

- The H₂S+COS concentration of the treated gas exiting the unit is around 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 2%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.06% mol).
- The acid gas H₂S concentration is about 41% dry basis, suitable to feed the oxygen blown Claus process.

The CO₂ removal rate is 91.7% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 90% with respect to the carbon

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 8 of 23

Power Island: 2 x E-class Gas Turbine

in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.7. Unit 2400 – SRU and TGT

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The SRU is designed to process the acid gas from the AGR and other minor acid streams like the acid off-gas from the black water flash within the gasification island and the sour gases from the SWS, using low pressure oxygen from the ASU. In the furnace, H₂S is catalytically oxidized to SO₂ which is further reacted with H₂S to form H₂O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 60 barg by means of a dedicated compressor.

The overall sulphur production is approximately 72 tons per day.

2.8. Unit 2500 – CO₂ Compression and Drying

This unit is mainly composed of a compression and dehydration package, followed by last stage CO₂ pumps, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Three different streams of CO₂ from the Acid Gas Removal unit are routed to the CO₂ compression unit, delivered at approximately 19 barg, 6 barg, and 1.5 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 40 barg and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 80 barg.

The resulting stream of CO_2 is pumped to the required pressure of 110 barg. The CO_2 product (approximately 97.9 % wt purity) is transported to the plant battery limits for final sequestration.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 9 of 23

Power Island: 2 x E-class Gas Turbine

2.9. Unit 2600 – Hydrogen Production Unit

Technical information relevant to this package is reported in chapter E, section 2.9. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables. The PSA unit is designed to produce 220,000 Nm³/h of high-purity hydrogen at around 51 barg, to be sent to the plant battery limits. The PSA off-gases are sent to the supplementary firing system of the combined cycle.

2.10. Unit 3000 – Combined Cycle

Technical information relevant to these packages is reported in chapter E, section 2.10. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The hydrogen-rich syngas heated up to around 230°C in the syngas treatment and conditioning line enters the burners of the gas turbine.

The gas turbine compressors provide combustion air to the burner only, i.e. no air integration with the ASU is foreseen. The exhaust gases from the gas turbine enter the HRSG at 560°C. Off-gas from the PSA unit are burn in the supplementary firing system of the HRSG, increasing the flue gas temperature up to 598°C. The HRSG recovers heat available from the exhaust gas producing steam at three different pressure levels for the steam turbine, plus an additional steam generator with integral deaerator. The final exhaust gas temperature to the stack of the HRSG is 133°C. The calculated acid gas dew point temperature of the exhaust flue gas is around 90°C.

The Heat Transfer vs. Temperature of the HRSG (T-Q diagram) of case 5.1 is shown in Figure 1. The red line (the upper curve) represents the exhaust gases from the GT to the stack. The blue lines represent the water path in the economizers (at lower temperature), the steam generators (horizontal lines) and the super-heater/re-heater (at higher temperature).

The combined cycle is thermally integrated with the process unit, in order to maximize the net electrical efficiency of the plant. The main steam and water interfaces with the process units are given in Table 2.

2.11. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production

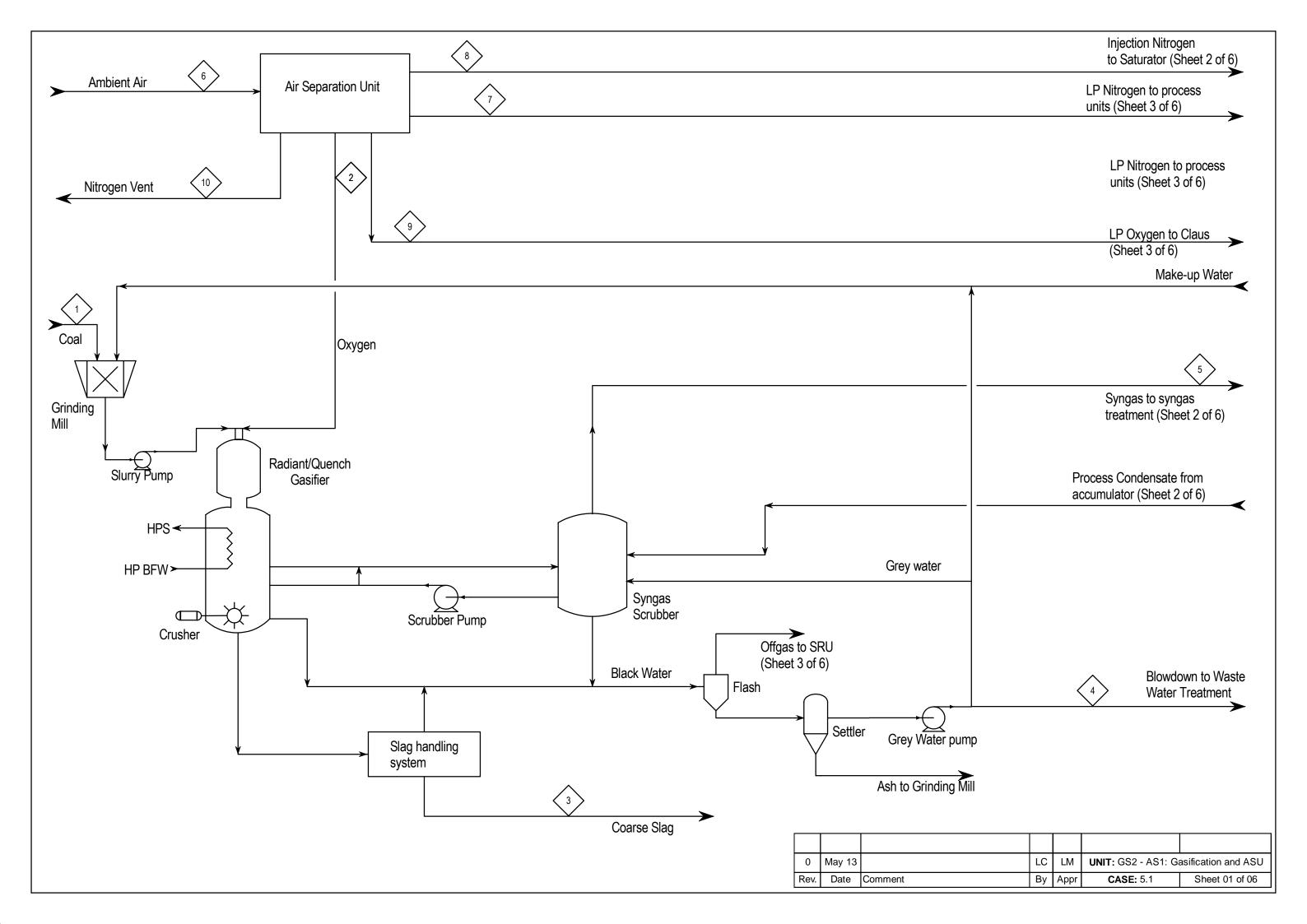
Power Island: 2 x E-class Gas Turbine

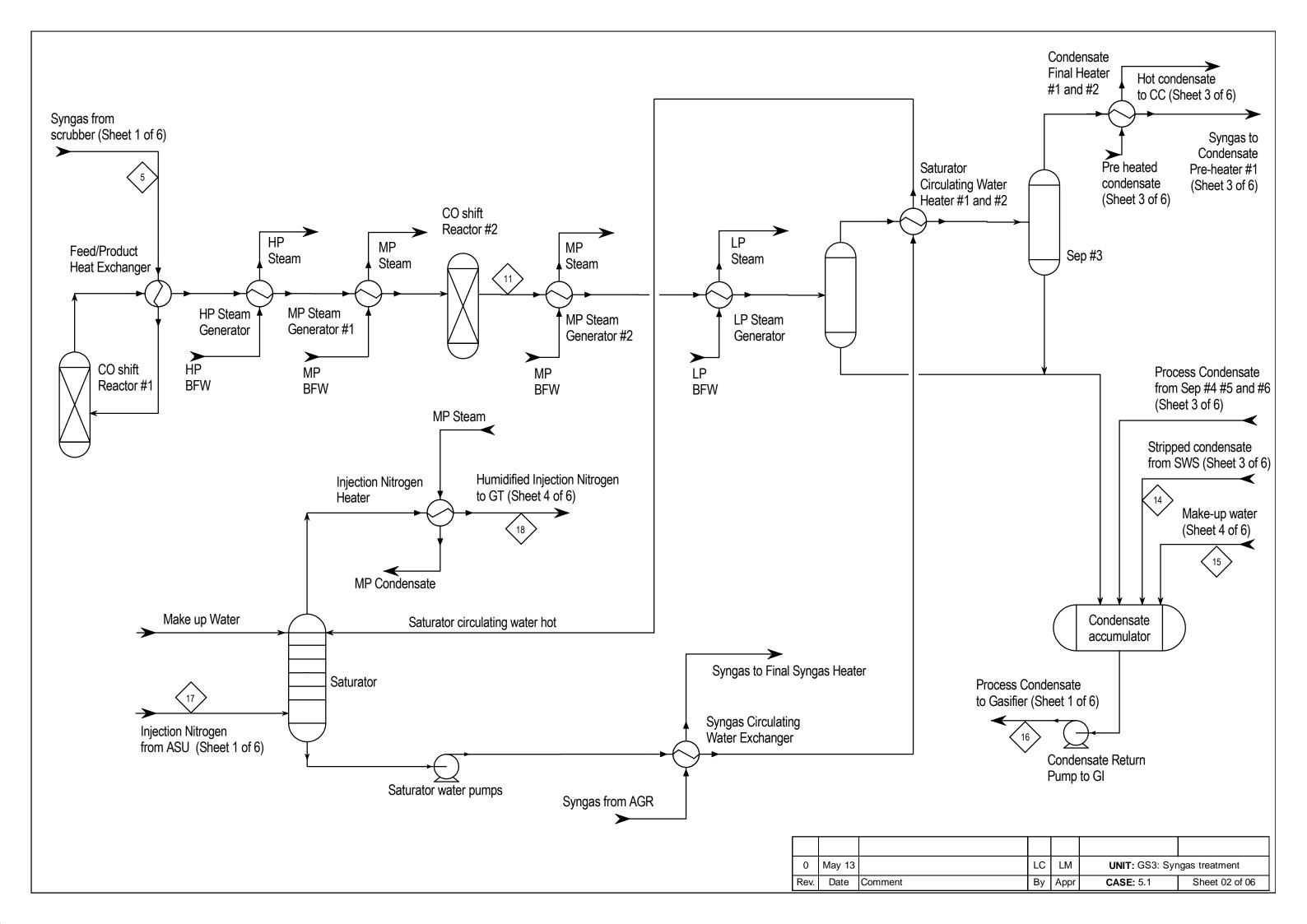
Basin diameter	140 m
Cooling tower height	210 m
Water inlet height	17 m

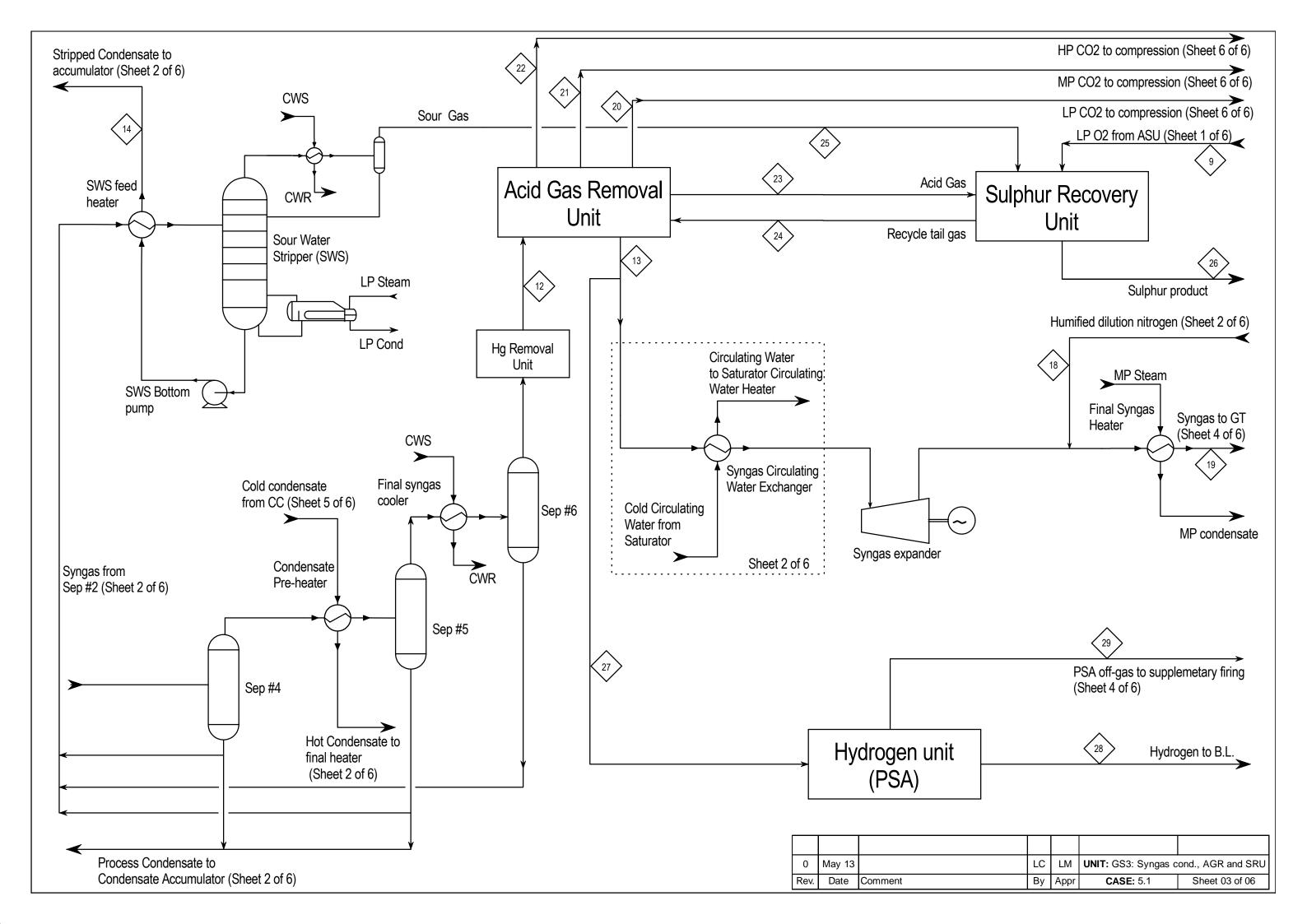
Sheet: 10 of 23

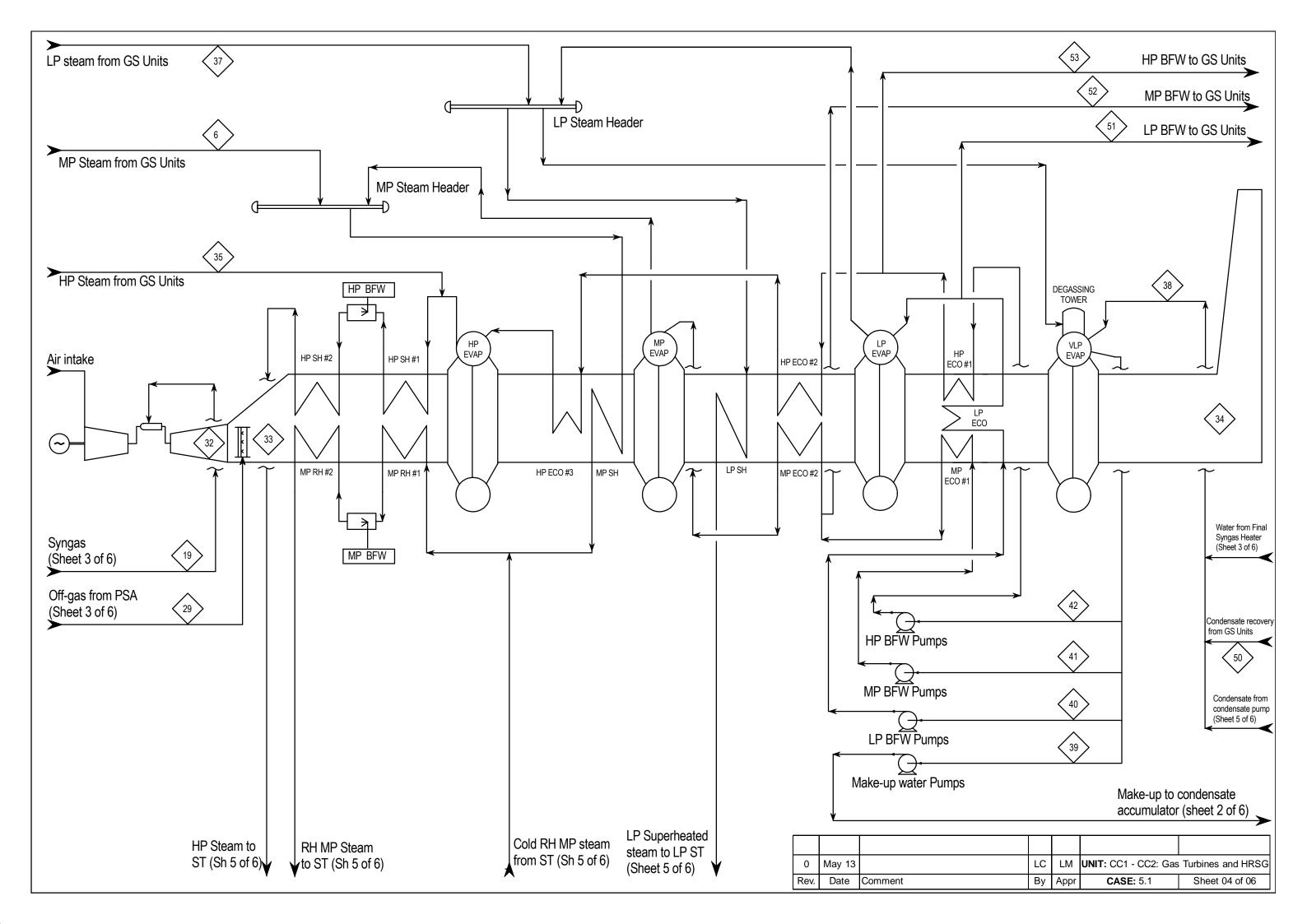
- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

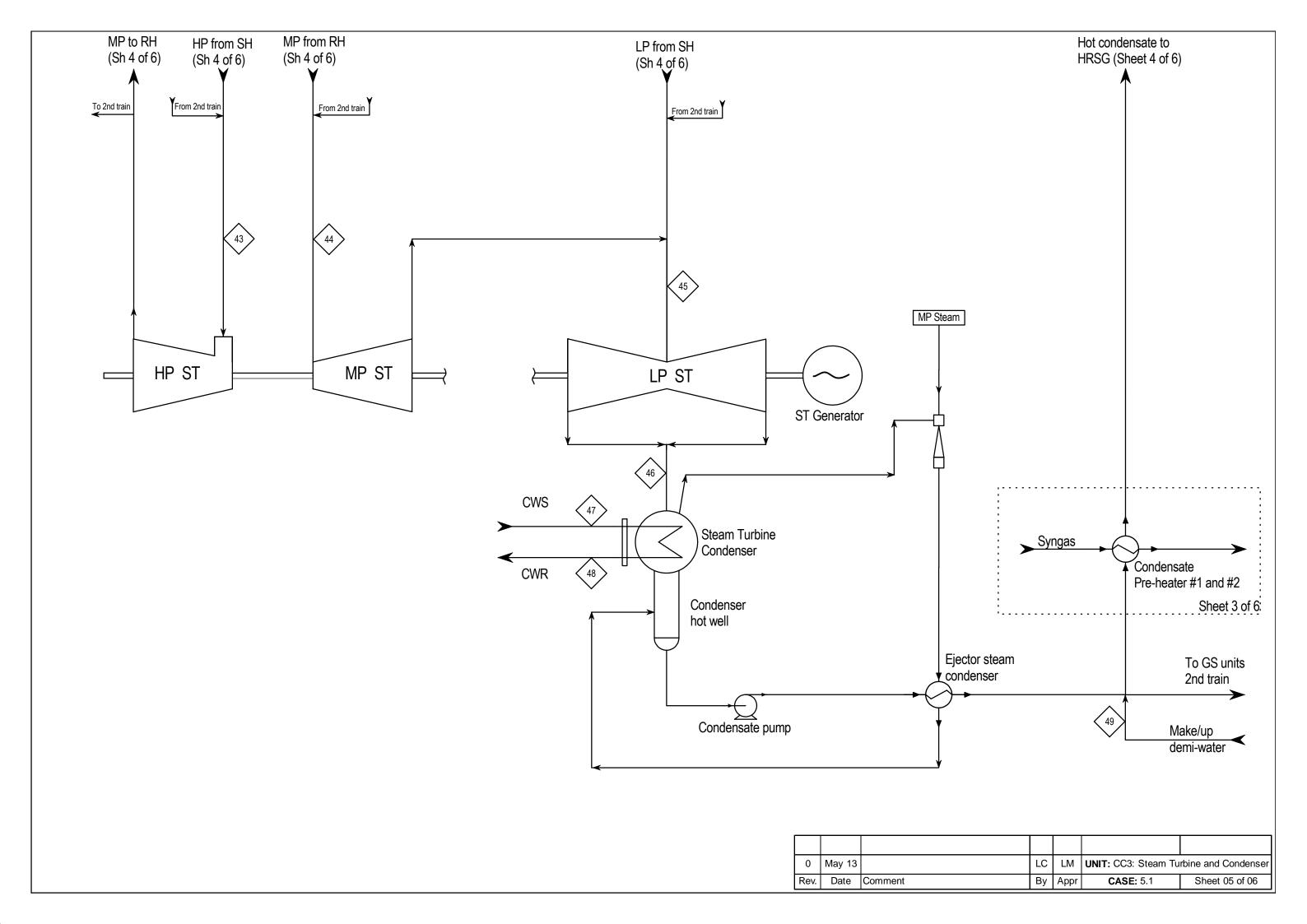
Process descriptions of the above systems are enclosed in chapter E, section 2.11.

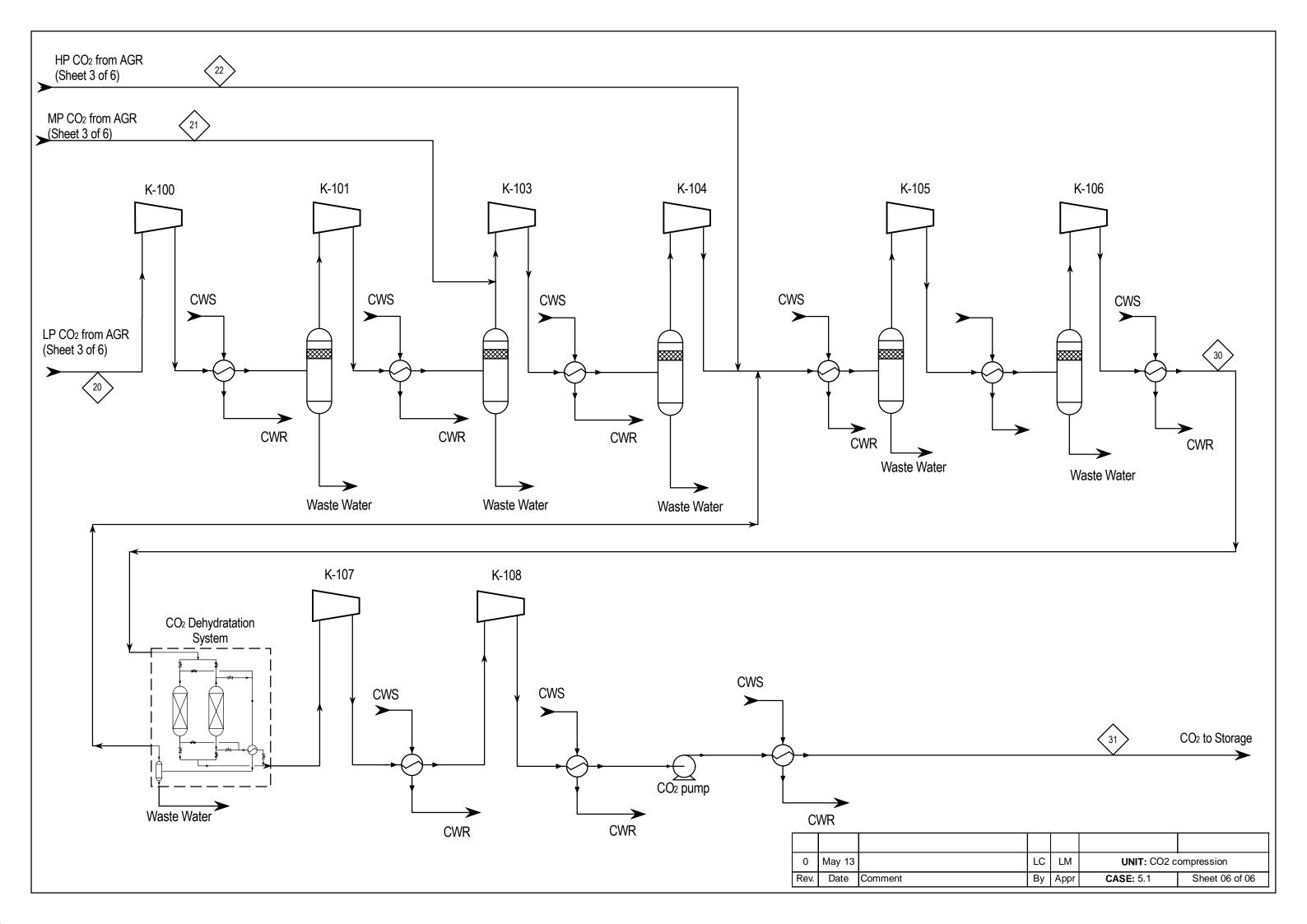

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 11 of 23


Power Island: 2 x E-class Gas Turbine


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 12 of 23

Power Island: 2 x E-class Gas Turbine

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

	HYDROGEN AND POWE	R COPRODUCTION - Case 5.1 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	PREP.	GP			
FOSTER WHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		
		LICAT AND MATERIAL DALANCE				

HEAT AND MATERIAL BALANCE UNIT 1000 - Gasification Island

	1	2	3	4	5	16		
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification		
Temperature (°C)	AMB	10	80	AMB	N/D	136		
Pressure (bar)	ATM	75-80 ⁽¹⁾	ATM	ATM	64.6	70		
TOTAL FLOW	Solid		Solid + water		Dry basis			
Mass flow (kg/h)	349,100	323,000	87,400	94,500	1,154,000	493,200		
Molar flow (kmol/h)		10,025		5,250	58,004	27,385		
LIQUID PHASE								
Mass flow (kg/h)			43,700	94,500	-	493,200		
GASEOUS PHASE								
Mass flow (kg/h)		323,000			1,154,000			
Molar flow (kmol/h)		10,025			58,004			
Molecular Weight		32.22			-			
Composition (vol %)	%wt		50% moisture		(dry basis)			
H ₂	C: 64.6%	-			35.80			
CO	H: 4.38%	-			42.80			
CO ₂	O: 7.02%	-			17.80			
N_2	S: 0.86%	1.50			3.22			
O_2	N: 1.41%	95.00			0.00			
CH₄	CI: 0.03%	-			0.00			
H ₂ S + COS	Moisture: 9.5%	-			0.38			
Ar	Ash: 12.20%	3.50			0.00			
HCN		-			0.00			
NH ₃		-			0.00			
H ₂ O Notes	1) FWI assumption				-			

	HYDROGEN AND POWE	R COPRODUCTION - Case 5.1 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	GP		
FOSTER WHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		
		LICAT AND MATCRIAL DALANCE				

HEAT AND MATERIAL BALANCE UNIT 2100 - Air Separation Unit (ASU)

	6	2	7	8	9	10		
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	MP Nitrogen for Syngas dilution	Oxygen to SRU	Nitrogen vent		
Temperature (°C)	Ambient	10	Ambient (1)	122	Ambient	Ambient		
Pressure (bar)	Ambient	75-80 (1)	7.5 (1)	28	6	Atmospheric		
TOTAL FLOW								
Mass flow (kg/h)	1,394,750	323,000	25,220	206,000	1,933	824,290		
Molar flow (kmol/h)	48,320	10,025	900	7,350	60	29,410		
LIQUID PHASE								
Mass flow (kg/h)	-	-	-	-	-	-		
GASEOUS PHASE								
Mass flow (kg/h)	1,394,750	323,000	25,220	206,000	1,933	824,290		
Molar flow (kmol/h)	48,320	10,025	900	7,350	60.0	29,410		
Molecular Weight	28.86	32.22	28.02	28.03	32.22	28.03		
Composition (vol %)								
H ₂	-	-	-	-	-	-		
СО	-	-	-	-	-	-		
CO ₂	0.04	-	-	0.05	-	0.05		
N_2	77.32	1.50	99.999	98.00	1.50	98.00		
02	20.75	95.00	0.001	1.00	95.00	1.00		
CH₄	-	-	-	-	-	-		
H ₂ S + COS	-	-	-	-	-	-		
Ar	0.92	3.50	-	0.25	3.50	0.25		
H ₂ O	0.97	-	-	0.70	-	0.70		<u> </u>
Notes	 FWI assumption 	l						

	HYDROGEN AND POW	ER COPRODUCTION - Case 5.1 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	GP		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	11	12	13	14	15	16	17	18	19
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from Acid Gas Removal	Stripped condensate from SWS	BFW make-up to condensate accumulator	Return Condensate to Gasification	Nitrogen to saturator	Moist. Nitrogen for syngas dilution	Diluted Syngas to Power Island
Temperature (°C)	N/D	323	34	15	110	123	136	122	168	230
Pressure (bar)	64.5	61.5	57	53	70.0	2.2	70.0	28.0	27.0	27.0
TOTAL FLOW										
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	43,225	227,000	492,600	205,765	262,995	340,980
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	2,400	12,600	27,350	7,350	10,513	24,322
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	43,225	227,000	492,600	-	-	-
GASEOUS PHASE	1									
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	-	-	-	205,765	262,995	340,980
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	-	-	-	7,350	10,513	24,322
Molecular Weight	-	19.90	20.50	5.65	-	-	-	28.00	25.02	14.02
Composition (vol %)	(dry basis)									
H ₂	35.80	41.04	54.73	89.55	-	-	-	0.00	0.00	50.58
CO	42.80	0.46	0.61	0.98	-	-	-	0.00	0.00	0.56
CO ₂	17.80	31.54	41.98	5.73	-	-	-	0.05	0.03	3.25
N_2	3.22	1.70	2.27	3.73	-	-	-	98.00	68.54	31.93
O_2	0.00	0.00	-	-	-	-	-	1.00	0.70	0.30
CH ₄	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
H ₂ S + COS	0.38	0.20	0.26	0.00	-	-	-	0.00	0.00	0.00
Ar	0.00	0.00	-	-	-	-	-	0.25	0.17	0.08
HCN	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
NH_3	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
H ₂ O	-	25.06	0.15	0.01	-	-	-	0.70	30.55	13.30

	HYDROGEN AND POW	ER COPRODUCTION - Case 5.1 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	GP		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		
_						

HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal (AGR)

	12	13	20	21	22	23	24		
STREAM	Raw Syngas from Syngas Cooling	HP Purified Syngas to Syngas Cooling	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU		
Temperature (°C)	34	15	-9	-1	8	20	35		
Pressure (bar)	57.0	53.0	2.5	6.6	20.3	1.6	56.5		
TOTAL FLOW									
Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,831	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	-	-	-		
GASEOUS PHASE									
Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,831	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
Molecular Weight	20.5	5.6	44.0	43.9	41.1	33.6	36.1		
Composition (vol %)									
H ₂	54.73	89.55	-	0.20	6.66	14.47	17.65		
CO	0.61	0.98	-	-	0.16	0.25	-		
CO ₂	41.98	5.73	99.87	99.74	92.95	43.29	77.90		
N_2	2.27	3.73	-	-	0.19	0.38	0.69		
O_2	-	-	-	-	-	-	-		
CH ₄	-	-	-	-	-	-	-		
H ₂ S + COS	0.26	0.00	-	-	-	40.70	3.76		
Ar	-	-	-	-	-	-	-		
HCN									
NH ₃	-	-	-	-	-	0.11	-		
H ₂ O	0.15	0.01	0.13	0.06	0.04	0.80	-		

	HYDROG	GEN AND POWER	COPRODUCTION	- Case 5.1 - HEAT	AND MATERIAL E	BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	ınd hydrogen plan	ts	CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
			Н	AT AND MATE	RIAL BALANCE					
		UNIT	 2400 - Sulfur R				ST)			
	9	23	24	25	26					
STREAM	Oxygen to SRU	Acid Gas from AGR Unit	Claus Tail Gas to AGR Unit	Sour Gas from Sour water stripper	Product Sulphur					
Temperature (°C)	Ambient	20	35	80	-					
Pressure (bar)	6.0	1.6	56.5	4	-					
TOTAL FLOW										
Mass flow (kg/h)	1,933	9,831	5,804	170	3,000					
Molar flow (kmol/h)	60	293	161	4.5	-					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	1,933	9,831	5,804	170	-					
Molar flow (kmol/h)	60	293	161	4.5	-					
Molecular Weight	32.2	33.6	36.1	37.7	-					
Composition (vol %)										
H_2	-	14.47	17.65	0.49	-					
СО	-	0.25	-	0.03	-					
CO ₂	-	43.29	77.90	74.16	-					
N_2	1.50	0.38	0.69	0.19	-					
O_2	95.00	-	-	-	-					
CH ₄	-	-	-	-	-					

40.70

0.11

0.80

3.50

3.76

3.57

9.14

12.42

 $H_2S + COS$

Ar

HCN NH₃

 H_2O

	HYDRO	GEN AND POWER	COPRODUCTION	- Case 5.1 - HEAT	AND MATERIAL BA	ALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
	1			HEAT AND MAT	ERIAL BALANCE		1	·	ı	
			Unit	t 2500 - CO2 Com	pression and Dry	ying				
	20	21	22	30	31					
STREAM	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	CO ₂ to drying package	CO₂ to storage					
Temperature (°C)	-9	-1	8	26	30					
Pressure (bar)	2.5	6.6	20.3	39.8	110.0					
TOTAL FLOW										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
Molecular Weight	44	43.9	41.1	43.3	43.3					
Composition (vol %)										
H ₂	-	0.20	6.66	1.61	1.61					
CO	-	-	0.16	0.04	0.04					
CO ₂	99.87	99.74	92.95	98.18	98.30					
N_2	-	-	0.19	0.05	0.05					
O_2	-	-	-	0.00	0.00					
CH ₄	-	-	-	0.00	0.00					
H ₂ S + COS	-	-	-	0.00	0.00					
Ar	-	-	-	0.00	0.00					
HCN	-	-	-	0.00	0.00					
NH ₃	-	-	-	0.00	0.00					
H ₂ O	0.13	0.06	0.04	0.12	0.00					

	HYDROG	EN AND POWER	COPRODUCTION	- Case 5.1 - HEAT	AND MATERIAL	BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	GP		
FOSTERWHEELE	PROJECT NAME:	CO ₂ capture at co	oal based power a	and hydrogen plar	nts	CHECKED	NF			
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
			HI	AT AND MATE	RIAL BALANCE					
			UNIT	2600 - Hydroge	en Production (Jnit				
	27	28	29							
STREAM	Syngas to PSA	High-purity Hydrogen	PSA off-gas							
Temperature (°C)	15	20	10							
Pressure (bar)	53	52	5							
TOTAL FLOW										
Mass flow (kg/h)	70,210	21,050	49,160							
Molar flow (kmol/h)	12,430	9,844	2,586							
LIQUID PHASE										
			I	I	1	I		1	1	ĺ

Temperature (°C)	15	20	10				
Pressure (bar)	53	52	5				
TOTAL FLOW							
Mass flow (kg/h)	70,210	21,050	49,160				
Molar flow (kmol/h)	12,430	9,844	2,586				
LIQUID PHASE							
Mass flow (kg/h)	-	-	-				
GASEOUS PHASE							
Mass flow (kg/h)	70,210	21,050	49,160				
Molar flow (kmol/h)	12,430	9,844	2,586				
Molecular Weight	5.6	2.1	19.0				
Composition (vol %)							
H ₂	89.55	99.53	51.61				
СО	0.98	-	4.72				
CO ₂	5.73	-	27.50				
N_2	3.73	0.47	16.11				
O ₂	-	-	-				
CH₄	-	-	-				
H₂S + COS	0.00	-	0.00				
Ar	-	-	-				
HCN	-	-	-				
NH ₃	-	-	-				
H ₂ O	0.01	-	0.06				

H2 AND I	POWER CO)-PRODUCTIOI	N - Case 5.1	- H&W BALANCE

CLIENT: **IEAGHG**

CO₂ capture at coal based power and H2 plants PROJECT NAME:

PROJECT NO: 1-BD-0681 A LOCATION: The Netherlands

REVISION	0	
PREP.	GP	
CHECKED	NF	
APPROVED	LM	
DATE	July 2013	

HEAT AND MATERIAL BALANCE Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
29	PSA off-gas to post-firing (*)	24.6	10	5.0	-
19	Treated Syngas from Syngas Cooling (*)	170.5	230	27.0	-
32	Flue gas from GT (*) (1)	1679.8	521	1.05	-
33	Flue gas after post-firing (*) (2)	1704.4	597	1.05	-
34	Flue gas at stack (*) (2)	1704.4	133	atm	-
35	HP Steam from Process Units (*)	267.6	335	137.0	2646
36	MP Steam from Process Units (*)	35.5	252	41.0	2801
37	LP Steam from Process Units (*)	53.0	168	7.5	2766
38	Condensate to Deaerator (*)	705.0	113	2.2	474
39	BFW to VLP Pumps (*)	113.5	123	2.2	518
40	BFW to LP BFW Pumps (*)	127.7	123	2.2	518
41	BFW to MP BFW Pumps (*)	144.0	123	2.2	518
42	BFW to HP BFW Pumps (*)	331.8	123	2.2	518
43	HP Steam to Steam Turbine	659.5	517	132.0	3381
44	Hot RH Steam to Steam Turbine	841.1	517	34.8	3490
45	LP Steam to Steam Turbine	982.8	270	5.7	3000
46	Steam to Condenser	982.8	29	0.04	2299
47	Water Supply to Steam Condenser	46105	15	4.0	63
48	Water Return from Steam Condenser	46105	26	3.5	109
49	Make-up water	292.5	15	6.0	64
50	Condensate return from Process Units	134.7	94	4.2	394
51	LP BFW to Process Units	142.0	160	19.0	676
52	MP BFW to Process Units	176.9	160	56.0	678
53	HP BFW to Process Units	538.7	130	180.0	558

^(*) Flowrate figure refers to one train (50% capacity)

⁽¹⁾ Flue gas molar composition: N_2 : 72.3%; H_2O : 13.5%; O_2 : 12.6%; CO_2 : 0.8%; Ar: 0.8%. (2) Flue gas molar composition: N_2 : 71.5%; H_2O : 14.4%; O_2 : 11.8%; CO_2 : 1.5%; Ar: 0.8%.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.4 - Case 5.1: Hydrogen and power co-production Power Island: 2 x E-class Gas Turbine Tevision no.. I mai

Date: January 2014

Sheet: 13 of 23

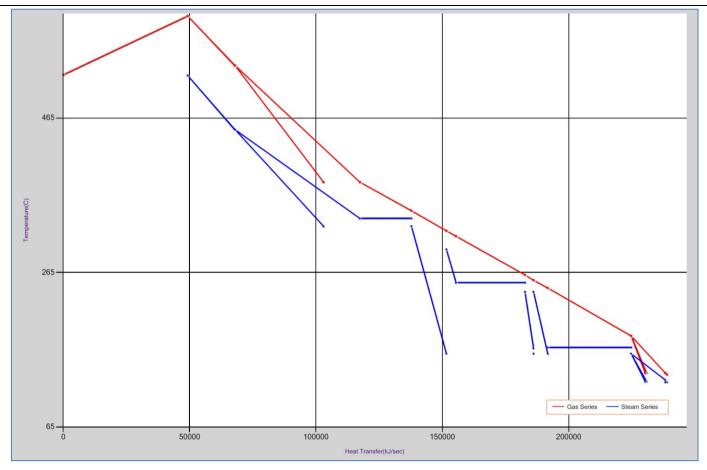


Figure 1 – Case 5.1 – HRSG T-Q diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1: Hydrogen and power co-production Sheet: 14 of 23

Power Island: 2 x E-class Gas Turbine

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Steam / BFW / condensate interface summary is reported in Table 2.
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4.

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E.4 - Case 5.1: Hydrogen and power co-production

Power Island: 2 x E-class Gas Turbine

Date: January 2014

Sheet: 15 of 23

Table 2. Case 5.1 – Steam/BFW/condensate interface summary

CLIENT: IEAGHG PROJECT: CO2 capture at coal based power and hydrogen plants LOCATION: The Netherlands 1-BD-0681 A Hydrogen and power co-production - Case 5.1 (Power Island: 2 x E-class Gas Turbine) - Steam					REVISION DATE ISSUED BY CHECKED BY APPROVED BY am and water	Rev.0 August 2013 LC NF LM				
UNIT	DESCRIPTION UNIT	HP Steam barg 137.0 [t/h]	MP Steam barg 40.0 [t/h]	LP Steam barg 6.5 [t/h]	HP BFW	MP BFW	LP BFW	VLP BFW	condensate recovery	Losses [t/h]
2100	PROCESS UNITS Air Separation Unit (ASU)								0.0	
1000	Gasification Section	-444.1			446.7				0.0	-2.5
2200	Syngas Treating and Conditioning Line	-91.2	-63.1	-132.1	92.1	168.2	142.0	227.0	-55.6	-287.3
2300	Acid Gas Removal Sulphur Recovery (SRU)		-7.9	64.0		8.7			-64.0	-0.83
3000	POWER ISLANDS UNITS	535.3	70.9	53.0	-538.7	-176.9	-142.0	-227.0	134.6	
4000	UTILITY and OFFSITE UNITS			15.0					15.0	0.00
5000	Hydrogen Unit (PSA)			15.0					-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-290

Note: (1) Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 16 of 23

Power island: 2 x E-class Gas Turbine

Table 3. Case 5.1 – Water consumption summary

(FOS	TER WHEELER PROJECT	: IEAGHG : CO2 capture at coal based power and H2 plants : The Netherlands : 1-BD-0681 A		Revision Date ISSUED BY CHECKED BY APPR. BY	0 August 2013 LC NF LM
	Hydrogen and power co-production - Water Cons	Case 5.1 (Power Isla sumption Summa		Turbine)	
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system [t/h]	Cooling Water Secondary System [t/h]
2100	AIR SEPARATION UNIT (ASU) Air Separation Unit				10550
1000	GASIFICATION SECTION (GS) Gasification	145			3870
2200	Syngas treatment and conditioning line	143			720
2300	Acid Gas Removal		0.6		6870
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT	7)			160
2500	CO ₂ COMPRESSION CO ₂ Compression				5850
3100	COMBINED CYCLE (CC) Gas Turbines and Generator auxiliaries				470
3200	Heat Recovery Steam Generator			46110	
3300	Steam Turbine and Generator auxiliaries		292.5		1830
	Miscellanea UTILITY UNITS (UU)				
4000	Cooling Water System	1378			
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	440	-293		
4000	Waste Water Treatment	-91.0			
4000	Balance of Plant (BOP)				240
	TOTAL CONSUMPTION	1872	0	46110	30560

Note: Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 17 of 23

Power island: 2 x E-class Gas Turbine

Table 4. Case 5.1 – Electrical consumption summary

		Rev.0		
	CLIENT: IEAGHG	Date: August 2013		
	PROJECT: CO2 capture at coal based power and H2 plants	ISSUED BY: LC		
OSTE	PROJECT: CO2 capture at coal based power and H2 plants LOCATION: The Netherlands	CHECKED BY: NF		
	FWI №: 1-BD-0681 A	APPR. BY: LM		
	FWI N=: 1-80-0081 A	APPN. DT. LIVI		
Н	lydrogen and power co-production - Case 5.1 (Power Island: 2 x E-class Gas Tur Electrical Consumption Summary	bine)		
UNIT	T DESCRIPTION UNIT			
	DESCRIPTION OTHER	Electric Power		
	AIR SEPARATION UNIT (ASU)			
2100	MAC consumptions	124220		
	BAC consumptions	12270		
	Nitrogen compressor and miscellanea	12550		
	GASIFICATION SECTION (GS)			
000	Coal Receiving Handling and Storage	410		
900	Coal neceiving nanuling and Storage	410		
1000	Gasification	8790		
2200	Syngas treatment and conditioning line	1240		
2300	Acid Gas Removal	20850		
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700		
2500	CO Communician	22070		
2500	CO ₂ Compression	33970		
	COMBINED CYCLE (CC)			
3100	Gas Turbines auxiliaries	1000		
3200	Heat Recovery Steam Generator	5670		
3300	Steam Turbine auxiliaries and excitation system	700		
3300	Miscellanea	2850		
	LITHITY HAUTE (LILL)			
	UTILITY UNITS (UU)			
4000	Cooling Water System	9310		
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	730		
4000	Balance of Plant (BOP)	1080		
	TOTAL CONSUMPTION	236340		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 18 of 23

Power island: 2 x E-class Gas Turbine

6. Overall performance

The following table shows the overall performance of Case 5.1.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	August 2013
PROJECT No. :	1-BD-0681 A	MADE BY	LC
LOCATION:	The Netherlands	APPROVED BY	LM

Case 5.1 - H2 and power co-production Plant Performance Summary (Power island: 2 E-class GTs)

OVERALL PERFORMANCES		
Coal Flowrate (as received)	t/h	349.1
Coal LHV (as received)	kJ/kg	25870
Coal HHV (as received)	kJ/kg	27060
THERMAL ENERGY OF FEEDSTOCK	MWth (LHV)	2509
THERMAL ENERGY OF FEEDSTOCK	MWth (HHV)	2624
Thermal Power of Raw Syngas exit Scrubber	MWth (LHV)	1785
Thermal power of syngas to AGR	MWth (LHV)	1638
Thermal Power of Clean Syngas to Gas Turbines	MWth (LHV)	842
Thermal Power of Off-gas to post-firing	MWth (LHV)	99
Thermal Power of Clean Syngas to Hydrogen PSA	MWth (LHV)	758
HYDROGEN PRODUCTION	Nm³/h	220600
Thermal Power of Hydrogen	MWth (LHV)	659
Gas turbines total electric power output	MWe	319.8
Steam turbine electric power output	MWe	359.6
Syngas expander	MWe	5.9
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX	MWe	685.3
Gasification Section units consumption	MWe	32.0
ASU consumption	MWe	149.0
Combined Cycle units consumption	MWe	10.2
CO ₂ Compression and Dehydration unit consumption	MWe	34.0
Utility Units consumption	MWe	11.1
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	236.3
NET ELECTRIC POWER OUTPUT OF IGCC (Step-up transformer Eff. = 0.997)	MWe	447.6
CO ₂ emission per net power production (*)	kg/MWh	93.7

^(*) Referred to the net power production fo case 4.2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 19 of 23

Power island: 2 x E-class Gas Turbine

The following table shows the overall CO_2 balance and CO_2 removal efficiency of Case 5.1.

CO ₂ removal efficiency	Equivalent flow of CO ₂
	kmol/h
INPUT	
Fuel Mix (Carbon AR)	18730
TOTAL (A)	18730
ОUТРUТ	
Slag + Waste water (B)	101.0
CO ₂ product pipeline	
со	7
CO ₂	16759
CH ₄	0.0
cos	0.0
Total to storage (C)	16766.5
Emission	
CO ₂ + CO (Combined Cycle)	979
CO2 + CO (to PF)	884
TOTAL	18730
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 20 of 23

Power island: 2 x E-class Gas Turbine

7. Environmental impact

The gasification plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 5 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air or nitrogen containing particulate.

Table 5. Case 5.1 – Plant emission during normal operation

Flue gas to HRSG stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	1,704,000
Flow, Nm ³ /h ⁽¹⁾	1,428,800
Temperature, °C	133
Composition	(% vol)
Ar	0.79
N_2	71.53
O_2	11.83
CO ₂	1.45
H ₂ O	14.40
Emission	mg/Nm ^{3 (1)}
NOx	< 50
SOx	< 1
СО	< 100
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 15% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 21 of 23

Power island: 2 x E-class Gas Turbine

Table 6. Case 5.1 – Plant minor emission

Emission source	Emission type	Temperature	
Coal handling and storage system	Continuous	ambient	Air: 10 mg/Nm ³ particulate

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Cooling Tower blow-down

Flowrate: $330 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate : $150 \text{ m}^3/\text{h}$

7.3. Solid effluents

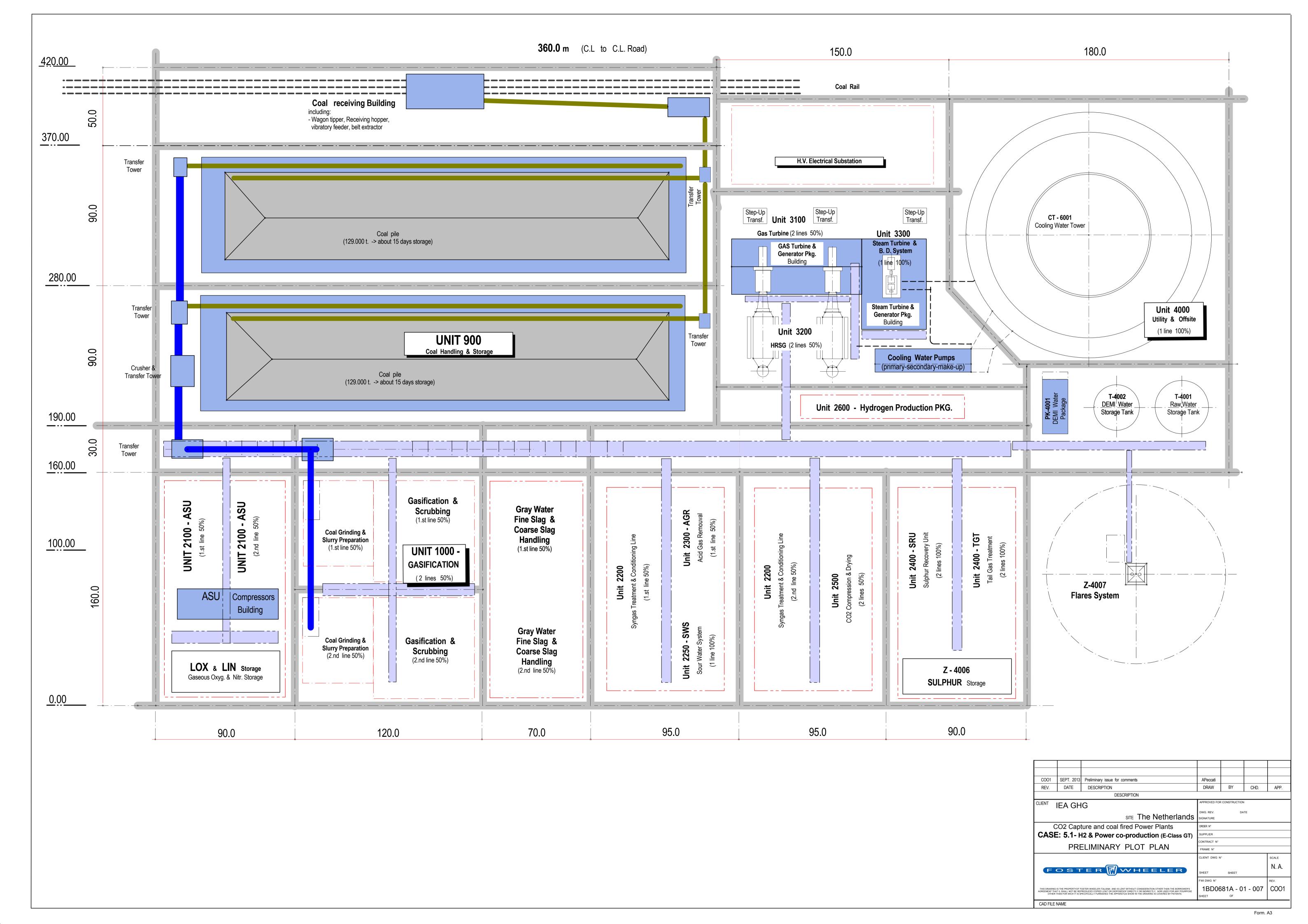
The IGCC plant is expected to produce the following solid by-product:

Slag from gasifier

Flowrate : 45 t/h (dry basis)

Moisture content : 50%

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 22 of 23

Power island: 2 x E-class Gas Turbine

8. Preliminary plot plan

Plot plan at block level of Case 5.1 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.4 - Case 5.1 - Hydrogen and power co-production Sheet: 23 of 23

Power island: 2 x E-class Gas Turbine

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	I M	I M		

EQUIPMENT LIST

Unit 900 - Coal Handling & Storage (N/A)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design	Materials	Remarks
	PACKAGES							
Z-901	Coal Handling		Coal flowrate: 349 t/h					30 days storage
	Wagon tipper							Storage piles: 2 x 137,000 t each
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Crushers Towers	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 5300m3					for daily storage

CLIENT:	IEA GHG
LOCATION:	The Netherlands
PROJ. NAME:	CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Gasification Island (2x50%)

ITEM			motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks	
	PACKAGES							
Z-1002	GE Energy Coal gasification package							
	Coal grinding and slurry preparation							Included in Z-1002
	Gasifiers (RSC)		2 x 4200 t/d coal (as received) to burners 2 x 900 MWth (LHV basis) syngas at scrubber outlet					Included in Z-1002
	Scrubber							Included in Z-1002
	Black Water flash							Included in Z-1002
	Coarse slag handling							Included in Z-1002
	Grey water systeam and fines handling							Included in Z-1002

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power a

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CT N. 1-BD-0681 A	
ASE: Case 5.1 - H2 and power co-production (E-class GT)	

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2100 - Air Separation Unit (2x50%)

	1		Unit 2100 - Air Separation Unit	T `		1	T	_
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2101	ASU Package including:							
	Cold Box	Cryogenic	162 t/h of 95% purity O2 each train					Included in Z-2101
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297800 Nm3/h	2 x 35250 kW				Included in Z-2101
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW				Included in Z-2101
	MP N2 compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 90600 Nm3/h	7500 kW				Included in Z-2101
	O2 pumps	Centrifugal						Included in Z-2101
	Back-up oxygen vaporiser	Shell and tube						Included in Z-2101
Common units t	o both trains:	•				•	•	
	LOX (liquid oxygen) storage	Fixed roof storage tank						8 hour storage for 1 gasification train Normal operating p: 5 bar a Normal operating T: -165 °C Included in Z-2101
	LIN (liquid nitrogen) storage	Fixed roof storage tank						8 hour storage for 1 Gasifier & 4 min storage for Syngas dilution and NOX control Normal operating p: 5 bar a Normal operating T: -180 °C Included in Z-2101
	Gaseous oxygen storage							
	Gaseous nitrogen storage							

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)								
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	HEAT EXCHANGERS				Shell/tube	Shell/tube		
E-2201	Feed/Product Heat Exchanger	Shell & Tube						
E-2202	HP steam generator	Kettle						
E-2203	MP steam generator #1	Kettle						
E-2204	MP steam generator #2	Kettle						
E-2205	LP steam generator	Kettle						
E-2206 A/B	Circulating Water Heater	Shell & Tube						
E-2207 A/B	Condensate preheater	Shell & Tube						
E-2208	Syngas heater / Circulating water cooler	Shell & Tube						
E-2209	Final sygas cooler	Shell & Tube						
E-2210	Syngas final heater	Shell & Tube						
D-2201	DRUMS Condensate Separator	Vertical						
D-2202	Condensate Separator	Vertical						
D-2203	Condensate Separator	Vertical						
D-2204	Condensate Separator	Vertical						
D-2205	Condensate Separator	Vertical						
D-2205	Condensate accumulator	Horizontal						Common for both syngas tratment and conditiong line trains

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
COLUMN							
Nitrogen saturator	Vertical						
REACTOR							
1st Shift Catalyst Reactor	vertical						Overall CO conversion = 98%
2nd Shift Catalyst Reactor	vertical						Overall Co conversion = 70%
DIMDS							
			355 kW				
Condensate Pump (to Gasifiers)			630 kW				
EXPANDER							
Syngas Expander		Flowrate = $310000 \text{ Nm}^3/\text{h}$	6500 kW				
MISCELLANEA Mercury Adsorber	Sulfur-impregnated activated carbon beds						
	COLUMN Nitrogen saturator REACTOR 1st Shift Catalyst Reactor 2nd Shift Catalyst Reactor PUMPS Saturator Circulating Water Pump Condensate Pump (to Gasifiers) EXPANDER Syngas Expander MISCELLANEA	COLUMN Nitrogen saturator REACTOR Ist Shift Catalyst Reactor vertical PUMPS Saturator Circulating Water Pump Condensate Pump (to Gasifiers) EXPANDER Syngas Expander MISCELLANEA Sulfur-impregnated activated carbon	COLUMN Nitrogen saturator REACTOR Ist Shift Catalyst Reactor PUMPS Saturator Circulating Water Pump Condensate Pump (to Gasifiers) EXPANDER Syngas Expander MISCELLANEA Sulfur-impregnated activated carbon Sulfur-impregnated activated carbon	COLUMN Vertical	DESCRIPTION TYPE SIZE [kW] [barg]	DESCRIPTION TYPE SIZE [kW] [barg] [°C] COLUMN Vertical Nitrogen saturator Vertical REACTOR Ist Shift Catalyst Reactor vertical 2nd Shift Catalyst Reactor vertical PUMPS Saturator Circulating Water Pump	COLUMN Vertical COLUMN

Note: equipment list referred to one train only

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2250 - Sour Water System (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2251	SWS PACKAGE							
C-2251	Sour Water Stripper	Vertical						
	SWS Reboiler							
	SWS Condenser							
E-2251	Sour water heat exchanger (SWS feed / purified)							
P-2251	SWS Pump							

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2301	Acid Gas Removal Unit - Absorption section	Solvent: Selexol	Feed gas: 974900 Nm3/h; 56 barg; 34 °C					One H2S removal column, 3 CO2 removal columns, CO2 removal =91.78% Total Carbon Capture =90.5% Separated removal of CO2 and H2S
Z-2303	Acid Gas Removal Unit - Solvent regeneration							Total CO2 removal= 17700 t/d; 10 ppm H2S (dry) in combined CO2
Z-2304	Chiller Unit	Electrical driven						T= -10 °C

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package - two Sulphur Recovery Unit, each sized for 100% of the capacity - one Tail Gas Treatment Unit sized for 100% of capacity (including Reduction Reactor and Tail Gas Compressor)		Sulphur Prod.= 72 t/d Acid Gas from AGR = 6680 Nm3/h Expected Treated Tail Gas = 3602 Nm3/h					Sulphur content > 99,9 % mol min (dry basis)

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2500 - CO₂ Compression Package (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	COMPRESSORS							
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	190000 Nm3/h p in: 2,45 bar a p out: 80 bar a	18000 kW				Water cooled
	PUMPS		Q,m3/h x H,m					
P-2501	CO ₂ Pump	Centrifugal	640 x 530	800 kW				Liquid CO ₂ product, per each train: Flowrate: 370 t/h; 110 bar a; 30°C
	PACKAGE							
PK-2501	CO ₂ drying package							

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2600 - Hydrogen Production

ITEM	DESCRIPTION	TYPE	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
	Hydrogen Production package	PSA	220000 Nm3/h P out = 51 barg T out =20 °C					Hydrogen purity =99.5 %

FOSTERWHEELER

CLIENT: IEA GHG

LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3100 - Gas Turbine (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-3101	Gas Turbine & Generator Package							
GT-3101	Gas turbine	E-Class Gas Turbine	160 MW					Included in Z-3101
G-3101	Gas turbine Generator		210 MVA					Included in Z-3101

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

		Unit 3	3200 - Heat Recove	ery Steam Generat	tor (2x50%)			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	HEAT RECOVERY STEAM GENERATOR							
HRSG-3201	Heat Recovery Steam Generator	Horizontal, Natural Circulated, 4 Pressure Levels. Simple Recovery, Reheated.						
Each HRSG incl	luding:							
D-3201	HP steam Drum							
D-3202	MP steam Drum							
D-3203	LP steam Drum							
D-3204	VLP steam Drum with degassing section							
E-3201	HP Superheater 2nd section							Included in HRSG-3201 / 2
E-3202	HP Superheater 1st section							Included in HRSG-3201 / 2
E-3203	HP Evaporator							Included in HRSG-3201 / 2
E-3204	HP Economizer 3rd section							Included in HRSG-3201 / 2
E-3205	HP Economizer 2nd section							Included in HRSG-3201 / 2
E-3206	HP Economizer 1st section							Included in HRSG-3201 / 2
E-3207	MP Reheater 2nd section							Included in HRSG-3201 / 2
E-3208	MP Reheater 1st section							Included in HRSG-3201 / 2
E-3209	MP Superheater							Included in HRSG-3201 / 2
E-3210	MP Evaporator							Included in HRSG-3201 / 2
E-3211	MP Economizer 2nd section							Included in HRSG-3201 / 2
E-3212	MP Economizer 1st section							Included in HRSG-3201 / 2
E-3213	LP Superheater							Included in HRSG-3201 / 2
E-3214	LP Evaporator							Included in HRSG-3201 / 2
E-3215	LP Economizer							Included in HRSG-3201 / 2
E-3216	VLP Evaporator							Included in HRSG-3201 / 2

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

		Unit .	5200 - Heat Recove	ry Bicam Genera	101 (2A30 /0)			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PUMPS		Q,m ³ /h x H,m					
P-3201 A/B	HP BFW Pumps	centrifugal	390 x 1800	2500				One operating, one spare
P-3203 A/B	MP BFW Pumps	centrifugal	170 x 570	335				One operating, one spare
P-3205 A/B	LP BFW Pumps	centrifugal	150 x 130	75				One operating, one spare
P-3207 A/B	VLP BFW Pumps	centrifugal	140 x 100	55				One operating, one spare
	MICCELLANIEA							
V 2201	MISCELLANEA Flue Con Manitoning System							NOx, CO, SO ₂ , particulate, H ₂ O, O ₂
X-3201 STK-3201	Flue Gas Monitoring System CCU Stack			-				$HO\lambda$, CO , SO_2 , particulate, H_2O , O_2
S1K-3201 SL-3201	Stack Silencer							
DS-3201	HP Steam Desuperheater							Included in HRSG-3201
DS-3201 DS-3202	MP Steam Desuperheater							Included in HRSG-3201
DS-3202	Mi Steam Desuperneater							included in TIKSO-3201
	PACKAGES							
Z-3201	Fluid Sampling Package							
Z-3202	Phosphate Injection Package							
D-3204	Phosphate storage tank							Included in Z - 3202
P-3205 A/B	Phosphate dosage pumps							Included in Z - 3202
								One operating , one spare
Z-3203	Oxygen Scavanger Injection Package							Included in Z - 3203
D-3205	Oxygen scavanger storage tank							Included in Z - 3203
P-3206 A/B	Oxygen scavanger dosage pumps							One operating , one spare
Z-3204	Amines Injection Package							
D-3206	Amines Storage tank							Included in Z - 3204
P-3207 A/B	Amines Dosage pumps							Included in Z - 3204
1 3201 1110	Timmes 2 30uge pumps							One operating, one spare

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3300 - Steam Turbine and Blow Down System (1x100%)

				motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3301	Steam Turbine and Generator Package							
ST-3301	Steam Turbine		354 MWe					Including: Lube oil system Cooling system Idraulic control system Drainage system
								Seals system Drainage system
G-3402	Steam Turbine Generator		460 MVA					Including relevant auxiliaries
E-3301A/B	Inter/After condenser	+						
E-3302	Gland Condenser							
Z-3302	Steam Condenser Package							
E-3303	Steam Condenser	Water cooled	590 MWt					Including: Hot well Vacuum pump (or ejectors) Start up ejector (if required)
Z-3303	Steam Turbine by-pass system			1				
2000	Section 1 di Silic S., pubb S., sectio							
	PUMPS		$Q,m^3/h \times H,m$					
P-3301A/B	Condensate Pumps	Centrifugal, vertical	1656 x 110	670				One operating, one spare
	HEAT EXCHANGERS							
E-3304	Blow-Down Cooler	Shell & Tube						
	DRUMS							
D-3301	Continuous Blow-down Drum	vertical						
D-3302	Discontinuous Blow-down Drum	vertical						

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and H2 plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2	
DATE	May 2013	January 2014			
ISSUED BY	LC	GP			
CHECKED BY	NF	NF			
APPROVED BY	I M	I M			

EQUIPMENT LIST Unit 4000 - Utility and Offsite

			Umi 4000 - Utility s	motor rating	P design	T design		I
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
Z-4001	COOLING WATER SYSTEM							
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 930 MWth Diameter: 140 m, Height: 210 m, Water inlet: 17 m					Included in Z-4001
	Pumps		Water met. 17 m					
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	15300 m3/h x 35 m	1400 kW				Included in Z-4001 3 operating
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	13400 m3/h x 45 m	2000 kW				Included in Z-4001 2 operating, one spare
P-4003A/B	Raw water pumps (make-up)	centrifugal	1440 m3/h x 35 m	185 kW				Included in Z-4001 1 operating, one spare
	Packages							
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 7270 m3/h					
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps							
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps							
Z-4002	RAW WATER SYSTEM							
T-4001	Raw Water storage tank		12480 m3					Included in Z-4002 24 hour storage
P-4004A/B	Raw Water Pumps to gasification island	centrifugal	160 m3/h x 50 m	30 kW				Included in Z-4002 One operating, one spare
P-4005A/B	Raw Water Pumps to demi plant	centrifugal	360 m3/h x 50 m	75 kW				Included in Z-4002 One operating, one spare
Z-4003	DEMI WATER SYSTEM							
PK-4001	Demin Water Package, including:							
AAA TUUI	- Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system							
T-4002	Demi Water storage tank		7920 m3					Included in Z-4003 24 hour storage
P-4006A/B	Demi Water Pumps	centrifugal	330 m3/h x 35 m	45 kW				Included in Z-4003 One operating, one spare

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and H2 plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.1 - H2 and power co-production (E-class GT)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	May 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	I M	I.M		

EQUIPMENT LIST

Unit 4000 - Utility and Offsite

ITEM	DESCRIPTION	ТҮРЕ	Unit 4000 - Utility a	motor rating [kW]	P design [barg]	T design	Materials	Remarks
Z-4004	FIRE FIGHTING SYSTEM							
	Fire water storage tank							
	Fire pumps (diesel)							
	Fire pumps (electric)							
	FW jockey pump							
	MISCELLANEA							
	Natural Gas system							
	Waste Water Treatment							
	C-1-1		72 4/1 5 1					30 days storage
	Sulphur Storage/Handling		72 t/d S prod.					30 days storage
	Flare system							
	Interconnecting							
	Instrumentation							
	DCS							
	Piping							
	Electrical							
	Plant Air							
	Buildings							

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 1 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

CLIENT : IEA GHG

PROJECT NAME : CO, CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

DOCUMENT NAME: CASE 5.2 - HYDROGEN AND POWER CO-PRODUCTION

POWER ISLAND: 2 X FRAME 6 EQUIVALENT GAS TURBINE

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : N. FERRARI
CHECKED BY : L. MANCUSO
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Da Chapter E.5 - Case 5.2: Hydrogen and power co-production

Power Island: 2 x frame 6 equivalent Gas Turbine

Date: January 2014

Sheet: 2 of 23

TABLE OF CONTENT

1.	Introduction	3
	1.1. Process unit arrangement	3
2.	Process description	5
	2.1. Overview	5
	2.2. Unit 900 – Coal Handling & Storage	5
	2.3. Unit 1000 – Gasification Island	
	2.4. Unit 2100 – Air Separation Unit	5
	2.5. Unit 2200 – Syngas Treatment and Conditioning line	5
	2.6. Unit 2300 – Acid Gas Removal (AGR)	7
	2.7. Unit 2400 – SRU and TGT	8
	2.8. Unit 2500 – CO ₂ Compression and Drying	8
	2.9. Unit 2600 – Hydrogen Production Unit	9
	2.10. Unit 3000 – Combined Cycle	9
	2.11. Utility Units	9
3.	Process Flow Diagrams	11
4.	Heat and Material Balance	12
5.	Utility consumption	14
6.	Overall performance	18
7.	Environmental impact	20
	7.1. Gaseous emissions	20
	7.2. Liquid effluents	21
	7.3. Solid effluents	
8.	Preliminary plot plan	22
9.	Equipment list	23
-		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 3 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

1. Introduction

This chapter of the report includes all technical information relevant to Case 5.2 of the study, which is a gasification plant based on the GE technology, designed for the co-production of hydrogen and power from coal, whose characteristic is shown in chapter B, and with capture of the generated carbon dioxide. Both power and hydrogen are exported outside plant battery limits respectively to the external electrical grid and to a hydrogen distribution network.

Plant capacity is the same of the GE technology based IGCC case, for power production only (refer to Case 4.2 in chapter E.2 of this report).

The configuration of the plant is based on the following main features:

- High-pressure (65 barg) GE Energy Gasification process, with slurry-feed system and Radiant Syngas Cooler (RSC);
- 2-stages sour shift;
- Removal of acid gases (H₂S and CO₂) based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and dehydration unit;
- Hydrogen production unit based in Pressure Swing Adsorption package
- Combined cycle based on two frame 6 equivalent gas turbines for power production

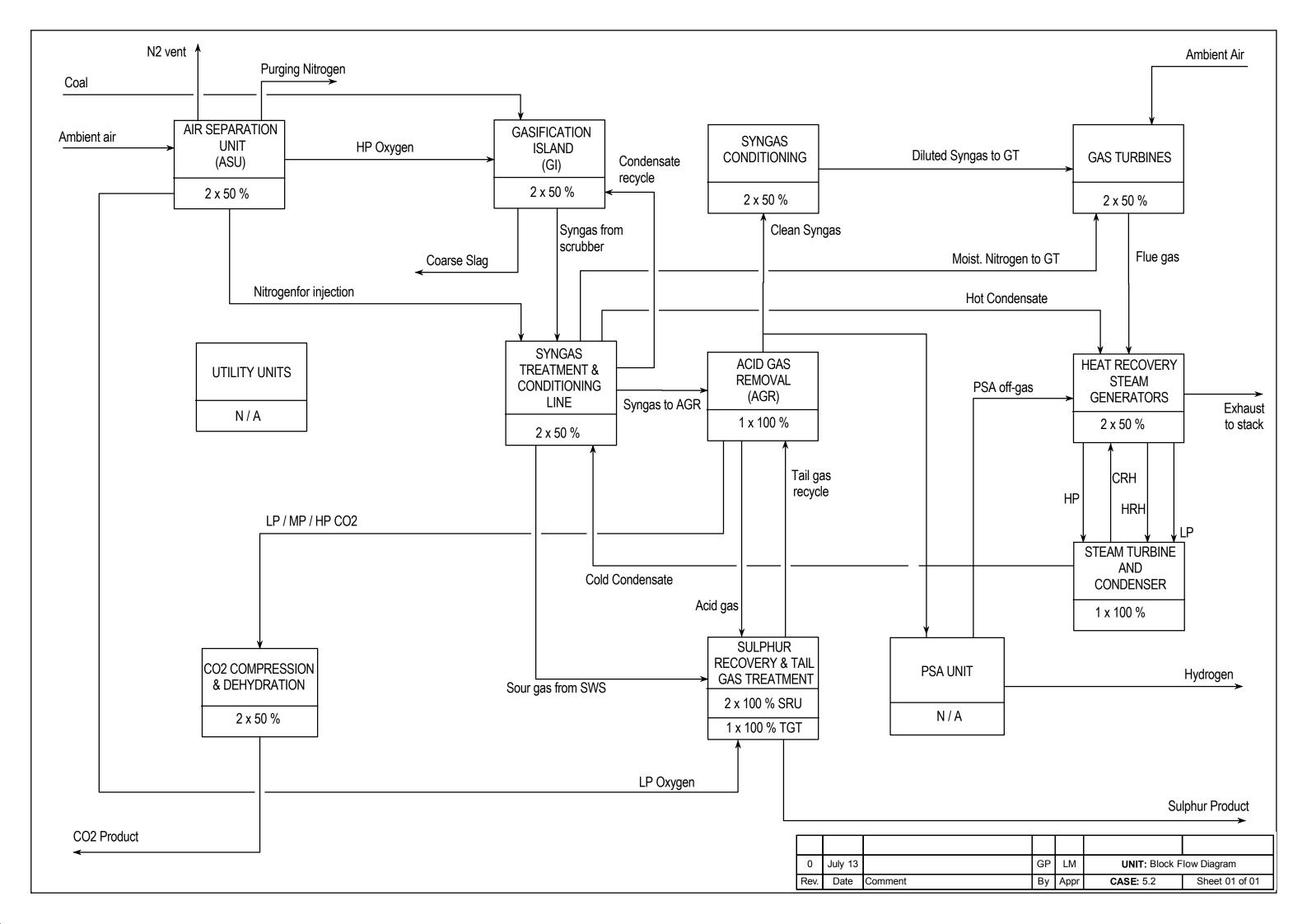
The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

Table 1. Case 5.2 – Unit arrangement

Unit	Description	Trains
900	Coal Handling & Storage	N/A
1000	Gasification	2 x 50%
	Coal Grinding & Slurry Preparation	



CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 4 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

Unit	Description	Trains
	Gasification (Radiant Syngas Cooler) and scrubber	
	Black Water Flash & Coarse Slag Handling	
	Grey Water & Fines Handling	
2100	Air Separation Unit	2 x 50%
2200	Syngas Treatment and Conditioning Line	2 x 50%
2250	Sour Water Stripper (SWS)	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
2600	Hydrogen production unit (PSA)	N/A
3000	Combined Cycle	
	Gas Turbine (frame 6 equivalent)	2 x 50%
	HRSG	2 x 50%
	Steam Turbine	1 x 100%
4000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 5 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

2.2. Unit 900 – Coal Handling & Storage

The unit mainly consists of the coal storage and handling.

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Island

The gasification island based on GE gasification mainly includes the coal grinding and slurry preparation section, the gasification (RSC) and the scrubber, the Black Water Flash and Coarse Slag Handling, and Grey Water & Fines Handling. Technical information relevant to these packages is reported in chapter E, section 3.2.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Air Separation Unit

Technical information relevant to this packaged unit is reported in chapter E, section 2.3. The main process information of the unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The sizing capacity of the Air Separation Unit is determined by the oxygen requirement of the gasification island and the SRU. The total required oxygen flowrate for the case is approximately 325 t/h.

The Air Separation unit supplies medium pressure nitrogen, injected in the gas turbine, after being moisturised, for NOx suppression and power production augmentation.

2.5. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. It has to be noted that syngas treatment line from the gasification scrubber to the AGR exit is almost the same of case 4.2. The

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 6 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

Saturated raw syngas from the gasification scrubber, at approximately 64 barg, is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H_2 and CO_2 and CO_3 is converted to H_2S . A double stage shift, containing sulphur tolerant shift catalyst (sour shift) is selected in order to increase the H_2 content in the fuel and maximize the degree of CO_2 removal. The overall CO conversion is approximately 98%. The water content in the syngas is adequate for the shift reaction to take place with no additional steam injection.

The partially-shifted syngas temperature is increased by the exothermic shift reaction, allowing for thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the second reactor stage:

- Feed/Product Heat Exchanger,
- HP Steam Generator,
- MP Steam Generator #1.

After being cooled, the syngas is directed to the second and last shift reactor. The hot shifted syngas outlet from the second stage is cooled in the following series of heat exchangers, to thermally recover heat and increase the overall power generation:

- MP Steam Generator #2,
- LP Steam Generator,
- Saturator Circulating Water Heater #1 and #2,
- Condensate Pre-heater #1 and #2.
- BFW pre-heater

Final cooling of the syngas is made against cooling water, before passing through a sulphur-impregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas is then directed to the AGR.

During the cooling of the syngas, the process condensate is separated and collected in the process condensate accumulator. Before being sent to the accumulator, the condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the Sour Water Stripper in order to avoid accumulation of ammonia and H₂S and other dissolved gases in the water recycle to the gasification section. The condensate from the accumulator is sent to the gasification scrubber for syngas saturation. Boiler Feed Water from the deaerator of the combined cycle provides the make-up water to substitute for the steam reacted in the shift unit.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 7 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

From the AGR unit, part of the cool hydrogen-rich gas returns to the syngas treatment and conditioning line as de-carbonized fuel gas after H₂S and CO₂ removal for final treatment before being fed to the combined cycle. This syngas flow is preheated against circulating water coming from the nitrogen saturator and then expanded down to the pressure required from the gas turbine, thus producing additional electric power.

Then, the hydrogen-rich syngas necessary to saturate the thermal demand of the gas turbines at the reference ambient temperature of the project, which corresponds to about 30% of the total syngas flowrate coming from the AGR, is sent to the combined cycle for final heating against boiler feed water and combustion in the gas turbine.

The balancing syngas from the AGR is sent to the PSA unit for high purity hydrogen production.

The unit includes nitrogen saturator, providing moisturised nitrogen to be injected in the gas turbine. Nitrogen humidification is achieved by means of hot water heated in the syngas cooling line. The humidified nitrogen is finally heated using MP steam and then injected in the gas turbine combustion chamber.

2.6. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H_2S and CO_2 in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit:

- The H₂S+COS concentration of the treated gas exiting the unit is around 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 2%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.06% mol).
- The acid gas H₂S concentration is about 41% dry basis, suitable to feed the oxygen blown Claus process.

The CO₂ removal rate is 91.7% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 90% with respect to the carbon

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 8 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.7. Unit 2400 – SRU and TGT

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The SRU is designed to process the acid gas from the AGR and other minor acid streams like the acid off-gas from the black water flash within the gasification island and the sour gases from the SWS, using low pressure oxygen from the ASU. In the furnace, H₂S is catalytically oxidized to SO₂ which is further reacted with H₂S to form H₂O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 60 barg by means of a dedicated compressor.

The overall sulphur production is approximately 72 tons per day.

2.8. Unit 2500 – CO₂ Compression and Drying

This unit is mainly composed of a compression and dehydration package, followed by last stage CO₂ pumps, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Three different streams of CO₂ from the Acid Gas Removal unit are routed to the CO₂ compression unit, delivered at approximately 19 barg, 6 barg, and 1.5 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 40 barg and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 80 barg.

The resulting stream of CO₂ is pumped to the required pressure of 110 barg. The CO₂ product (approximately 97.9 % wt purity) is transported to the plant battery limits for final sequestration.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 9 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

2.9. Unit 2600 – Hydrogen Production Unit

Technical information relevant to this package is reported in chapter E, section 2.9. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables. The PSA unit is designed to produce 325,000 Nm³/h of high-purity hydrogen at around 51 barg, to be sent to the plant battery limits. The PSA off-gases are sent to the supplementary firing system of the combined cycle.

2.10. Unit 3000 – Combined Cycle

Technical information relevant to these packages is reported in chapter E, section 2.10. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The hydrogen-rich syngas heated up to around 220°C in the syngas treatment and conditioning line enters the burners of the gas turbine.

The gas turbine compressors provide combustion air to the burner only, i.e. no air integration with the ASU is foreseen. The exhaust gases from the gas turbine enter the HRSG at 585°C. Off-gas from the PSA unit are burned in the supplementary firing system of the HRSG, increasing the flue gas temperature up to 790°C. The HRSG recovers heat available from the exhaust gas producing steam at three different pressure levels for the steam turbine, plus an additional steam generator with integral deaerator. The final exhaust gas temperature to the stack of the HRSG is 133°C. The calculated acid gas dew point temperature of the exhaust flue gas is around 90°C.

The Heat Transfer vs. Temperature of the HRSG (T-Q diagram) of case 5.2 is shown in Figure 1. The red line (the upper curve) represents the exhaust gases from the GT to the stack. The blue lines represent the water path in the economizers (at lower temperature), the steam generators (horizontal lines) and the super-heater/re-heater (at higher temperature).

The combined cycle is thermally integrated with the process unit, in order to maximize the net electrical efficiency of the plant. The main steam and water interfaces with the process units are given in Table 2.

2.11. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

The main utility units include:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 10 of 23

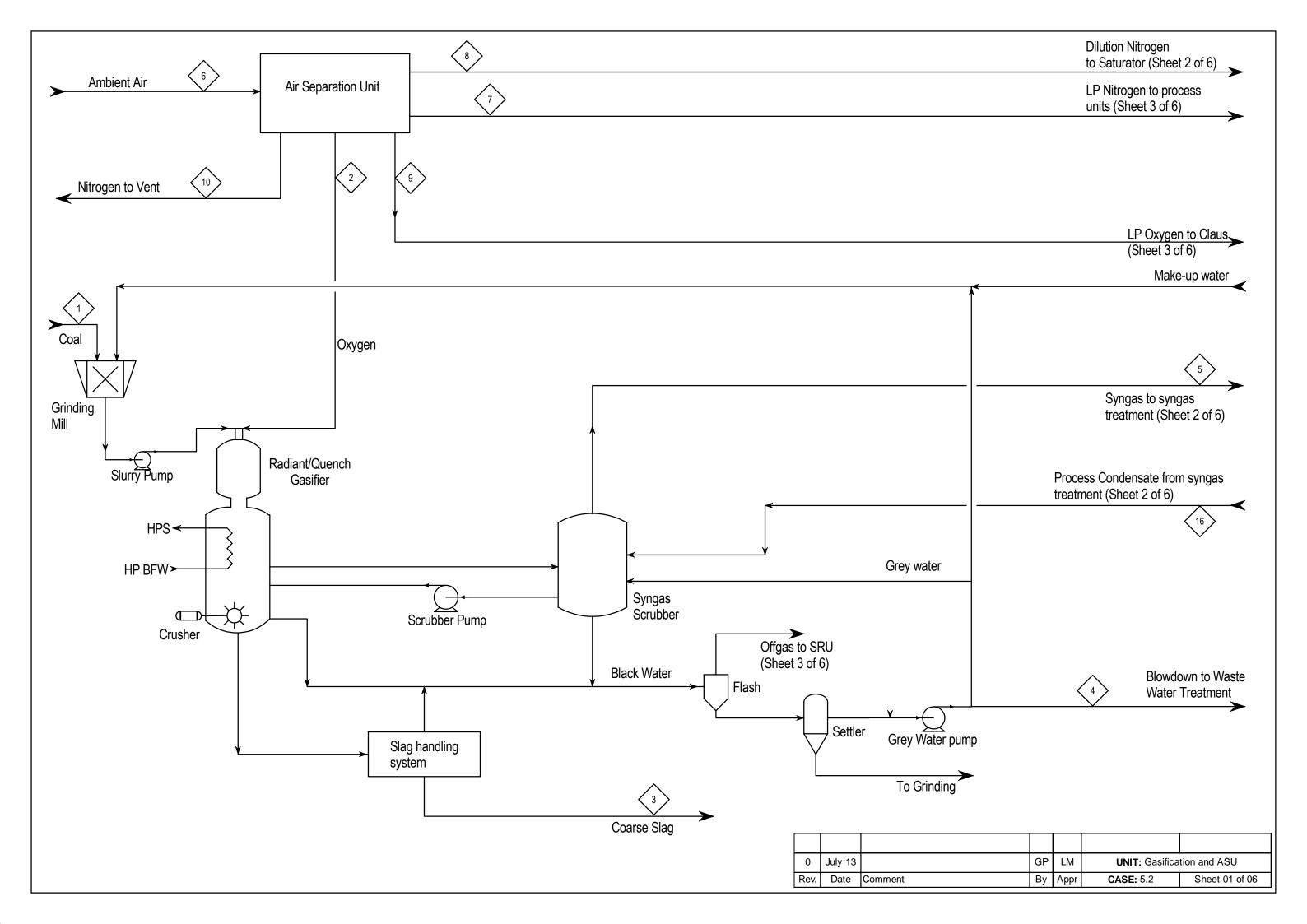
Power Island: 2 x frame 6 equivalent Gas Turbine

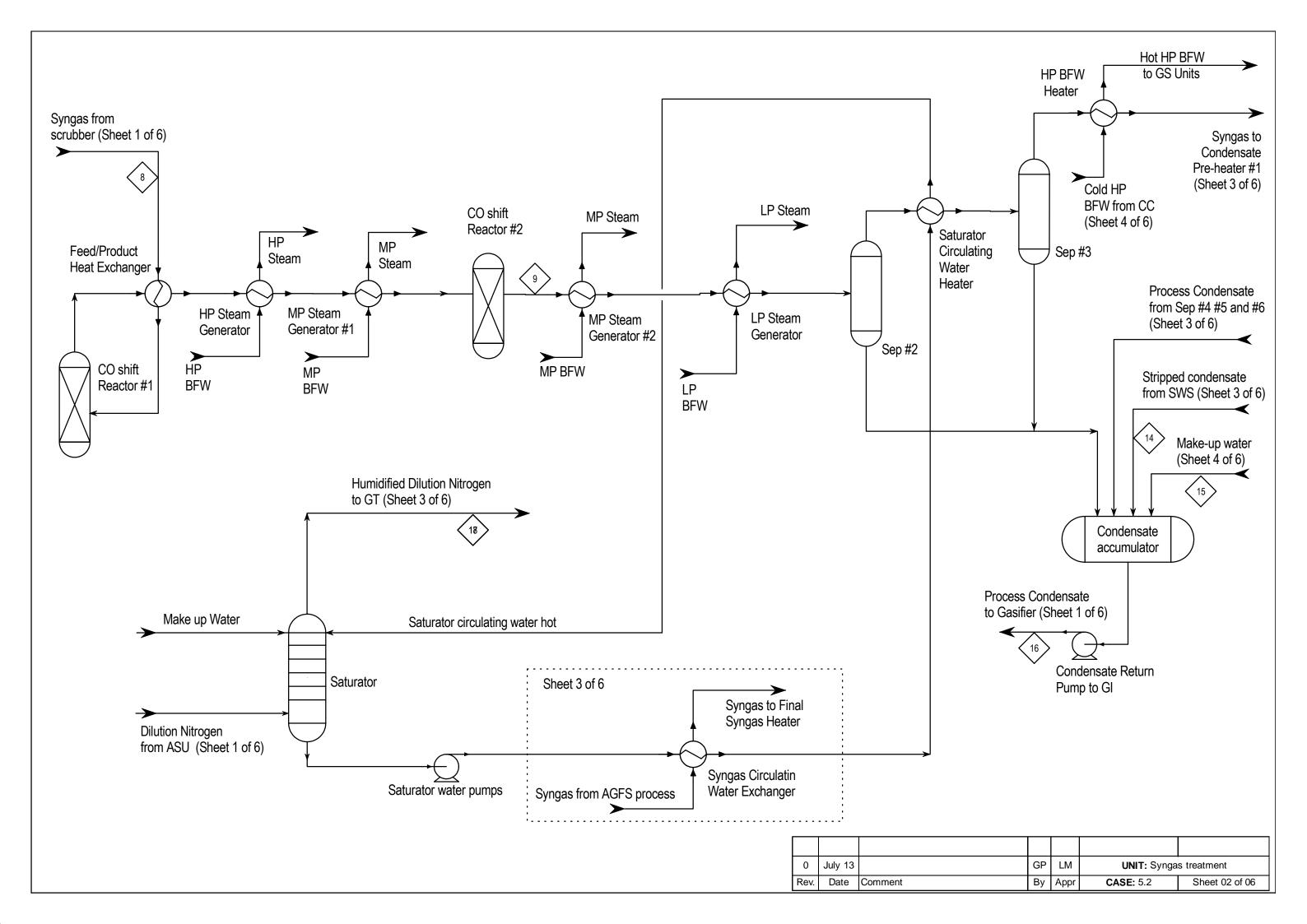
- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

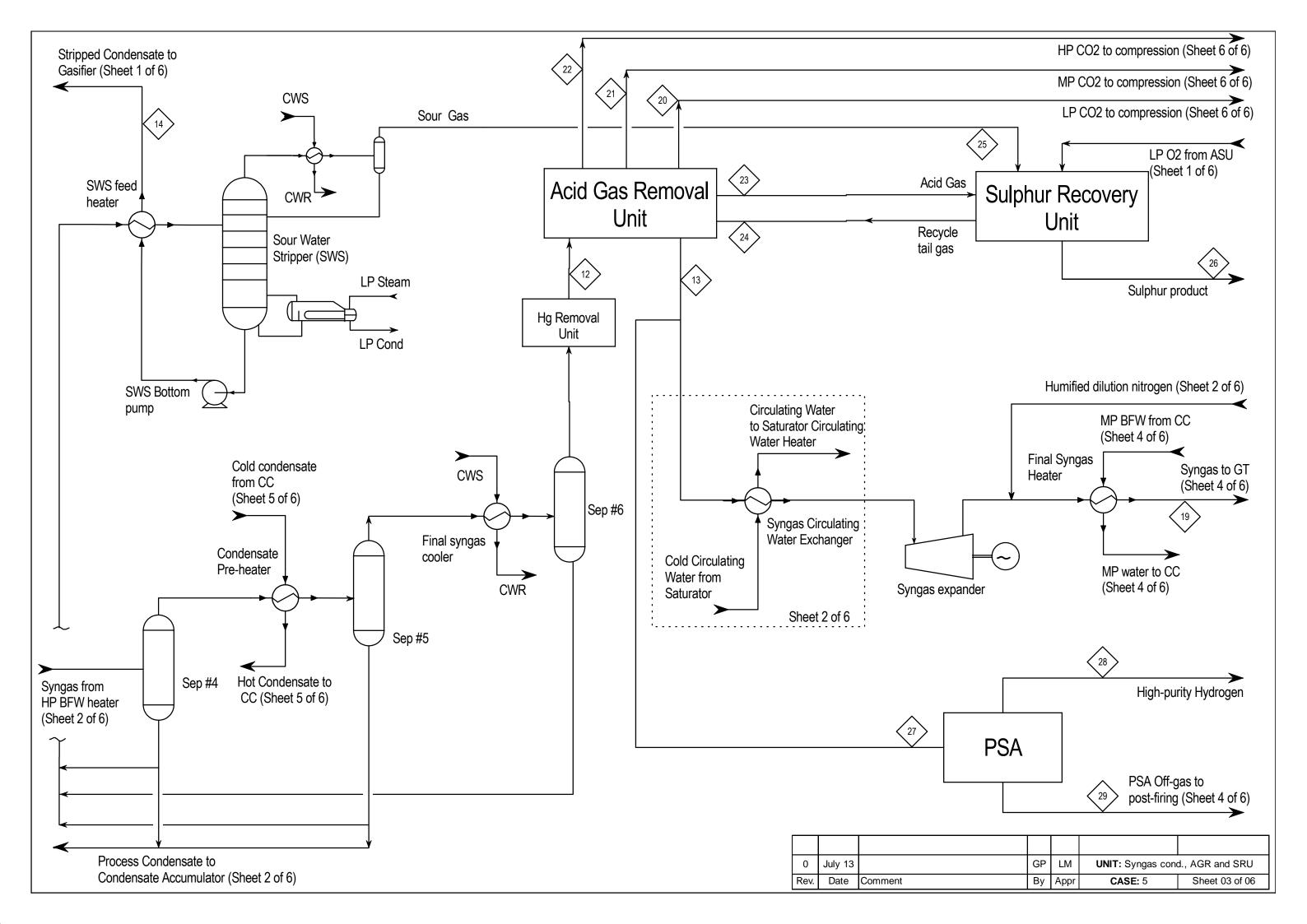
Basin diameter	140 m
Cooling tower height	210 m
Water inlet height	17 m

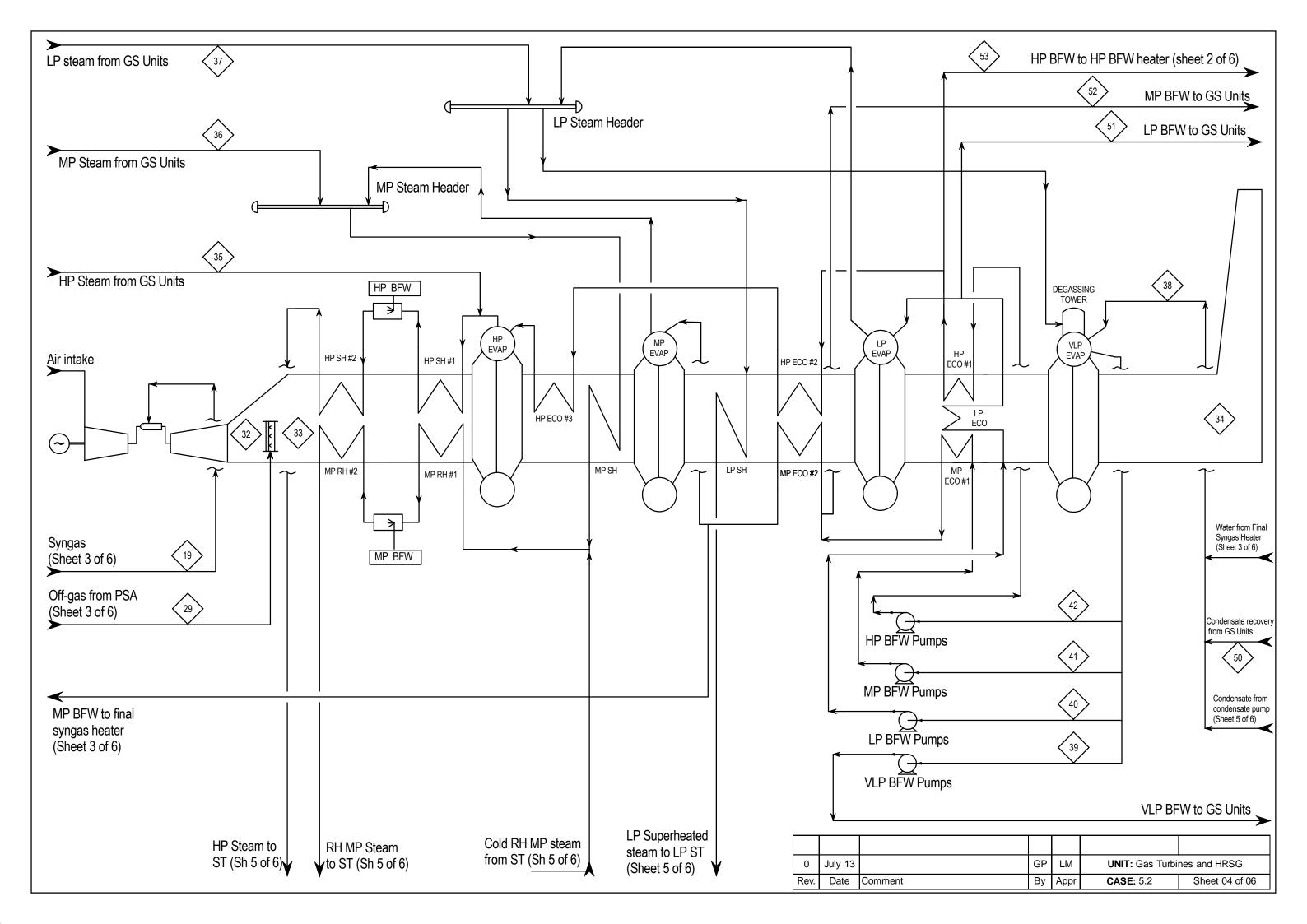
- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

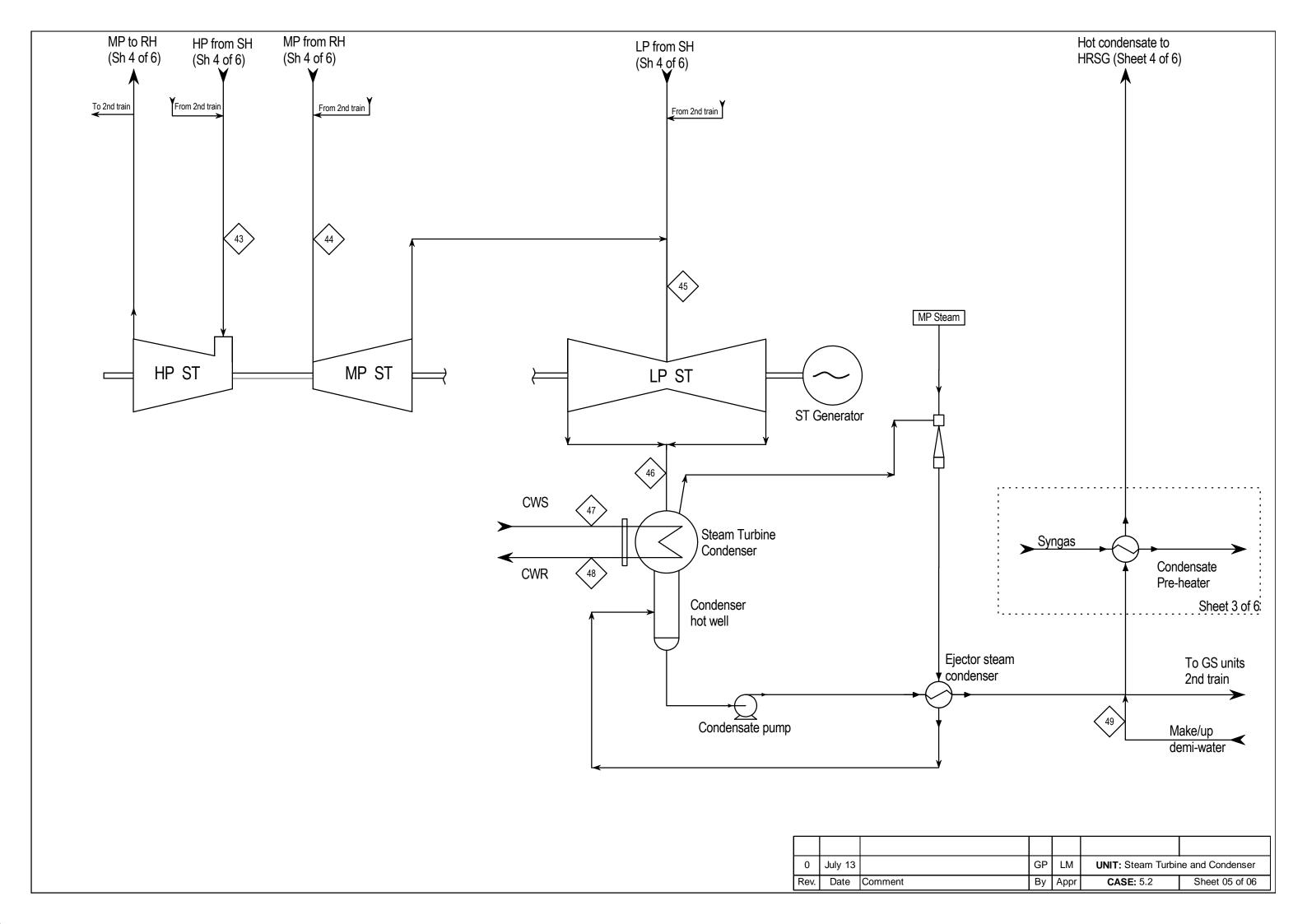
Process descriptions of the above systems are enclosed in chapter E, section 2.11.

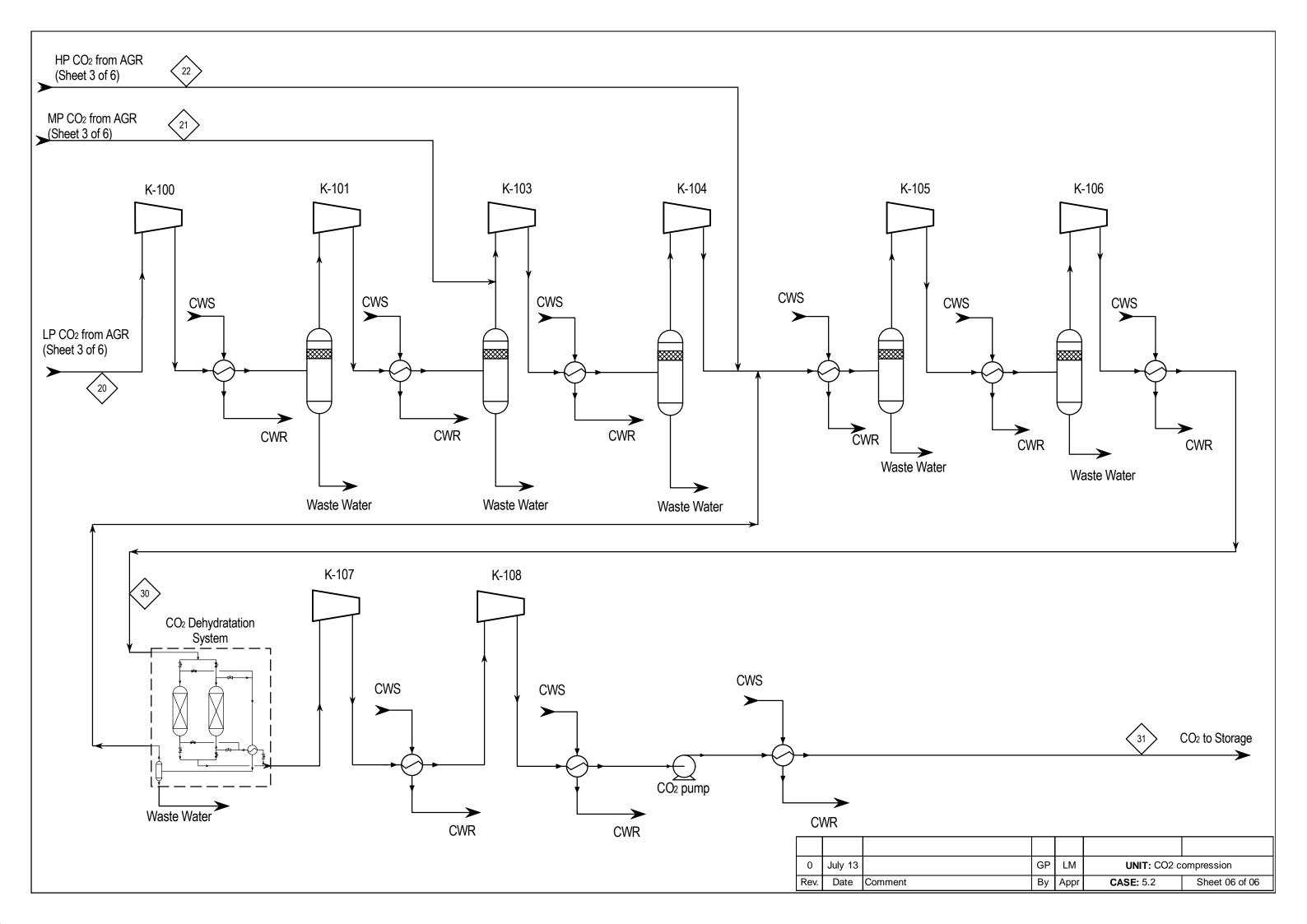

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 11 of 23


Power Island: 2 x frame 6 equivalent Gas Turbine


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 12 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

	HYDRO	GEN AND POWE	R COPRODUCTION	- Case 5.2 - HFAT	AND MATERIAL R	ALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG	Cuse S.E. HEAT?	AITO MATERIAL DI	ALTIVOL	PREP.	GP	1	
FOSTERWHEELER				l based nower and	hydrogon plants					
(FUSTER W WHEELER)	PROJECT NAME:		CO ₂ capture at coa	i based power and	nydrogen piants		CHECKED	NF 		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MATE UNIT 1000 - Gasif						
	1	2	3	4	5	16				
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification				
Temperature (°C)	AMB	10	80	AMB	N/D	144				
Pressure (bar)	ATM	75-80 ⁽¹⁾	ATM	ATM	64.6	70				
TOTAL FLOW	Solid		Solid + water		Dry basis					
Mass flow (kg/h)	349,100	323,000	87,400	94,500	1,154,000	493,200				
Molar flow (kmol/h)		10,025		5,250	58,004	27,385				
LIQUID PHASE										
Mass flow (kg/h)			43,700	94,500	-	493,200				
GASEOUS PHASE										
Mass flow (kg/h)		323,000			1,154,000					
Molar flow (kmol/h)		10,025			58,004					
Molecular Weight		32.22			21.58					
Composition (vol %)	%wt		50% moisture							
H ₂	C: 64.6%	-			35.80					
CO	H: 4.38%	-			42.80					
CO ₂	O: 7.02%	-			17.80					
N_2	S: 0.86%	1.50			3.22					
02	N: 1.41%	95.00			0.00					
CH ₄	CI: 0.03%	-			0.00					
H ₂ S + COS	Moisture: 9.5%	-			0.38					
Ar	Ash: 12.20%	3.50			0.00					
HCN		-			0.00					
NH ₃		-			0.00					

0.00

H2O

Notes

1) FWI assumption

	HYDROGEN AND POW	ER COPRODUCTION - Case 5.2 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	GP		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		

HEAT AND MATERIAL BALANCE UNIT 2100 - Air Separation Unit (ASU)

	6	2	7	8	9	10		
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	MP Nitrogen for Syngas dilution	Oxygen to SRU	Nitrogen vent		
Temperature (°C)	Ambient	10	Ambient (1)	122	Ambient	Ambient		
Pressure (bar)	Ambient	75-80 (1)	7.5 (1)	28	6	Atmospheric		
TOTAL FLOW								
Mass flow (kg/h)	1,394,750	323,000	25,220	119,990	1,933	910,308		
Molar flow (kmol/h)	48,320	10,025	900	4,281	60	32,478		
LIQUID PHASE								
Mass flow (kg/h)	-	-	-	-	-	-		
GASEOUS PHASE								
Mass flow (kg/h)	1,394,750	323,000	25,220	119,990	1,933	910,308		
Molar flow (kmol/h)	48,320	10,025	900	4,281	60	32,478		
Molecular Weight	28.86	32.22	28.02	28.03	32.22	28.03		
Composition (vol %)								
H ₂	-	-	-	-	-	-		
СО	-	-	-	-	-	-		
CO ₂	0.04	-	-	0.05	-	0.05		
N_2	77.32	1.50	99.999	98.00	1.50	98.00		
O_2	20.75	95.00	0.001	1.00	95.00	1.00		
CH ₄	-	-	-	-	-	-		
H ₂ S + COS	-	-	-	-	-	-		
Ar	0.92	3.50	-	0.25	3.50	0.25		
HCN	-	-	-	-	-	-		
NH ₃	-	-	-	-	-	-		
H ₂ O Notes	0.97 1) FWI assumption	-	-	0.70	-	0.70		

	HYDROGEN AND POWE	R COPRODUCTION - Case 5.2 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	GP		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	July 2013		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	11	12	13	14	15	16	17	18	19
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from Acid Gas Removal	Stripped condensate from SWS	BFW make-up to condensate accumulator	Return Condensate to Gasification	Nitrogen to saturator	Moist. Nitrogen for syngas dilution	Diluted Syngas to Power Island
Temperature (°C)	N/D	323	34	15	130	123	144	122	168	170
Pressure (bar)	64.5	61.5	57.0	53.0	70.0	2.2	70.0	28.0	27.0	27.0
TOTAL FLOW										
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	43,225	227,000	492,600	119,986	153,110	198,017
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	2,400	12,600	27,350	4,281	6,121	14,066
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	43,225	227,000	492,600	-	-	-
GASEOUS PHASE										
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	-	-	-	119,986	153,110	198,017
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	-	-	-	4,281	6,121	14,066
Molecular Weight	19.90	19.90	20.50	5.65	-	-	-	28.03	25.01	14.08
Composition (vol %)										
H ₂	35.80	41.04	54.73	89.55	-	-	-	0.00	0.00	50.58
CO	42.80	0.46	0.61	0.98	-	-	-	0.00	0.00	0.56
CO ₂	17.80	31.54	41.98	5.73	-	-	-	0.05	0.03	3.25
N_2	3.22	3.22	2.27	3.73	-	-	-	98.00	68.54	31.93
02	0.00	0.00	-	-	-	-	-	1.00	0.70	0.30
CH ₄	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
H ₂ S + COS	0.38	0.38	0.26	0.00	-	-	-	0.00	0.00	0.00
Ar	0.00	0.00	-	-	-	-	-	0.25	0.17	0.08
HCN	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
NH ₃	0.00	0.00	-	-	-	-	-	0.00	0.00	0.00
H ₂ O	0.00	25.06	0.15	0.01	-	-	-	0.70	30.55	13.30

	HYDROC	EN AND POWER	COPRODUCTION	- Case 5.2 - HEAT	AND MATERIAL I	BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG					GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	and hydrogen plan	ts	CHECKED	NF		
	PROJECT NO:		1-BD-0681 A			APPROVED	LM			
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MATE NIT 2300 - Acid Ga	RIAL BALANCE as Removal (AGR)					
	12	13	20	21	22	23	24			
STREAM		IID Dunified								

	12	13	20	21	22	23	24		
STREAM	Raw Syngas from Syngas Cooling	HP Purified Syngas to Syngas Cooling	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU		
Temperature (°C)	34	15	-9	-1	8	20	35		
Pressure (bar)	57.0	53.0	2.5	6.6	20.3	1.6	56.5		
TOTAL FLOW									
Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,826	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	-	-	-		
GASEOUS PHASE									
Mass flow (kg/h)	891,750	148,235	163,504	407,928	167,385	9,826	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
Molecular Weight	20.5	5.6	44.0	43.9	41.1	33.5	36.1		
Composition (vol %)									
H ₂	54.73	89.55	-	0.20	6.66	14.47	17.65		
СО	0.61	0.98	-	-	0.16	0.25	-		
CO ₂	41.98	5.73	99.87	99.74	92.95	43.29	77.90		
N_2	2.27	3.73	-	-	0.19	0.38	0.69		
02	-	-	-	-	-	-	-		
CH ₄	-	-	-	-	-	-	-		
H ₂ S + COS	0.26	0.00	-	-	-	40.70	3.76		
Ar	-	-	-	-	-	-	-		
HCN	-	-	-	-	-	-	-		
NH ₃	-	-	-	-	-	0.11	-		
H₂O	0.15	0.01	0.13	0.06	0.04	0.80	-		

HYDROGEN AND POWER COPRODUCTION - Case 5.2 - HEAT AND MATERIAL BALANCE REVISION 0 1 2 GP CLIENT: PREP. **IEAGHG** FOSTER WHEELER PROJECT NAME: CO₂ capture at coal based power and hydrogen plants **CHECKED** NF **APPROVED** PROJECT NO: 1-BD-0681 A LM DATE LOCATION: The Netherlands July 2013 **HEAT AND MATERIAL BALANCE** UNIT 2400 - Sulfur Recovery Unit (SRU) & Tail Gas Treatment (TGT) 23 25 9 24 26 **STREAM** Sour Gas from Claus Tail Gas to **Acid Gas from** Oxygen to SRU Sour water **Product Sulphur AGR Unit AGR Unit** stripper Temperature (°C) Ambient 20 35 80 Pressure (bar) 6 1.6 56.5 4 **TOTAL FLOW** Mass flow (kg/h) 1,933 9,826 5,804 170 3,000 Molar flow (kmol/h) 60.0 293 161 4.5 LIQUID PHASE Mass flow (kg/h) **GASEOUS PHASE** Mass flow (kg/h) 1933 9,826 5,804 170 Molar flow (kmol/h) 60 293 161 4.5 Molecular Weight 32.2182 33.5 36.1 38.0 Composition (vol %) H_2 14.69 17.65 0.67 CO 0.25 0.03 CO_2 42.76 77.90 75.60 N_2 1.50 0.38 0.69 0.24 O_2 95.00 CH_4

-

3.50

41.31

0.00

0.61

3.76

3.26

7.70

12.50

 $H_2S + COS$

Ar HCN NH₃

 H_2O

	HYDRO	OGEN AND POWER	COPRODUCTION	- Case 5.2 - HEAT	AND MATERIAL BA	ALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
	•			HEAT AND MAT	ERIAL BALANCE		•	L		
	_		Ur	nit 2500 - CO2 Com	pression and Dryi	ng		_		
	20	21	22	30	31					
STREAM	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	CO ₂ to drying package	CO ₂ to storage					
Temperature (°C)	-9	-1	8	26	30					
Pressure (bar)	2.5	6.6	20.3	39.8	110.0					
TOTAL FLOW										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	163,504	407,928	167,385	806,058	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
Molecular Weight	44	43.9	41.1	43.3	43.3					
Composition (vol %)										
H_2	-	0.20	6.66	1.61	1.61					
CO	-	-	0.16	0.04	0.04					
CO ₂	99.87	99.74	92.95	98.18	98.30					
N_2	-	-	0.19	0.05	0.05					
O_2	-	-	-	0.00	0.00					
CH ₄	-	-	-	0.00	0.00					
$H_2S + COS$	-	-	-	0.00	0.00					
Ar	-	-	-	0.00	0.00					
HCN	-	-	-	0.00	0.00					
NH_3	-	-	-	0.00	0.00					
		1		1		Ī	i e	i a	i l	

H₂O

0.13

0.06

0.04

0.12

0.00

	HYDROGI	EN AND POWER	COPRODUCTION	- Case 5.2 - HEAT	AND MATERIAL	BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	GP		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	ınd hydrogen plar	nts	CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	July 2013		
				HEAT AND MATE	RIAL BALANCE				•	
			UN	IT 2600 - Hydroge	n Production Uni	t				
	27	28	29							
STREAM	Syngas to PSA	High-purity Hydrogen	PSA off-gas							
Temperature (°C)	15	20	10							
Pressure (bar)	53	52	5							
TOTAL FLOW										
Mass flow (kg/h)	103,340	30,970	72,370							
Molar flow (kmol/h)	18,295	14,485	3,810							
LIQUID PHASE										
Mass flow (kg/h)	-	-	-							
GASEOUS PHASE										
Mass flow (kg/h)	103,340	30,970	72,370							
Molar flow (kmol/h)	18,295	14,485	3,810							
Molecular Weight	5.65	2.1	19.0							
Composition (vol %)										
H ₂	89.55	99.53	51.61							
СО	0.98	-	4.72							
CO_2	5.73	-	27.50							
N_2	3.73	0.47	16.11							
02	-	-	-							
CH ₄	-	-	- 0.00							
H ₂ S + COS	0.00	-	0.00							
Ar HCN	-	-	-							
NH ₃										
H ₂ O	0.01	_	0.06							

H2 AND POWER CO-PRODUCTION - Case 5.2 - H&M BALANCE

CLIENT: IEAGHG

PROJECT NAME: CO_2 capture at coal based power and H_2 plants

PROJECT NO: 1-BD-0681 A LOCATION: The Netherlands

REVISION	0	1
PREP.	GP	
CHECKED	NF	
APPROVED	LM	
DATE	July 2013	

HEAT AND MATERIAL BALANCE Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
29	PSA off-gas to post-firing (*)	36.2	10	5.0	-
19	Treated Syngas from Syngas Cooling (*)	99.0	170	27.00	-
32	Flue gas from GT (*) (1)	839.5	585	1.05	-
33	Flue gas after post-firing (*) (2)	875.2	790	1.05	-
34	Flue gas at stack (*) (2)	875.2	133	atm	-
35	HP Steam from Process Units (*)	267.6	335	137.0	2646
36	MP Steam from Process Units (*)	59.0	252	41.0	2801
37	LP Steam from Process Units (*)	53.0	168	7.5	2766
38	Condensate to Deaerator (*)	658.4	115	2.2	483
39	BFW to VLP Pumps (*)	113.5	123	2.2	518
40	BFW to LP BFW Pumps (*)	88.7	123	2.2	518
41	BFW to MP BFW Pumps (*)	158.4	123	2.2	518
42	BFW to HP BFW Pumps (*)	304.3	123	2.2	518
43	HP Steam to Steam Turbine	604.8	557	132.0	3488
44	Hot RH Steam to Steam Turbine	767.9	557	34.8	3581
45	LP Steam to Steam Turbine	854.8	300	5.7	3063
46	Steam to Condenser	854.8	29	0.04	2299
47	Water Supply to Steam Condenser	40765	15	4.0	63
48	Water Return from Steam Condenser	40765	26	3.5	109
49	Make-up water	268.0	15	6.0	64
50	Condensate return from Process Units	87.5	94	4.2	394
51	LP BFW to Process Units	142.0	160	19.0	676
52	MP BFW to Process Units	153.1	160	56.0	678
53	HP BFW to Process Units	538.7	130	180.0	558

^(*) Flowrate figure refers to one train (50% capacity)

⁽¹⁾ Flue gas molar composition: N_2 : 71.5%; H_2O : 15.35%; O_2 : 11.4%; CO_2 : 0.9%; Ar: 0.8%.

⁽²⁾ Flue gas molar composition: N_2 : 69.5%; H_2O : 17.8%; O_2 : 9.3%; CO_2 : 2.8%; Ar: 0.8%.

Date:

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants January 2014 Sheet: 13 of 23 Chapter E.5 - Case 5.2: Hydrogen and power co-production

Power Island: 2 x frame 6 equivalent Gas Turbine

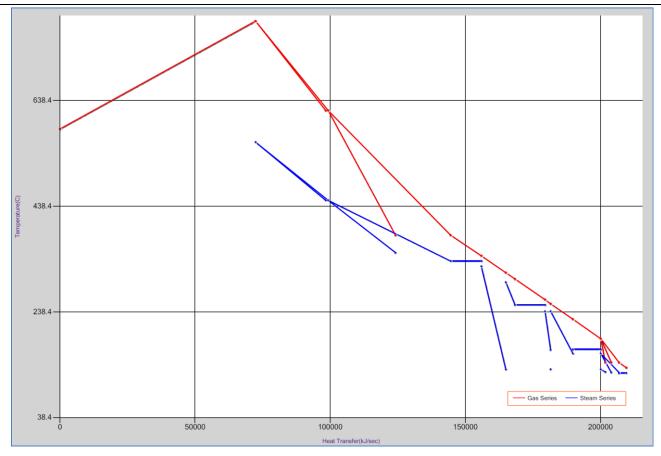


Figure 1 – Case 5.2 – HRSG T-Q diagram

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 14 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Steam / BFW / condensate interface summary is reported in Table 2.
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4.

Revision no.: Final **IEAGHG**

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E.5 - Case 5.2: Hydrogen and power co-production

Power Island: 2 x frame 6 equivalent Gas Turbine

Date: January 2014

Sheet: 15 of 23

Table 2. Case 5.2 – Steam/BFW/condensate interface summary

							REVISION	Rev.0		
	CLIENT:	IEAGHG					DATE	August 2013		
EOS.	TER WHEELER PROJECT:	CO2 capture at	coal based powe	r and hydrogen	plants		ISSUED BY	GP		
	LOCATION: The Netherlands						CHECKED BY	NF		
	FWI №:	1-BD-0681 A					APPROVED BY	LM		
	Hydrogen and power co-pro	duction - Cas	se 5.2 (Power	Island: 2 x fra	ame 6 equiva	lent Gas Turb	ine) - Steam a	and water ba	lance	
UNIT	DESCRIPTION UNIT	HP Steam barg	MP Steam barg	LP Steam barg	HP BFW	MP BFW	LP BFW	VLP BFW	condensate recovery	Losses
		137	40	6.5						
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS									
2100	Air Separation Unit (ASU)								0.0	
	, ,									
1000	Gasification Section	-444.1			446.7				0.0	-2.5
2200	Syngas Treating and Conditioning Line	-91.2	-110.1	-132.1	92.1	144.4	142.0	227.1	-8.5	-263.6
	7 5 5									
2300	Acid Gas Removal			64.0					-64.0	0.00
2400	Sulphur Recovery (SRU)		-7.9			8.7				-0.83
3000	POWER ISLANDS UNITS	535.3	118.0	53.0	-538.7	-153.1	-142.0	-227.1	87.6	
2600	Hydrogen Unit (PSA)									
4000	UTILITY and OFFSITE UNITS			15.0					-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-267.0

Note: (1) Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 16 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

Table 3. Case 5.2 – Water consumption summary

(FO:	LOCATION:		IEAGHG CO2 capture at coal based power and H2 plants The Netherlands 1-BD-0681 A		0 August 2013 GP NF LM					
	Hydrogen and power co-production - Case 5.2 (Power Island: 2 x frame 6 equivalent Gas Turbine) Water Consumption Summary									
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system [t/h]	Cooling Water Secondary System [t/h]					
		ניוון	[(/11]	լ(/Ոյ	լւ/пյ					
	AIR SEPARATION UNIT (ASU)									
2100	Air Separation Unit				10400					
	GASIFICATION SECTION (GS)									
1000	Gasification Gasification	145			3870					
2200	Syngas treatment and conditioning line	145			2390					
2300	Acid Gas Removal		0.6		6870					
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160					
	CO ₂ COMPRESSION									
2500	CO ₂ Compression				5850					
	COMPINED CYCLE (CC)									
3100	COMBINED CYCLE (CC) Gas Turbines and Generator auxiliaries				300					
					333					
3200	Heat Recovery Steam Generator									
3300	Steam Turbine and Generator auxiliaries		268.1	40760	1700					
3300	Steam furbine and Generator auxiliaries		200.1		1700					
	Miscellanea									
	UTILITY UNITS (UU)									
4000	Cooling Water System	1303								
4000	Demineralized/Condensate Recovery/Plant and									
	Potable Water Systems	403	-269							
4000	Waste Water Treatment	-90.3								
		55.5								
4000	Balance of Plant (BOP)				190					
	TOTAL CONSUMPTION	1761	0	40760	31730					
<u> </u>	TOTAL CONSUMPTION	1761	0	40/60	31/30					

Note: Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production

Power Island: 2 x frame 6 equivalent Gas Turbine

Table 4. Case 5.2 – Electrical consumption summary

Sheet: 17 of 23

			Ta a
		ITACHO	Rev.0
	CLIENT:		Date: August 2013
FOSTE		CO2 capture at coal based power and hydrogen plants	ISSUED BY: GP
	LOCATION:	The Netherlands	CHECKED BY: NF
	FWI №:	1-BD-0681 A	APPR. BY: LM
<u> </u>			
Ну		ase 5.2 (Power Island: 2 x frame 6 equivalent Gas Tu I Consumption Summary	irbine)
			Absorbed
UNIT		DESCRIPTION UNIT	Electric Power
			[kW]
	AIR S	EPARATION UNIT (ASU)	
2100	MAC consumptions		124240
	·		
	BAC consumptions		12270
	BAC consumptions		12270
	Nitrogen compressor and miscel	anea	7710
	GASI	FICATION SECTION (GS)	
900	Coal Receiving Handling and Stor	age	410
300			
1000	Gasification		8790
1000	Gasincation		6/30
2200	Syngas treatment and conditioning	ng line	1090
2300	Acid Gas Removal		20850
2400	Sulphur Recovery (SRU) - Tail gas	streatment (TGT)	700
	burphan necovery (site) run gut	or continuent (101)	700
2500	CO ₂ Compression		33970
2500	CO ₂ Compression		33370
		014DINED 0/015 (00)	
		OMBINED CYCLE (CC)	
3100	Gas Turbines auxiliaries		500
3200	Heat Recovery Steam Generator		4860
3-00	,		
2200	Stoom Turbing auxiliaries and aux	sitation system	CEO
3300	Steam Turbine auxiliaries and exc	atation system	650
3300	Miscellanea		2790
		UTILITY UNITS (UU)	
4000	Cooling Water System		8880
	<u> </u>		
4000	Dominaralized/Condensate Base	very/Plant and Potable Water Systems	720
4000	Demineralized/Condensate Reco	very/Plant and Potable water Systems	730
4000	Balance of Plant (BOP)		1070
	TOTAL CONSUMPTION		229510

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 18 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

6. Overall performance

The following table shows the overall performance of Case 5.2.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	August 2013
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 5.2 - H2 and power co-production Plant Performance Summary (2 frame 6 equivalent GTs)

OVERALL PERFORMANCES						
Coal Flowrate (as received)	t/h	349.1				
Coal LHV (as received)	kJ/kg	25870				
Coal HHV (as received)	kJ/kg	27060				
THERMAL ENERGY OF FEEDSTOCK	MWth (LHV)	2509				
THERMAL ENERGY OF FEEDSTOCK	MWth (HHV)	2624				
Thermal Power of Raw Syngas exit Scrubber	MWth (LHV)	1785				
Thermal power of syngas to AGR	MWth (LHV)	1638				
Thermal Power of Clean Syngas to Gas Turbines	MWth (LHV)	484				
Thermal Power of Off-gas to post-firing	MWth (LHV)	146				
Thermal Power of Clean Syngas to Hydrogen PSA	MWth (LHV)	1116				
HYDROGEN PRODUCTION	Nm³/h	324700				
Thermal Power of Hydrogen	MWth (LHV)	969				
Gas turbines total electric power output	MWe	181.2				
Steam turbine electric power output	MWe	335.1				
Syngas expander	MWe	3.4				
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX	MWe	519.7				
Gasification Section units consumption	MWe	31.8				
ASU consumption	MWe	144.2				
Combined Cycle units consumption	MWe	8.8				
CO ₂ Compression and Dehydration unit consumption	MWe	34.0				
Utility Units consumption	MWe	10.7				
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	229.5				
NET ELECTRIC POWER OUTPUT OF IGCC	DAVA/a	200.2				
(Step-up transformer Eff. = 0.997)	MWe	289.3				
CO ₂ emission per net power production (*)	kg/MWh	93.8				

^(*) Referred to the net power production fo case 4.2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production

Power Island: 2 x frame 6 equivalent Gas Turbine

The following Table shows the overall CO_2 balance and CO_2 removal efficiency of Case 5.2.

Sheet: 19 of 23

CO ₂ removal efficiency	Equivalent flow of CO ₂
	kmol/h
INPUT	
Fuel Mix (Carbon AR)	18730
TOTAL (A)	18730
ОUТРUТ	
Slag (B)	101.0
CO ₂ product pipeline	
со	7
CO ₂	16759
CH₄	0.0
cos	0.0
Total to storage (C)	16766
Emission	
CO ₂ + CO (Combined Cycle)	560
CO2 + CO (to PF)	1303
TOTAL	18730
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 20 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

7. Environmental impact

The gasification plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 5 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air or nitrogen containing particulate.

Flue gas to HRSG stack
Emission type
Continuous

Table 5. Case 5.2 – Plant emission during normal operation

g	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	876,175
Flow, Nm ³ /h (1)	963,650
Temperature, °C	133
Composition	(% vol)
Ar	0.75
N_2	69.46
O_2	9.27
CO_2	2.76
H ₂ O	17.76
Emission	mg/Nm ^{3 (1)}
NOx	< 50
SOx	< 1
CO	< 100
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 15% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 21 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

Table 6. Case 5.2 – Plant minor emission

Emission source	Emission type	Temperature	
Coal handling and storage system	Continuous	ambient	Air: 10 mg/Nm ³ particulate

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Cooling Tower blow-down

Flowrate: $310 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate : $160 \text{ m}^3/\text{h}$

7.3. Solid effluents

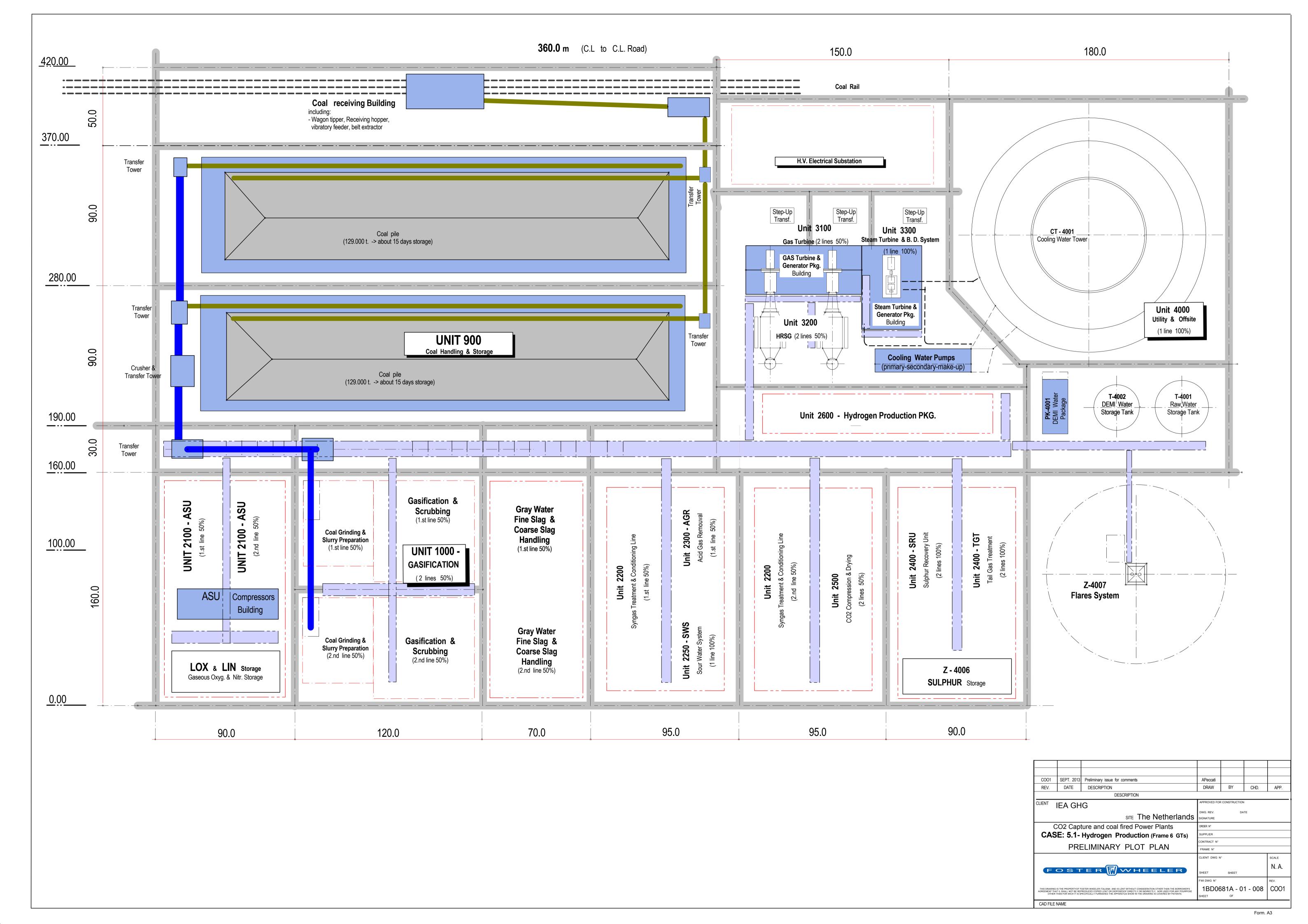
The IGCC plant is expected to produce the following solid by-product:

Slag from gasifier

Flowrate : 45 t/h (dry basis)

Moisture content : 50%

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 22 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

8. Preliminary plot plan

Plot plan at block level of Case 5.2 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.5 - Case 5.2: Hydrogen and power co-production Sheet: 23 of 23

Power Island: 2 x frame 6 equivalent Gas Turbine

9. Equipment list

The list of main equipment and process packages is included in this section.

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

REVISION Rev. Draft Rev.0 Rev.1 Rev.2 DATE July 2013 January 2014 ISSUED BY GP GP CHECKED BY NF NF APPROVED BY LM LM

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs) **EQUIPMENT LIST**

Unit 900 - Coal Handling & Storage (NA)

				motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-901	Coal Handling		Coal flowrate: 349 t/h					30 days storage
	Wagon tipper							Storage piles: 2 x 137,000 t each
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Crushers Towers	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 5300m3					for daily storage
·					·			

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Gasification Island (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-1002	GE Energy Coal gasification package							
	Coal grinding and slurry preparation							Included in Z-1002
	Gasifiers (RSC)		2 x 4200 t/d coal (as received) to burners 2 x 900 MWth (LHV basis) syngas at scrubber outlet					Included in Z-1002
	Scrubber							Included in Z-1002
	Black Water flash							Included in Z-1002
	Coarse slag handling							Included in Z-1002
	Grey water systeam and fines handling							Included in Z-1002

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2100 - Air Separation Unit (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2101	ASU Package including:							
	Cold Box	Cryogenic	162 t/h of 95% purity O2 each train					Included in Z-2101
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297800 Nm3/h	2 x 35250 kW				Included in Z-2101
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW				Included in Z-2101
	MP N2 compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 51500 Nm3/h	3750 kW				Included in Z-2101
	O2 pumps	Centrifugal						Included in Z-2101
	Back-up oxygen vaporiser	Shell and tube						Included in Z-2101
Common units to	o both trains:							
	LOX (liquid oxygen) storage	Fixed roof storage tank						8 hour storage for 1 gasification train Normal operating p: 5 bar a Normal operating T: -165 °C Included in Z-2101
	LIN (liquid nitrogen) storage	Fixed roof storage tank						8 hour storage for 1 Gasifier & 4 min storage for Syngas dilution and NOX control Normal operating p: 5 bar a Normal operating T: -180 °C Included in Z-2101
	Gaseous oxygen storage							
	Gaseous nitrogen storage							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

	Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)											
TOTAL A	DESCRIPTION	TVDE	CLE	motor rating	P design	T design	36.4.1	D 1				
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks				
	HEAT EXCHANGERS				Shell/tube	Shell/tube						
E-2201	Feed/Product Heat Exchanger	Shell & Tube										
E-2202	HP steam generator	Kettle										
E-2203	MP steam generator #1	Kettle										
E-2204	MP steam generator #2	Kettle										
E-2205	LP steam generator	Kettle										
E-2206	Circulating Water Heater	Shell & Tube										
E-2207	HP BFW heater	Shell & Tube										
E-2208	Condensate preheater	Shell & Tube										
E-2209	Syngas heater / Circulating water cooler	Shell & Tube										
E-2210	Final sygas cooler	Shell & Tube										
E-2211	Syngas final heater	Shell & Tube										
	DRUMS											
D-2201	Condensate Separator	Vertical										
D-2202	Condensate Separator	Vertical										
D-2203	Condensate Separator	Vertical										
D-2204	Condensate Separator	Vertical										
D-2205	Condensate Separator	Vertical										
D-2204	Condensate accumulator	Horizontal						Common for both syngas tratment and conditiong line trains				
	COLUMN											
C-2201	Nitrogen saturator	Vertical										

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION Rev. Draft Rev.0 Rev.1 Rev.2 DATE July 2013 January 2014 ISSUED BY GP GP CHECKED BY NF NF APPROVED BY LM LM

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks	
	REACTOR								
R-2201	1st Shift Catalyst Reactor	vertical						Overall CO conversion = 98%	
R-2202	2nd Shift Catalyst Reactor	vertical						Overall CO conversion – 7670	
	PUMPS								
P-2201	Saturator Circulating Water Pump								
P-2202	Condensate Pump (to Gasifiers)								
	EXPANDER								
EX-2201	Syngas Expander		Flowrate = 178000 Nm ³ /h	3465 kW					
	MISCELLANEA								
X-2201	Mercury Adsorber	Sulfur-impregnated activated carbon beds							

Note: equipment list referred to one train only

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION Rev. Draft Rev.0 Rev.1 Rev.2 July 2013 January 2014 DATE ISSUED BY GP GP CHECKED BY NF NF APPROVED BY LM LM

EQUIPMENT LIST

Unit 2250 - Sour Water System (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2251	SWS PACKAGE							
C-2251	Sour Water Stripper	Vertical						
	SWS Reboiler							
	SWS Condenser							
E-2251	Sour water heat exchanger (SWS feed / purified)							
P-2251	SWS Pump							

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2301	Acid Gas Removal Unit - Absorption section	Solvent: Selexol	Feed gas: 974900 Nm3/h; 56 barg; 34 °C					One H2S removal column, 3 CO2 removal columns, CO2 removal =91.78% Total Carbon Capture =90% Separated removal of CO2 and H2S
Z-2303	Acid Gas Removal Unit - Solvent regeneration							Total CO2 removal= 17700 t/d; 10 ppm H2S (dry) in combined CO2
Z-2304	Chiller Unit	Electrical driven						T= -10 °C

		·
FOSTER	M	WHEELER

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and H2 plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package two Sulphur Pacayory Unit and sized for 100%		Sulphur Prod.= 72 t/d					Sulphur content > 99,9 % mol min (dry basis)
	 two Sulphur Recovery Unit, each sized for 100% of the capacity one Tail Gas Treatment Unit sized for 100% of capacity 		Acid Gas from AGR = 6680 Nm3/h					
	(including Reduction Reactor and Tail Gas Compressor)		Expected Treated Tail Gas = 3602 Nm3/h					

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2500 - CO₂ Compression Package (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	COMPRESSORS							
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	190000 Nm3/h p in: 2.45 bar a p out: 80 bar a	18000 kW				Water cooled
	PUMPS		Q,m3/h x H,m					
P-2501	CO ₂ Pump	Centrifugal	640 x 530	800 kW				Liquid CO2 product, per each train: Flowrate: 370 t/h; 110 bar a; 30°C
	PACKAGE							
PK-2501	CO ₂ drying package							

	CLIENT: IEA GHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2				
	LOCATION: The Netherlands		DATE	July 2013	January 2014					
FOSTERWHEELER	PROJ. NAME: CO2 capture at coal based power and H2 plants		ISSUED BY	GP	GP					
	CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF						
	APPROVED BY	LM	LM							
	EQUIPME	NT LIST								
Unit 2600 - Hydrogen Production										
		motor rating	P design	T design						

ITEM	DESCRIPTION	TYPE	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
	Hydrogen Production package	PSA	325000 Nm3/h P out = 51 barg T out =20 °C					Hydrogen purity =99.5 %

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3100 - Gas Turbine (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-3101	Gas Turbine & Generator Package							
GT-3101	Gas turbine	Frame 6 Gas Turbine	90.3 MW					Included in Z-3101
G-3101	Gas turbine Generator		120 MVA					Included in Z-3101

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

			200 - Heat Recover	motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	HEAT RECOVERY STEAM GENERATOR							
HRSG-3201	Heat Recovery Steam Generator	Horizontal, Natural Circulated, 4 Pressure Levels. Simple Recovery, Reheated.						
Each HRSG incl	luding:							
D-3201	HP steam Drum							
D-3202	MP steam Drum							
D-3203	LP steam Drum							
D-3204	VLP steam Drum with degassing section							
E-3201	HP Superheater 2nd section							Included in HRSG-3201 / 2
E-3202	HP Superheater 1st section							Included in HRSG-3201 / 2
E-3203	HP Evaporator							Included in HRSG-3201 / 2
E-3204	HP Economizer 3rd section							Included in HRSG-3201 / 2
E-3205	HP Economizer 2nd section							Included in HRSG-3201 / 2
E-3206	HP Economizer 1st section							Included in HRSG-3201 / 2
E-3207	MP Reheater 2nd section							Included in HRSG-3201 / 2
E-3208	MP Reheater 1st section							Included in HRSG-3201 / 2
E-3209	MP Superheater							Included in HRSG-3201 / 2
E-3210	MP Evaporator							Included in HRSG-3201 / 2
E-3211	MP Economizer 2nd section							Included in HRSG-3201 / 2
E-3212	MP Economizer 1st section							Included in HRSG-3201 / 2
E-3213	LP Superheater							Included in HRSG-3201 / 2
E-3214	LP Evaporator							Included in HRSG-3201 / 2
E-3215	LP Economizer							Included in HRSG-3201 / 2
E-3216	VLP Evaporator							Included in HRSG-3201 / 2

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 3200 - Heat Recovery Steam Generator (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PUMPS		Q,m³/h x H,m	kW				
P-3201 A/B	HP BFW Pumps	centrifugal	360 x 1800	2150				One operating, one spare
P-3203 A/B	MP BFW Pumps	centrifugal	185 x 570	375				One operating, one spare
P-3205 A/B	LP BFW Pumps	centrifugal	105 x 130	55				One operating, one spare
P-3207 A/B	VLP BFW Pumps	centrifugal	140 x 70	37				One operating, one spare
1-3207 A/B	VET DE W Lumps	continugui	110 X 70	31				one operating, one option
	MISCELLANEA							
X-3201	Flue Gas Monitoring System							NOx, CO, SO ₂ , particulate, H ₂ O, O ₂
STK-3201	CCU Stack							
SL-3201	Stack Silencer							
DS-3201	HP Steam Desuperheater							Included in HRSG-3201
DS-3202	MP Steam Desuperheater							Included in HRSG-3201
	PACKAGES							
Z-3201	Fluid Sampling Package							
Z-3202	Phosphate Injection Package							
D-3204	Phosphate storage tank							Included in Z - 3202
P-3205 A/B	Phosphate dosage pumps							Included in Z - 3202
								One operating, one spare
Z-3203	Oxygen Scavanger Injection Package							1. 1. 1. 1. 7. 2202
D-3205	Oxygen scavanger storage tank							Included in Z - 3203 Included in Z - 3203
P-3206 A/B	Oxygen scavanger dosage pumps							One operating, one spare
Z-3204	Amines Injection Package					1		one operating, one space
D-3206	Amines Storage tank							Included in Z - 3204
P-3207 A/B	Amines Dosage pumps							Included in Z - 3204
r-320/ A/D	Annues Dosage pumps							One operating, one spare

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

	2202222			motor rating	P design	T design		
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3301 Stea	eam Turbine and Generator Package							
2 0001								
ST-3301 Stea	eam Turbine		331 MWe					Including:
								Lube oil system
								Cooling system
								Idraulic control system
								Drainage system
								Seals system Drainage system
G-3402 Stea	eam Turbine Generator		430 MVA					Including relevant auxiliaries
E-3301A/B Inte	er/After condenser							
	and Condenser							
2 0002	ondense:							
Z-3302 Stea	eam Condenser Package							
E-3303 Stea	eam Condenser	Water cooled	510 MWt					Including:
								Hot well
								Vacuum pump (or ejectors)
								Start up ejector (if required)
7 2202 54	m 1: 1							
Z-3303 Stea	eam Turbine by-pass system							
	DUMPG		3	1 ***				
D 2201 A /D C	PUMPS	C + if 1 + i 1	Q,m³/h x H,m	kW				One operating, one spare
P-3301A/B Cor	ondensate Pumps	Centrifugal, vertical	1445 x 96	500				One operating, one spare
	TIPA TI PROMANICE DO							
	HEAT EXCHANGERS							
E-3304 Blo	ow-Down Cooler	Shell & Tube						
	DRUMS							
D-3301 Cor	ontinuous Blow-down Drum	vertical						
D-3302 Dis	scontinuous Blow-down Drum	vertical						
							I	

CLIENT: IEA GHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and H2 plants CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility and Offsite

			Unit 4000 - U	tility and Offsit	e			
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-4001	COOLING WATER SYSTEM							
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 930 MWth Diameter: 140 m, Height: 210 m, Water inlet: 17 m				concrete	Included in Z-4001
	Pumps							
P-4001A/B/C	Cooling Water pumps (primary system)	Vertical	13600 m3/h x 35 m	1600 kW				Included in Z-4001 3 operating
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	10600 m3/h x 45 m	2400 kW				Included in Z-4001 3 operating, one spare
P-4003A/B	Raw water pumps (make-up)	centrifugal	1435 m3/h x 30 m	185 kW				Included in Z-4001 1 operating, one spare
	Packages							
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 7260 m3/h					
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps							
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps							
Z-4002	RAW WATER SYSTEM							
T-4001	Raw Water storage tank		11720 m3					Included in Z-4002 24 hour storage
P-4004A/B	Raw Water Pumps to gasification island	centrifugal	160 m3/h x 50 m	30 kW				Included in Z-4002 One operating, one spare
P-4005A/B	Raw Water Pumps to demi plant	centrifugal	328 m3/h x 50 m	75 kW				Included in Z-4002 One operating, one spare
Z-4003	DEMI WATER SYSTEM							
					-			
PK-4001	Demin Water Package, including: - Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system							
T-4002	Demi Water storage tank		7200 m3					Included in Z-4003 24 hour storage
P-4006A/B	Demi Water Pumps	centrifugal	300 m3/h x 35 m	45 kW				Included in Z-4003 One operating, one spare

PROJ. NAME: CO2 capture at coal based power and H2 plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.2 -Hydrogen Production (Frame 6 GTs)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	July 2013	January 2014		
ISSUED BY	GP	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 4000 - Utility and Offsite

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-4004	FIRE FIGHTING SYSTEM							
	Fire water storage tank							
	Fire pumps (diesel)							
	Fire pumps (electric)							
	FW jockey pump							
	MISCELLANEA							
	Natural Gas system							
	Waste Water Treatment							
	Sulphur Storage/Handling		72 t/d S prod.					30 days storage
	Flare system							
	Interconnecting							
	Instrumentation							
	DCS							
	Piping							
	Electrical							
	Plant Air							
	Buildings							

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Sheet: 1 of 22

Power Island: PSA off-gases fired boiler

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : Case 5.3 - Hydrogen and power co-production

POWER ISLAND: PSA OFF-GAS FIRED BOILER

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : N. FERRARI
CHECKED BY : L. MANCUSO
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

 ${\rm CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

January 2014

Sheet: 2 of 22

TABLE OF CONTENT

1.	Introduction3
	1.1. Process unit arrangement
2.	Process description
	2.1. Overview5
	2.2. Unit 900 – Coal Handling & Storage
	2.3. Unit 1000 – Gasification Island5
	2.4. Unit 2100 – Air Separation Unit5
	2.5. Unit 2200 – Syngas Treatment and Conditioning line
	2.6. Unit 2300 – Acid Gas Removal (AGR)
	2.7. Unit 2400 – SRU and TGT7
	2.8. Unit 2500 – CO ₂ Compression and Drying8
	2.9. Unit 2600 – Hydrogen Production Unit8
	2.10. Unit 3000 – Power Island8
	2.10.1. Boiler Island8
	2.10.2. Steam Turbine9
	2.11. Utility Units
3.	Process Flow Diagrams
4.	Heat and Material Balance12
5.	Utility consumption
6.	Overall performance
7.	Environmental impact
	7.1. Gaseous emissions
	7.2. Liquid effluents
	7.3. Solid effluents20
8.	Preliminary plot plan21
9.	Equipment list22
~ •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

1. Introduction

This chapter of the report includes all technical information relevant to Case 5.3 of the study, which is a gasification plant based on the GE technology. The plant is designed to process coal, whose characteristic is shown in chapter B, and produce hydrogen to be distributed to a hydrogen network, with capture of the generated carbon dioxide. The electrical demand of the hydrogen plant is covered by the power produced in a boiler-based steam cycle, fired with the off-gases from the Pressure Swing Adsorption (PSA) unit.

Sheet: 3 of 22

Plant capacity is the same of the GE technology based IGCC case, for power production only (refer to Case 4.2 in chapter E.2 of this report).

The configuration of the plant is based on the following main features:

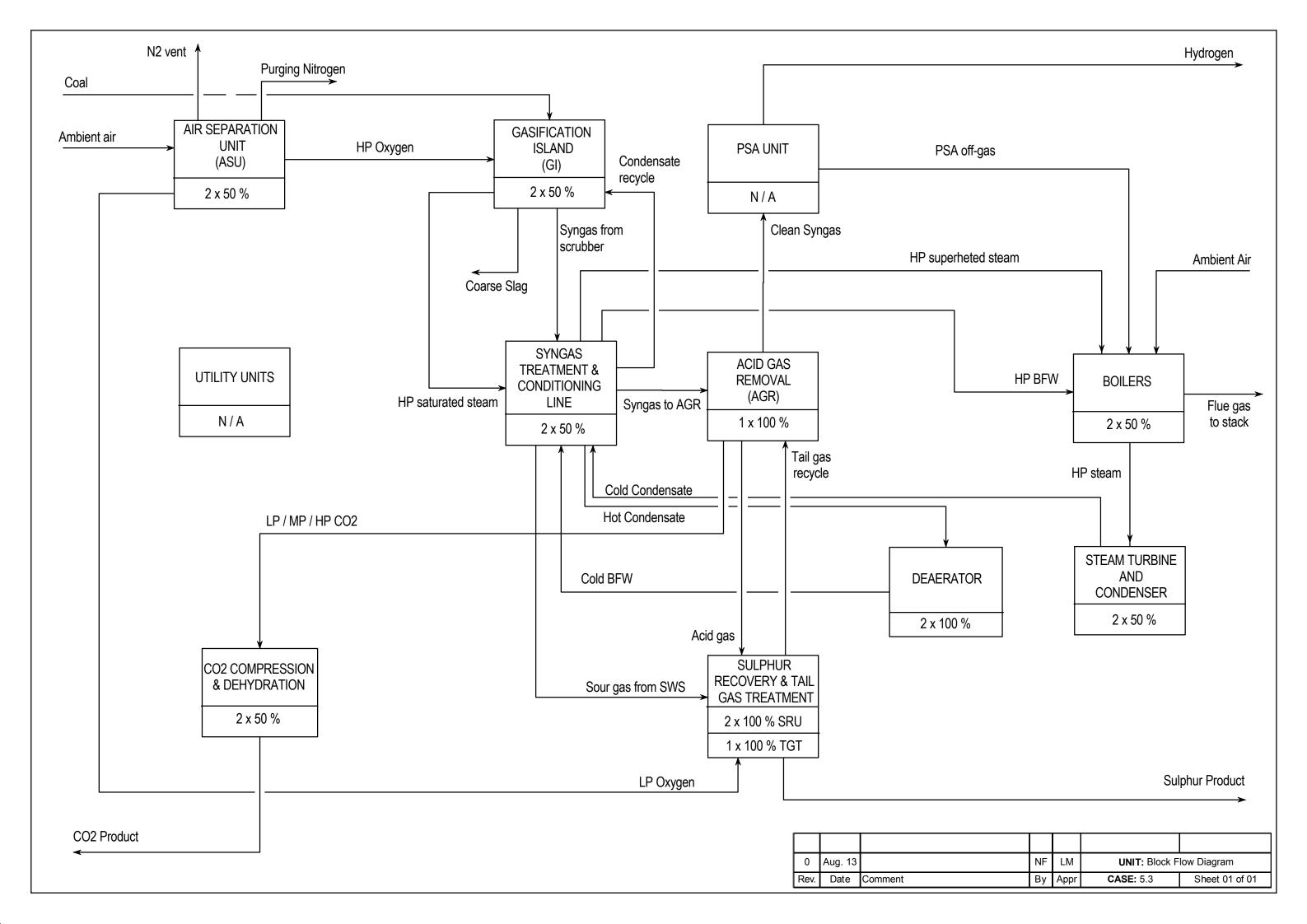
- High-pressure (65 barg) GE Energy Gasification process, with slurry-feed system and Radiant Syngas Cooler (RSC);
- 2-stages sour shift;
- Removal of acid gases (H₂S and CO₂) based on Selexol physical solvent process;
- Oxygen-blown Claus unit, with tail gas catalytic treatment and recycle of the treated tail gas to the AGR;
- CO₂ compression and dehydration unit;
- Hydrogen production unit based on Pressure Swing Adsorption;
- PSA off-gases fired in two conventional subcritical boilers, without reheating, to generate steam that is sent to two related steam turbine generators.

The description of the main process units is covered in chapter E of this report, so only features that are unique to this case are discussed in the following sections, together with the main modelling results.

1.1. Process unit arrangement

The arrangement of the main units is reported in the following Table 1. Reference is also made to the block flow diagram attached below.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014


Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

Table 1. Case 5.3 – Unit arrangement

Sheet: 4 of 22

Unit	Description	Trains
900	Coal Handling & Storage	N/A
1000	Gasification	2 x 50%
	Coal Grinding & Slurry Preparation	
	Gasification (Radiant Syngas Cooler) and scrubber	
	Black Water Flash & Coarse Slag Handling	
	Grey Water & Fines Handling	
2100	Air Separation Unit	2 x 50%
2200	Syngas Treatment and Conditioning Line	2 x 50%
2250	Sour Water Stripper (SWS)	1 x 100%
2300	Acid Gas Removal	1 x 100%
2400	Sulphur Recovery Unit	2 x 100%
	Tail Gas Treatment	1 x 100%
2500	CO ₂ Compression & Drying	2 x 50%
2600	Hydrogen production unit (PSA)	N/A
3000	Power island	
	PSA off-gas fired subcritical boiler	2 x 50%
	Steam Turbine	2 x 50%
4000	Utility and Offsite	N/A

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

2. Process description

2.1. Overview

The description reported in this section makes reference to the simplified Process Flow Diagrams (PFD) of section 3, while stream numbers refer to section 4, which provides heat and mass balance details for the numbered streams in the PFD.

Sheet: 5 of 22

2.2. Unit 900 – Coal Handling & Storage

The unit mainly consists of the coal storage and handling.

The general description relevant to this unit is reported in chapter E, section 2.1. Main process information of this case and the interconnections with the other units is shown in the relevant process flow diagram and the heat and mass balance table.

2.3. Unit 1000 – Gasification Island

The gasification island based on GE gasification mainly includes the coal grinding and slurry preparation section, the gasification (RSC) and the scrubber, the Black Water Flash and Coarse Slag Handling, and Grey Water & Fines Handling. Technical information relevant to these packages is reported in chapter E, section 3.2.

The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

2.4. Unit 2100 – Air Separation Unit

Technical information relevant to this packaged unit is reported in chapter E, section 2.3. The main process information of the unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The sizing capacity of the Air Separation Unit is determined by the oxygen requirement of the gasification island and the SRU. The total required oxygen flowrate for the case is approximately 325 t/h.

The Air Separation unit supplies medium pressure nitrogen, injected in the gas turbine, after being moisturised, for NOx suppression and power production augmentation.

2.5. Unit 2200 – Syngas Treatment and Conditioning line

The general description of this unit is shown in chapter E, section 2.4, while case-specific features are reported hereinafter. The main process information and the interconnections with the other units are shown in the relevant process flow diagram and the heat and mass balance tables.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

The heat recovered from the syngas is used to generate all the steam required in the gasification plant, mainly the steam for the AGR reboiler and the deaerator of the steam cycle and to heat-up the condensate, the BFW for steam generation and the water make-up of the gasification scrubber.

Sheet: 6 of 22

Saturated raw syngas from the gasification scrubber, at approximately 64 barg, is heated-up in the Feed/Product Heat Exchanger, before entering the first shift reactor, in order to increase the temperature up to the level required for the proper operation of the shift catalyst.

In the shift unit, CO is shifted to H_2 and CO_2 and CO_3 is converted to H_2S . A double stage shift, containing sulphur tolerant shift catalyst (sour shift) is selected in order to increase the H_2 content in the fuel and maximize the degree of CO_2 removal. The overall CO conversion is approximately 98%. The water content in the syngas is adequate for the shift reaction to take place with no additional steam injection.

The partially-shifted syngas temperature is increased by the exothermic shift reaction, allowing for thermal recovery. The syngas is cooled down in a series of heat exchangers, before being fed to the second reactor stage:

- Feed/Product Heat Exchanger,
- HP Steam super-heater #1

After being cooled, the syngas is directed to the second and last shift reactor. The hot shifted syngas outlet from the second stage is cooled in the following series of heat exchangers, to thermally recover heat and increase the overall power generation:

- HP Steam super-heater #2,
- HP BFW pre-heater #1, #2 and #3,
- LP Steam Generator,
- Condensate Pre-heater #1, #2 and #3.

Final cooling of the syngas is made against cooling water, before passing through a sulphur-impregnated activated carbon bed to remove approximately 95% of the mercury. Cool, mercury-depleted syngas is then directed to the AGR.

During the cooling of the syngas, the process condensate is separated and collected in the process condensate accumulator. Before being sent to the accumulator, the condensate from the last syngas separator, upstream the AGR, plus a portion of the condensate from the upstream separator, is sent to the Sour Water Stripper in order to avoid accumulation of ammonia and H₂S and other dissolved gases in the water recycle to the gasification section. The condensate from the accumulator is sent to the gasification scrubber for syngas saturation. Boiler Feed Water from the deaerator of the combined cycle provides the make-up water to substitute for the steam reacted in the shift unit.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

From the AGR unit, the hydrogen rich syngas is sent to the PSA unit for high-purity hydrogen production.

Sheet: 7 of 22

2.6. Unit 2300 – Acid Gas Removal (AGR)

The AGR unit is intended to selectively remove H_2S and CO_2 in sequent steps by employing Selexol as physical solvent. Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The AGR is designed to meet the following process specifications of the treated gas and of the CO₂ product exiting the unit:

- The H₂S+COS concentration of the treated gas exiting the unit is around 1 ppmv. This is due to the integration of CO₂ removal with the H₂S removal, which makes available a large circulation of solvent that is cooled down by a refrigerant package before flowing to the CO₂ absorber.
- The CO₂ product is characterised by a content of incondensable around 2%, while simultaneously meeting the specification of H₂S content lower than 20 ppmv and CO content lower than 0.2% mol (actual 0.06% mol).
- The acid gas H₂S concentration is about 41% dry basis, suitable to feed the oxygen blown Claus process.

The CO_2 removal rate is 91.7% of the carbon dioxide entering the unit, allowing reaching an overall carbon capture of approximately 90% with respect to the carbon in the syngas. These excellent performances on both the H_2S removal and CO_2 capture are achieved with significant power consumption and steam demand.

2.7. Unit 2400 – SRU and TGT

Technical information relevant to this package is reported in chapter E, section 2.5. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The SRU is designed to process the acid gas from the AGR and other minor acid streams like the acid off-gas from the black water flash within the gasification island and the sour gases from the SWS, using low pressure oxygen from the ASU. In the furnace, H_2S is catalytically oxidized to SO_2 which is further reacted with H_2S to form H_2O and elemental sulphur. Following the thermal stage, sulphur is condensed, while the tail gas is hydrogenated and recycled back to the AGR unit at approximately 60 barg by means of a dedicated compressor.

The overall sulphur production is approximately 72 tons per day.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

2.8. Unit 2500 – CO₂ Compression and Drying

This unit is mainly composed of a compression and dehydration package, followed by last stage CO₂ pumps, supplied by specialized vendors. Technical information relevant to this package is reported in chapter E, section 2.6. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

Sheet: 8 of 22

Three different streams of CO₂ from the Acid Gas Removal unit are routed to the CO₂ compression unit, delivered at approximately 19 barg, 6 barg, and 1.5 barg respectively.

The stream at lower pressure is initially compressed up to the pressure of the medium pressure stream and then combined with it. The resulting stream is compressed to allow the mixing with the last stream without any pressure loss. The combined stream is then compressed up to approximately 40 barg and sent to the dehydration system, which is a standard solid desiccant package that dehydrates the CO₂ stream to a dew point of -40°C. After dehydration, the CO₂ stream is finally compressed to a supercritical condition at 80 barg.

The resulting stream of CO₂ is pumped to the required pressure of 110 barg. The CO₂ product (approximately 97.9 % wt purity) is transported to the plant battery limits for final sequestration.

2.9. Unit 2600 – Hydrogen Production Unit

Technical information relevant to this package is reported in chapter E, section 2.9. The main process information of this unit and the interconnections with the other units are shown in the process flow diagram and in the heat and mass balance tables.

The PSA unit is designed to produce 465,000 Nm³/h of high-purity hydrogen at around 51 barg, to be sent to the plant battery limits.

The PSA off-gases are sent to the power island for firing in subcritical boilers.

2.10. Unit 3000 – Power Island

2.10.1. Boiler Island

The boiler technology considered in this case is a gas fired subcritical boiler, treated as a package supplied by specialised vendors. The boiler is a single pass tower type subcritical boiler, with the burners located in the lower portion of the furnace. Each burner is low NOx type, with staging of the coal combustion to minimize NOx formation. Air from the forced draft fans is preheated by contact with exhaust gases through regenerative pre-heaters. Hot combustion products exit the furnace and pass through to the radiant and convective heating surfaces for steam generation and

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

superheating, then to the regenerative heaters for air pre-heating. ID fan provides the required delta pressure to draw flue gases to the boiler stack.

Sheet: 9 of 22

The high pressure preheated BFW enters the economizer in second back-pass where is further preheated against the flue gases and sent to the steam drum.

Saturated water from the drum is delivered via down comers to the supply pipes, which feed the furnace lower headers via natural circulation, eliminating the need for circulation pumps and reducing mechanical complexity and auxiliary power consumption. The steam/water mixture from the furnace wall tubes is collected in the upper furnace headers and returned to the steam drum via riser pipes. Steam/water separation takes place in the drum.

The primary super-heater is a convective super-heater section located in the lower portion of the first back-pass. The final super-heaters are located in the upper portion of the furnace and consist of membrane wing wall or pendant in-furnace panels. In addition to the steam generated in the boiler, the superheating sections also provides the heat for superheating the steam generated in the gasification island and partially superheated in the syngas treatment, up to the temperature level required for admission in the steam turbine. The superheated steam finally exits the boiler to flow to the HP steam turbine module.

2.10.2. Steam Turbine

The steam cycle is mainly composed of two subcritical steam turbine generators (STG), equipped with steam condensers and water pre-heating lines.

Main steam from the boiler is sent to the steam turbine through the stop valves and control valves. Boiler and turbine interface data are as follows:

HP turbine inlet: 110 bar: 550°C

The steam turbine have no steam extraction as all the heat required for water preheating is recovered from the syngas. Exhaust steam from the turbines downward into the condenser. Recycled vacuum condensate from the condenser hot well is pumped by the condensate pumps and preheated in a bank of three condensate heaters against syngas. Condensate from the steam heaters in the gasification island is mixed with the condensate from the condenser.

The preheated condensate stream is then sent to the deaerator. LP steam generated in the syngas treatment line is used to provide the steam necessary for the degassing of the condensate and also deaerated make-up demineralised water.

From the deaerator boiler feed water is pumped through dedicated pumps to the following users:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

- Part of the BFW is sent the condensate accumulator in the syngas treatment providing the required make-up water to the gasification scrubber;

Sheet: 10 of 22

- Part of the BFW is pumped to the gasification island for steam generation after being pre-heated against syngas;
- The remaining part of the BFW is pre-heated against syngas to around 245°C prior to being fed to the boiler.

The main steam and water interfaces with the process units are given in Table 2.

2.11. Utility Units

These units comprise all the systems necessary to allow the operation of the plant and the export of the produced power.

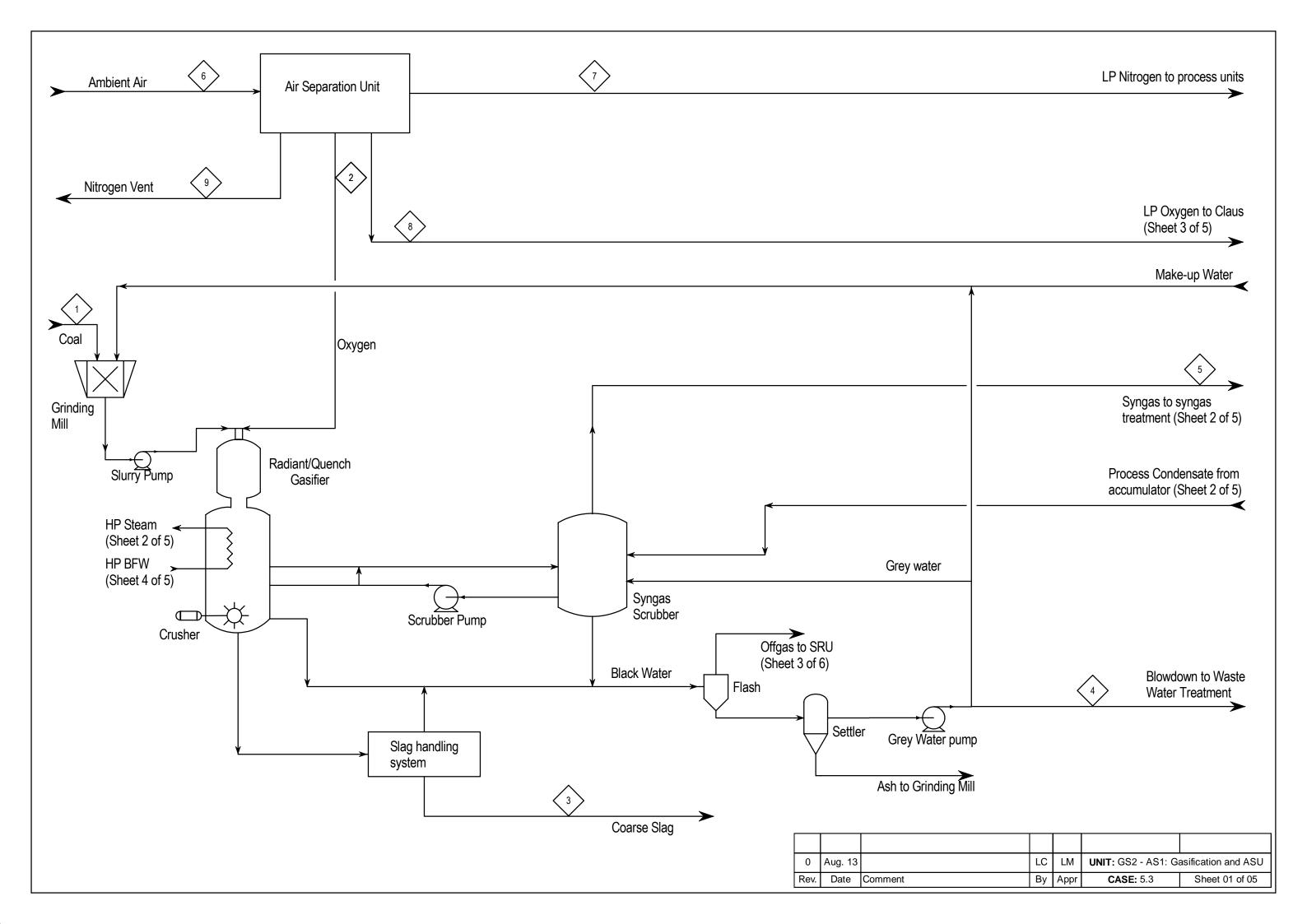
The main utility units include:

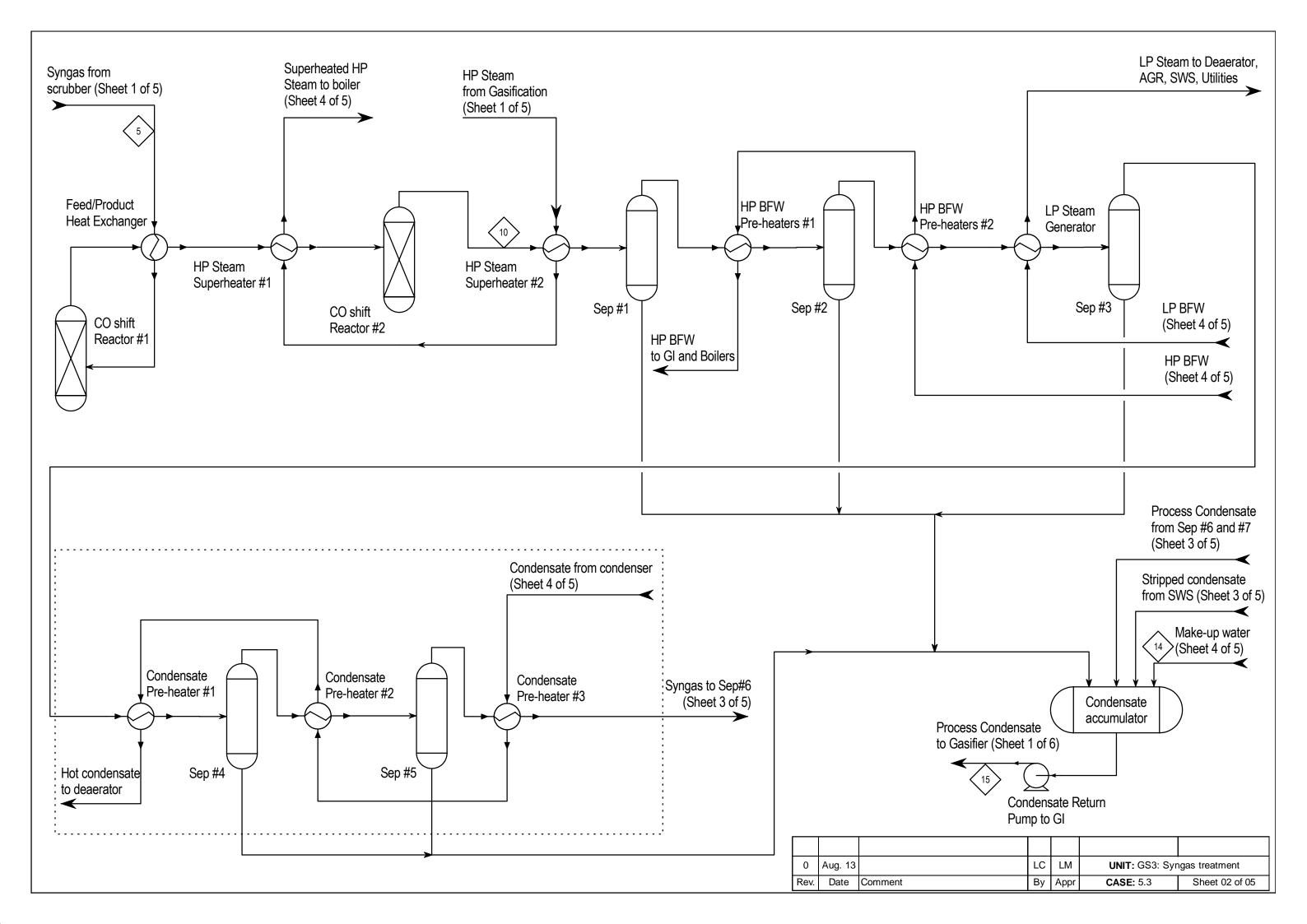
- Cooling Water system, based on one natural draft cooling tower, with the following characteristics:

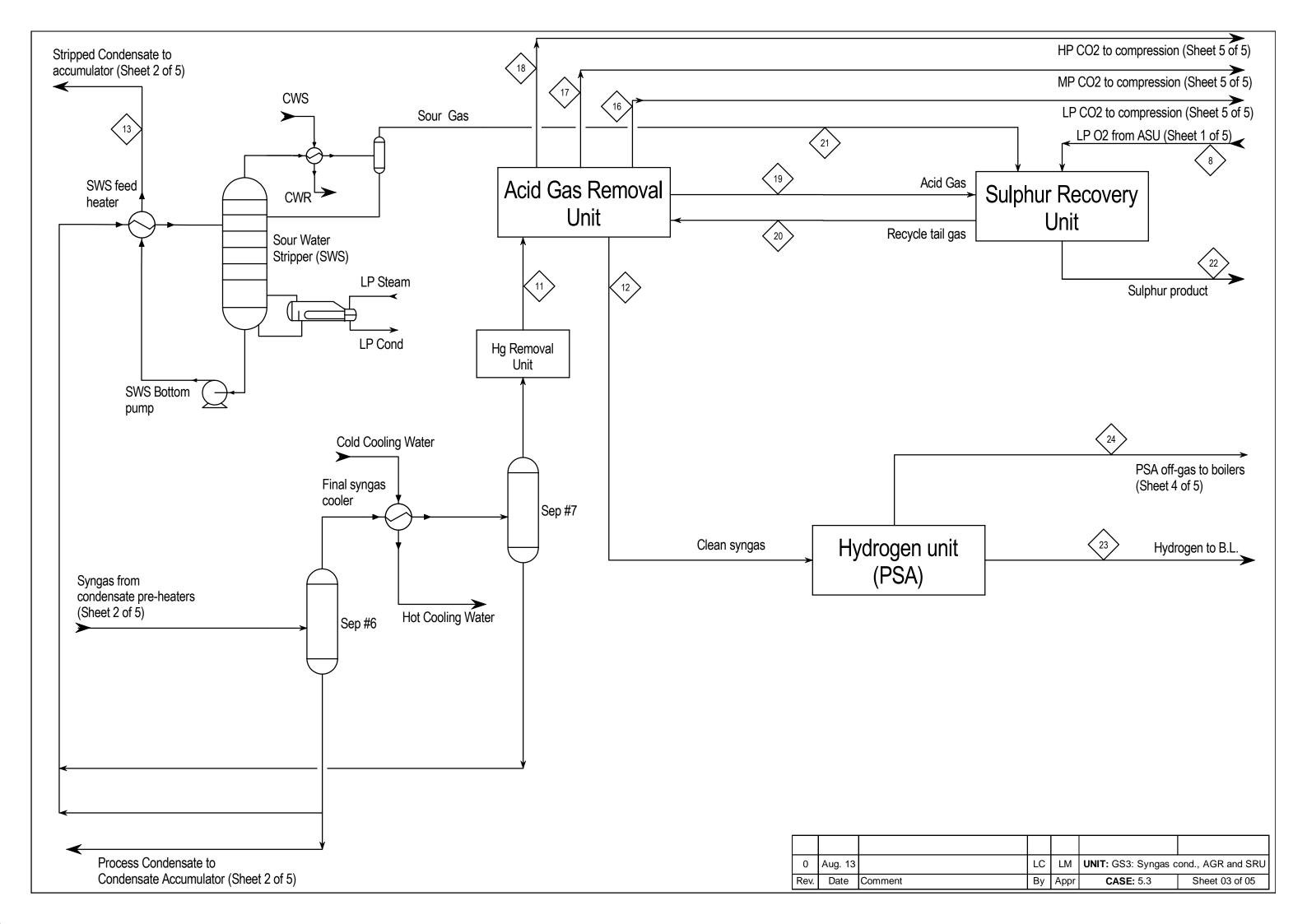
Basin diameter	130 m
Cooling tower height	210 m
Water inlet height	17 m

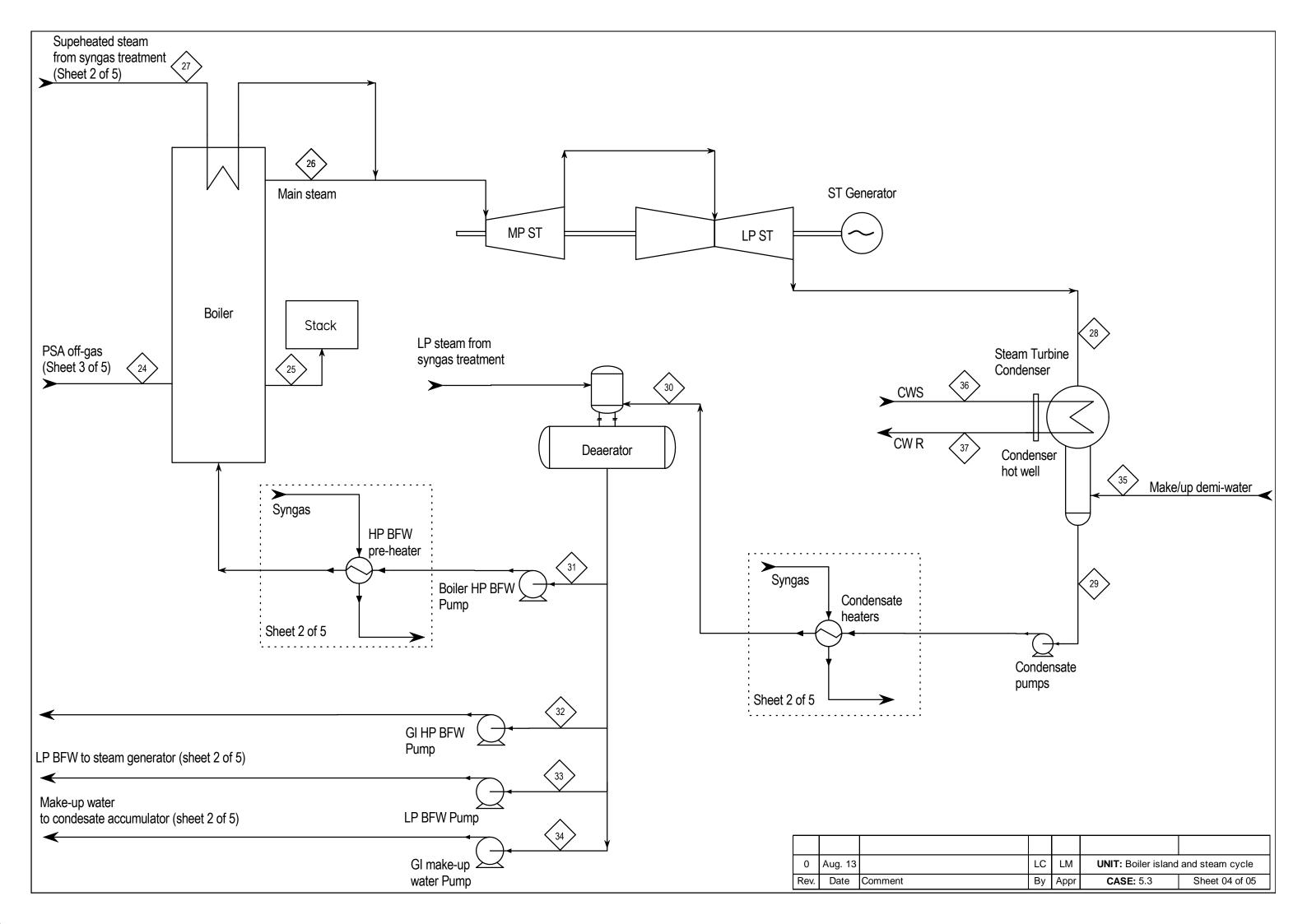
- Raw water system;
- Demineralised water plant;
- Fire fighting system;
- Instrument and Plant air.

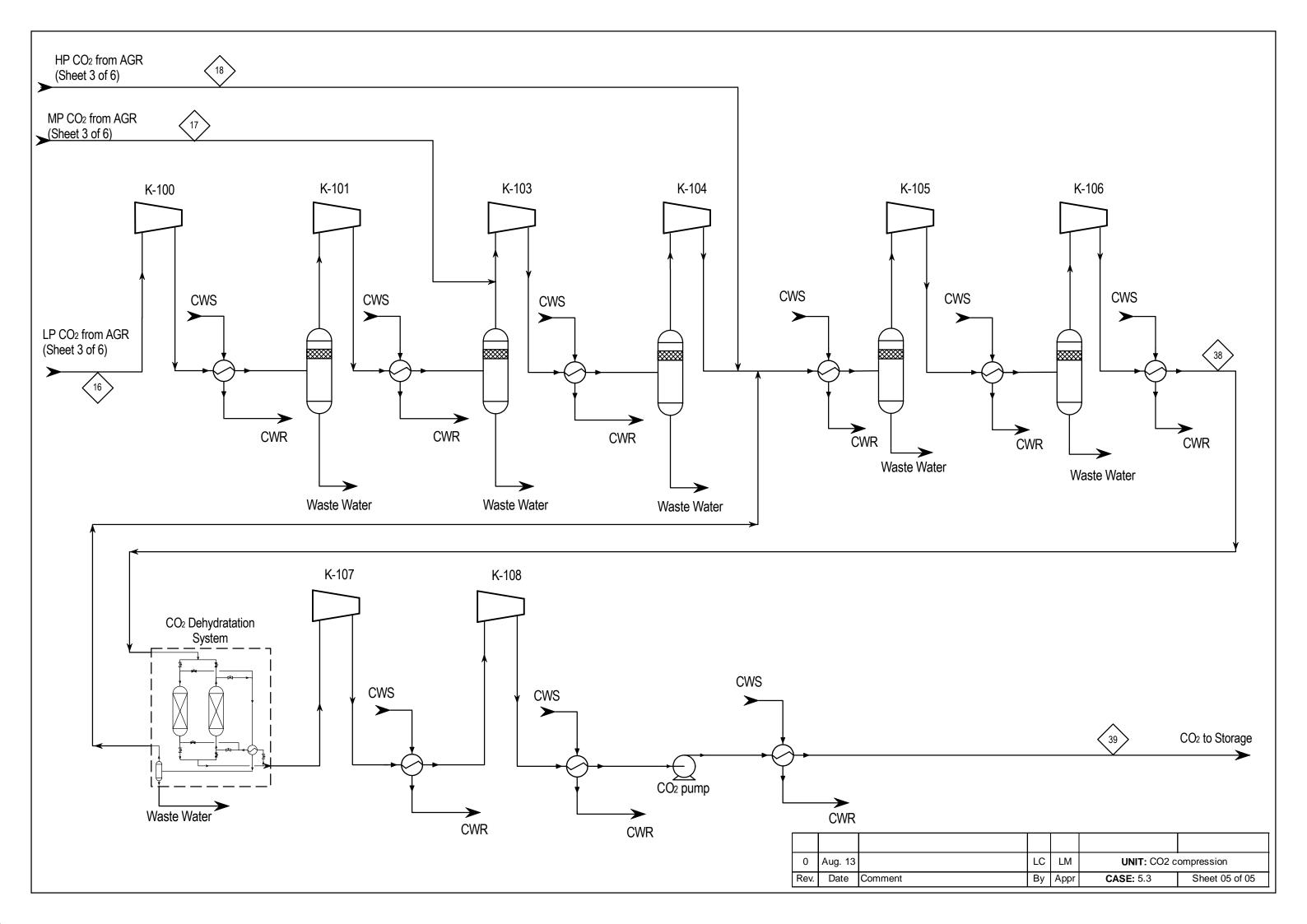
Process descriptions of the above systems are enclosed in chapter E, section 2.11.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter E.6 - Case 5.3: Hydrogen production Sheet: 11 of 22


Power Island: PSA off-gases fired boiler


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production Sheet: 12 of 22

Power Island: PSA off-gases fired boiler

4. Heat and Material Balance

Heat & Material Balances here below reported make reference to the simplified Process Flow Diagrams of section 3.

	HYDROGEN PRODUCTION CASE - Case 5.3 - HEAT AND MATERIAL BALANCE								1	2
	CLIENT: IEA GHG							LC		
FOSTER WHEELER	PROJECT NAME:		CO ₂ capture at coal	based power and	hydrogen plants		CHECKED	NF		
	PROJECT NO:	1-BD-0681 A						LM		
	LOCATION:		The Netherlands				DATE	August 2013		
				HEAT AND MATE						
				UNIT 1000 - Gasi	1		1			<u> </u>
STREAM	1	2	3	4	5	15				
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification				
Temperature (°C)	AMB	10	80	AMB	N/D	157				
Pressure (bar)	АТМ	75-80 ⁽¹⁾	ATM	ATM	64.6	70				
TOTAL FLOW	Solid		Solid + water							
Mass flow (kg/h)	349,100	323,000	87,400	94,500	1,154,000	493,200				
Molar flow (kmol/h)		10,025		5,250	58,004	27,385				
LIQUID PHASE										
Mass flow (kg/h)			43,700	94,500	-	493,200				
GASEOUS PHASE										1
Mass flow (kg/h)		323,000			1,154,000					
Molar flow (kmol/h)		10,025			58,004					
Molecular Weight		32.22			-					
Composition (vol %)	%wt		50% moisture		dry basis					
H_2	C: 64.6%	-			35.80					
CO	H: 4.38%	-			42.80					
CO ₂	O: 7.02%	-			17.80					
N_2	S: 0.86%	1.50			3.22					
02	N: 1.41%	95.00			0.00					
CH ₄	CI: 0.03%	-			0.00					
$H_2S + COS$	Moisture: 9.5%	-			0.38					
Ar	Ash: 12.20%	3.50			0.00					
HCN		-			0.00					
NH ₃		-			0.00					
H ₂ O Notes:	1. FW Assumption	-			-					

	Н	DROGEN PRODU	JCTION CASE - Case	e 5.3 - HEAT AND I	MATERIAL BALAN	NCE	REVISION	0	1	2
	CLIENT :		IEA GHG				PREP.	LC		
FOSTERWHEELER	PROJECT NAME: CO ₂ capture at coal based power and hydrogen plants						CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	August 2013		
				HEAT AND MATE	RIAL BALANCE					
			UN	IIT 2100 - Air Sepa	ration Unit (ASU))				
	6	2	7	8	9					
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	Oxygen to SRU	Nitrogen vent					
Temperature (°C)	Ambient	10	Ambient (°)	Ambient	Ambient					
Pressure (bar)	Ambient	75-80 (°)	7.5 (°)	6.0	Atmospheric					
TOTAL FLOW										
Mass flow (kg/h)	1,394,750	323,000	25,220	1,933	1,030,045					
Molar flow (kmol/h)	48,320	10,025	900	60	36,750					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	1,394,750	323,000	25,220	1,933	1,030,045					
Molar flow (kmol/h)	48,320	10,025	900	60.0	36,750					
Molecular Weight	28.86	32.22	28.02	32.22	28.03					
Composition (vol %)										
H ₂	-	-	-	-	-					
СО	-	-	-	-	-					
CO ₂	0.04	-	-	-	0.05					
N_2	77.32	1.50	99.999	1.50	98.00					
O_2	20.75	95.00	0.001	95.00	1.00					
CH ₄	-	-	-	-	-					
H ₂ S + COS	-	-	-	-	-					
Ar	0.92	3.50	-	3.50	0.25					
H ₂ O	0.97	-	-	-	0.70					

(°) FWI assumption

	HYDROGEN PRODI	JCTION CASE - Case 5.3 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT :	IEAGHG	PREP.	LC		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	August 2013		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	10	11	12	13	14	15		
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from Acid Gas Removal to PSA	Stripped condensate from SWS	BFW make-up to condensate accumulator	Return Condensate to Gasification		
Temperature (°C)	N/D	413	34	15	133	165	157		
Pressure (bar)	64.5	62.1	57	53	70.0	9.0	70.0		
TOTAL FLOW									
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	43,225	227,000	492,600		
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	2,400	12,600	27,350		
LIQUID PHASE								 	
Mass flow (kg/h)	-	-	-	-	43,225	227,000	492,600		
GASEOUS PHASE									
Mass flow (kg/h)	1,154,000	1,154,000	891,750	148,235	-	-	-		
Molar flow (kmol/h)	58,004	58,004	43,496	26,243	-	-	-		
Molecular Weight	-	19.90	20.50	5.65	-	-	-		
Composition (vol %)	(dry basis)								
H ₂	35.80	41.04	54.73	89.55	-	-	-		
CO	42.80	0.46	0.61	0.98	-	-	-		
CO ₂	17.80	31.54	41.98	5.73	-	-	-		
N_2	3.22	3.22	2.27	3.73	-	-	-		
O_2	0.00	0.00	-	-	-	-	-		
CH₄	0.00	0.00	-	-	-	-	-		
H ₂ S + COS	0.38	0.38	0.26	0.00	-	-	-		
Ar	0.00	0.00	-	-	-	-	-		
HCN	0.00	0.00	-	-	-	-	-		
NH ₃	0.00	0.00	-	-	-	-	-		
H ₂ O	-	25.06	0.15	0.01	-	-	-		

	HYDROGEN PROD	UCTION CASE - Case 5.3 - HEAT AND MATERIAL BALANCE	REVISION	0	1	2		
	CLIENT:	IEAGHG	PREP.	LC				
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	NF				
	PROJECT NO:	1-BD-0681 A	APPROVED	LM				
	LOCATION:	The Netherlands	DATE	August 2013				
HEAT AND MATERIAL BALANCE								

HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal (AGR)

STREAM	11	12	16	17	18	19	20		
	Raw Syngas from Syngas Cooling	HP Purified Syngas to PSA	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU		
Temperature (°C)	34	15	-9	-1	8	21	35		
Pressure (bar)	57	53	2.5	6.6	20.3	1.6	56.5		
TOTAL FLOW									
Mass flow (kg/h)	891,750	148,235	163,504	407,913	167,385	9,831	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	-	-	-		
GASEOUS PHASE									
Mass flow (kg/h)	891,750	148,235	163,504	407,913	167,385	9,831	5,804		
Molar flow (kmol/h)	43,496	26,243	3,718	9,290	4,068	293	161		
Molecular Weight	20.5	5.65	44.0	43.9	41.1	33.6	36.1		
Composition (vol %)									
H ₂	54.73	89.55	-	0.20	6.66	14.69	17.65		
CO	0.61	0.98	-	0.01	0.16	0.25	-		
CO ₂	41.98	5.73	99.87	99.73	92.95	42.76	77.90		
N_2	2.27	3.73	-	-	0.19	0.38	0.69		
O ₂	-	-	-	-	-	-	-		
CH₄	-	-	-	-	-	-	-		
H ₂ S + COS	0.26	0.00	-	-	-	41.30	3.76		
Ar	-	-	-	-	-	-	-		
HCN	-	-	-	-	-	-	-		
NH ₃	-	-	-	-	-	-	-		
H ₂ O	0.15	0.01	0.13	0.06	0.04	0.61	-		

	НҮ	DROGEN PRODU	CTION CASE - Case	e 5.3 - HEAT AND	MATERIAL BALAN	NCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	LC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	nd hydrogen plan	ts	CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	August 2013		
	<u> </u>			HEAT AND MATE	RIAL BALANCE		<u> </u>			
			UNIT 2400 - Sulfu	r Recovery Unit (S	RU) & Tail Gas Tr	reatment (TGT)				
	19	21	20	22						
STREAM	Acid Gas from AGR Unit	Sour Gas from Sour water stripper	Claus Tail Gas to AGR Unit	Product Sulphur						
Temperature (°C)	21	80	35	-						
Pressure (bar)	1.6	4	56.5	-						
TOTAL FLOW										
Mass flow (kg/h)	9,831	170	5,804	3,000						
Molar flow (kmol/h)	293	4.5	161	-						
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-						
GASEOUS PHASE										
Mass flow (kg/h)	9,831	170	5,804	-						
Molar flow (kmol/h)	293	4.5	161	-						
Molecular Weight	33.6	38.0	36.1	-						
Composition (vol %)										
H ₂	14.69	0.84	17.65	-						
CO	0.25	0.03	-	-						
CO ₂	42.76	75.60	77.90	-						
N_2	0.38	0.24	0.69	-						
0 ₂	-	-	-	-						
CH ₄	-	-	-	-						
H ₂ S + COS	41.31	2.95	3.76	-						
Ar	-	-	-	-						
HCN										
NH_3	0.00	7.85	-	-						

0.61

 H_2O

12.49

	1								T	Т
	Н	IYDROGEN PRODU	JCTION CASE - Case	e 5.3 - HEAT AND I	MATERIAL BALANC	CE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	LC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coa	al based power and	d hydrogen plants		CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	August 2013		
				HEAT AND MAT						
	16	17	18	nit 2500 - CO2 Com 38	39	Ing				
STREAM	LP CO2 to	MP CO2 to	HP CO2 to	CO ₂ to drying						
	Compression	Compression	Compression	package	CO₂ to storage					
Temperature (°C)	-9	-1	8	26	30					
Pressure (bar)	2.5	6.6	20.3	39.8	110.0					
TOTAL FLOW										
Mass flow (kg/h)	163,504	407,913	167,385	806,461	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	163,504	407,913	167,385	806,461	725,168					
Molar flow (kmol/h)	3,718	9,290	4,068	18,630	16,740					
Molecular Weight	44.0	43.9	41.1	43.3	43.3					
Composition (vol %)										
H ₂	0.0	0.20	6.66	1.61	1.61					
CO	0.0	0.00	0.16	0.04	0.04					
CO ₂	99.87	99.74	92.95	98.18	98.30					
N_2	0.0	0.00	0.19	0.05	0.05					
O_2	0.0	0.00	0.00	0.00	0.00					
CH ₄	0.0	0.00	0.00	0.00	0.00					
H ₂ S + COS	0.0	0.00	0.00	0.00	0.00					
Ar	0.0	0.00	0.00	0.00	0.00					
HCN	0.0	0.00	0.00	0.00	0.00					

 NH_3

H₂O

0.0

0.13

0.00

0.06

0.00

0.04

0.00

0.12

0.00

0.00

	НУС	PROGEN PRODU	CTION CASE - Case	e 5.3 - HEAT AND	MATERIAL BALA	NCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	LC		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	nd hydrogen plan	nts	CHECKED	NF		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	August 2013		
				HEAT AND MATE	RIAL BALANCE					
			UNI	T 2600 - Hydroge	n Production Uni	it				
	12	23	24							
STREAM	Syngas to PSA	High-purity Hydrogen	PSA off-gas to Boiler							
Temperature (°C)	15	20	10							
Pressure (bar)	53	52	5							
TOTAL FLOW										
Mass flow (kg/h)	148,235	44,430	103,805							
Molar flow (kmol/h)	26,243	20,780	5,463							
LIQUID PHASE										
Mass flow (kg/h)	-	-	-							
GASEOUS PHASE										
Mass flow (kg/h)	148,235	44,430	103,805							
Molar flow (kmol/h)	26,243	20,780	5,463							
Molecular Weight	5.65	2.14	19.0							
Composition (vol %)										
H_2	89.55	99.53	51.61							
CO	0.98	-	4.72							
CO ₂	5.73	-	27.50							
N_2	3.73	0.47	16.11							
02	-	-	-							
CH ₄	-	-	-							
H ₂ S + COS	0.00	-	0.00							
Ar	-	-	-							
HCN NH ₃	_	_	_							
H ₂ O	0.01	-	0.06							
1120	0.01		0.00							

FOSTER WHEELER

HYDROGEN PRODUCTION CASE - Case 5.3 - H&M BALANCE

PROJECT NAME: CO₂ capture at coal based power and H2 plants

IEAGHG

PROJECT NO: 1-BD-0681 A

LOCATION: The Netherlands

CLIENT:

REVISION 0 1 PREP. LC CHECKED NF APPROVED LM DATE August 2013

HEAT AND MATERIAL BALANCE Unit 3000 - Power Island (*)

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
24	PSA off-gas to Boiler	51.9	10	5.0	-
25	Flue gas from boiler (1)	161	140-150	АМВ	-
26	Boiler Main Steam	100.5	550	110.0	3492
27	HP Steam from process unit	265.5	408	115.0	3090
28	Steam to Condenser	366.5	29	0.04	2197
29	Condensate to Process Units	484.9	28	0.04	117
30	Condensate to Deaerator	530.0	155	7.2	654
31	HP BFW to Pumps (Boiler)	101.5	166	7.2	702
32	HP BFW to Pumps (G.I.)	268.6	166	7.2	702
33	LP BFW to steam generator	58.5	166	7.2	702
34	BFW make-up to gasification	113.5	166	7.2	702
35	Make-up water	118.4	15	6.0	64
36	Water Supply to Steam Condenser	16537	15	4.0	63
37	Water Return from Steam Condenser	16537	26	3.5	109

^(*) Flowrate figure refers to one train (50% capacity)

⁽¹⁾ Flue gas molar composition at stack: N_2 : 58.6%; H_2 O: 25.2%; O_2 : 0.3%; CO_2 : 2.6%; Ar: 0.6%.

Date: January 2014 CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.6 - Case 5.3: Hydrogen production

Sheet: 13 of 22 Power Island: PSA off-gases fired boiler

5. Utility consumption

Main utility consumption of the process and utility units is reported in the following tables. More specifically:

- Steam / BFW / condensate interface summary is reported in Table 2.
- Water consumption summary is shown in Table 3.
- Electrical consumption summary is included in Table 4

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production Sheet: 14 of 22

Power Island: PSA off-gases fired boiler

Table 2. Case 5.3 – Steam/BFW/condensate interface summary

							REVISION	Rev.0	
	CLIENT:						DATE	Sept 2013	
FOSTER WHEELER PROJECT:			CO2 capture at coal based power and hydrogen plants				ISSUED BY	LC	
. 03	· · · · · · · · · · · · · · · · · · ·	LOCATION:	The Netherlands				CHECKED BY	NF	
		FWI Nº:	1-BD-0681 A				APPROVED BY	LM	
	Hydrogen production -	Case 5.3 (Po	wer island: P	SA off-gases	fired boiler) -	Steam and w	vater balance		
UNIT	HP Steam DESCRIPTION UNIT		MP Steam barg	LP Steam barg	HP BFW	MP BFW	LP BFW	condensate recovery	Losses
Oldin	DESCRIPTION OWN	120	40	6.5					
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
		[(/11]	[(/11]	[(/11]	[(/11]	[(/11]	[(/11]	[(/11]	[(/11]
	PROCESS UNITS								
2100	Air Separation Unit (ASU)								
1000	Gasification Section	-531.9			537.2				-5.3
2200	Syngas Treating and Conditioning Line			-96.1			335.3	-11.1	-228.1
							000.0		
2300	Acid Gas Removal			64.0				-64.0	0.00
				00				00	
2400	Sulphur Recovery (SRU)			-8.0			8.8		-0.85
3000	POWER ISLAND	531.9		25.1	-537.2		-344.2	90.1	-2.0
2600	Hydrogen Unit (PSA)								
	.,								
4000	UTILITY and OFFSITE UNITS			15.0				-15.0	0.00
4000	GILLIT AND OFFSITE UNITS			15.0				-13.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-236.3

Note: (1) Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

Table 3. Case 5.3 – Water consumption summary

Sheet: 15 of 22

			Revision	0	
FOSTER WHEELER	CLIENT:		Date	July 2013	
	PROJECT:	CO2 capture at coal based power and H2 plants	ISSUED BY	LC	
	LOCATION:	LOCATION: The Netherlands		NF	
	FWI Nº:	1-BD-0681 A	APPR. BY	LM	
Hudrogan production Coco E 2 (Dower island, DSA off gases fixed heiler)					

Water Consumption Summary

UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system	Cooling Water Secondary System
		[t/h]	[t/h]	[t/h]	[t/h]
	AIR SEPARATION UNIT (ASU)				
2100	Air Separation Unit				9810
	GASIFICATION SECTION (GS)				
1000	Gasification	145			3870
2200	Syngas treatment and conditioning line				3370
2200	Syngus a countert and contained line				3370
2300	Acid Gas Removal		0.6		6870
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160
	CO ₂ COMPRESSION				
2500	CO ₂ Compression				5850
	POWER ISLAND (CC)				
3300	Steam Turbine and Generator auxiliaries		236.3		1320
	Condenser			33080	
	UTILITY UNITS (UU)				
4000	Cooling Water System	1164			
4000	Demineralized/Condensate Recovery/Plant and				
	Potable Water Systems	355	-237		
4000	Waste Water Treatment	-96.6			
4000	Balance of Plant (BOP)				400
	TOTAL CONSUMPTION	1567	0	33080	31650

Note: Negative figures represent generation

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

Table 4. Case 5.3 – Electrical consumption summary

Sheet: 16 of 22

CLIENT: IEAGHG PROJECT: LOCATION: The Netherlands FWI Nº: 1-BD-0681 A	Rev.0 Date: July 2013 ISSUED BY: LC CHECKED BY: NF APPR. BY: LM			
Hydrogen production - Case 5.3 (Power island: PSA off-gases fired boiler) Electrical Consumption Summary				
DESCRIPTION UNIT	Absorbed Electric Power [kW]			
AIR SEPARATION UNIT (ASU)				
MAC consumptions	124220			
BAC consumptions	12270			
Miscellanea	1000			
GASIFICATION SECTION (GS)				
Coal Receiving Handling and Storage	410			
Gasification	8790			
Syngas treatment and conditioning line	910			
Acid Gas Removal	20850			
Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700			
CO ₂ Compression	33970			
STEAM CYCLE				
Condensate and BFW pumps	4890			
Boiler	1120			
Steam Turbine auxiliaries and excitation system	400			
Miscellanea	2660			
UTILITY UNITS (UU)				
Cooling Water System	8040			
Demineralized/Condensate Recovery/Plant and Potable Water Systems	730			
Balance of Plant (BOP)	1060			
TOTAL CONSUMPTION	222020			
	PROJECT: CO2 capture at coal based power and hydrogen plants LOCATION: The Netherlands FWI Nº: 1-8D-0681 A Hydrogen production - Case 5.3 (Power island: PSA off-gases fired boild Electrical Consumption Summary DESCRIPTION UNIT AIR SEPARATION UNIT (ASU) MAC consumptions BAC consumptions Miscellanea GASIFICATION SECTION (GS) Coal Receiving Handling and Storage Gasification Syngas treatment and conditioning line Acid Gas Removal Sulphur Recovery (SRU) - Tail gas treatment (TGT) CO2 Compression STEAM CYCLE Condensate and BFW pumps Boiler Steam Turbine auxiliaries and excitation system Miscellanea UTILITY UNITS (UU) Cooling Water System Demineralized/Condensate Recovery/Plant and Potable Water Systems Balance of Plant (BOP)			

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

6. Overall performance

The following table shows the overall performance of Case 5.3.

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	DATE	Sept 2013
PROJECT No. :	1-BD-0681 A	MADE BY	LC
LOCATION:	The Netherlands	APPROVED BY	LM

Sheet: 17 of 22

Case 5.3 - H2 Plant Performance Summary (Boiler Island)

OVERALL PERFORMANCES				
Coal Flowrate (as received)	t/h	349.1		
Coal LHV (as received)	kJ/kg	25870		
Coal HHV (as received)	kJ/kg	27060		
THERMAL ENERGY OF FEEDSTOCK	MWth (LHV)	2509		
THERMAL ENERGY OF FEEDSTOCK	MWth (HHV)	2624		
Thermal Power of Raw Syngas exit Scrubber	MWth (LHV)	1785		
Thermal power of syngas to AGR	MWth (LHV)	1638		
Thermal Power of Clean Syngas to Hydrogen PSA	MWth (LHV)	1600		
Thermal Power of offgas to boiler island	MWth (LHV)	210		
HYDROGEN PRODUCTION	Nm³/h	465700		
Thermal Power of Hydrogen	MWth (LHV)	1390		
Steam turbine electric power output	MWe	259.1		
GROSS ELECTRIC POWER OUTPUT OF STEAM CYCLE	MWe	259.1		
Gasification Section units consumption	MWe	31.7		
ASU consumption	MWe	137.5		
Steam Cycle auxiliaries consumption	MWe	9.1		
CO ₂ Compression and Dehydration unit consumption	MWe	34.0		
Utility Units consumption	MWe	9.8		
ELECTRIC POWER CONSUMPTION OF GASIFICATION COMPLEX	MWe	222.0		
NET ELECTRIC POWER OUTPUT OF IGCC (Step-up transformer Eff. = 0.997)	MWe	37.0		
CO ₂ emission per net power production (*)	kg/MWh	93.7		

^(*) Referred to the net power production fo case 4.2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

The following table shows the overall CO_2 balance and CO_2 removal efficiency of Case 5.3.

Sheet: 18 of 22

CO ₂ removal efficiency	Equivalent flow of CO ₂
	kmol/h
INPUT	
Fuel Mix (Carbon AR)	18730
TOTAL (A)	18730
ОUТРUТ	
Slag (B)	101
CO ₂ product pipeline	
со	7
CO ₂	16759
CH₄	0
cos	0
Total to storage (C)	16766
CO2 emission from boiler	1862
TOTAL	18730
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

7. Environmental impact

The gasification plant design is based on advanced technologies that allow to reach high electrical generation efficiency, while minimizing impact to the environment. Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 19 of 22

7.1. Gaseous emissions

During normal operation at full load, main continuous emissions are the flue gases from the boilers' stack. Table 5 summarises expected flow rate and concentration of the combustion flue gas from both the boilers included in the power island.

Minor gaseous emissions are created by process vents and fugitive emissions. Some of the vent points emit continuously; others during process upsets or emergency conditions only. All vent streams containing, potentially, undesirable gaseous components are sent to a flare system. Venting via the flare will be minimal during normal operation, but will be significant during emergencies, process upsets, start up and shutdown. Fugitive emissions are related to the milling, storage and handling of solids (e.g. solid transfer, leakage). As summarised in Table 6, these emission mainly consists of air containing particulate.

Table 5. Case 5.3 – Plant emission during normal operation

Flue gas to HRSG stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	322,050
Flow, Nm ³ /h (1)	265,100
Temperature, °C	140-150
Composition	(% vol)
Ar	0.61
N_2	58.57
O_2	0.27
CO_2	15.35
$\rm H_2O$	25.21
Emission	mg/Nm ^{3 (1)}
NOx	< 150
SOx	< 10
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 6% vol.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production

Power Island: PSA off-gases fired boiler

Table 6. Case 5.3 – Plant minor emission

Emission source	Emission type	Temperature	
Coal storage and handling system	Continuous	ambient	Air: 10 mg/Nm ³ particulate

7.2. Liquid effluents

Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Sheet: 20 of 22

Cooling Tower blow-down

Flowrate : $280 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate: $125 \text{ m}^3/\text{h}$

7.3. Solid effluents

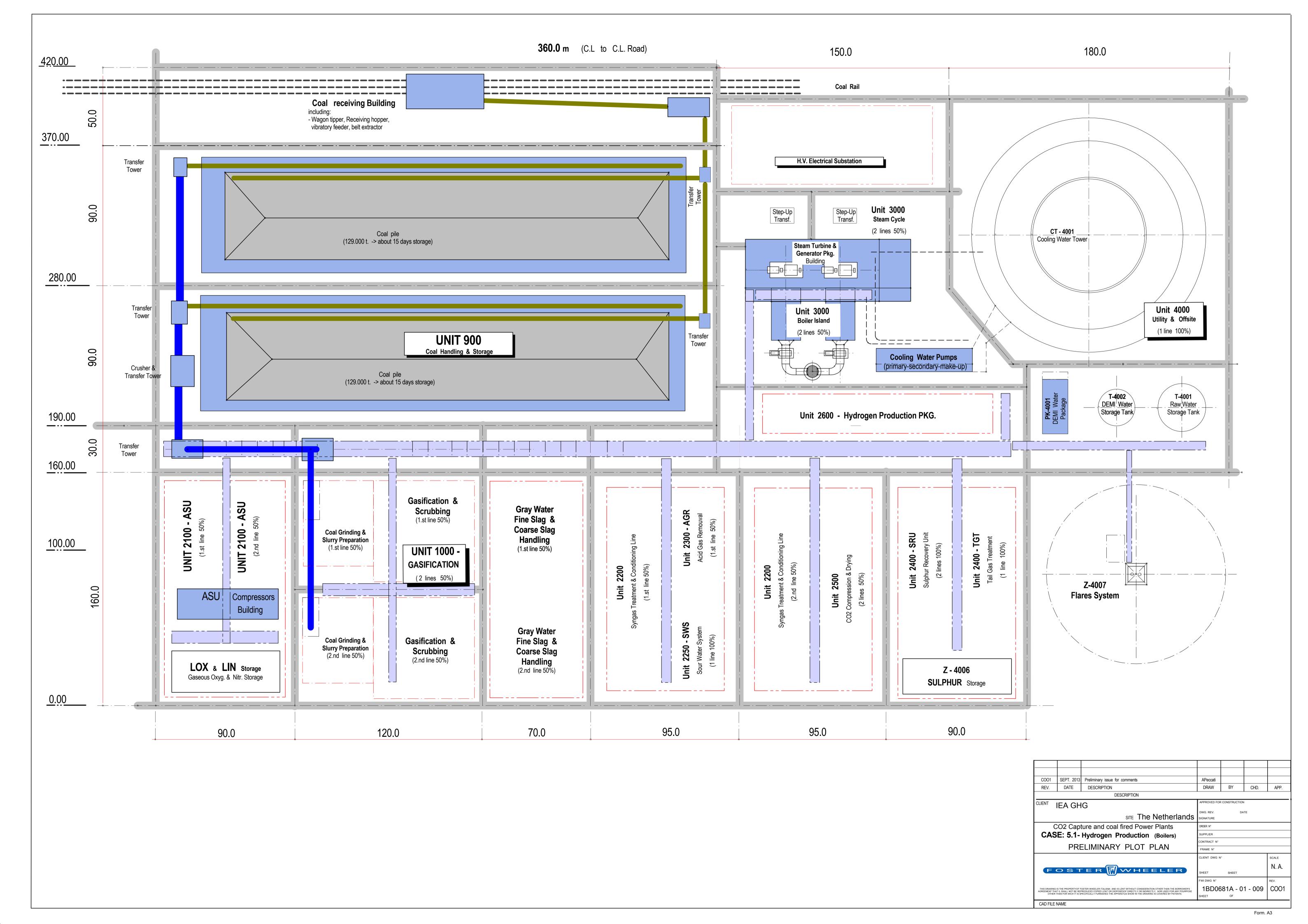
The IGCC plant is expected to produce the following solid by-product:

Slag from gasifier

Flowrate : 45 t/h (dry basis)

Moisture content : 50%

Slag product has a potential use as major components in concrete mixtures to make road, pads, storage bins.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production Sheet: 21 of 22

Power Island: PSA off-gases fired boiler

8. Preliminary plot plan

Plot plan at block level of Case 5.3 is attached to this section, showing the area occupied by the main units and equipment of the plant.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.6 - Case 5.3: Hydrogen production Sheet: 22 of 22

Power Island: PSA off-gases fired boiler

9. Equipment list

The list of main equipment and process packages is included in this section.

PROJ. NAME: CO₂ capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	I M	I M		

EQUIPMENT LIST

Unit 900 - Coal handling and storage (N/A)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-901	Coal Handling		Coal flowrate: 349 t/h					30 days storage
	Wagon tipper							Storage piles: 2 x 137,000 t each
	Receiving Hopper, vibratory feeder and belt extractor							
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	As-Received Coal Sampling System	Two-Stage						
	As-Received Magnetic Separator System	Magnetic Plates						
	Conveyors	Belt						
	Transfer Towers	Enclosed						
	Crushers Towers	Impactor reduction						
	As-Fired Coal Sampling System	Swing hammer						
	As-Fired Magnetic Separator System	Magnetic Plates						
	Coal Silo		2 x 5300 m3					for daily storage

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 1000 - Gasification Island (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-1002	GE Energy Coal gasification package							
	Coal grinding and slurry preparation							Included in Z-1002
	Gasifiers (RSC)		2 x 4200 t/d coal (as received) to burners 2 x 900 MWth (LHV basis) syngas at scrubber outlet					Included in Z-1002
	Scrubber							Included in Z-1002
	Black Water flash							Included in Z-1002
	Coarse slag handling							Included in Z-1002
	Grey water systeam and fines handling							Included in Z-1002

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2100 - Air Separation Unit (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2101	ASU Package including:							
	Cold Box	Cryogenic	162 t/h of 95% purity O2 each train					Included in Z-2101
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297800 Nm3/h	2 x 35250 kW				Included in Z-2101
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW				Included in Z-2101
	O2 pumps	Centrifugal						Included in Z-2101
	Back-up oxygen vaporiser	Shell and tube						Included in Z-2101
nmon units t	to both trains:	·						
	LOX (liquid oxygen) storage	Fixed roof storage tank						8 hour storage for 1 gasification train Normal operating p: 5 bar a Normal operating T: -165 °C
								Included in Z-2101
	LIN (liquid nitrogen) storage	Fixed roof storage tank						
	LIN (liquid nitrogen) storage Gaseous oxygen storage	Fixed roof storage tank						8 hour storage for 1 Gasifier Normal operating p: 5 bar a Normal operating T: -180 °C

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	HEAT EXCHANGERS				Shell/tube	Shell/tube		
E-2201	Feed/Product Heat Exchanger	Shell & Tube						
E-2202	HP steam superheater #1	Shell & Tube						
E-2203	HP steam superheater #2	Shell & Tube						
E-2204 A/B	HP BFW preheater #1 and #2	Shell & Tube						
E-2205	HP BFW preheater #3	Shell & Tube						
E-2206	LP steam generator	Shell & Tube						
E-2207	Condensate preheater #1	Shell & Tube						
E-2208	Condensate preheater #2	Shell & Tube						
E-2209	Condensate preheater #3	Shell & Tube						
E-2210	Final sygas cooler	Shell & Tube						
	DRUMS							
D-2201	Condensate Separator	Vertical						
D-2202	Condensate Separator	Vertical						
D-2203	Condensate Separator	Vertical						
D-2204	Condensate Separator	Vertical						
D-2205	Condensate Separator	Vertical						
D-2206	Condensate Separator	Vertical						
D-2207	Condensate Separator	Vertical						
D-2208	Condensate accumulator	Horizontal						Common for both syngas tratment and conditiong line trains

PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2200 - Syngas Treatment and Conditioning Line (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	REACTOR							
R-2201	1st Shift Catalyst Reactor	vertical						Overall CO conversion = 98%
R-2202	2nd Shift Catalyst Reactor	vertical						Overall CO conversion – 70%
	PUMPS							
P-2201	Condensate Pump (to Gasifiers)							
	MISCELLANEA							
X-2201	Mercury Adsorber	Sulfur-impregnated activated carbon beds						

Note: equipment list referred to one train only

CLIENT:	IEAGHG
LOCATION:	The Netherlands
DOL NAME	CO2 capture at coal based power and by

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE:	Case 5.3	-Hydrogen	Production ((Boiler)
CINDL.	Case J.J	-II y uI O g c II	I IOuucuon (DONCE

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2250 - Sour Water System (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
Z-2251	SWS PACKAGE							
C-2251	Sour Water Stripper	Vertical						
	SWS Reboiler							
	SWS Condenser							
E-2251	Sour water heat exchanger (SWS feed / purified)							
P-2251	SWS Pump							

CLIENT: IEAGHG	
LOCATION: The Netherlands	5

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

rogen Production (Boiler) EQUIPMENT LIST

Unit 2300 - Acid Gas Removal Unit (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2301	Acid Gas Removal Unit - Absorption section	Solvent: Selexol	Feed gas: 974900 Nm3/h; 56 barg; 34 °C					One H2S removal column, 3 CO2 removal columns, CO2 removal =91.78% Total Carbon Capture =90% Separated removal of CO2 and H2S
Z-2303	Acid Gas Removal Unit - Solvent regeneration							Total CO2 removal= 17700 t/d; 10 ppm H2S (dry) in combined CO2
Z-2304	Chiller Unit	Electrical driven						T= -10 °C

CLIENT: IEAGHG	
LOCATION: The Netherlands	

PROJ. NAME: CO2 capture at coal based power and hydrogen plants $\,$

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2400 - Sulphur Recovery Unit (2x100%) & Tail Gas Treatment (1x100%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	P design [barg]	T design [°C]	Materials	Remarks
	PACKAGES							
Z-2401	Sulphur Recovery Unit and Tail Gas Treatment Package - two Sulphur Recovery Unit, each sized for 100% of the capacity - one Tail Gas Treatment Unit sized for 100% of capacity (including Reduction Reactor and Tail Gas Compressor)		Sulphur Prod.= 72 t/d Acid Gas from AGR = 6680 Nm3/h Expected Treated Tail Gas = 3602 Nm3/h					Sulphur content > 99,9 % mol min (dry basis)

CLIENT: IEAGHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

REVISION
Rev. Draft
August 2013
ISSUED BY
CHECKED BY
NF

APPROVED BY

LM

Rev.0

January 2014

GP

NF

LM

Rev.1

Rev.2

EQUIPMENT LIST

CASE: Case 5.3 -Hydrogen Production (Boiler)

Unit 2500 - CO₂ Compression Package (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design [°C]	Materials	Remarks
	COMPRESSORS							
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	190000 Nm3/h p in: 2.45 bar a p out: 80 bar a	18000 kW				Water cooled
	PUMPS		Q,m3/h x H,m					
P-2501	CO ₂ Pump	Centrifugal	640 x 530	800 kW				Liquid CO2 product, per each train: Flowrate: 370 t/h; 110 bar a; 30°C
	PACKAGE							
PK-2501	CO ₂ drying package							

CLIENT: IEAGHG	REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
LOCATION: The Netherlands	DATE	August 2013	January 2014		
PROJ. NAME: CO2 capture at coal based power and hydrogen plants	ISSUED BY	LC	GP		
CONTRACT N. 1-BD-0681 A	CHECKED BY	NF	NF		
CASE: Case 5.3 -Hydrogen Production (Boiler)	APPROVED BY	LM	LM		

EQUIPMENT LIST

Unit 2600 - Hydrogen Production

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [MW]	P design [barg]	T design	Materials	Remarks
	PACKAGES							
	Hydrogen Production package	PSA	465000 Nm3/h P out = 51 barg T out = 20 °C					Hydrogen purity =99.5 %

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 3000 - Boiler Island (2x50%)

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	P des [barg]	T des [°C]	Materials	Remarks
	BOILER (2 x 50%)							
PK - 3501	Boiler Package	Gas fired Boiler	Capacity: 100 t/h main steam each boiler Thermal input (PSA off-gas from Unit 2600): 105 MWth (LHV) each boiler Main steam condition: 550 °C / 110 bar (a)					Boiler package including: - One Fired Boiler Furnace - Low NOx burners system including main burners and pilots - Economizers/super heater coils, steam drum - Air pre-heater - Combustion air fans with electric motor - Start-up system - Flue gas ducts
K - 3501	ID fan	Axial	Flowrate: 130x10^3 Nm3/h Vol. Flow: 205 x 10^3 m3/h Power consumption: 405 kW					
Common to	both boilers							
PK - 3502	Flue gas stack	Cement Stack						Equipped with two flues
PK - 3503	Continuous emission monitoring system							NOx, CO, SO ₂ , particulate, H ₂ O, O ₂

CLIENT: IEAGHG

LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	LM	LM		

EQUIPMENT LIST Unit 3000 - Steam Cycle (2x50%)

	_		CINC 5000 Stee	am Cycle (2x30)				
				motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
	PACKAGES							
Z-3001 A/B	Steam Turbine and Generator Package							
ST-3001	Steam Turbine		2 x 130 MWe					Including:
								Lube oil system
			HP steam admission:					Cooling system
			110 bar, 550°C					Idraulic control system Drainage system
								Seals system
								Drainage system
G-3002	Steam Turbine Generator		2 x 170 MVA					Including relevant auxiliaries
G-3002	Steam 1 arome denerator		ZATIO MITI				<u> </u>	
E-3001A/B	Inter/After condenser							
E-3002	Gland Condenser							
Z-3002 A/B	Steam Condenser Package							
E-3003	Steam Condenser	Water cooled	2 x 220 MWth					Including:
								Hot well
								Vacuum pump (or ejectors)
								Start up ejector (if required)
Z-3003 A/B	Steam Turbine by-pass system							
Z-3003 A/B	Steam Turbine by-pass system							
Z-3004	Phosphate injection package							
Z-3005	Oxygen scavanger injection package							
Z-3006	Amines injection package							
	PUMPS		Q,m³/h x H,m	kW				
P-3001 A/B	HP BFW Pumps (to Unit 1000)	centrifugal	328 x 1550	1800				One operating, one spare, per each train.
	HP BFW Pumps (to Unit 3500)	centrifugal	124 x 1500	630				One operating, one spare, per each train.
P-3003 A/B	LP BFW Pumps	centrifugal	71.5 x 50	15				One operating, one spare, per each train.
P-3004 A/B	Condensate Pumps	Centrifugal, vertical	1360 x 150	800				One operating, one spare
	DRUMS							
D-3001	Continuous Blow-down Drum	vertical						
D-3002	Discontinuous Blow-down Drum	vertical						

CLIENT: IEAGHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

REV
D
CHEC

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION Rev. Draft Rev.0 Rev.1 Rev.2 January 2014 DATE August 2013 ISSUED BY LC GP CHECKED BY NF NF APPROVED BY LM LM

EQUIPMENT LIST Unit 4000 - Utility and Offsite

			Omt 4000 - Othity	motor rating	P design	T design		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	[kW]	[barg]	[°C]	Materials	Remarks
Z-4001	COOLING WATER SYSTEM							1
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 825 MWth Diameter: 130 m, Height: 210 m, Water inlet: 17 m				concrete	Included in Z-4001
	Pumps							
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	11025 m3/h x 35 m	1200 kW				Included in Z-4001 3 operating, one spare
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	15670 m3/h x 45 m	2200 kW				Included in Z-4001 2 operating, one spare
P-4003A/B	Raw water pumps (make-up)	centrifugal	1275 m3/h x 30 m	160 kW				Included in Z-4001 1 operating, one spare
	Packages							
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 6450 m3/h					
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps							
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps							
Z-4002	RAW WATER SYSTEM							
T-4001	Raw Water storage tank		10680 m3					Included in Z-4002 24 hour storage
P-4004A/B	Raw Water Pumps to gasification island	centrifugal	160 m3/h x 50 m	30 kW				Included in Z-4002 One operating, one spare
P-4005A/B	Raw Water Pumps to demi plant	centrifugal	285 m3/h x 50 m	55 kW				Included in Z-4002 One operating, one spare
Z-4003	DEMI WATER SYSTEM							
PK-4001	Demin Water Package, including:							
1 AX-1001	- Multimedia filter - Reverse Osmosis (RO) Cartidge filter - Electro de-ionization system							
T-4002	Demi Water storage tank		6240 m3					Included in Z-4003 24 hour storage
P-4006A/B	Demi Water Pumps	centrifugal	260 m3/h x 35 m	37 kW				Included in Z-4003 One operating, one spare

CLIENT: IEAGHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: Case 5.3 -Hydrogen Production (Boiler)

REVISION	Rev. Draft	Rev.0	Rev.1	Rev.2
DATE	August 2013	January 2014		
ISSUED BY	LC	GP		
CHECKED BY	NF	NF		
APPROVED BY	I.M	I.M		

EQUIPMENT LIST Unit 4000 - Utility and Offsite

			Omt 4000 - Othrty		D 1 1	m 1 ·		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating	P design	T design	Materials	Remarks
	DESCRII HON	1111	SIZE	[kW]	[barg]	[°C]	Materials	Kemarks
Z-4004	FIRE FIGHTING SYSTEM							
Z-4004	FIRE FIGHTING STSTEM							
	Fire water storage tank							
	Fire pumps (diesel)							
	Fire pumps (electric)							
	FW jockey pump							
	MISCELLANEA							
	Natural Gas system							
	Waste Water Treatment							
	Sulphur Storage/Handling		72 t/d S prod.					30 days storage
	Flare system							
	Interconnecting							
	Instrumentation							
	DCS							
	Piping							
	Electrical							
	Electrical							
	Plant Air							
	FIAIR AII							
	Duildings							
	Buildings							

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Sheet: 1 of 15

Cooling system sensitivity

CLIENT : IEAGHG

PROJECT NAME : CO_2 Capture at Coal Based Power and Hydrogen Plants document name : $CASE\ 4.2:IGCC$ with CCS-GE gasification technology

COOLING SYSTEM SENSITIVITY

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Cooling system sensitivity Date: January 2014

Sheet: 2 of 15

TABLE OF CONTENT

1.	Intr	oduction	3
2.	Pro	cess description	4
	2.1.	Overview	4
	2.2.	Impact on process units	4
		2.2.1. Seawater system	4
		2.2.2. Air cooling system	4
	2.3.	Unit 3000 – Steam Cycle	5
		2.3.1. Seawater system	
		2.3.2. Air cooling system	
	2.4.	Unit 6000 - Utility Units	
		2.4.1. Seawater system	
		2.4.2. Air cooling system	0
3.	Pro	cess Flow Diagrams	7
4.	Util	ity consumption	8
5.	Ove	erall performance	12
6.	Env	vironmental impact	14
	6.1.	Gaseous emissions	.14
	6.2.	Liquid effluents	.14
		6.2.1. Seawater system	
	6.3.	Solid effluents	.14
7.	Mai	in equipment design changes	15
-	11111		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 3 of 15

Cooling system sensitivity

1. Introduction

This chapter presents the main impacts on plant design and performance of alternative types of cooling system, taking as reference the IGCC plant based on the GE gasification technology described in chapter E.2 (Case 4.2). With respect to this case, based on natural draft cooling water tower system, two different systems are analysed hereafter:

- SW: once-through seawater cooling;
- AC: dry air cooling.

The description of the main process units and the reference Case 4.2 performance are covered respectively in chapter E and E.2 of this report; only plant design changes related to the alternative cooling systems are discussed in the following sections, together with the main plant performance results.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 4 of 15

Cooling system sensitivity

2. Process description

2.1. Overview

The description of the following sections makes reference to the simplified Process Flow Diagrams (PFD) of section 3, which show only the design changes related to the alternative cooling systems. For all the other units, reference shall be made to the base case description, included in chapter E.2, section 2.

2.2. Impact on process units

The adoption of a cooling system different from the reference case leads to the following modification within the process units.

2.2.1. Seawater system

- <u>ASU</u>: Seawater coolers are considered for the after-coolers of the main air and nitrogen compressor. This allows to achieve a cooling level of the process air greater than the reference case, corresponding also to a lower compressor power demand.
- <u>CO₂ compression</u>: Seawater coolers are considered for the after-coolers of the CO₂ compressor trains. This allows to achieve a cooling level of the process air greater than the reference case, corresponding also to a lower compressor power demand.
- The machinery closed cooling water circuit provides the cooling medium to the final syngas cooler and the heat exchangers within the AGR.

2.2.2. Air cooling system

- <u>ASU</u>: Air coolers are considered for the after-coolers of the main air and nitrogen compressor. During operation at normal ambient conditions, this allows to achieve a cooling level of the process air greater than the reference case, corresponding to a lower compressor power demand, offset by the additional power requirement of the air cooler fans.
- <u>CO₂ compression</u>: Air coolers are considered for the after-coolers of the CO₂ compressor trains. During operation at normal ambient conditions, this allows to achieve a cooling level of the process air greater than the reference case, corresponding to a lower compressor power demand, offset by the additional power requirement of the air cooler fans.
- An air cooler is considered for syngas cooling upstream the AGR.
- Air coolers are considered for each cooling service within the AGR unit.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Cooling system sensitivity

Details on the temperature that can be achieved with both cooling system are reported in the following section 2.4.

Sheet: 5 of 15

2.3. Unit 3000 – Steam Cycle

The main consequence of a cooling system alternative to that of the reference case is a different steam condenser type.

2.3.1. Seawater system

A seawater cooled steam condenser is considered in this case. The lower sea water inlet temperature, as well as the lower permitted temperature increase (see data below) allows to achieve a condensing pressure lower than the reference case (3.0 kPa vs. 4.0 kPa respectively), with consequent higher steam turbine power generation.

In fact, being the sea water supplied to the steam condenser at 12°C and considering a maximum allowed temperature increase of 7°C, the condensation temperature is 24°C.

2.3.2. Air cooling system

The exhaust steam from the LP turbine is piped directly to the air-cooled, finned tube, condenser. The finned tubes are usually arranged in an "A" form or delta over a forced draught fan in order to reduce the plot area requirements.

A temperature difference of 25°C is considered between ambient air and the condensing steam, resulting in a higher steam condensing pressure with respect to the reference case (5.2 kPa vs. 4.0 kPa respectively) with consequent lower steam turbine power generation.

2.4. Unit 6000 - Utility Units

Apart from the cooling water system, alternative to the cooling tower type of the reference case, no significant impact is foreseen in the other utility units of the oxycombustion power plant.

2.4.1. Seawater system

In the once-through system, seawater is pumped from the sea, directly used in the heat exchangers of the plant and then discharged back to sea.

This system has the advantage of using a "free" coolant medium, without generating a real stream of waste water, since seawater is returned to the sea without any significant change in composition, apart from its higher temperature. However, the maximum allowable seawater temperature increase is 7°C, in order to minimize

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification
Cooling system sensitivity

Sheet: 6 of 15

environmental impact of the sea, thus resulting in a higher circulating cooling water flowrate.

In addition to the steam turbine condenser, seawater is used for the CO₂ compressors intercoolers and the main air compressor aftercoolers. During normal operation conditions, this allows achieving a temperature of the hot stream of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).

In addition to the once-trough system, a seawater-cooled closed circuit of demineralised water is considered (secondary system) for machinery and steam turbine generator cooling and for all plant users where seawater is not applicable, e.g. for cooling of process streams within syngas treatment of the gasification unit.

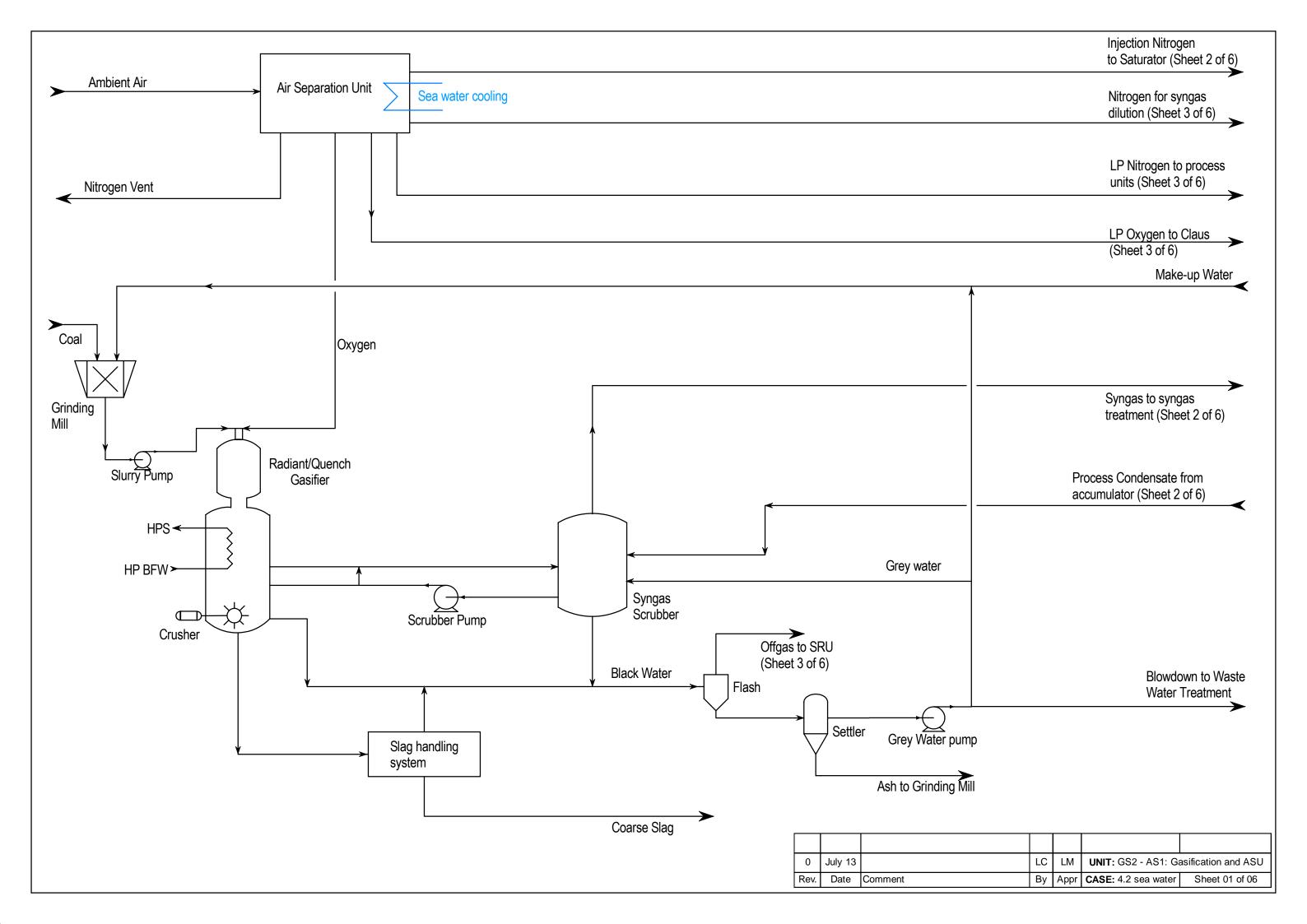
2.4.2. Air cooling system

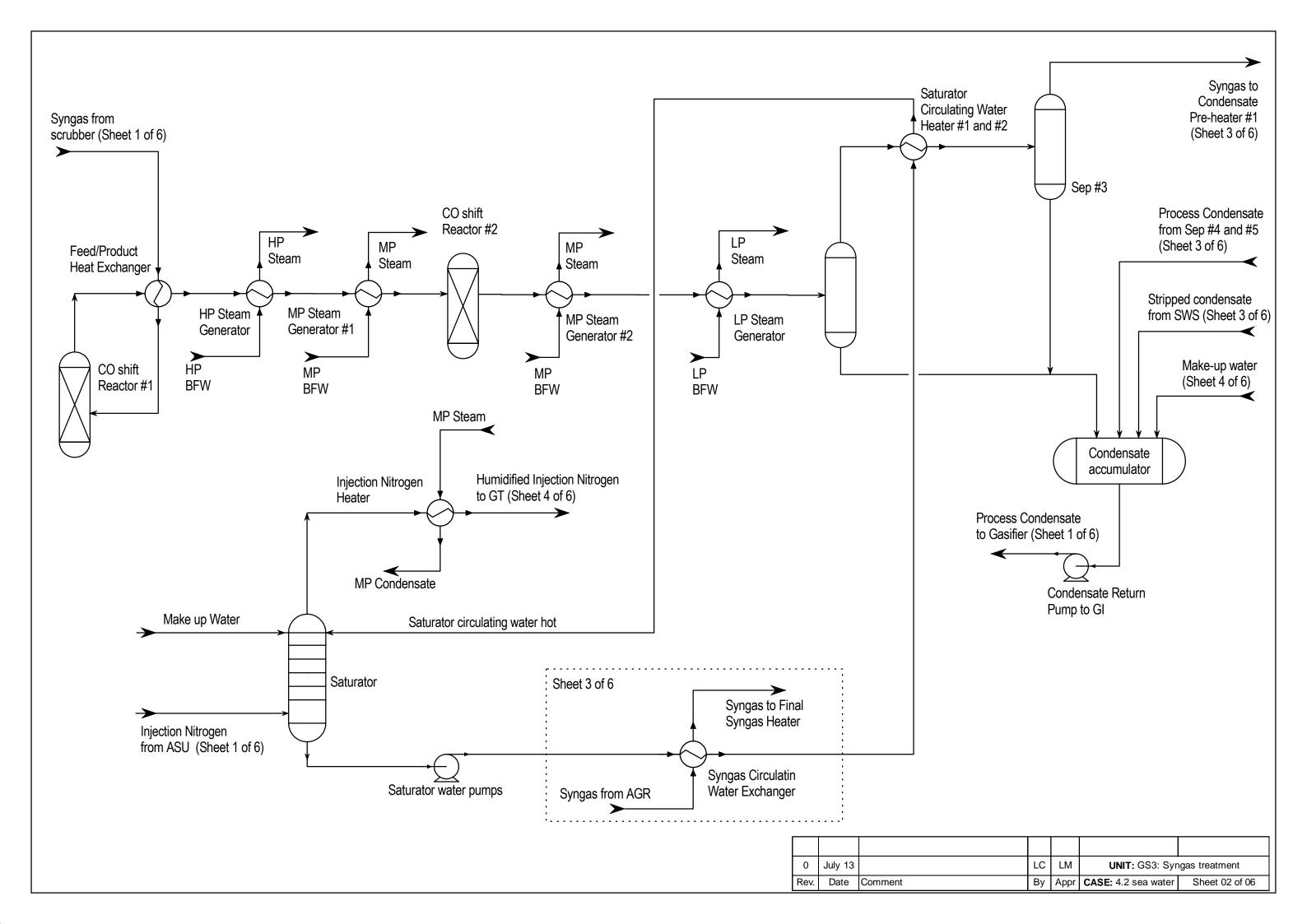
The use of ambient air as cooling medium is maximised. A secondary system consisting of an air-cooled closed circuit of demineralised water, conditioned and stabilised, is only used for machinery and steam turbine generator cooling.

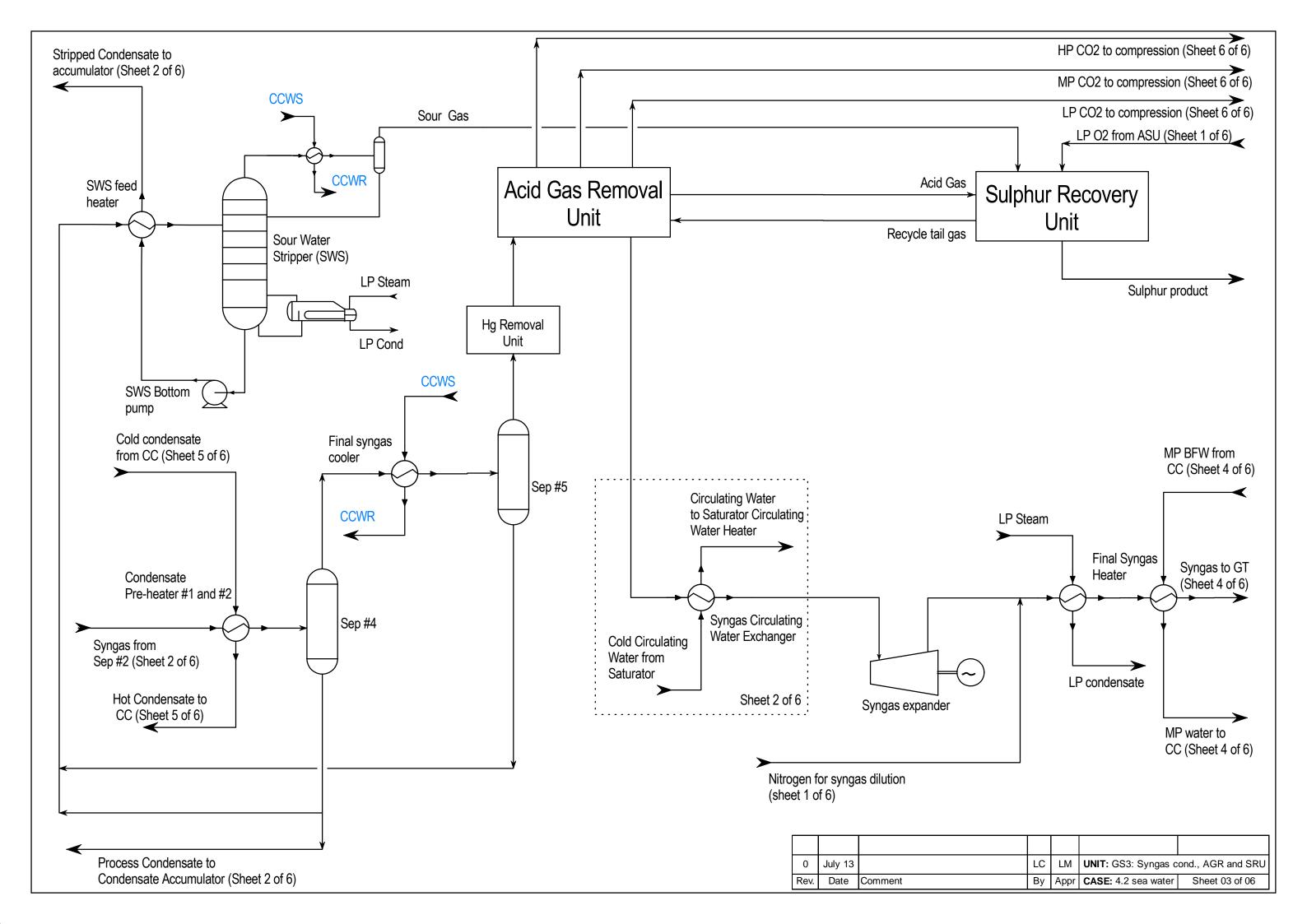
As above stated, the installation of an air cooled steam turbine condenser has a negative impact on the performance, due to the higher condensation pressure resulting from the 25°C approach normally considered for this application.

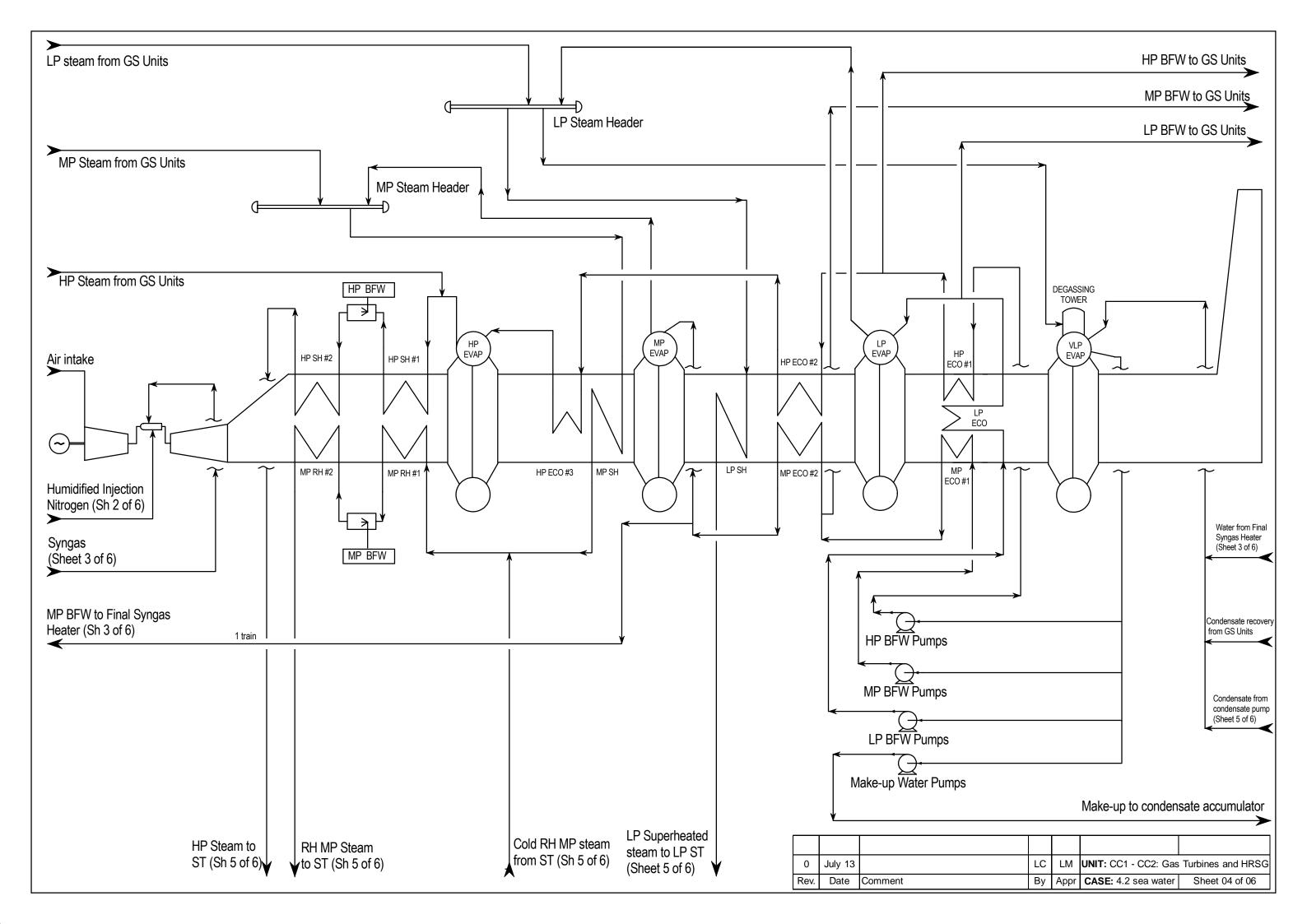
For services other than steam condenser, e.g. water air coolers or compressor intercoolers, the temperature difference between hot fluid exit temperature and ambient air is generally lower, around 10°C, corresponding to a final hot fluid temperature of 19°C, which is lower than the temperature achieved in the reference case (i.e. 26°C).

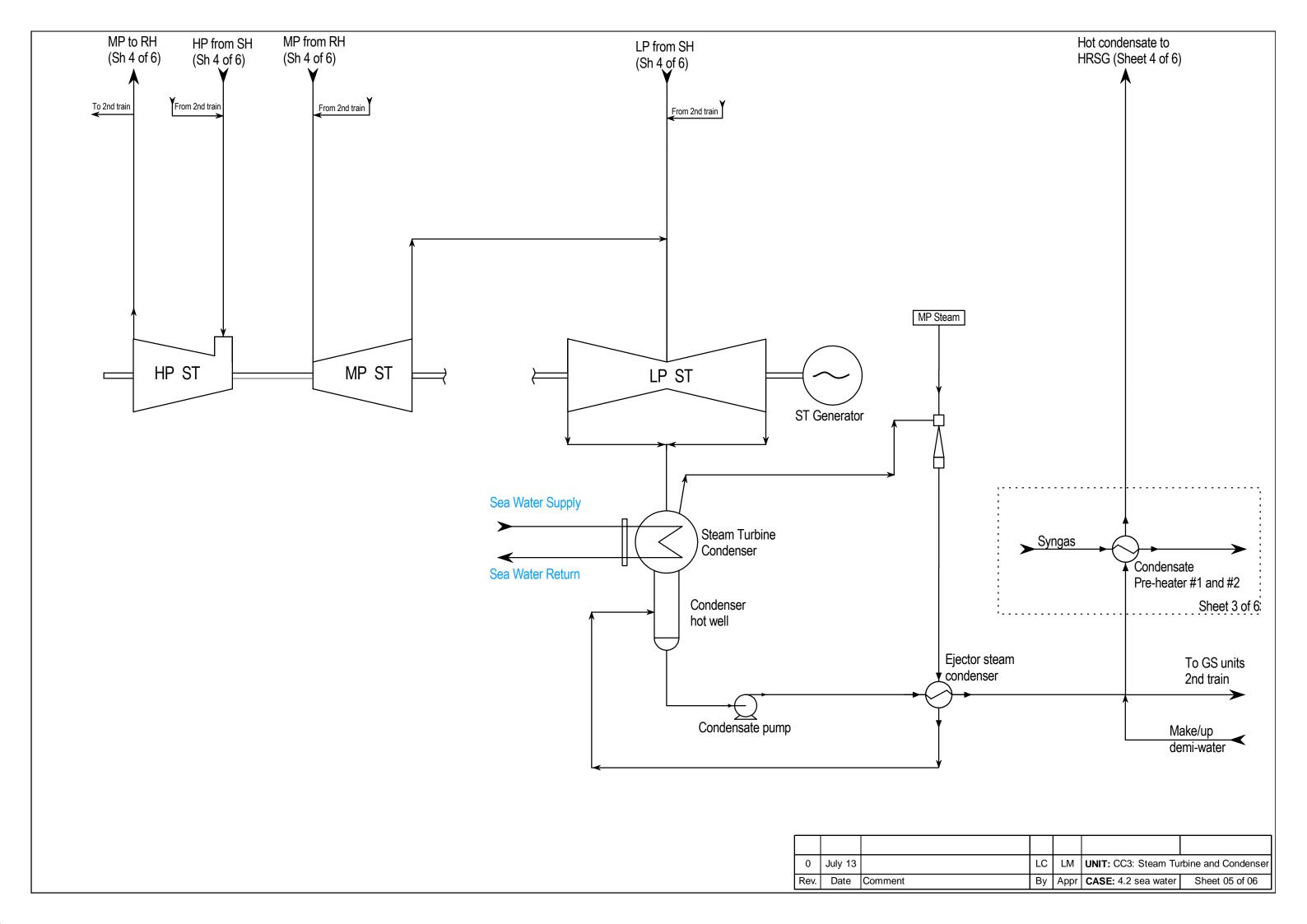
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

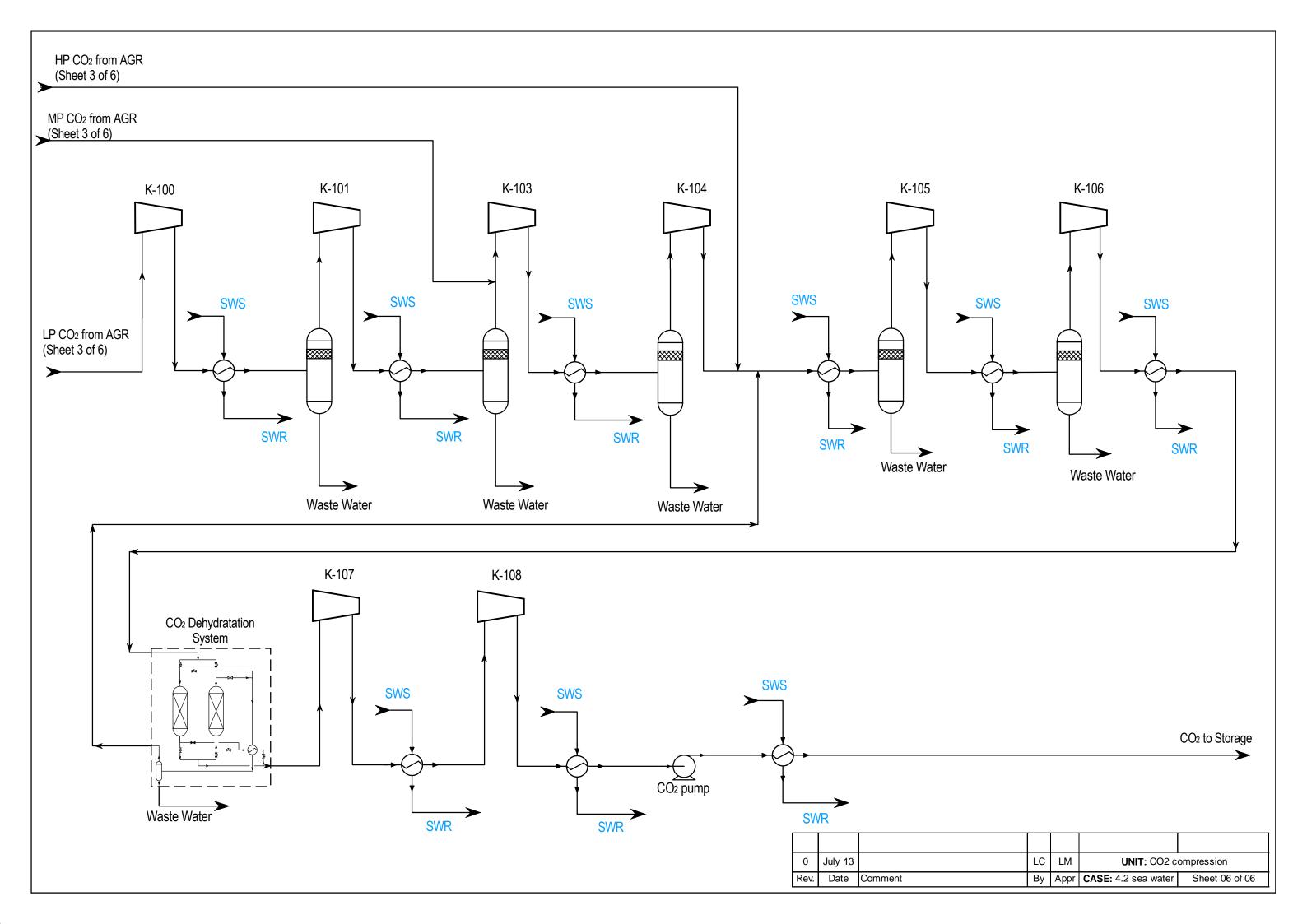

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Sheet: 7 of 15

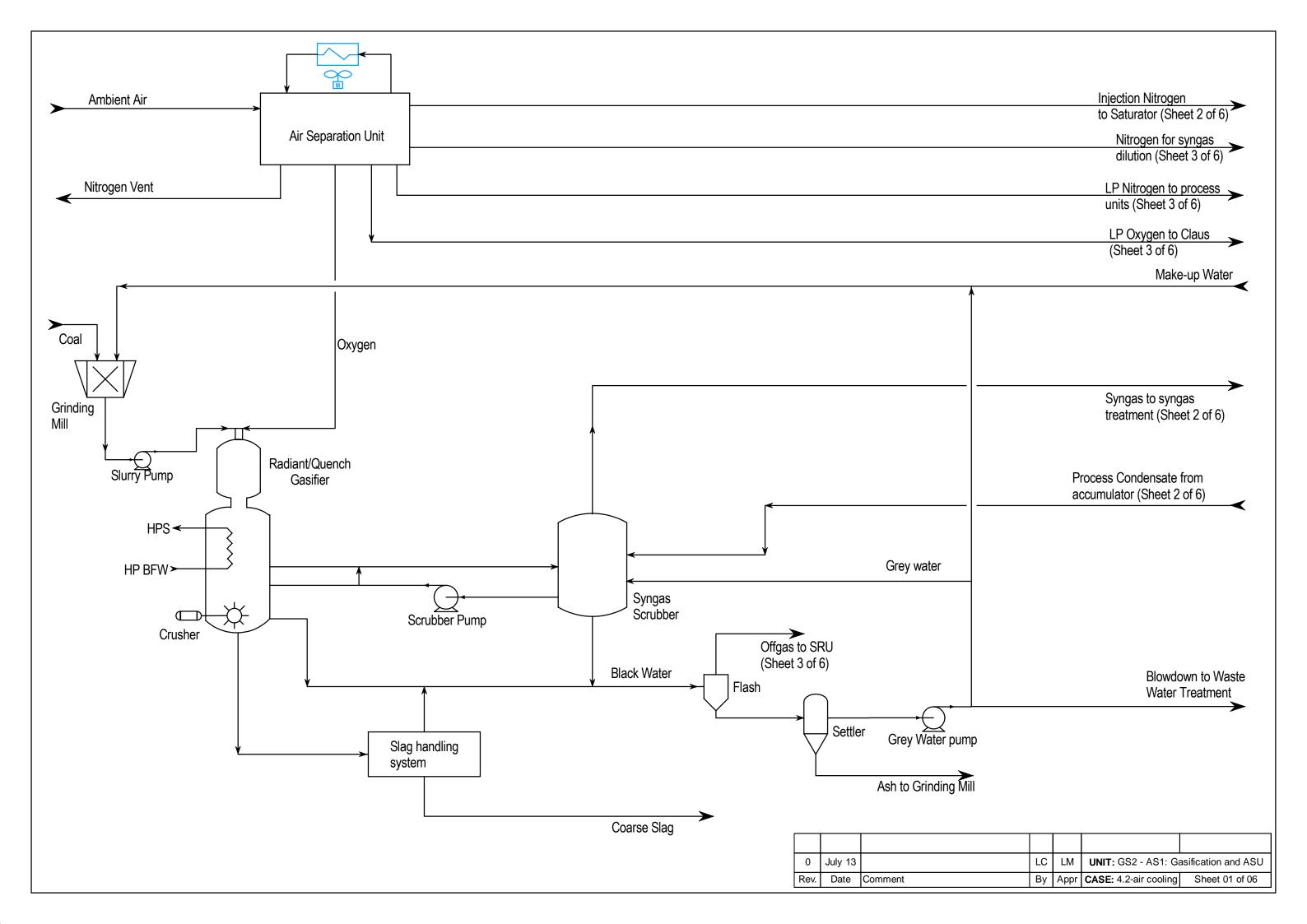

Cooling system sensitivity

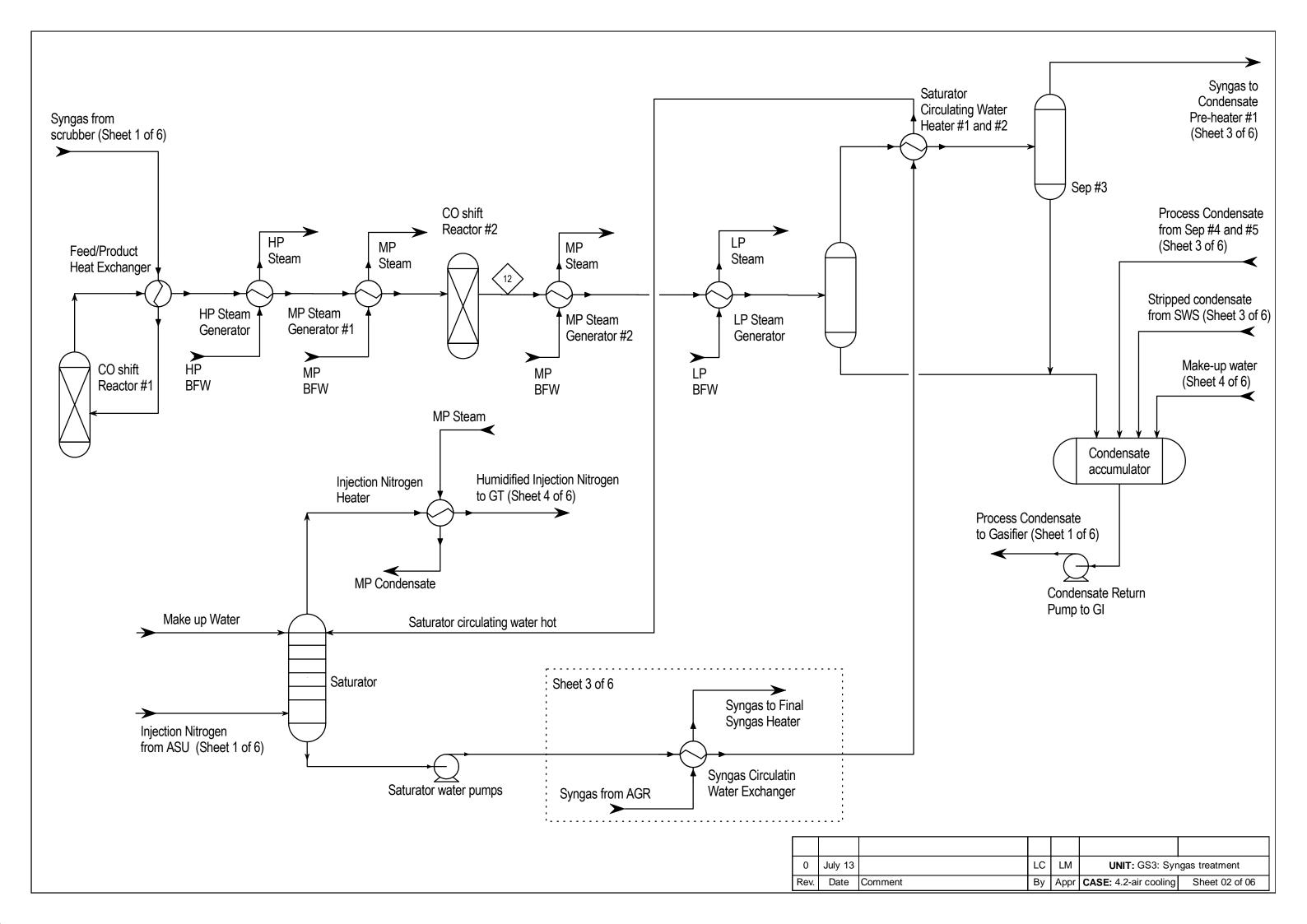

3. Process Flow Diagrams

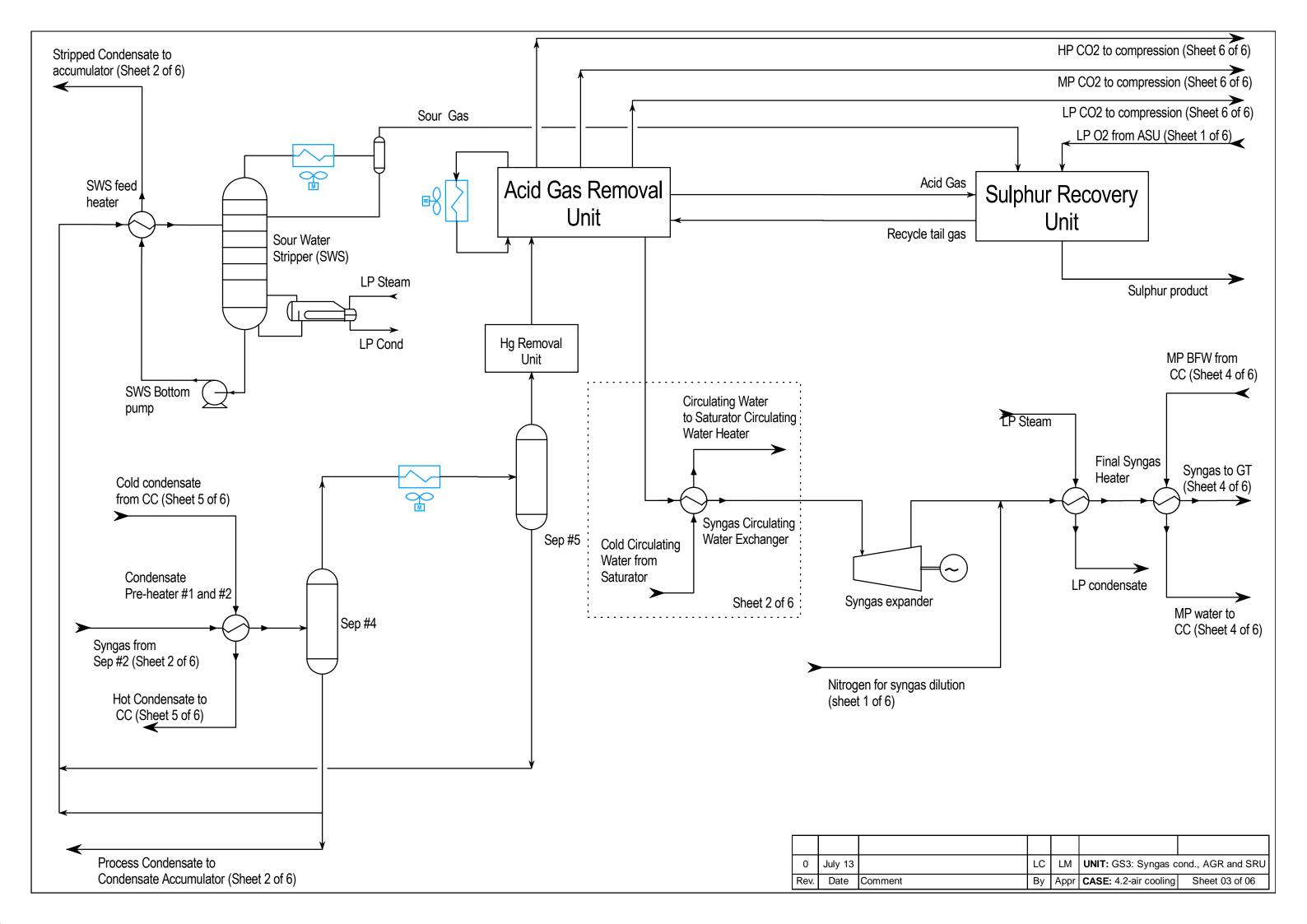

Simplified Process Flow Diagrams of this case, showing process modifications with respect to the reference case, are attached to this section.

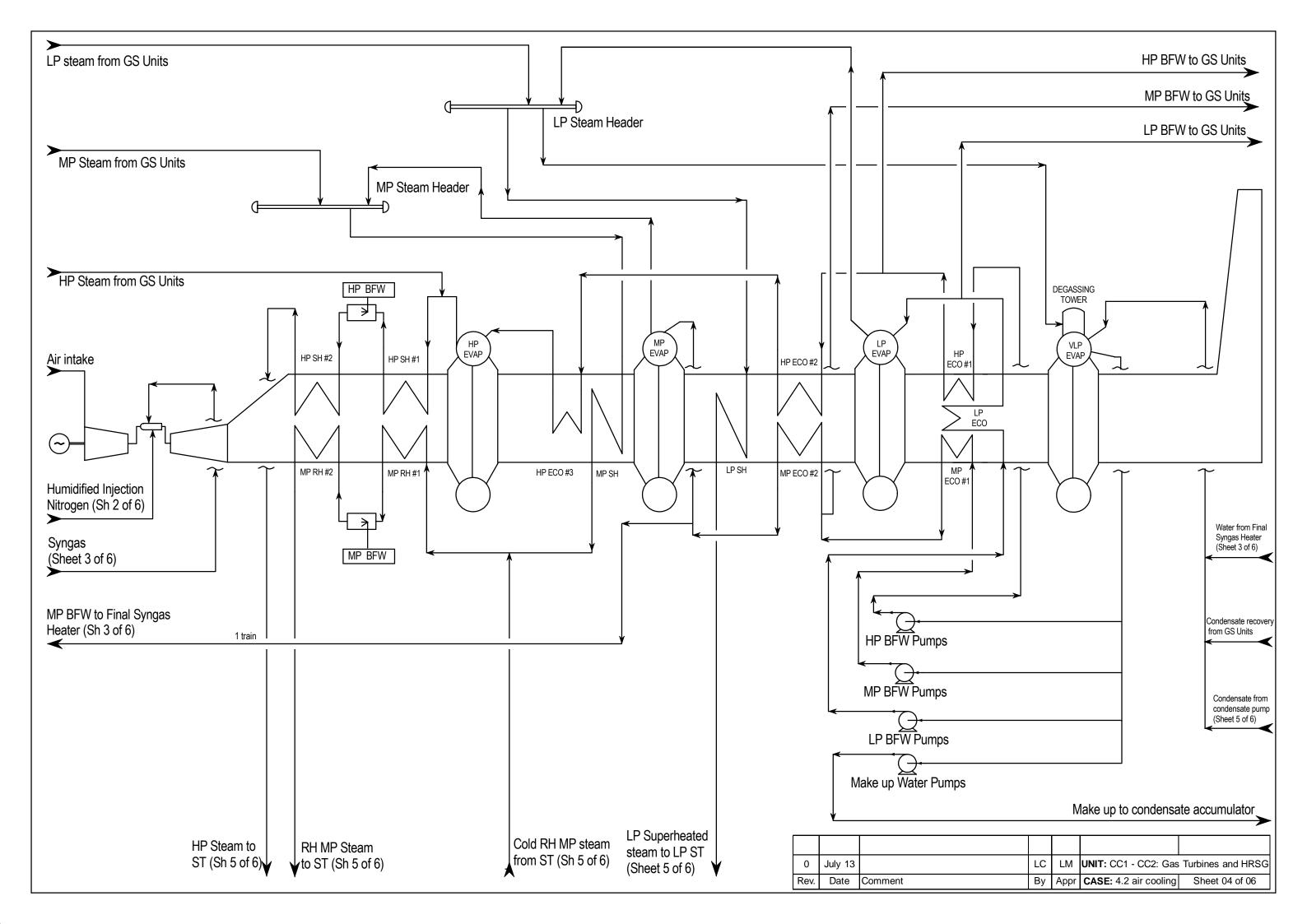

January 2014

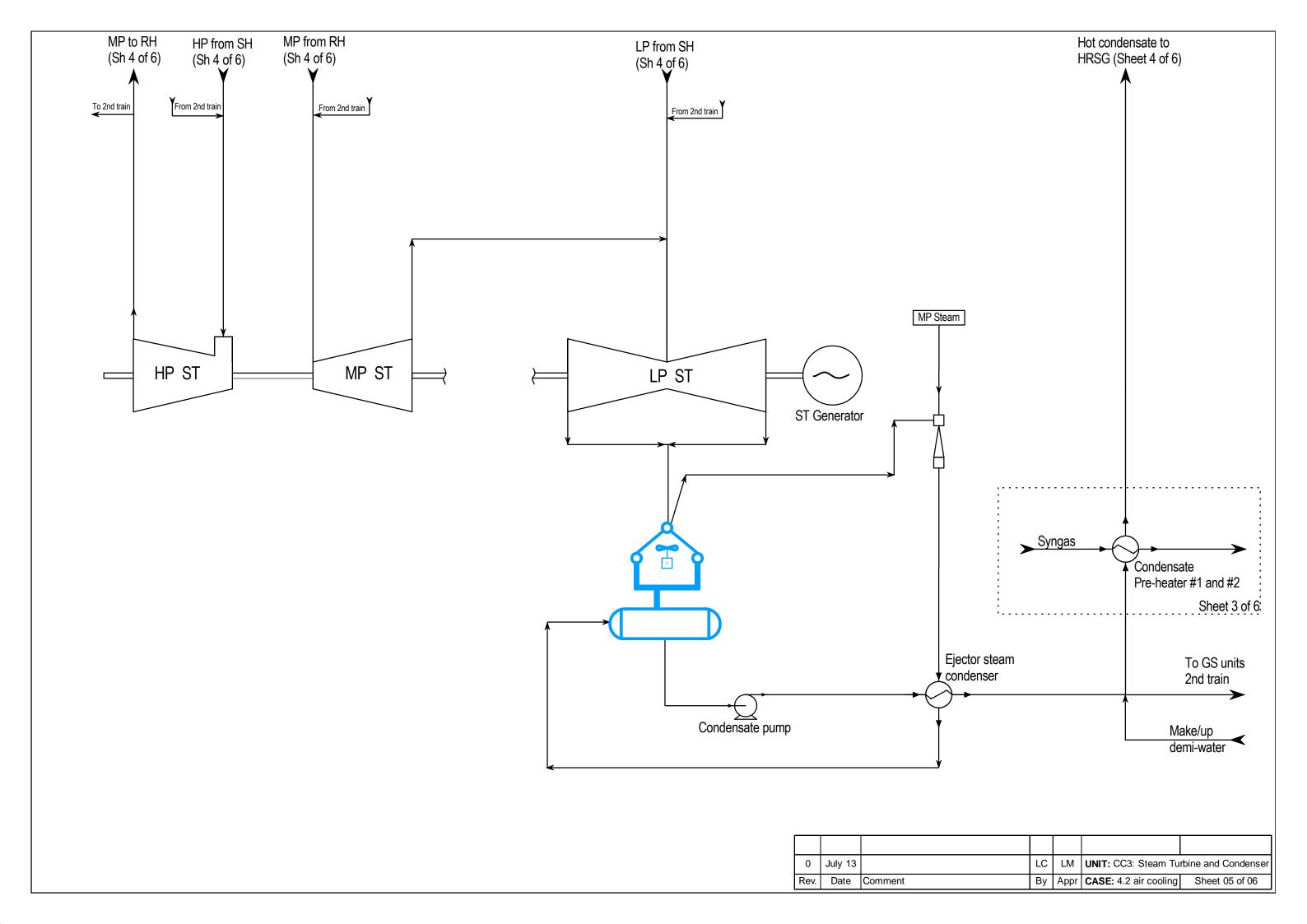


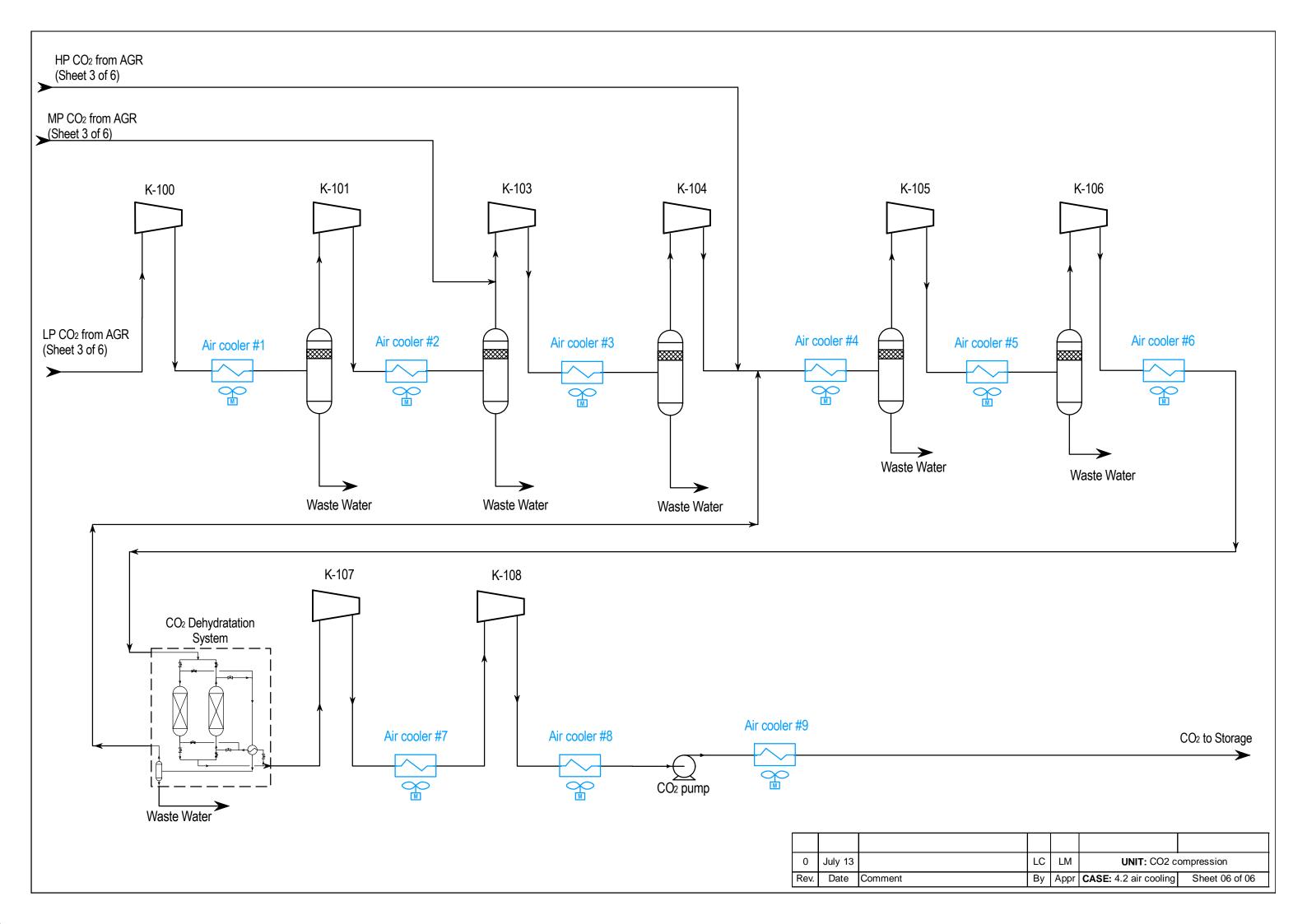












Revision no.: Final **IEAGHG**

Date: CO₂ Capture at Coal Based Power and Hydrogen Plants

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Cooling system sensitivity

January 2014

Sheet: 8 of 15

4. **Utility consumption**

Main utility consumption of the process and utility units is reported in the following tables, including data of the reference case. More specifically:

- Water consumption summary is reported in Table 1 and Table 2, respectively for the seawater cooling and air cooling systems (reference case consumptions shown in brackets).
- Electrical consumption summary is shown in Table 3 for both the seawater cooling and the air cooling systems.
- The cooling system does not have any impact on the steam / BFW / condensate streams within the process unit and the combined cycle, so reference can be made to chapter E.2, section 5.

With respect to the reference case, the following considerations can be made:

- For both the alternative systems, raw water requirement is significantly lower than the reference case, mainly because there is no cooling tower make-up.
- The overall electrical consumption of the seawater system is slightly lower than the reference case with cooling tower. This is related to the reduced compressor consumption in the Air Separation Unit and in the CO₂ compression unit because of the increased cooling capacity. The cooling water system shows almost the same consumption as the higher cooling water flowrate, due to the lower ΔT allowed for the seawater, is compensated by the lower cooling water pump head required for pumping the cooling water to the users.
- The overall electrical consumption of the air cooling system is slightly lower than the reference case with cooling tower. The lower compressor consumption of both the Air Separation Unit and the CO₂ compression unit, coupled with absence of cooling water pumps, with the exception of those of the closed circuit, partially offsets the additional consumptions of the air coolers fans, mainly the air condenser in the steam cycle.

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Cooling system sensitivity Date: January 2014

Sheet: 9 of 15

Table 1. Case 4 (Seawater Cooling) – Water consumption summary

				Revision	0					
	CLIENT:	IEAGHG		Date	June 2013					
		CO2 capture at coal base	d nower and U2 plants	ISSUED BY	NF					
(FO			u power and nz plants							
	LUCATION:	The Netherlands		CHECKED BY	LM					
	FWI №:	1-BD-0681 A		APPR. BY	LM					
CASE 4.2 (SW) - WATER CONSUMPTION SUMMARY										
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Sea Cooling Water DT = 7°C	Machinery CV DT = 11°C					
UNII	DESCRIPTION UNIT	F+ /I- 1	F4 /1-1							
		[t/h]	[t/h]	[t/h]	[t/h]					
	AIR SEPARATION UNIT (ASU)									
2100	Air Separation Unit			18390						
2100	All Separation onit			10330						
	GASIFICATION SECTION (GS)									
1000	Gasification	145			3870					
2200	Syngas treatment and conditioning line				350					
2300	Acid Gas Removal		0.6		6870					
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160					
2400	Sulphur Necovery (3NO) - Tall gas treatment (101)				100					
	CO ₂ COMPRESSION									
2500	CO ₂ Compression			9010						
	COMBINED CYCLE (CC)									
3100	Gas Turbines and Generator auxiliaries				780					
2200				_						
3200	Heat Recovery Steam Generator			89440						
3300	Steam Turbine and Generator auxiliaries		313.3	05440	2090					
	Miscellanea									
	UTILITY UNITS (UU)									
4000				10335						
4000	Cooling Water System			18325						
4000	Demineralized/Condensate Recovery/Plant and									
	Potable Water Systems	470	-314							
4000	Waste Water Treatment	-92								
1000					***					
4000	Balance of Plant (BOP)				410					
		524	_	135165	14530					
	TOTAL CONSUMPTION	(2122)	0	(55510)	(31700)					

Note: Negative figures represent generation

CO₂ Capture at Coal Based Power and Hydrogen Plants
Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification
Cooling system sensitivity

Date: January 2014

Sheet: 10 of 15

Table 2. Case 4 (Air Cooling) – Water consumption summary

				Revision	0
		ENT: IEAGHG		Date	June 2013
F	FOSTER WHEELER PROJECT: CO2 capture at coal based power and H2 plants		d power and H2 plants	ISSUED BY	NF
		ION: The Netherlands		CHECKED BY	LM
		I Nº: 1-BD-0681 A		APPR. BY	LM
	rwi	1 N=: 1-BD-0081 A		APPN. BI	LIVI
	CASE 4.2 (AC) - W	ATER CONSUMPTION	N SUMMARY		
UNIT	I Raw Water I Demi Water I			Machinery CW DT = 8°C	Primary cooli
		[t/h]	[t/h]	[t/h]	[t/h]
	AIR SEPARATION UNIT (ASU)				5
2100	Air Separation Unit				
	GASIFICATION SECTION (GS)				COOLING MEDIUM
1000	Gasification	145		5310	LING
2200	Syngas treatment and conditioning line				
	o, i, gas a comment and comment and				K
2300	Acid Gas Removal		0.6		MIM I
					USED AS PRIMARY
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				
	CO₂ compression				S us
2500	CO ₂ Compression				AIR IS L
	COMBINED CYCLE (CC)				
3100	Gas Turbines and Generator auxiliaries				
3200	Heat Bessyew, Steam Consister				* -
3200	Heat Recovery Steam Generator			1080	R IS
3300	Steam Turbine and Generator auxiliaries		313.3		WATE
					29
	Miscellanea				COOLING WATER IS AVAILABLE.
	UTILITY UNITS (UU)				
4000	Cooling Water System				PRIMARY
					PRIN
4000	Demineralized/Condensate Recovery/Plant and				O Z
	Potable Water Systems	470	-314		
4000	Waste Water Treatment	-92			
4000	Balance of Plant (BOP)			600	
		524		9750	0
	TOTAL CONSUMPTION	(2122)	0	(21700)	/SS 5101

Note: Negative figures represent generation

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification Cooling system sensitivity Date: January 2014

Sheet: 11 of 15

Table 3. Case 4 (Cooling medium sensitivity) – Electrical consumption summary

CLIENT: IEAGHG PROJECT: CO2 capture at coal based power and hydrogen plants LOCATION: The Netherlands FWI Nº: 1-BD-0681 A							
	Case 4.2 - Cooling system sensitivity - ELEC	CTRICAL CONSUMPTION SUMMARY	•				
	Absorbed Electric						
UNIT	DESCRIPTION UNIT	<u>CASE 4.2</u> (<u>Cooling tower)</u> [kW]	<u>CASE 4.2</u> <u>(Sea Water)</u> [kW]	<u>CASE 4.2</u> (<u>Dry air)</u> [kW]			
	AID CEDADATION HANT (ACH)						
2100	AIR SEPARATION UNIT (ASU) MAC consumptions	124220	122000	122770			
	·						
	BAC consumptions	12270	11970	12050			
	Nitrogen compressor and miscellanea	35530	34940	35030			
	GASIFICATION SECTION (GS)						
900	Coal Receiving Handling and Storage	410	410	410			
1000	Gasification	8790	8790	8790			
2200	Syngas treatment and conditioning line	1250	1250	1340			
2300	Acid Gas Removal	20850	20850	21290			
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700	700	720			
2500	CO ₂ Compression	33970	32890	33890			
	COMBINED CYCLE (CC)						
3100	Gas Turbines auxiliaries	2000	2000	2000			
3200	Heat Recovery Steam Generator	7530	7530	7530			
		1,000					
3300	Steam Turbine auxiliaries and excitation system	850	850	850			
3300	Miscellanea	-	-	4875			
3300	Miscellanea	3120	3080	3020			
3300	Wiscendica	3120	3080	3020			
4000	UTILITY UNITS (UU) Cooling Water System	10490	10200	3180			
.000				5230			
4000	Demineralized/Condensate Recovery/Plant and Potable Wate	r Systems 730	730	730			
4000	Balance of Plant (BOP)	1090	1090	1090			
	TOTAL CONSUMPTION						

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Cooling system sensitivity

5. Overall performance

The following table shows the overall performance of the plant with the three different cooling systems assessed in the study.

Sheet: 12 of 15

FOSTER WHEELER

 CLIENT:
 IEAGHG
 REVISION
 0

 PROJECT NAME:
 CO2 capture at coal based power and hydrogen plants
 DATE
 July 2013

 PROJECT No.:
 1-BD-0681 A
 MADE BY
 NF

 LOCATION:
 The Netherlands
 APPROVED BY
 LM

Case 4.2 - IGCC Plant Performance Summary

OVERALL PERFORMANCES							
		CASE 4.2	CASE 4.2	CASE 4.2			
		(Cooling tower)	(Sea Water)	(Dry air)			
Coal Flowrate (as received)	t/h	349.1	349.1	349.1			
Coal LHV (as received)	kJ/kg	25870	25870	25870			
Coal HHV (as received)	kJ/kg	27060	27060	27060			
THERMAL ENERGY OF FEEDSTOCK (A)	MWth (LHV)	2509	2509	2509			
THERMAL ENERGY OF FEEDSTOCK (A')	MWth (HHV)	2624	2624	2624			
Thermal Power of Raw Syngas exit Scrubber (D)	MWth (LHV)	1785	1785	1785			
Thermal power of syngas to AGR	MWth (LHV)	1638	1638	1638			
Thermal Power of Clean Syngas to Gas Turbines (E)	MWth (LHV)	1600	1600	1600			
Syngas treatment efficiency (E/D x 100)	% (LHV)	89.6	89.6	89.6			
Gas turbines total electric power output	MWe	688.0	688.0	688.0			
Steam turbine electric power output	MWe	443.8	452.6	435.0			
Syngas expader	MWe	9.0	9.0	9.0			
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX (C)	MWe	1141	1150	1132			
Gasification Section units consumption	MWe	32.0	32.0	32.6			
ASU consumption	MWe	172.0	168.9	169.9			
Combined Cycle units consumption	MWe	13.5	13.5	18.3			
CO ₂ Compression and Dehydration unit consumption	MWe	34.0	32.9	33.9			
Utility Units consumption	MWe	12.3	12.0	5.0			
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	264	259	260			
NET ELECTRIC POWER OUTPUT OF IGCC	MWe	877.0	890.3	872.4			
(Step Up transformer efficiency = 0.997%) (B)	MWe	874.3	887.6	869.8			
Gross electrical efficiency (C/A x 100)	% (LHV)	45.5	45.8	45.1			
Net electrical efficiency (B/A x 100)	% (LHV)	34.9	35.4	34.7			
Gross electrical efficiency (C/A' x 100)	% (HHV)	43.5	43.8	43.1			
Net electrical efficiency (B/A' x 100)	% (HHV)	33.3	33.8	33.1			
Fuel Consumption per net power production	MWth/MWe	2.87	2.83	2.88			
CO ₂ emission per net power production	kg/MWh	93.7	87.0	89.1			

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Sheet: 13 of 15

January 2014

Date:

Cooling system sensitivity

By comparing the results of the reference case with those of the alternative cooling system type, the following consideration can be made:

- <u>Sea water system</u>: Net electrical efficiency increases of about 0.5 percentage points, due to the higher gross power production, related to the lower condensation pressure, and to the lower plant auxiliary power demand.
- <u>Air cooling system</u>. Net electrical efficiency decreases of about 0.2, as the lower power consumption partly compensate the lower gross power production, related to the higher condensation pressure

The overall CO₂ balance and removal efficiency is unchanged with respect to Case 4.2, as shown in the following.

CO ₂ removal efficiency	Equivalent flow of CO ₂ kmol/h
INPUT	
Fuel Mix (Carbon AR)	18730
(a)	40720
TOTAL (A)	18730
ОИТРИТ	
Slag + Waste water (B)	101
CO ₂ product pipeline	
со	7
CO ₂	16759
CH₄	0
cos	0
Total to storage (C)	16766
Emission	
CO ₂ + CO (Combined Cycle)	1862
TOTAL	18730
Overall Carbon Capture, % ((B+C)/A)	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Cooling system sensitivity

6. Environmental impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 14 of 15

6.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. No difference is expected in the flowrate and composition of this stream. The same minor and fugitive emissions, related to leakages within the handling of solid materials, are valid for these alternative systems.

6.2. Liquid effluents

As per the reference case, plant liquid effluents mainly consist of the discharge from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

Waste Water Treatment blow-down

Flowrate: 160 m³/h

6.2.1. <u>Seawater system</u>

For the seawater case, seawater is returned to the sea basin after exchanging heat in the plant, with a maximum temperature increase of 7°C. The main characteristics of the discharged seawater are listed below:

Maximum flow rate: $135,000 \text{ m}^3/\text{h}$ Temperature: 19 °C

6.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.7 - Case 4.2: IGCC with CCS - GE Gasification

Cooling system sensitivity

7. Main equipment design changes

The following equipment summary tables show the major impact on equipment design for the alternative cooling system types.

January 2014

Sheet: 15 of 15

CLIENT: IEA GHG LOCATION: The Netherlands

PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 - GE based IGCC - Cooling water sensitivity (SW)

REVISION	Rev 0	Rev.1	Rev.2	Rev.3
DATE	May 2013			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 2100 - AIR SEPARATION UNIT (2 x 50%)					
						I
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297,800 Nm3/h	2 x 34750 kW	Intercooling: Sea Water Cooling Water	Size changed Intercooling medium changed (*)
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW	Intercooling: Sea Water Cooling Water	Intercooling medium changed (*)
	MP N2 compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 128,500 Nm3/h	2 x 9500 kW	Intercooling: Sea Water Cooling Water	Intercooling medium changed (*)
	UNIT 2500 - CO2 COMPRESSION (2 x 50%)					
		Contributed	190000 Nm3/h			
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	p in: 2,45 bar a p out: 80 bar a	17000 kW	Intercooling: Sea Water Cooling Water	Size changed Intercooling medium changed (*)
	UNIT 3300 - STEAM TURBINE					
Z-3301	Steam Turbine & Condenser Package					
ST-3301	Steam Turbine		455 MWe			Size changed
E-3303	Steam Condenser		710 MWth		Water cooled	To be deleted (*)
E-3303	Steam Condenser		730 MWth		Sea Water cooled Inlet water temperature 12°C Water temperature rise 7°C	To be added (*)
G-3402	Steam Turbine Generator		600 MVA			Size changed
	COOLING SYSTEM					
E-4001	Closed cooling loop exchanger		145 MWth			To be added
P-4001A/B/C/D	Sea Cooling Water pumps (primary system)	Vertical	18000 m3/h x 20 m	1250 kW	Eight in operation	To be added (*)
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14000 m3/h x 35 m	1600 kW		Size changed
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 1070 MWth Diameter: 150 m, Height: 210 m, Water inlet: 17 m			To be deleted
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	13880 m3/h x 35 m	1600 kW		To be deleted (*)
	Raw water pumps (make-up)	centrifugal	1690 m3/h x 35 m	200 kW		To be deleted
0007.83	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 8500 m3/h	200 2211		
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps Antiscalant Package Dispersant storage tank					To be deleted
	Dispersant dosage pumps					

^(*) Different material selection (titanium) is considered for the exchangers and pumps design (e.g. steam condenser, cooling water pumps, compressors intercoolers) to address corrosion issues related to the use of SW as cooling medium.

CLIENT: IEA GHG LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A
CASE: Case 4.2 - GE based IGCC - Cooling water sensitivity (AC)

REVISION	Rev 0	Rev.1	Rev.2	Rev.3
DATE	May 2013			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

			WHILL VE QUIL WIELVI	0220		
ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 2100 - AIR SEPARATION UNIT (2 x 50%)					
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 297,800 Nm3/h	2 x 34750 kW	Intercooling: Air cooling Cooling Water	Size changed Intercooling medium changed
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW	Intercooling: Air cooling Cooling Water	Intercooling medium changed
	MP N2 compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 2 x 128,500 Nm3/h	2 x 9500 kW	Intercooling: Air cooling Cooling Water	Intercooling medium changed
	UNIT 2200 - SYNGAS TREATMENT (2x50%)					
E-2209	Final syngas cooler	Shell & Tube				To be deleted
AC-2201	Final syngas cooler	Air cooler	4 MWth	45 kWe	each train	To be added
	UNIT 2250 - SWS					
	Sour water stripper condenser	Shell & Tube				To be deleted
AC-2251	Sour water stripper condenser	Air cooler				To be added
	UNIT 2300 - AGR					
	Water cooled heat exchangers and refrigerator conde Total installed rated capcity: 550 MWe	enser in AGR will be replaced w	ith air cooling.			
	UNIT 2500 - CO2 COMPRESSION (2 x 50%)					
C-2501	CO ₂ Compressors	Centrifugal, Electrical Driven, 8 intercooled Stages	190000 Nm3/h p in: 2,45 bar a p out: 80 bar a	17000 kW	Intercooling: Air cooling Cooling Water	Size changed Intercooling medium changed
	UNIT 3300 - STEAM TURBINE					
Z-3301	Steam Turbine & Condenser Package					
ST-3301	Steam Turbine		435 MWe			Size changed
E-3303	Steam Condenser		710 MWth		Water cooled	To be deleted
AC-3301	Steam Condenser	air cooled	715 MWth	65 x 90 kWe		To be added
G-3402	Steam Turbine Generator		570 MVA			Size changed

CLIENT: IEA GHG LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A
CASE: Case 4.2 - GE based IGCC - Cooling water sensitivity (AC)

REVISION	Rev 0	Rev.1	Rev.2	Rev.3
DATE	May 2013			
ISSUED BY	NF			
CHECKED BY	LM			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	Remarks	Difference with respect to reference case
	COOLING SYSTEM					
AC-4001	Closed loop air cooler		90 MWth	2500 kWe		To be added
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14000 m3/h x 35 m	1600 kW		Size changed
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 1070 MWth Diameter: 150 m, Height: 210 m, Water inlet: 17 m			To be deleted
D 4001 1 D (G/D			12000 07 07	4 600 1 W		
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	13880 m3/h x 35 m	1600 kW		To be deleted
P-4003A/B	Raw water pumps (make-up)	centrifugal	1690 m3/h x 35 m	200 kW		To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 8500 m3/h			
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Sheet: 1 of 18

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification

Near-zero emission case

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal based Power and Hydrogen Plants document name : CASE 4.2.1: IGCC WITH CCS – GE gasification technology

NEAR-ZERO EMISSION CASE

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : G. PERFUMO CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification Near-zero emission case Date: January 2014

Sheet: 2 of 18

TABLE OF CONTENT

1.	Introduction			
	1.1. Process unit arrangement	3		
2.	Process description	. 5		
	2.1. Overview	5		
	2.2. Unit 2300 – Acid Gas Removal (AGR)			
	2.3. Unit 2500 – CO ₂ compression and drying	7		
3.	Process Flow Diagrams	.8		
4.	Heat and Material Balance	.9		
5.	Utility consumption			
6.	Overall performance14			
7.	Environmental impact	16		
	7.1. Gaseous emissions	16		
	7.2. Liquid effluents	16		
	7.3. Solid effluents	17		
8.	Main equipment design changes	18		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification Sheet: 3 of 18

Near-zero emission case

1. Introduction

This chapter of the report includes all technical information relevant to Case 4.2.1 of the study, which is an IGCC plant based on the GE gasification technology.

Plant configuration is basically same as Case 4.2, though plant of Case 4.2.1 is designed to meet near-zero CO_2 emission target (around 98% carbon capture rate).

The description of the main process units and the reference Case 4.2 performance are covered respectively in chapter E and E.2 of this report; only plant design changes required to meet near-zero emission target are discussed in the following sections, together with the main plant performance results.

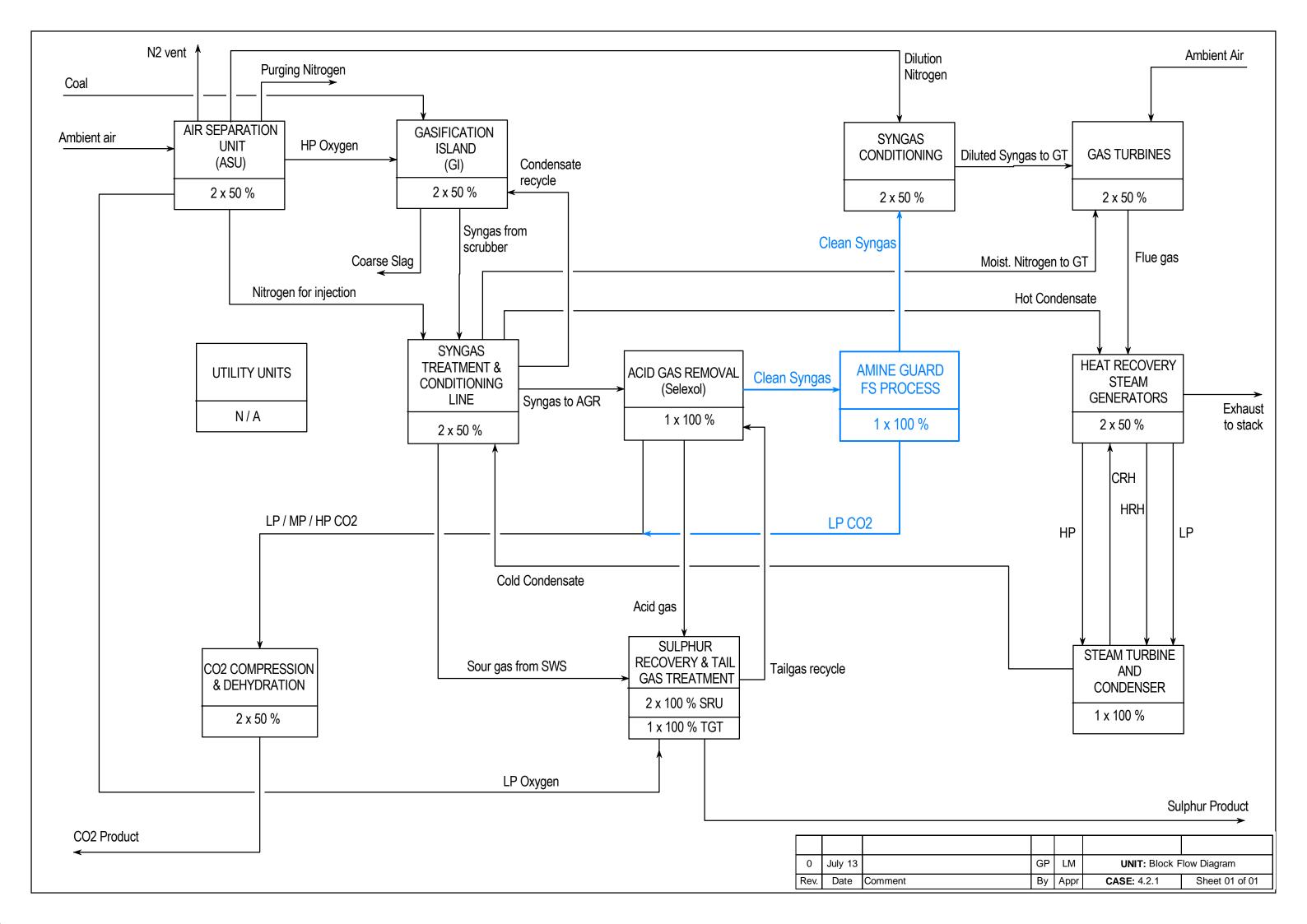
1.1. Process unit arrangement

The arrangement of the main units is reported in Table 1, together with the main differences with respect to the base case, as further discussed in the following sections. Reference is also made to the block flow diagram attached below.

Table 1. Case 4.2.1 – Unit arrangement

Unit	Description	Trains	Differences
900	Coal Handling & Storage	N/A	-
1000	Gasification Coal Grinding & Slurry Preparation Gasification and scrubber Black Water Flash Coarse Slag Handling Grey Water & Fines Handling	2 x 50%	-
2100	Air Separation Unit	2 x 50%	-
2200	Syngas Treatment and Conditioning Line	2 x 50%	Minor design changes: different syngas composition from AGR affects nitrogen saturator and syngas pre-heating line
2250	Sour Water Stripper (SWS)	1 x 100%	-
2300	Acid Gas Removal Selexol Amine Guard FS Process	1 x 100% 1 x 100%	Additional unit to meet near-zero emission target
2400	Sulphur Recovery Unit	2 x 100%	-

 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification


Near-zero emission case

Date:

Sheet: 4 of 18

January 2014

Unit	Description	Trains	Differences	
	Tail Gas Treatment	1 x 100%		
2500	CO ₂ Compression & Drying	2 x 50%	Increase design capacity: additional CO ₂ -rich flow from amine unit	
3000	Combined Cycle			
	Gas Turbine	2 x 50%		
	HRSG	2 x 50%	No significant design changes: additional LP steam export to amine unit	
	Steam Turbine	1 x 100%		
4000	<u>Utility and Offsite</u>	N/A	Minor changes in cooling water system capacity	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification Sheet: 5 of 18

Near-zero emission case

2. Process description

2.1. Overview

The description reported in this section focuses only on those units with a design different from that of the reference case, necessary to meet near-zero carbon emission target. Design changes are also reflected in the simplified Process Flow Diagrams (PFD) shown in section 3.

For all the other units, reference shall be made to the base case description, included in chapter E.2, section 2.

2.2. Unit 2300 – Acid Gas Removal (AGR)

In the reference case, the AGR unit uses the Selexol physical solvent washing for the selective removal of H₂S and CO₂. Reference is made to Section E for the general information about the technology and detailed process description.

For the present near-zero CO_2 emission plant, an additional Amine Guard FS Process is included, processing the pre-treated (de-sulphurised and de-carbonized) syngas from the Selexol unit, in order to meet the desired overall 98% CO_2 removal efficiency.

2.2.1. Amine Guard FS Process

The following process description makes reference to the simplified process flow diagram shown in Figure 1.

Treated gas from AGR enters the unit battery limits, is routed to the bottom of the CO₂ Absorber and flows upward through packed beds where it contacts cooled lean solvent entering at the top of the tower via the Lean Solution Pump. The contact between the gas phase and liquid phase is enhanced as they pass through the packed beds, where CO₂ is transferred from the gas phase to the liquid phase. The treated gas then passes through de-entrainment devices at the top of the towers, exits the top of the CO₂ Absorber and finally reaches the Amine Guard FS unit battery limits.

The rich solvent from the CO₂ Absorber is sent to the Lean/Rich in order to increase its temperature by heat exchange with the hot lean solvent from the Regenerator. The hot lean (regenerated) solvent is cooled in the Lean/Rich Exchanger before flowing to the Lean Solution Cooler. By cross-exchanging these streams, the Lean/Rich Exchanger significantly reduces the duties of the Lean Solvent Cooler and the Regenerator Reboiler. The heated solvent stream is sent to the Regenerator for complete thermal regeneration.

Sheet: 6 of 18

IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification

Near-zero emission case

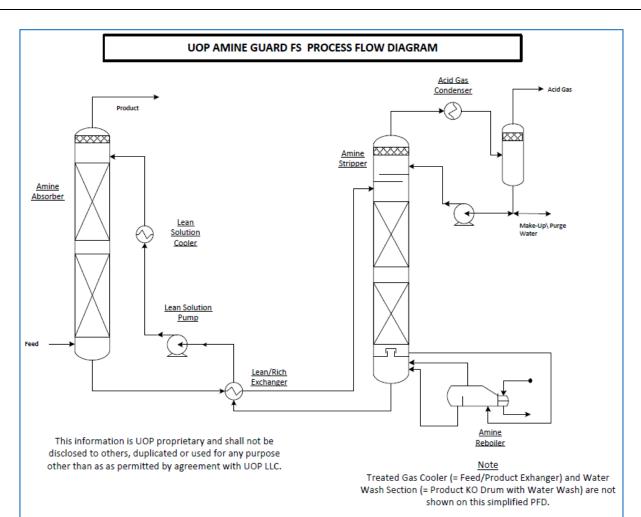


Figure 1. Amine guard unit simplified process scheme

Solvent regeneration is accomplished in the Regenerator, where the remaining CO_2 is transferred from the liquid phase to the gas phase by contact with the steam generated in the Regenerator Reboiler. The Regenerator is composed of a lower section containing packed beds and an upper section containing several reflux trays, in order to contact the overhead vapour with the reflux water.

The rich solvent enters the Regenerator above the upper packed bed. After flashing, the solvent passes through a liquid distributor, and then flows down the packed bed in the stripping section releasing CO_2 after contact with the steam generated in the Regenerator Reboiler.

The steam and liberated gases exit the upper section of the Regenerator, and then flow upward to the trayed section of the column. The gas first passes through a demister and then into the trayed section, where the rising gas is contacted with

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification Sheet: 7 of 18

Near-zero emission case

counter-current flowing reflux water to cool and condense the hot overhead vapour and reduce solvent entrainment. The overhead stream passes through a deentrainment device and exits the top of the column. The overhead gas then passes through the Reflux Condenser in order to recover the overhead steam. The liquid and vapour phases are separated in the Reflux Drum. The liquid is returned to the trayed section of the Regenerator via the Reflux Pump. The Acid Gas CO_2 rich stream (97.33% mol of CO_2) is then sent to the CO_2 compression and drying unit, outside the battery limits, where it will be mixed to the LP CO_2 stream coming from AGR unit.

2.3. Unit $2500 - CO_2$ compression and drying

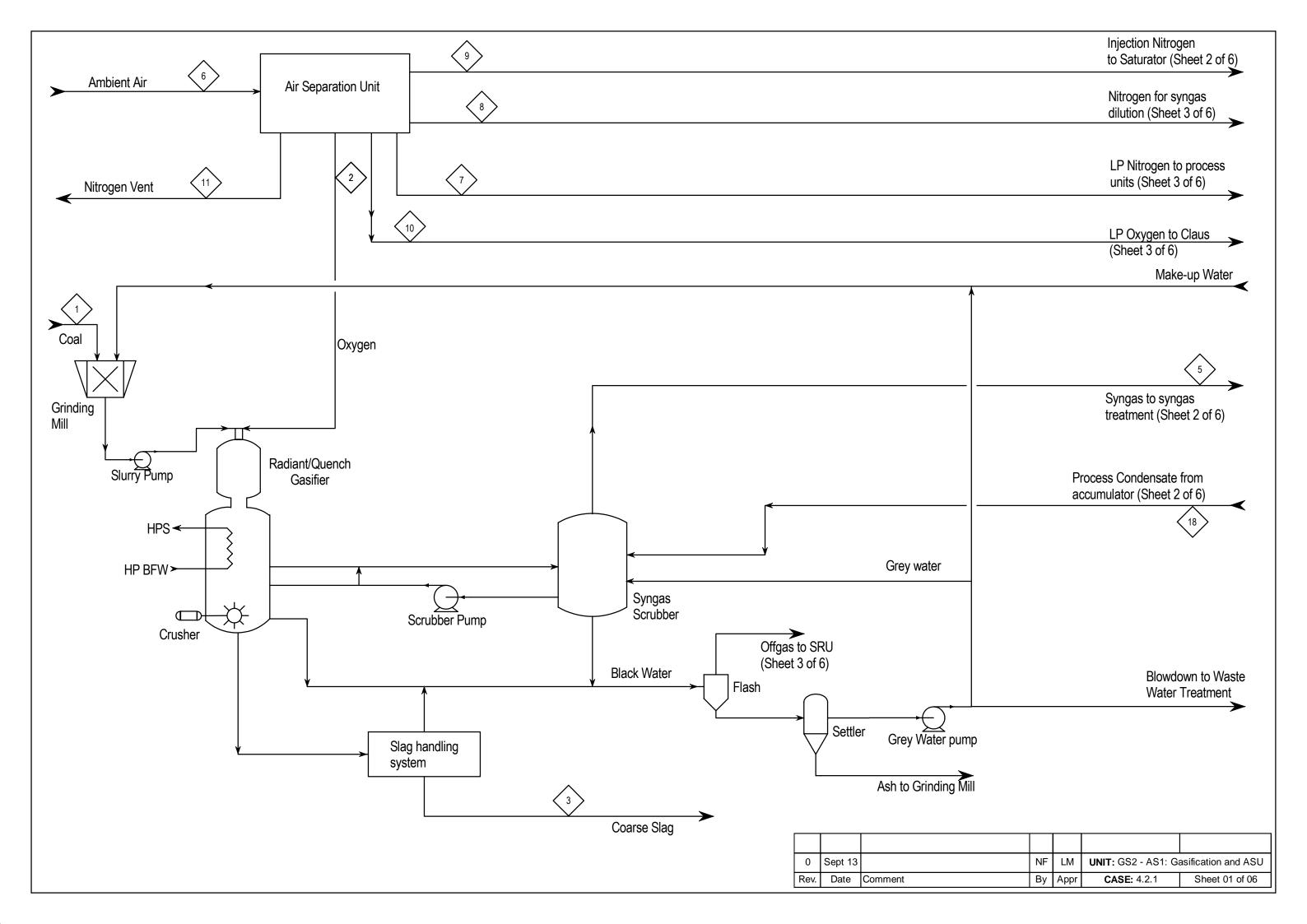
As for the reference case, the unit is mainly composed of two eight inter-cooled compressors and dehydration packages, supplied by specialized Vendors. With respect to the reference case, the additional CO₂-rich stream at low pressure exiting the Amine Guard FS Process is mixed with the LP CO₂ stream coming from the Selexol unit, before being sent to the first compression stage.

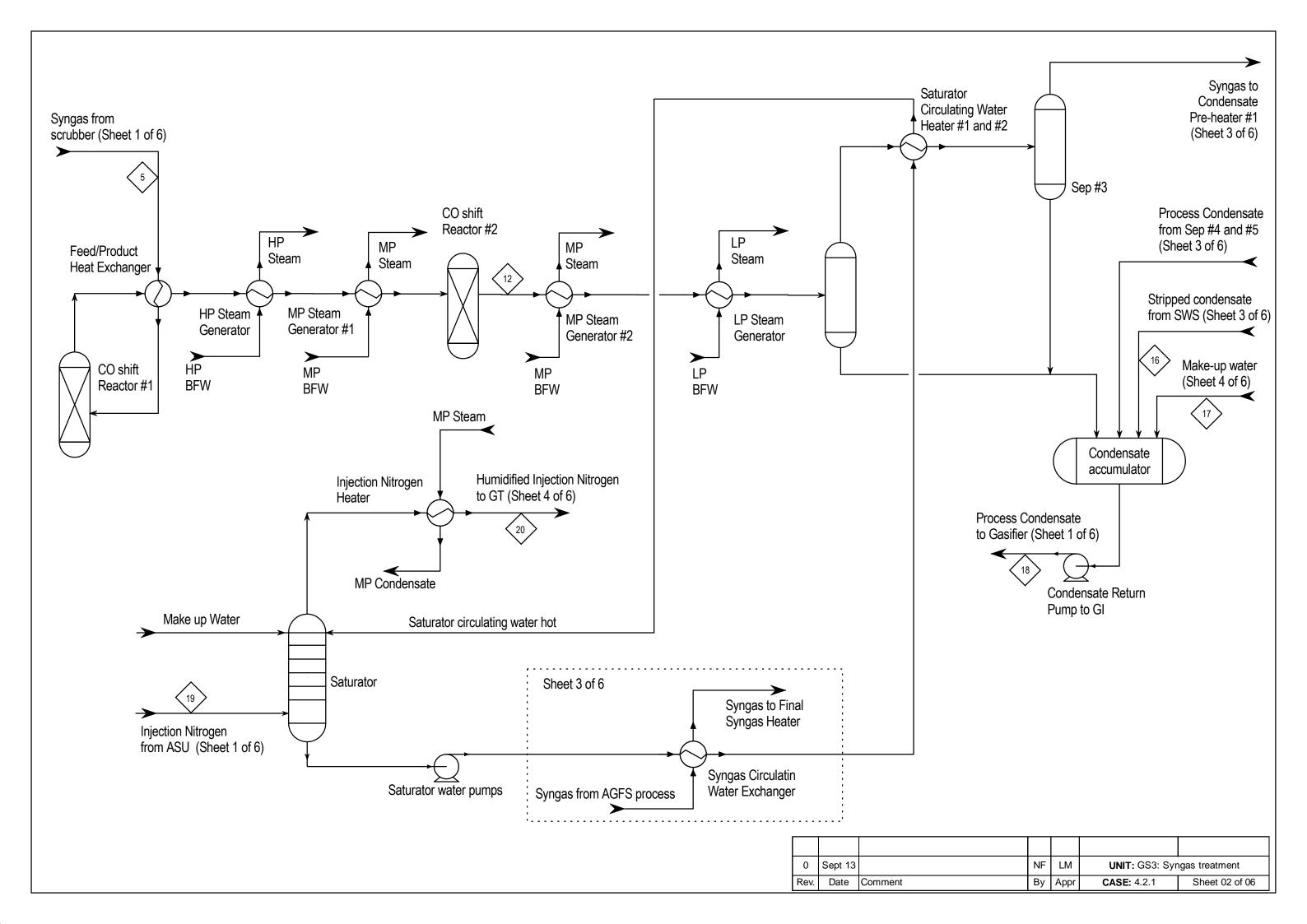
Following Table 2 summarises key stream data of this case, while main interconnections with the other units are shown in the process flow diagram.

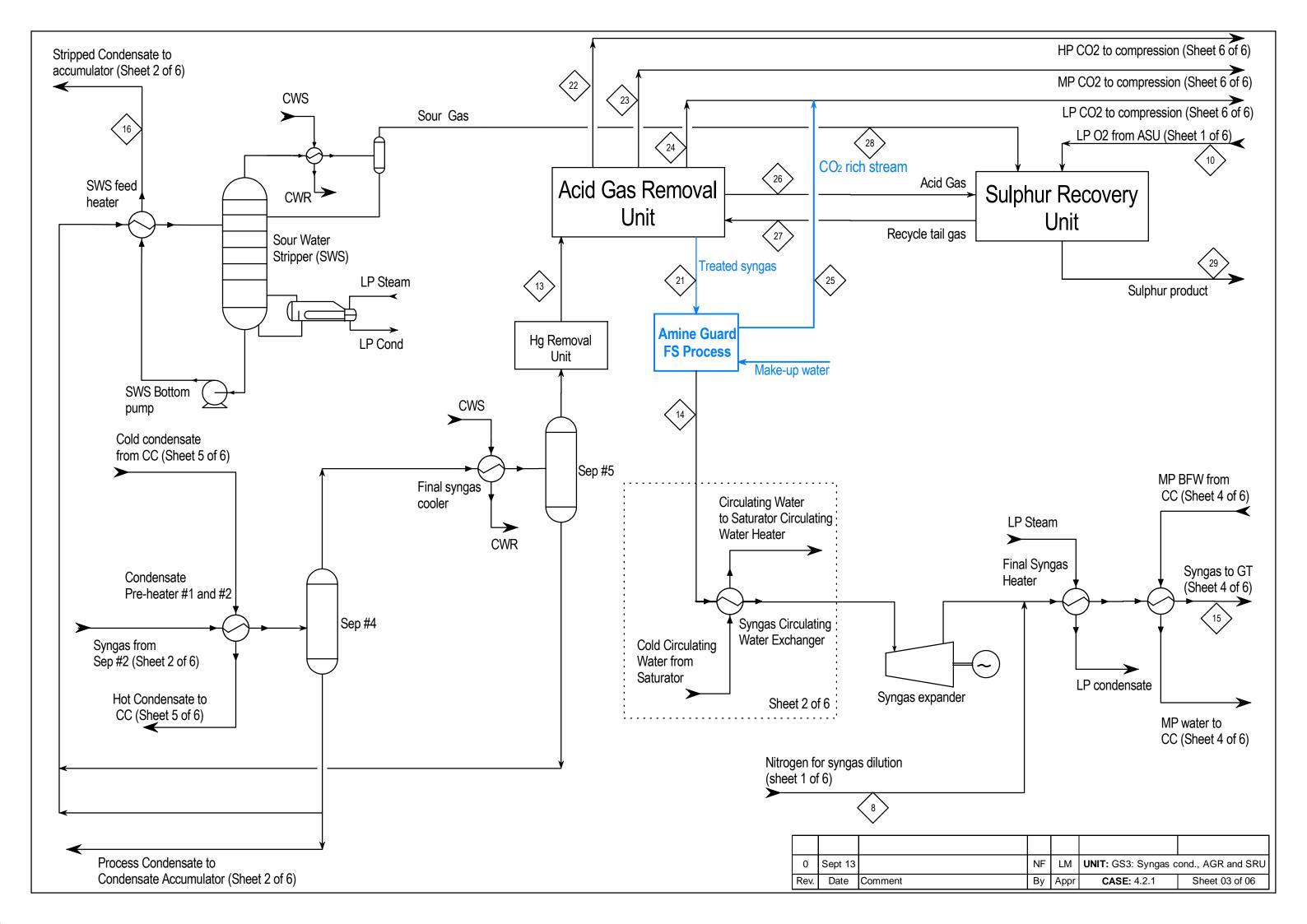
Stream	Flue gas to AGR	Flue gas to AGFS	Treated gas	Acid gas – CO ₂ rich from AGFS
Mass flowrate, kg/h	891,980	148,230	82,372	66,769
Molar flowrate, kmol/h	43,506	26,248	24,753	1,543
Composition (% vol)				
CO	0.61	0.98	1.04	-
N ₂	2.27	3.73	3.95	0.01
H_2	54.73	89.55	94.94	0.38
CO ₂	41.98	5.73	0.01	97.33
H ₂ O	0.14	0.01	0.06	2.27
H ₂ S	0.26	0	0	-

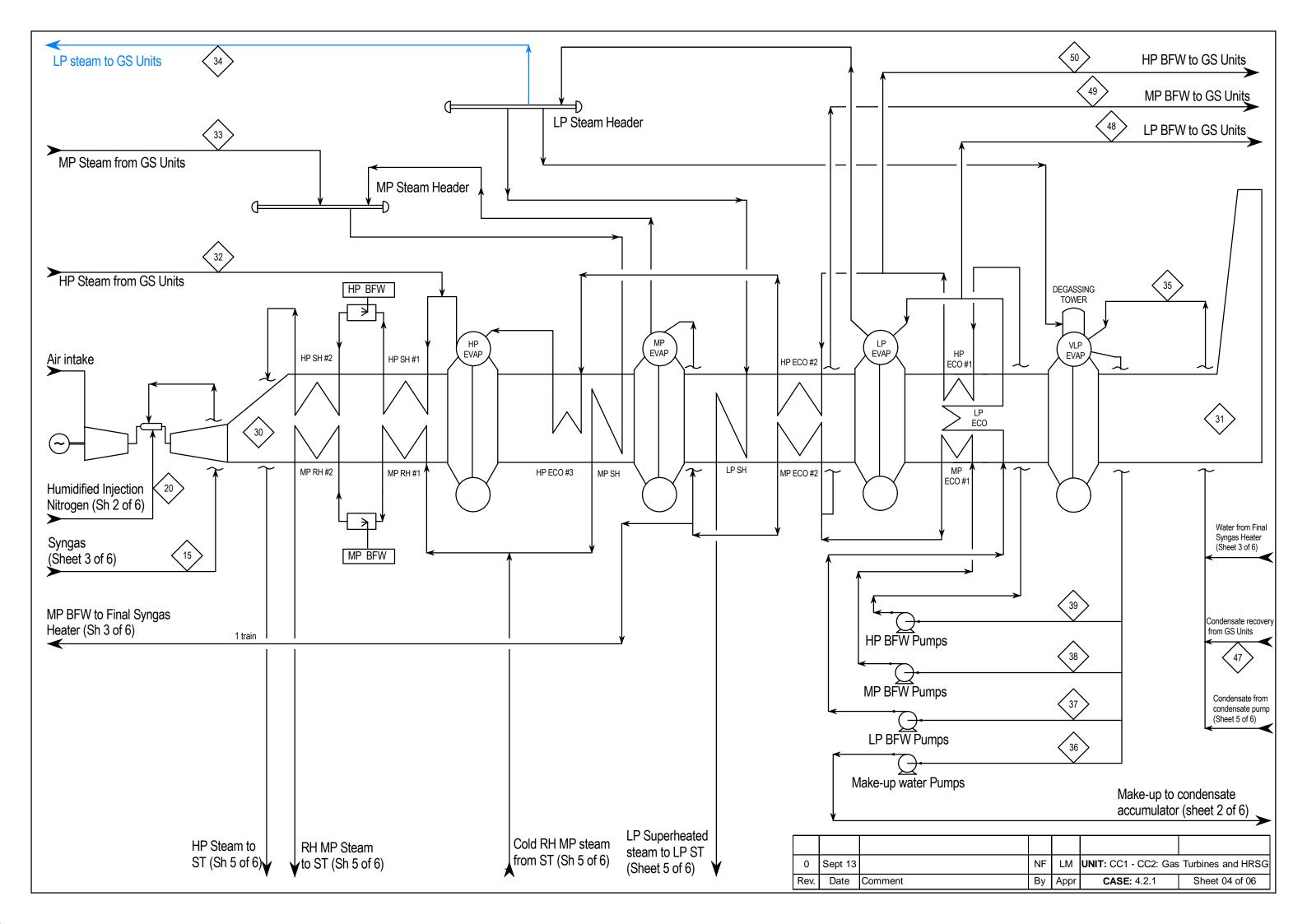
Table 2. Case 4.2.1 – Key stream data

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

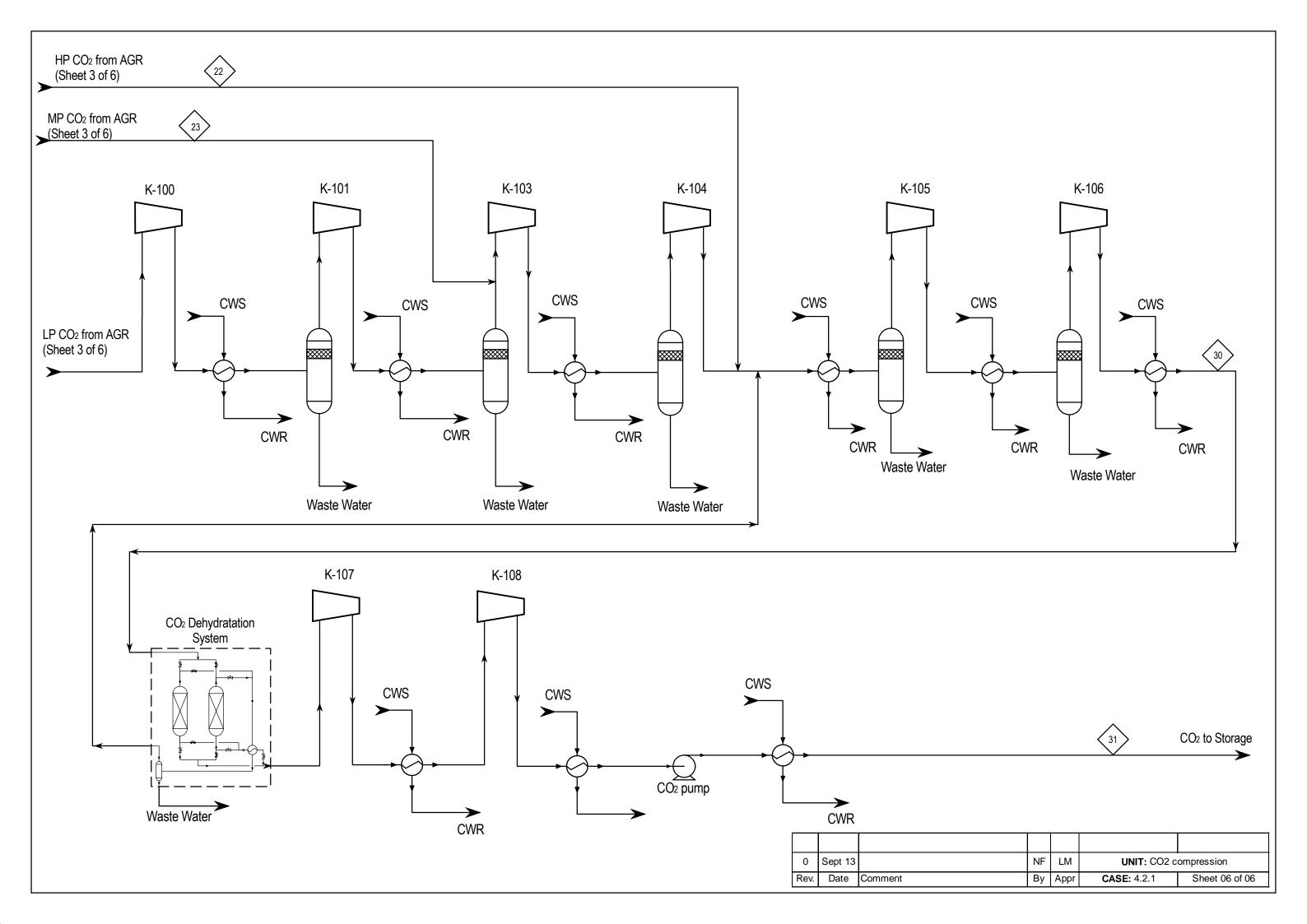

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification Sheet: 8 of 18


Near-zero emission case


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.


January 2014



CO₂ Capture at Coal Based Power and Hydrogen Plants D

Date: January 2014

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification

Sheet: 9 of 18

Near-zero emission case

4. Heat and Material Balance

Heat & Material Balances reported make reference to the simplified Process Flow Diagrams reported in section 3.

	Case 4.2.1	- GE-BASED IGCC	- NEAR ZERO EM	ISSION CASE - HE	AT AND MATERIA	L BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coa	al based power and	l hydrogen plants		CHECKED	LM		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
	1			HEAT AND MA	TERIAL BALANCE					
				UNIT 1000 - Ga	sification Island					
	1	2	3	4	5	18				
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification				
Temperature (°C)	AMB	10	80	AMB	N/D	144				
Pressure (bar)	ATM	75-80 ⁽¹⁾	ATM	АТМ	64.6	70				
TOTAL FLOW	Solid		Solid + water							
Mass flow (kg/h)	349,200	323,000	87,420	94,520	1,154,260	493,640				
Molar flow (kmol/h)		10,025		5,251	58,017	27,400				
LIQUID PHASE										
Mass flow (kg/h)			43,710	94,520	-	493,640				
GASEOUS PHASE										
Mass flow (kg/h)		323,000			1,154,260					
Molar flow (kmol/h)		10,025			58,017					
Molecular Weight		32.22			-					
Composition (vol %)	%wt		50% moisture		dry basis					
H ₂	C: 64.6%	-			35.80					
СО	H: 4.38%	-			42.80					
CO ₂	O: 7.02%	-			17.80					
N ₂	S: 0.86%	1.50			3.22					
02	N: 1.41%	95.00			0.00					
CH ₄	CI: 0.03%	-			0.00					
H ₂ S + COS	Moisture: 9.5%				0.38					
Ar	Ash: 12.20%	3.50			0.00					
HCN NH		-			0.00					
NH ₃		-			0.00					

 H_2O

1. FW assumption

Notes

	Case 4.2.1 -	GE-BASED IGCC	- NEAR ZERO EM	ISSION CASE - HE	AT AND MATERIA	AL BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coa	al based power and	hydrogen plants		CHECKED	LM		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
				HEAT AND MAT	ERIAL BALANCE			,		
				UNIT 2100 - Air	Separation Unit					
	6	2	7	8	9	10	11			
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	MP Nitrogen forSyngas Dilution	MP Nitrogen for NOx Control	Oxygen to SRU	Nitrogen vent			
Temperature (°C)	Ambient	10	Ambient (°)	135	122	Ambient	Ambient			
Pressure (bar)	Ambient	75-80 (°)	7,5 (°)	32	28	6	Atmospheric			
TOTAL FLOW										
Mass flow (kg/h)	1,394,750	323,000	25,220	319,040	306,820	1,934	404,700			
Molar flow (kmol/h)	48,320	10,025	900	11,383	10,947	60	14,439			
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-		-	-			
GASEOUS PHASE										
Mass flow (kg/h)	1,394,750	323,000	25,220	319,040	306,820	1,934	404,700			
Molar flow (kmol/h)	48,320	10,025	900	11,383	10,947	60	14,439			
Molecular Weight	28.86	32.22	28.02	28.03	28.03	32.22	28.03			
Composition (vol %)										
H_2	-	-	-	-	-	-	-			
СО	-	-	-	-	-	-	-			
CO ₂	0.04	-	-	0.05	0.05	-	0.05			
N_2	77.32	1.50	99.999	98.00	98.00	1.50	98.00			
O_2	20.75	95.00	0.001	1.00	1.00	95.00	1.00			
CH ₄	-	-	-	-	-	-	-			
H ₂ S + COS	-	-	-	-	-	-	-			
Ar	0.92	3.50	-	0.25	0.25	3.50	0.25			
H ₂ O	0.97	-	-	0.70	0.70	-	0.70			

Notes

1. FW assumption

	Case 4.2.1 - GE-BASED IGC	C - NEAR ZERO EMISSION CASE - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	NF		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	LM		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	September 2013		
		HEAT AND MATERIAL RALANCE		·		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	12	13	14	15	16	17	18	19	20
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from AGR (amine unit)	Diluted Syngas to Power Island	Stripped condensate from SWS	BFW make-up to condensate accumulator	Return condensate to gasification	Nitrogen to saturator	Moist. Nitrogen to combined cycle
Temperature (°C)	N/D	323	34	25	210	132	123	144	122	210
Pressure (bar)	64.6	61.6	57	51	31.0	70.0	2.2	70.0	28.0	27.0
TOTAL FLOW										
Mass flow (kg/h)	1,154,260	1,154,260	891,980	82,372	401,400	43,250	227,050	493,640	306,818	384,494
Molar flow (kmol/h)	58,017	58,017	43,506	24,753	36,140	2,401	12,603	27,400	10,947	15,259
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-	43,250	227,050	493,640	-	
GASEOUS PHASE										
Mass flow (kg/h)	1,154,260	1,154,260	891,980	82,372	401,400	-	-	-	306,818	384,494
Molar flow (kmol/h)	58,017	58,017	43,506	24,753	36,140	-	-	-	10,947	15,259
Molecular Weight	-	19.90	20.50	3.33	11.11	-	-	-	28.03	25.20
Composition (vol %)	dry basis									
H ₂	35.80	41.04	54.74	94.94	65.03	-	-	-	0.00	0.00
CO	42.80	0.46	0.61	1.04	0.72	-	-	-	0.00	0.00
CO ₂	17.80	31.54	41.98	0.01	0.02	-	-	-	0.05	0.04
N_2	3.22	3.22	2.27	3.95	33.58	-	-	-	98.00	70.29
O_2	0.00	0.00	-	-	0.31	-	-	-	1.00	0.72
CH ₄	0.00	0.00	-	-	0.00	-	-	-	0.00	0.00
H ₂ S + COS	0.38	0.38	0.26	0.00	0.00	-	-	-	0.00	0.00
Ar	0.00	0.00	-	-	0.08	-	-	-	0.25	0.18
HCN	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-
NH ₃	0.00	0.00	0.00	0.00	0.00	-	-	-	-	-
H ₂ O	-	25.06	0.14	0.06	0.26	-	-	-	0.70	28.77

	Case 4.2.1 - GE-BASED IGCO	- NEAR ZERO EMISSION CASE - HEAT AND MATERIAL BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	NF		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	LM		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	September 2013		
		HEAT AND MATERIAL RALANCE				

HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal

	13	14	21	22	23	24	25	26	27	
STREAM	Raw Syngas from Syngas Cooling	HP Purified Syngas to Syngas Cooling	Treated syngas from AGR (Selexol)	HP CO2 to Compression	MP CO2 to Compression	LP CO2 to Compression	Acid gas to compression from amine unit	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU	
Temperature (°C)	34	25	15	8	-1	-9	40	20	35	
Pressure (bar)	57	51	53	20.3	6.6	2.0	2.0	1.6	56.5	
TOTAL FLOW										
Mass flow (kg/h)	891,980	82,372	148,230	167,423	408,019	163,540	66,769	9,833	5,805	
Molar flow (kmol/h)	43,506	24,753	26,248	4,069	9,292	3,719	1,543	293	161	
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-	-	-	-	-	
GASEOUS PHASE										
Mass flow (kg/h)	891,980	82,372	148,230	167,423	408,019	163,540	66,769	9,833	5,805	
Molar flow (kmol/h)	43,506	24,753	26,248	4,069	9,292	3,719	1,543	293	161	
Molecular Weight	20.5	3.3	5.6	41.1	43.9	44.0	43.3	33.6	36.1	
Composition (vol %)										
H ₂	54.74	94.94	89.55	6.66	0.20	0.00	0.38	14.47	17.65	
CO	0.61	1.04	0.98	0.16	0.00	0.00	0.00	0.25	0.00	
CO ₂	41.98	0.01	5.73	92.95	99.74	99.87	97.34	43.29	77.90	
N_2	2.27	3.95	3.73	0.19	0.00	0.00	0.01	0.38	0.69	
02	-	-	-	0.00	0.00	0.00	0.00	-	0.00	
CH ₄	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	
H ₂ S + COS	0.26	0.00	0.00	0.00	0.00	0.00	0.00	40.70	3.76	
Ar	-	-	-	0.00	0.00	0.00	0.00	0.00	0.00	
HCN										
NH_3	-	-	-	-	-	-	0.00	0.11	-	
H ₂ O	0.14	0.06	0.01	0.04	0.06	0.13	2.27	0.80	0.00	

	Case 4.2.1 - G	E-BASED IGCC -	NEAR ZERO EMI	ISSION CASE - H	EAT AND MATE	RIAL BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	ınd hydrogen plan	ts	CHECKED	LM		
	PROJECT NO:		1-BD-0681 A							
	LOCATION:		The Netherlands				DATE	September 2013		
			UNIT 2400 - Sulfu	HEAT AND MATE r Recovery Unit (eatment (TGT)				
	8	26	27	28	29					
STREAM	Oxygen to SRU	Acid Gas from AGR Unit	Claus Tail Gas to AGR Unit	Sour Gas from Sour water stripper	Product Sulphur					
Temperature (°C)	Amb	20	35	80	-					
Pressure (bar)	6	1.6	56.5	4	-					
TOTAL FLOW										
Mass flow (kg/h)	1,934	9,833	5,805	170	3,000					
Molar flow (kmol/h)	60	293	161	4.5	-					
LIQUID PHASE										
Mass flow (kg/h)		-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	1,934	9,833	5,805	170	-					
Molar flow (kmol/h)	60	293	161	4.5	-					
Molecular Weight	32.2	33.6	36.1	37.7	-					

TOTAL FLOW								
Mass flow (kg/h)	1,934	9,833	5,805	170	3,000			
Molar flow (kmol/h)	60	293	161	4.5	-			
LIQUID PHASE								
Mass flow (kg/h)		-	-	-	-			
GASEOUS PHASE								
Mass flow (kg/h)	1,934	9,833	5,805	170	-			
Molar flow (kmol/h)	60	293	161	4.5	-			
Molecular Weight	32.2	33.6	36.1	37.7	-			
Composition (vol %)								
H ₂	-	14.47	17.65	0.49	-			
СО	-	0.25	0.00	0.03	-			
CO ₂	-	43.29	77.90	74.16	-			
N_2	1.50	0.38	0.69	0.19	-			
O ₂	95.00	-	0.00	-	-			
CH ₄	-	0.00	0.00	-	-			
H₂S + COS	-	40.70	3.76	3.57	-			
Ar	3.50	0.00	0.00	-	-			
HCN								
NH ₃	-	0.11	-	9.14	-			
H ₂ O	-	0.80	0.00	12.42	-			

	Case 4.2.1 - GE-BASED IGC	C - NEAR ZERO EMISSION CASE - HEAT AND MATERIAL BALANCE	REVISION	0	1	2				
	CLIENT:	IEAGHG	PREP.	NF						
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	LM						
	PROJECT NO:	1-BD-0681 A	APPROVED	LM						
	LOCATION:	The Netherlands	DATE	September 2013						
	HEAT AND MATERIAL BALANCE									

Unit 2500 - CO2 Compression and Drying

	22	23	24	25	30	31		
STREAM	HP CO2 to Compression	MP CO2 to Compression	LP CO2 to Compression	Acid gas to compression from amine unit	CO ₂ to drying package	CO ₂ to storage		
Temperature (°C)	8	-1	-9	40	26	30		
Pressure (bar)	20.3	6.6	2.0	2.0	39.8	110.0		
TOTAL FLOW								
Mass flow (kg/h)	167,423	408,019	163,540	66,769	894,320	804,720		
Molar flow (kmol/h)	4,069	9,292	3,719	1,543	20,690	18,572		
LIQUID PHASE								
Mass flow (kg/h)	-	-	-	-	-	-		
GASEOUS PHASE								
Mass flow (kg/h)	167,423	408,019	163,540	66,769	894,320	804,720		
Molar flow (kmol/h)	4,069	9,292	3,719	1,543	20,690	18,572		
Molecular Weight	41.1	43.9	44	43	43.2	43.3		
Composition (vol %)								
H ₂	6.66	0.20	0.0	0.0	1.59	1.59		
СО	0.16	0.00	0.0	0.0	0.04	0.04		
CO ₂	92.95	99.74	99.9	99.9	98.09	98.33		
N ₂	0.19	0.00	0.0	0.0	0.04	0.04		
O ₂	0.00	0.00	0.0	0.0	0.00	0.00		
CH₄	0.00	0.00	0.0	0.0	0.00	0.00		
H ₂ S + COS	0.00	0.00	0.0	0.0	0.00	0.00		
Ar	0.00	0.00	0.0	0.0	0.00	0.00		
HCN	0.00	0.00	0.0	0.0	0.00	0.00		
NH3	0.00	0.00	0.0	0.0	0.00	0.00		
H ₂ O	0.04	0.06	0.1	0.1	0.24	0.00		

Case 4.2.1 - GE-BASED IGCC - NEAR ZERO EMISSION CASE

HEAT AND MATERIAL BALANCE

CLIENT: IEAGHG

PROJECT NAME: CO₂ capture at coal based power and H2 plants

PROJECT NO: 1-BD-0681 A LOCATION: The Netherlands

REVISION	0	
PREP.	NF	
CHECKED	LM	
APPROVED	LM	
DATE	September 2013	

Unit 3000 - Power Island

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
15	Treated Syngas from Syngas Cooling (*)	200.7	210	30.8	-
20	Moisturized Nitrogen for NOx control (*)	192.2	210	26.90	-
32	HP Steam from Process Units (*)	267.7	335	137.0	2646
33	MP Steam from Process Units (*)	52.5	253	41.0	2801
34	LP Steam to Process Units (*)	35.3	168	7.5	2766
35	Condensate to Deaerator (*)	897.1	94	2.2	394
36	BFW to Make-up Water Pumps (*)	113.5	123	2.2	518
37	BFW to LP BFW Pumps (*)	140.9	123	2.2	518
38	BFW to MP BFW Pumps (*)	294.1	123	2.2	518
39	BFW to HP BFW Pumps (*)	392.9	123	2.2	518
40	HP Steam to Steam Turbine	781.2	532	132.0	3421
41	Hot RH Steam to Steam Turbine	1091.6	532	34.8	3524
42	LP Steam to Steam Turbine	1122.8	283	5.7	3027
43	Steam to Condenser	1122.8	29	0.04	2299
44	Water Supply to Steam Condenser	53150	15	4.0	63
45	Water Return from Steam Condenser	53150	26	3.5	109
46	Make-up water	313.5	15	6.0	64
47	Condensate return from Process Units	190.9	94	4.2	394
48	LP BFW to Process Units	143.4	160	19.0	676
49	MP BFW to Process Units	197.7	160	56.0	678
50	HP BFW to Process Units	538.7	160	180.0	686
51	Flue gas from GT (*) (1)	2780	560	1.05	-
52	Flue gas at stack (*) (1)	2780	133	atm	-

^(*) Flowrate figure refers to one train (50% capacity) (1) Flue gas molar composition: N_2 : 73.65%; H_2O : 14.45%; O_2 : 10.97%; CO_2 : 0.16%; Ar: 0.77%.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.8 - Case 4.2.1: IGCC with CCS - GE Gasification

Near-zero emission case

Date: January 2014

Sheet: 10 of 18

5. Utility consumption

Main utility and chemical consumption of the plant is reported in the following tables, compared with the reference cases figure (in brackets). More specifically:

- Steam / BFW / condensate interface summary, shown in Table 3.
- Water consumption summary is reported in Table 4,
- Electrical consumption summary is shown in Table 5.

With respect to the reference case, the following considerations can be made:

- The introduction of the amine unit for achieving 98% capture rate mainly affects the consumption of low pressure steam, as a significant amount of steam is required from the regenerator reboiler of the unit. As for that, while LP steam excess is imported from the process unit to the combined cycle, in the present case LP steam has to be exported from the combined cycle, thus reducing the steam turbine power production. Minor differences in the LP steam balance are related to the small difference in the syngas preheating line.
- The higher CO₂ removal results in higher hydrogen content of the hydrogen rich fuel to the combined cycle. As for that, nitrogen required for syngas dilution slightly increases, and consequently also water and electric power consumption of the ASU.
- Cooling water consumption increases mainly for the requirement of the additional amine unit. The consumption related to the steam turbine and condenser is slightly lower due to the reduced steam flow expanded through the steam turbine.
- In addition to the increased power demand of both the ASU and the amine unit, the higher plant overall power consumption is mainly related to the increased power demand of the CO₂ compressors.
- Utilities consumption increases mainly due to the higher cooling water requirements.

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification Near-zero emission case Date: January 2014

Sheet: 11 of 18

Table 3. Case 4.2.1 – Steam/BFW/condensate interface summary

FOSTERWHEELER

CLIENT: IEA GHG

PROJECT: CO2 capture at coal based power and hydrogen plants

LOCATION: The Netherlands **FWI Nº:** 1-BD-0681 A

REVISION	Rev.0	
DATE	July 2013	
ISSUED BY	GP	
CHECKED BY	NF	
APPROVED BY	LM	

Case 4.2.1 - GE based IGCC - Near zero emission - Steam and water balance

UNIT	DESCRIPTION UNIT	HP Steam barg 137	MP Steam barg 40	LP Steam barg 6.50	HP BFW	MP BFW	LP BFW	VLP BFW	condensate recovery	Losses
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS									
2100	Air Separation Unit (ASU)									
1000	Gasification Section	-444.2			446.8					-2.5
2200	Syngas Treating and Conditioning Line	-91.2	-97.2	-106.8 (-102.2)	92.1	189.0	143.4 (140.1)	227.1	-48.1 (-49.5)	-308.2
2300	Acid Gas Removal & Amine Guard FS process			127.1 (64.0)					-127.1 (-64.0)	0.00
2400	Sulphur Recovery (SRU)		-7.9			8.7			-0.75	-0.08
3000	POWER ISLANDS UNITS	535.4	105.1	-35.3 (23.2)	-538.9	-197.7	-143.4 (-140.1)	-227.1	190.9 (129.2)	
4000	UTILITY and OFFSITE UNITS			15.0					-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-310.9

Notes: (1) Negative figures represent generation

 ${
m CO}_{\scriptscriptstyle 2}$ Capture at Coal Based Power and Hydrogen Plants Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

4000

Note: Negative figures represent generation

Balance of Plant (BOP)

TOTAL CONSUMPTION

January 2014 Date:

Sheet: 12 of 18

400

36360

(31700)

52960

(55510)

0.0

Table 4. Case 4.2.1 – Water consumption summary

				Revision	0
	CLIENT:	IEAGHG		Date	July 2013
	_	CO2 capture at coal based pov		ISSUED BY	GP
FOS			ver and HZ plants		
		The Netherlands		CHECKED BY	NF
	FWI №:	1-BD-0681 A		APPR. BY	LM
	Case 4.2.1 - GE based IGCC -	Near zero emission	- Water consumption	on summary	
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system	Cooling Water Secondary Syste
		[t/h]	[t/h]	[t/h]	[t/h]
	AIR SEPARATION UNIT (ASU)				
2100	Air Separation Unit				11300 (11220)
	GASIFICATION SECTION (GS)				
1000	Gasification (GS)	145			3870
		-			
2200	Syngas treatment and conditioning line				930
			2.0		10150
2300	Acid Gas Removal and Amine Guard FS Process		(0.6)		(6870)
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160
	CO ₂ COMPRESSION				
2500					6770
2500	CO ₂ Compression				(5850)
	COMBINED CYCLE (CC)				
3100	Gas Turbines and Generator auxiliaries				780
3200	Heat Recovery Steam Generator				
			242.4	52960	3000
3300	Steam Turbine and Generator auxiliaries		312.1 (313.3)	(55510)	2000 (2050)
	Missellance				
	Miscellanea				
	UTILITY UNITS (UU)				
4000	Cooling Water System	1636 (1598)			
	Demineralized/Condensate Recovery/Plant and	471	-314		
4000	Potable Water Systems	4/1	314		
4000	•	-91.8	317		

2160

(2122)

CO₂ Capture at Coal Based Power and Hydrogen Plants Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

Date: January 2014

Sheet: 13 of 18

Table 5. Case 4.2.1 – Electrical consumption summary

(гост	CLIENT: IEAGHG PROJECT: CO2 capture at coal based power and H2 plants LOCATION: The Netherlands FWI Nº: 1-BD-0681 A	Rev.0 Date: July 2013 ISSUED BY: GP CHECKED BY: NF APPR. BY: LM			
	Case 4.2.1 - GE based IGCC - Near zero emission - Electrical consumption sun	nmary			
UNIT	T DESCRIPTION UNIT				
	AIR SEPARATION UNIT (ASU)				
2100	MAC consumptions	124220			
2100	BAC consumptions	12270			
2100	Nitrogen compressors and miscellanea	37120 (35530)			
	CASSISSATION SECTION (CS)				
900	GASIFICATION SECTION (GS) Coal Receiving Handling and Storage	410			
900	Coal Neceiving Handling and Storage	410			
1000	Gasification	8790			
2200	Consequence and anoditioning line	1250			
2200	Syngas treatment and conditioning line	1250			
2300	Acid Gas Removal and Amine Guard FS Process	21540 (20850)			
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700			
2500	CO ₂ Compression	39970 (33970)			
	COMBINED CYCLE (CC)				
3100	Gas Turbines auxiliaries	2000			
3200	Heat Recovery Steam Generator	7490 (7530)			
3300	Steam Turbine auxiliaries and excitation system	850			
3300	Scam raisine auxiliaries and excitation system	830			
3300	Miscellanea	3210 (3120)			
	UTILITY UNITS (UU)				
4000	Cooling Water System	10870 (10490)			
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	730			
4000	Balance of Plant (BOP)	1090			
		272510			
	TOTAL CONSUMPTION	(263800)			

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

6. Overall performance

The following table shows the overall performance of Case 4.2.1, compared with the reference case performance.

FOSTER WHEELER

Sheet: 14 of 18

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Jul-13
PROJECT No. :	1-BD-0681 A	MADE BY	GP
LOCATION:	The Netherlands	APPROVED BY	LM

Case 4.2.1 - High capture IGCC Plant Performance Summary

OVERALL PERFORMANCES							
		CASE 4.2.1	CASE 4.2 (reference)				
Coal Flowrate (as received)	t/h	349.2	349.1				
Coal LHV (as received)	kJ/kg	25870	25870				
Coal HHV (as received)	kJ/kg	27060	27060				
THERMAL ENERGY OF FEEDSTOCK(A)	MWth (LHV)	2509	2509				
THERMAL ENERGY OF FEEDSTOCK(A')	MWth (HHV)	2625	2625				
Thermal Power of Raw Syngas exit Scrubber (E)	MWth (LHV)	1785	1785				
Thermal power of syngas to AGR	MWth (LHV)	1638	1638				
Thermal Power of Clean Syngas to Gas Turbines (F)	MWth (LHV)	1600	1600				
Syngas treatment efficiency (F/E*100)	% (LHV)	89.6	89.6				
Gas turbines total electric power output	MWe	688.0	688.0				
Steam turbine electric power output	MWe	433.4	443.8				
Syngas expader	MWe	8.6	9.0				
GROSS ELECTRIC POWER OUTPUT OF IGCC COMPLEX (C)	MWe	1130	1141				
Gasification Section units consumption	MWe	32.7	32.0				
ASU consumption	MWe	173.6	172.0				
Combined Cycle units consumption	MWe	13.6	13.5				
CO2 Compression and Dehydration unit consumption	MWe	39.97	34.0				
Utility Units consumption	MWe	12.7	12.3				
ELECTRIC POWER CONSUMPTION OF IGCC COMPLEX	MWe	272.5	263.8				
NET ELECTRIC POWER OUTPUT OF IGCC	MWe	857.5	877.0				
(Step-up transformer Eff. = 0.997) (B)	MWe	854.9	874.3				
Gross electrical efficiency (C/A x 100) (based on LHV)	%	45.0	45.5				
Net electrical efficiency (B/A x 100) (based on LHV)	%	34.1	34.9				
Gross electrical efficiency (C/A' x 100) (based on HHV)	%	43.1	43.5				
Net electrical efficiency (B/A' x 100) (based on HHV)	%	32.6	33.3				
Fuel Consumption per net power production	MWth/MWe	2.94	2.87				
CO ₂ emission per per net power production	kg/MWh	13.3	93.7				

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

ate: January 2014

Sheet: 15 of 18

With respect to the reference case, the following consideration can be made:

- The negligible difference in the coal flowrate is related to the slightly lower AGR efficiency, as impurities of hydrogen and carbon monoxide remains in the CO₂ rich stream from the amine unit.
- The lower gross power production results from the lower electric power generated by the steam turbine, related to the increased steam demand of the process unit. The lower expander production is related to the lower purified syngas flowrate, as a higher amount of CO₂ is removed.
- Net electrical efficiency decreases of about 0.8 percentage points, due to the above consideration and to the increased electrical consumptions related to the required higher capture rate.

The following table shows the overall CO_2 balance and removal efficiency of Case 4.2.1, compared with the reference case.

	CASE 4.2.1	CASE 4.2 (reference)
CO ₂ removal efficiency	Equivalent flow of CO ₂	Equivalent flow of CO ₂
	kmol/h	kmol/h
INPUT		
Fuel Mix (Carbon AR)	18734	18730
TOTAL (A)	18734	18730
ОUТРUТ		
Slag + Waste water (B)	101	101
CO ₂ product pipeline		
со	7	7
CO ₂	18265	16759
CH₄	0	0
cos	0	0
Total to storage (C)	18273	16766
Emission		
CO ₂ + CO (Combined Cycle)	360	1862
TOTAL	18734	18730
Overall Carbon Capture, % ((B+C)/A)	98.1	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

7. Environmental impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 16 of 18

7.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the combustion flue gases of the two trains of the combined cycle, from the combustion of the syngas in the two gas turbines. Table 6 summarises expected flow rate and concentration of the combustion flue gas from one train of the combined cycle. The differences in the flue gas composition with respect to the reference case are related to the lower carbon content of the syngas, due to the higher carbon removal efficiency target. The same minor and fugitive emissions, related to leakages within the handling of solid materials, are valid for these alternative systems.

Table 6. Case 4.2.1 – Plant emission during normal operation

Flue gas to HRSG stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	2,780,000
Flow, Nm ³ /h (1)	2,677,700
Temperature, °C	133
Composition	(% vol)
Ar	0.77
N_2	73.65
O_2	10.97
CO_2	0.16
H ₂ O	14.45
Emission	mg/Nm ^{3 (1)}
NOx	< 50
SOx	< 1
СО	< 100
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 15% vol.

7.2. Liquid effluents

As per the reference case, Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Date: January 2014

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Sheet: 17 of 18

Near-zero emission case

Cooling Tower blow-down

Flowrate : 390 m³/h

Waste Water Treatment blow-down

Flowrate : $162 \text{ m}^3/\text{h}$

7.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter E.8 - Case 4.2: IGCC with CCS - GE Gasification

Near-zero emission case

110 (151011 110) 1 1110

Date: January 2014

Sheet: 18 of 18

8. Main equipment design changes

The overleaf equipment summary table shows the major design differences between the present Case 4.2.1 and the reference Case 4.2.

CLIENT: IEA GHG

LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants

CONTRACT N. 1-BD-0681 A

CASE: 4.2.1 - GE based IGCC - High capture case

REVISION	Rev.: Draft	Rev.: 1	Rev.2	Rev.3
DATE	June 13			
ISSUED BY	GP			
CHECKED BY	NF			
APPROVED BY	LM			

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 2100 - AIR SEPARATION UNIT (2X50%)					
	MP N ₂ compressor (GAN) MP N ₂ compressor - booster		Flowrate: 125000 Nm3/h Flowrate: 127560 Nm3/h	2 x 9750 kW 1250 kW		Size changed Size changed
	UNIT 2200 - Syngas Treatment and conditioning line (2x50%)					
EX - 2201	Syngas expander		Flowrate: 554700 Nm3/h	8800 kW		Size changed
	UNIT 2350 - Amine Guard FS Process Unit (1x100%)					
Z - 2351	Amine Guard FS Process, including: One amine absorber one amine stripper total carbon capture: 85.3%	Solvent: amine	Feed gas: 588,300 Nm3/h 54 barg 15 °C			To be added
	Unit 2500 - CO ₂ compression Unit (2 x 50%)					
	CO2 compression Unit (2 x 50%)		Feed gas flowrate: 224300 Nm3/h			Size changed (+ 16%)
	Unit 3300 - Steam Turbine and Blowdown System (1 x 100%)					
ST - 3301	Steam Turbine (including steam turbine generator)		434 MWe			Size changed
E - 3301 P - 3301 A/B	Condenser Condensate Pump	centrifugal, vertical	680 MWth 1865 m3/h x 110 m	800 kW		Size changed
	Unit 4000 - Utility and Offsite					
CT - 4001	Cooling Tower Including Cooling water basin Raw Water CT make-up pump	Evaporative, Natural draft	1140 MWth Diameter: 155 m, Height: 210 m, Water inlet: 17 m			Size changed
P - 4001 A/B/C/D P - 4002 A/B/C	Cooling Water pumps (primary system) Cooling Water pumps (secondary system)	vertical vertical	13300 m3/h x 35 m 11950 m3/h x 35 m	1450 kW 1650 kW	Four operating Three operating, one spare	Size changed Numebr and size changed

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Power Island: PSA off-gases fired boiler

Sheet: 1 of 19

January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Near-zero emission case

CLIENT : IEAGHG

PROJECT NAME : CO₂ Capture at Coal Based Power and Hydrogen Plants

DOCUMENT NAME : CASE 5.3.1 - HYDROGEN AND POWER CO-PRODUCTION

POWER ISLAND: PSA OFF-GAS FIRED BOILER - NEAR-ZERO EMISSION

FWI CONTRACT : 1-BD-0681 A

ISSUED BY : N. FERRARI
CHECKED BY : L. MANCUSO
APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

 ${\rm CO_{_2}}$ Capture at Coal Based Power and Hydrogen Plants

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

January 2014 Date:

Sheet: 2 of 19

TABLE OF CONTENT

1.	Introduction		
	1.1. Process unit arrangement	3	
2.	Process description	5	
	2.1. Overview	5	
	2.2. Unit 2200 – Syngas Treatment and Conditioning line	5	
	2.3. Unit 2300 – Acid Gas Removal (AGR)		
	2.4. Unit 2500 – CO ₂ compression and drying	7	
3.	Process Flow Diagrams	9	
4.	Heat and Material Balance	10	
5.	Utility consumption	11	
6.	Overall performance	15	
7.	Environmental impact	17	
	7.1. Gaseous emissions	17	
	7.2. Liquid effluents	17	
	7.3. Solid effluents	18	
8.	Main equipment design changes	19	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 3 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

1. Introduction

This chapter of the report includes all technical information relevant to Case 5.3.1 of the study, which is a gasification plant based on the GE technology, designed to produce hydrogen to be distributed to a hydrogen network.

Plant configuration is basically same as Case 5.3, though plant of Case 5.3.1 is designed to meet near-zero CO₂ emission target (around 98% carbon capture rate).

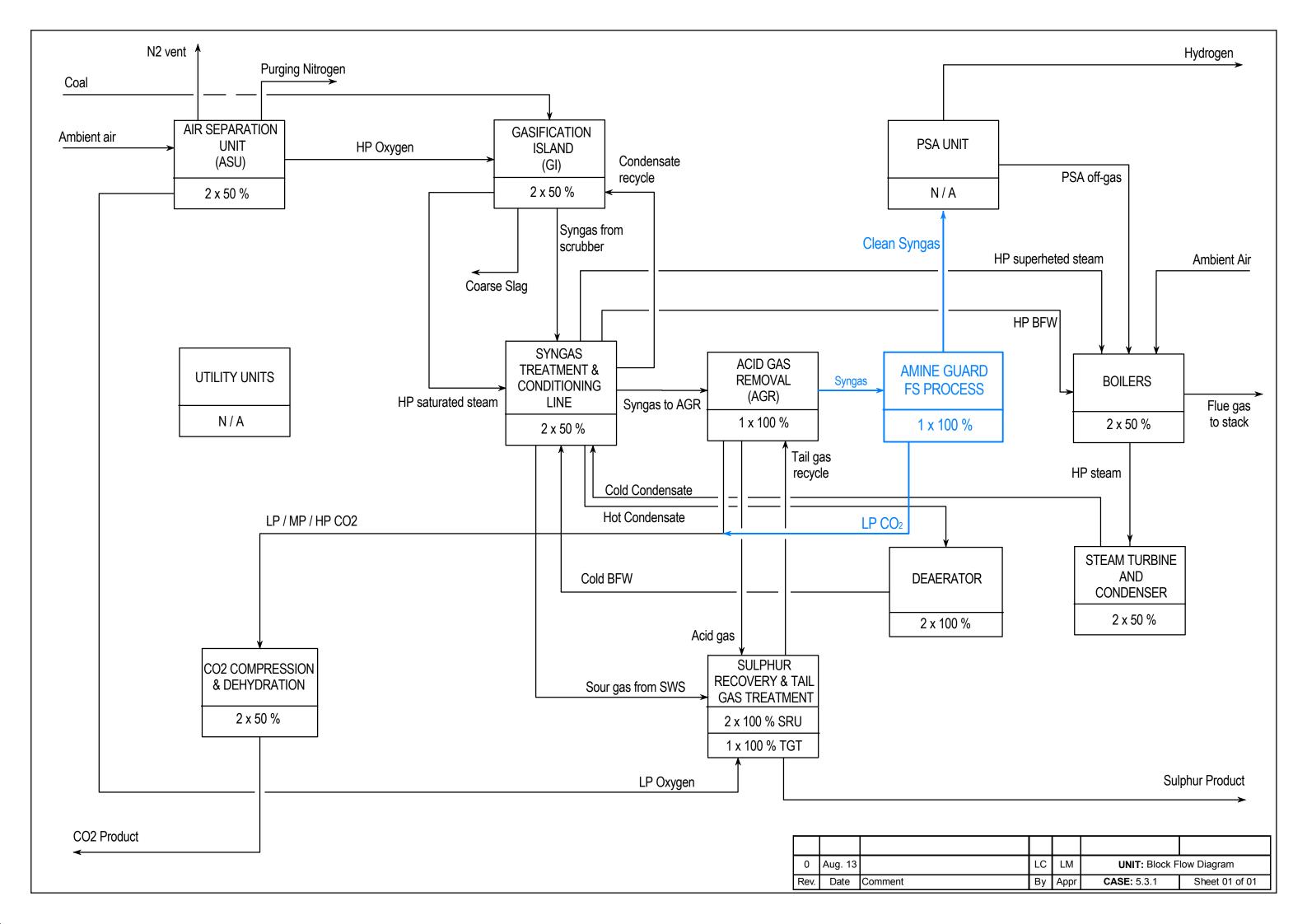
The description of the main process units and the reference Case 5.3 performance are covered respectively in chapter E and E.6 of this report; only plant design changes required to meet near-zero emission target are discussed in the following sections, together with the main plant performance results.

1.1. Process unit arrangement

The arrangement of the main units is reported in Table 1, together with the main differences with respect to the base case, as further discussed in the following sections. Reference is also made to the block flow diagram attached below.

Table 1. Case 4.2.1 – Unit arrangement

Unit	Description	Trains	Differences
900	Coal Handling & Storage	N/A	-
1000	Gasification Coal Grinding & Slurry Preparation Gasification and scrubber Black Water Flash Coarse Slag Handling Grey Water & Fines Handling	2 x 50%	-
2100	Air Separation Unit	2 x 50%	-
2200	Syngas Treatment and Conditioning Line	2 x 50%	Minor design changes: LP steam generation increases due to the higher plant requirements, downstream BFW and condensate pre-heater design slightly change
2250	Sour Water Stripper (SWS)	1 x 100%	-
2300	Acid Gas Removal Selexol	1 x 100%	


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 4 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

Unit	Description	Trains	Differences
	Amine Guard FS Process	1 x 100%	Additional unit to meet near-zero emission target
2400	Sulphur Recovery Unit	2 x 100%	-
	Tail Gas Treatment	1 x 100%	
2500	CO ₂ Compression & Drying	2 x 50%	Increase design capacity: additional CO ₂ -rich flow from amine unit
3000	Power Island PSA off-gas fired subcritical boiler Steam Turbine	2 x 50% 2 x 50%	No significant design changes: negligible difference in the PSA off-gas composition and LHV
4000	Utility and Offsite	N/A	Minor changes in cooling water system capacity

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 5 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

2. Process description

2.1. Overview

The description reported in this section focuses only on those units with a design different from that of the reference case, necessary to meet near-zero carbon emission target. Design changes are also reflected in the simplified Process Flow Diagrams (PFD) shown in section 3.

For all the other units, reference shall be made to the base case description, included in chapter E.6, section 2.

2.2. Unit 2200 – Syngas Treatment and Conditioning line

As for the base case, the syngas treatment unit is designed to meet the steam requirements of the gasification plant and to pre-heat condensate and BFW from the steam cycle to the maximum possible extent.

The main difference with respect to the base case is the additional LP steam consumption of the amine unit regenerator reboilers, resulting in an increased size of the steam generator in the syngas treatment line.

The design of the downstream heat-exchangers for condensate and BFW pre-heating is consequently also affected, as heat available from syngas for pre-heating of both the BFW and the condensate is lower.

2.3. Unit 2300 – Acid Gas Removal (AGR)

In the reference case, the AGR unit uses the Selexol physical solvent washing for the selective removal of H₂S and CO₂. Reference is made to Section E for the general information about the technology and detailed process description.

For the present near-zero CO₂ emission plant, an additional Amine Guard FS Process is included, processing the pre-treated (de-sulphurised and de-carbonized) syngas from the Selexol unit, in order to meet the desired overall 98% CO₂ removal efficiency.

2.3.1. Amine Guard FS Process

The following process description makes reference to the simplified process flow diagram shown in Figure 1.

Treated gas from AGR enters the unit battery limits, is routed to the bottom of the CO₂ Absorber and flows upward through packed beds where it contacts cooled lean solvent entering at the top of the tower via the Lean Solution Pump. The contact between the gas phase and liquid phase is enhanced as they pass through the packed

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 6 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

beds, where CO₂ is transferred from the gas phase to the liquid phase. The treated gas then passes through de-entrainment devices at the top of the towers, exits the top of the CO₂ Absorber and finally reaches the Amine Guard FS unit battery limits.

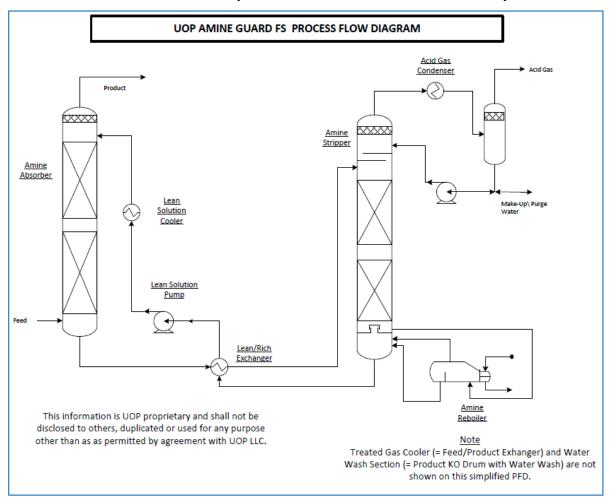


Figure 1. Amine guard unit simplified process scheme

The rich solvent from the CO₂ Absorber is sent to the Lean/Rich in order to increase its temperature by heat exchange with the hot lean solvent from the Regenerator. The hot lean (regenerated) solvent is cooled in the Lean/Rich Exchanger before flowing to the Lean Solution Cooler. By cross-exchanging these streams, the Lean/Rich Exchanger significantly reduces the duties of the Lean Solvent Cooler and the Regenerator Reboiler. The heated solvent stream is sent to the Regenerator for complete thermal regeneration.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 7 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

Solvent regeneration is accomplished in the Regenerator, where the remaining CO_2 is transferred from the liquid phase to the gas phase by contact with the steam generated in the Regenerator Reboiler. The Regenerator is composed of a lower section containing packed beds and an upper section containing several reflux trays, in order to contact the overhead vapour with the reflux water.

The rich solvent enters the Regenerator above the upper packed bed. After flashing, the solvent passes through a liquid distributor, and then flows down the packed bed in the stripping section releasing CO₂ after contact with the steam generated in the Regenerator Reboiler.

The steam and liberated gases exit the upper section of the Regenerator, and then flow upward to the trayed section of the column. The gas first passes through a demister and then into the trayed section, where the rising gas is contacted with counter-current flowing reflux water to cool and condense the hot overhead vapour and reduce solvent entrainment. The overhead stream passes through a deentrainment device and exits the top of the column. The overhead gas then passes through the Reflux Condenser in order to recover the overhead steam. The liquid and vapour phases are separated in the Reflux Drum. The liquid is returned to the trayed section of the Regenerator via the Reflux Pump. The Acid Gas CO₂ rich stream (97.33% mol of CO₂) is then sent to the CO₂ compression and drying unit, outside the battery limits, where it will be mixed to the LP CO₂ stream coming from AGR unit.

2.4. Unit 2500 – CO₂ compression and drying

As for the reference case, the unit is mainly composed of two eight inter-cooled compressors and dehydration packages, supplied by specialized Vendors. With respect to the reference case, the additional CO₂-rich stream at low pressure exiting the Amine Guard FS Process is mixed with the LP CO₂ stream coming from the Selexol unit, before being sent to the first compression stage.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 8 of 19

Power Island: PSA off-gases fired boiler

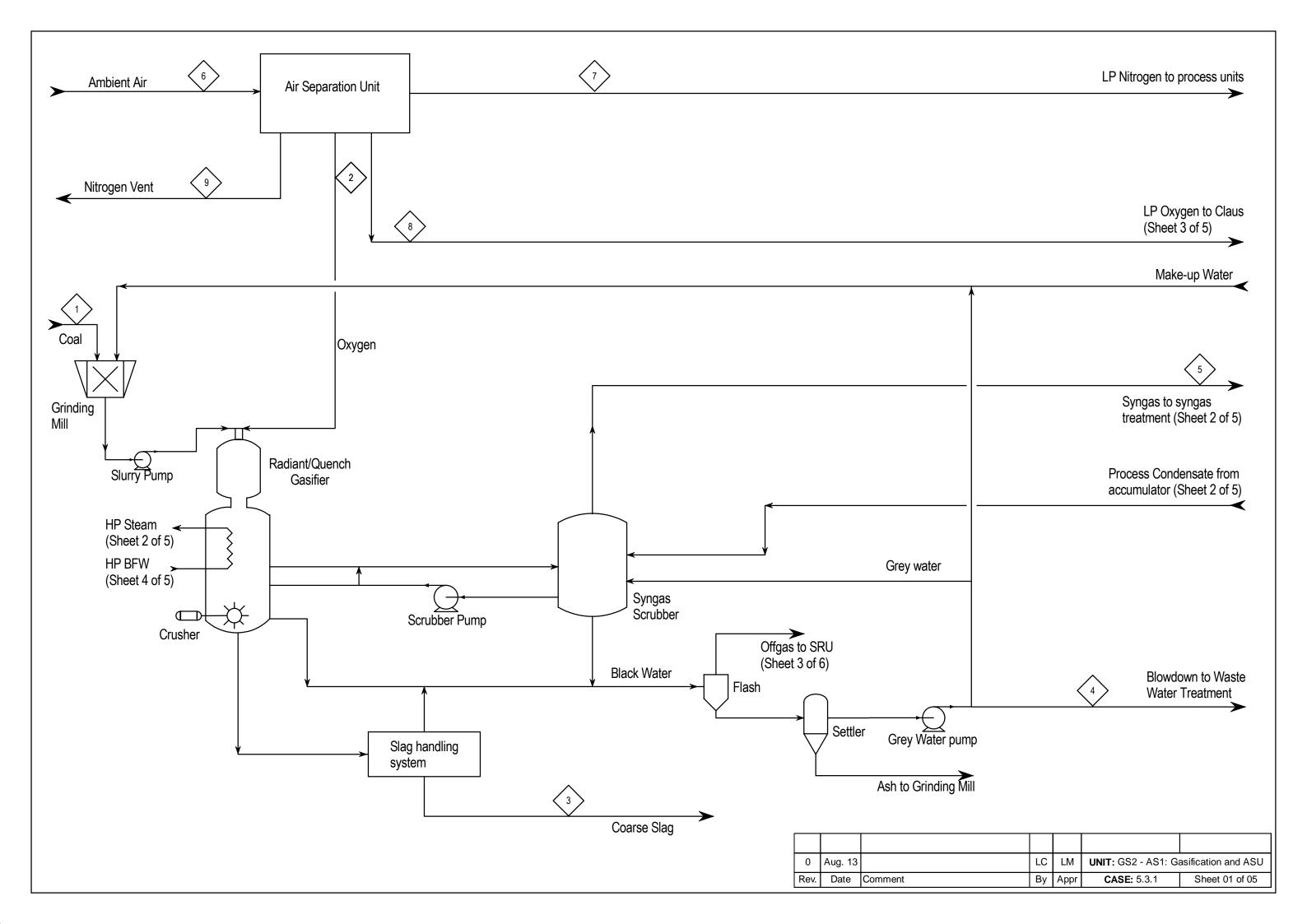
Near-zero emission case

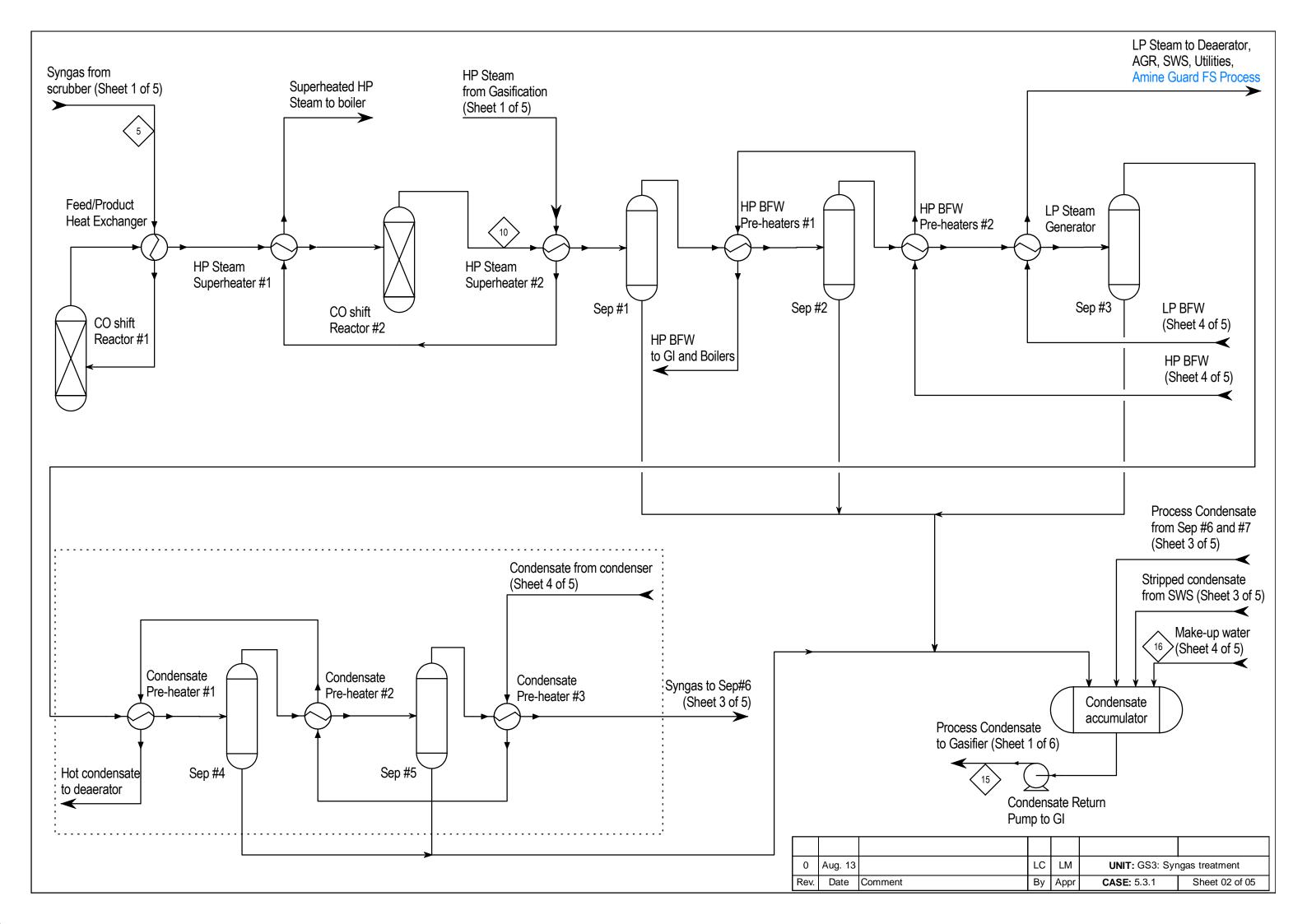
Following Table 2 summarises key stream data of this case, while main interconnections with the other units are shown in the process flow diagram.

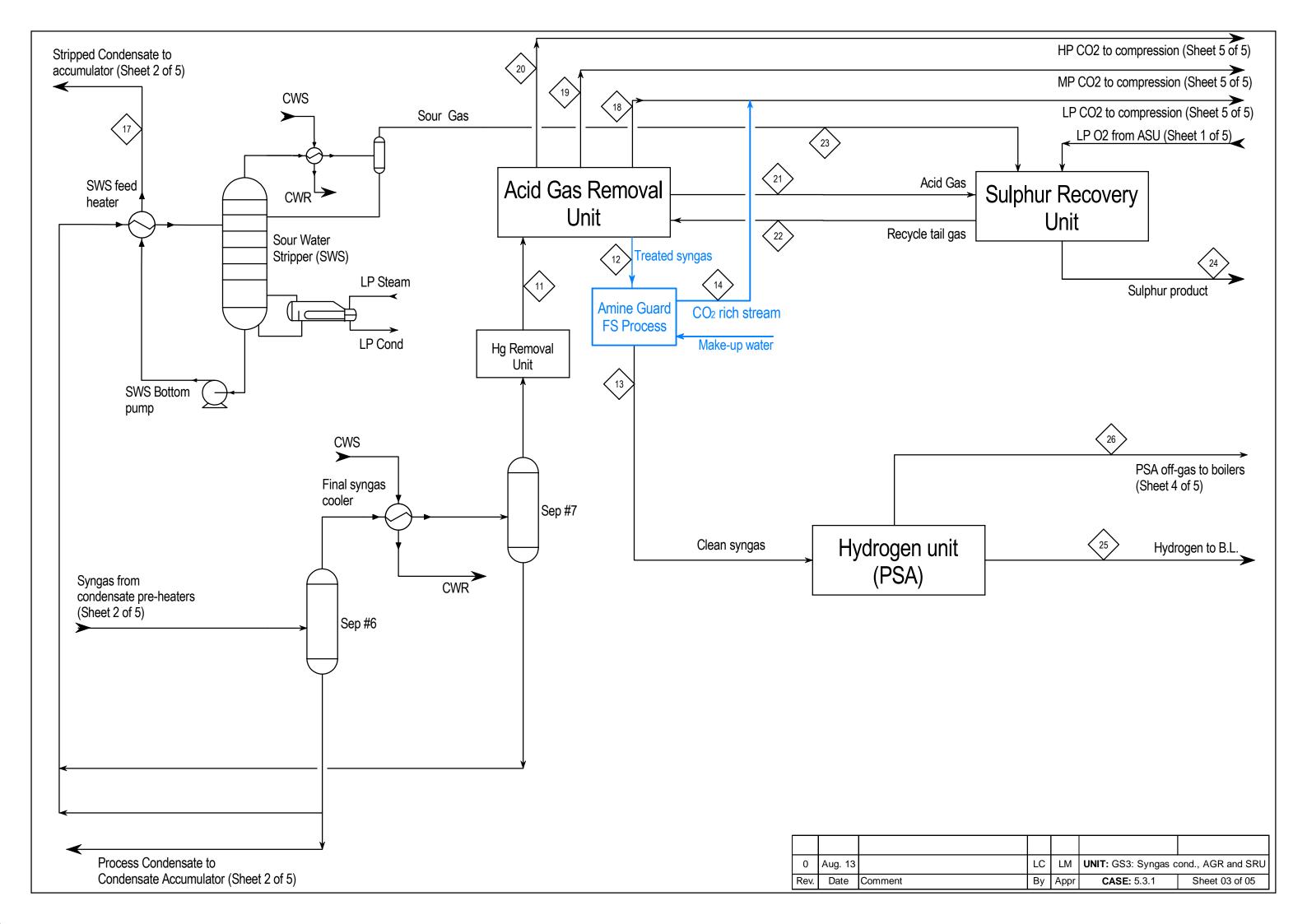
Table 2. Case 5.3.1 – Key stream data

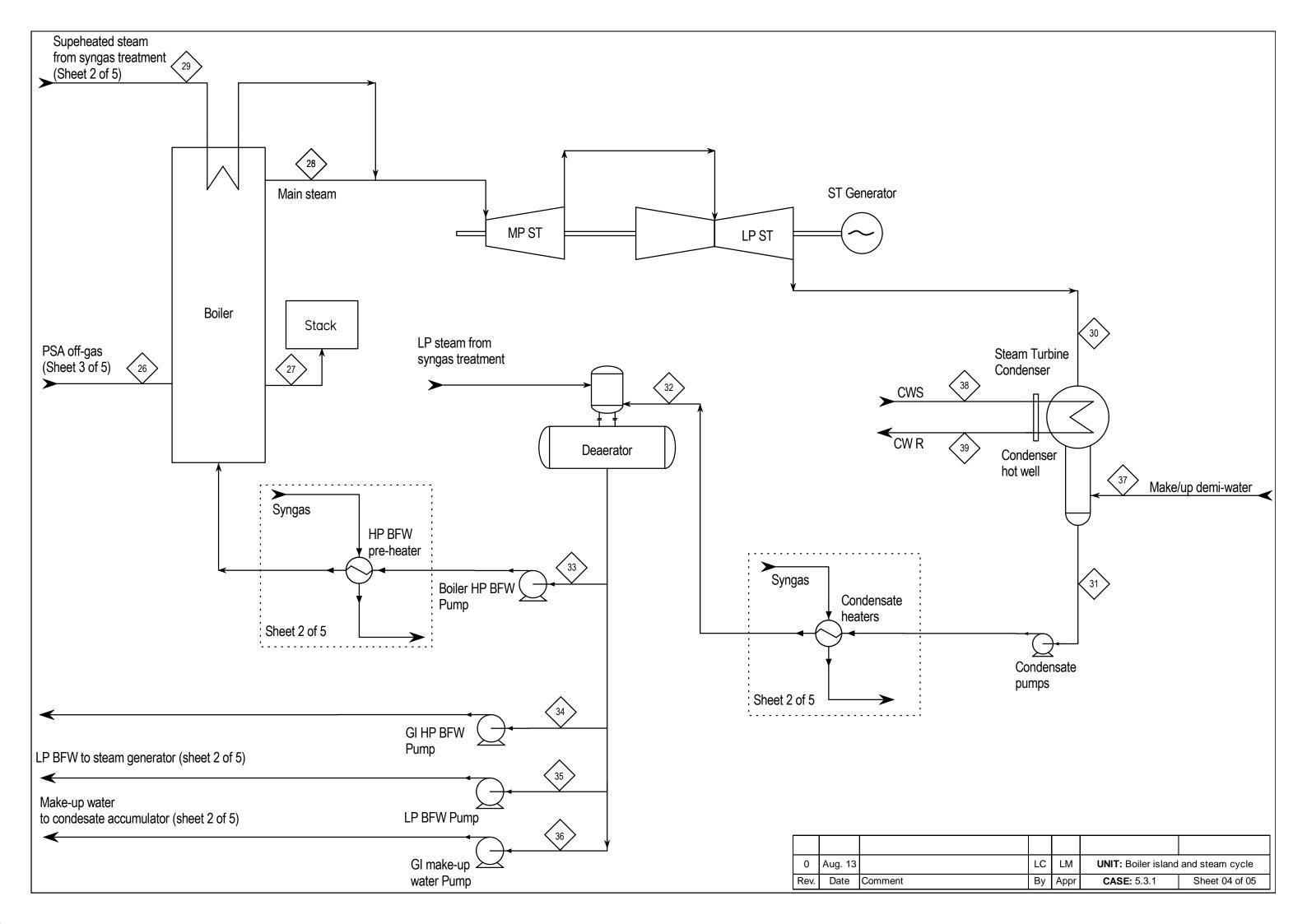
Stream	Flue gas to AGR	Flue gas to AGFS	Treated gas	Acid gas – CO ₂ rich - from AGFS
Mass flowrate, kg/h	891,750	148,200	82,355	66,754
Molar flowrate, kmol/h	43,496	26,243	24,748	1,543
Composition (% vol)				
CO	0.61	0.98	1.04	-
N_2	2.27	3.73	3.95	0.01
H_2	54.73	89.55	94.94	0.38
CO_2	41.98	5.73	0.01	97.33
H ₂ O	0.14	0.01	0.06	2.27
H ₂ S	0.26	0	0	-

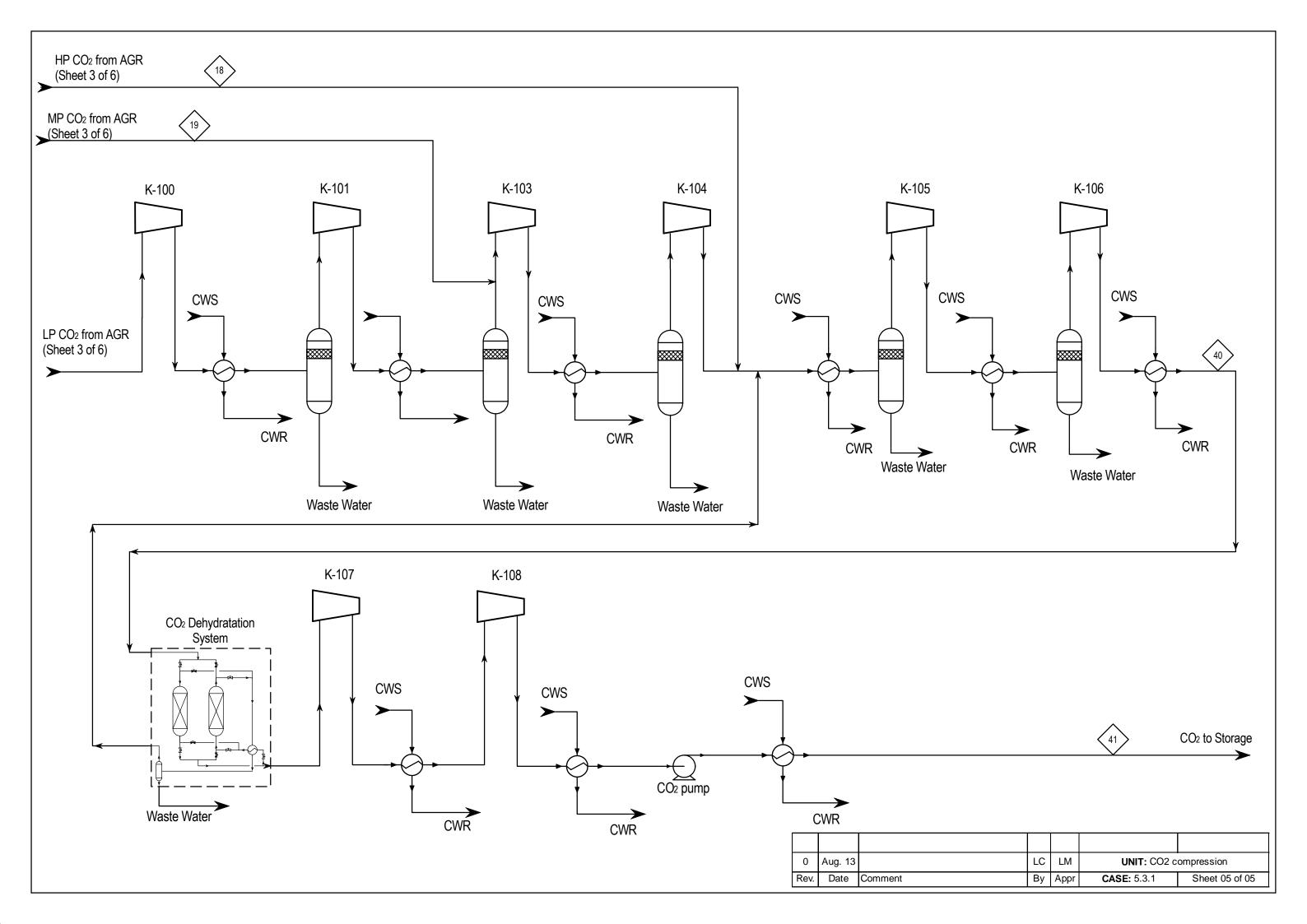
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014


Chapter E.9 - Case 5.3.1: Hydrogen and power co-production Sheet: 9 of 19


Power Island: PSA off-gases fired boiler


Near-zero emission case


3. Process Flow Diagrams


Simplified Process Flow Diagrams of this case are attached to this section. Stream numbers refer to the heat and material balance shown in the next section.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

4. Heat and Material Balance

Heat & Material Balances reported make reference to the simplified Process Flow Diagrams reported in section 3.

Sheet: 10 of 19

	HYDRO	OGEN PRODUCTIO	N - NEAR ZERO EN	VIISSION CASE - Ca	se 5.3.1 - H&M BA	LANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	LM		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
	<u> </u>			HEAT AND MAT	ERIAL BALANCE		<u> </u>	<u> </u>		
				UNIT 1000 - Gas	ification Island					
	1	2	3	4	5	15				
STREAM	Coal to Gasification Island	HP Oxygen to Gasification	Slag from Gasification	Effluent Water from Gasification	Syngas at Scrubber Outlet to Shift Reactor	Return condensate to gasification				
Temperature (°C)	AMB	10	80	AMB	N/D	157				
Pressure (bar)	ATM	75-80 ⁽¹⁾	ATM	ATM	64.6	70				
TOTAL FLOW	Solid		Solid + water							
Mass flow (kg/h)	349,100	323,000	87,400	94,500	1,154,000	493,200				
Molar flow (kmol/h)		10,025		5,250	58,004	27,385				
LIQUID PHASE										
Mass flow (kg/h)			43,700	94,500	-	493,200				
GASEOUS PHASE										
Mass flow (kg/h)		323,000			1,154,000					
Molar flow (kmol/h)		10,025			58,004					
Molecular Weight		32.22			-					
Composition (vol %)	%wt		50% moisture		dry basis					
H_2	C: 64.6%	-			35.80					
СО	H: 4.38%	-			42.80					
CO ₂	O: 7.02%	-			17.80					
N_2	S: 0.86%	1.50			3.22					
O_2	N: 1.41%	95.00			0.00					
CH ₄	CI: 0.03%	-			0.00					
H₂S + COS	Moisture: 9.5%	-			0.38					
Ar	Ash: 12.20%	3.50			0.00					
HCN		-			0.00					
NH ₃ H ₂ O		-			0.00					
1120	1 F\\/ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ \ a a \ \ \ a a \ \ \ a a \ \ \ a a \ \ \ a a \ \ \ a a a \ \ a a a \ \ \ a a a \ \ \ a a a \ \ \ a a a \ \ a a a \ \ a a a \ \ a a a \ \ a a a \ \ a a a a \ \ a a a a \ \ a a a a \ \ a a a \ \ a a a a a a a a a a a a a a a a a a a a	-			-		<u>I</u>			<u> </u>

1. FW Assumption

Notes:

	HYDRO	GEN PRODUCTIO	N - NEAR ZERO EN	/IISSION CASE - Ca	se 5.3.1 - H&M BA	LANCE	REVISION	0	1	2
	CLIENT:		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	al based power an	d hydrogen plants		CHECKED	LM		
_	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
				HEAT AND MAT			1 2			1
	, 		U		aration Unit (ASU)				
	6	2	7	8	9			1		
STREAM	Air Intake from Atmosphere	HP Oxygen to Gasification	LP Nitrogen to process unit	Oxygen to SRU	Nitrogen vent					
Temperature (°C)	Ambient	10	Ambient (°)	Ambient	Ambient					
Pressure (bar)	Ambient	75-80 (°)	7.5 (°)	6.0	Atmospheric					
TOTAL FLOW										
Mass flow (kg/h)	1,394,750	323,000	25,220	1,933	1,030,045					
Molar flow (kmol/h)	48,320	10,025	900	60	36,750					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	1,394,750	323,000	25,220	1,933	1,030,045					
Molar flow (kmol/h)	48,320	10,025	900	60.0	36,750					
Molecular Weight	28.86	32.22	28.02	32.22	28.03					
Composition (vol %)										
H ₂	-	-	-	-	-					
CO	-	-	-	-	-					
CO ₂	0.04	-	-	-	0.05					
N_2	77.32	1.50	99.999	1.50	98.00					
O_2	20.75	95.00	0.001	95.00	1.00					
CH₄	-	-	-	-	-					
H ₂ S + COS	-	-	-	-	-					
Ar	0.92	3.50	-	3.50	0.25					
H ₂ O (°) FWI assumption	0.97	-	-	-	0.70					

	HYDROGEN PRODUCTI	ON - NEAR ZERO EMISSION CASE - Case 5.3.1 - H&M BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	NF		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	LM		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	September 2013		

HEAT AND MATERIAL BALANCE UNIT 2200 - Syngas cooling & Conditioning line

	5	10	11	13	15	16	17		
STREAM	Syngas at Scrubber Outlet to Shift Reactor	Syngas at Shift Reactor Outlet	Raw Syngas to Acid Gas Removal	HP Purified Syngas from AGR (amine unit)	Return Condensate to Gasification	BFW make-up to condensate accumulator	Stripped condensate from SWS		
Temperature (°C)	N/D	413	34	25	157	165	133		
Pressure (bar)	64.5	62.1	57	51	70	9.0	70		
TOTAL FLOW									
Mass flow (kg/h)	1,154,000	1,154,000	891,750	82,355	492,600	227,000	43,225		
Molar flow (kmol/h)	58,004	58,004	43,496	24,748	27,350	12,600	2,400		
LIQUID PHASE									
Mass flow (kg/h)	-	-	-	-	492,600	227,000	43,225		
GASEOUS PHASE									
Mass flow (kg/h)	1,154,000	1,154,000	891,750	82,355	-	-	-		
Molar flow (kmol/h)	58,004	58,004	43,496	24,747	-	-	-		
Molecular Weight	21.58	19.90	20.50	3.33	-	-	-		
Composition (vol %)	(dry basis)								
H_2	35.80	41.04	54.73	94.94	-	-	-		
со	42.80	0.46	0.61	1.04	-	-	-		
CO ₂	17.80	31.54	41.98	0.01	-	-	-		
N_2	3.22	3.22	2.27	3.95	-	-	-		
O_2	0.00	0.00	-	-	-	-	-		
CH ₄	0.00	0.00	-	-	-	-	-		
H₂S + COS	0.38	0.38	0.26	0.00	-	-	-		
Ar	0.00	0.00	-	-	-	-	-		
HCN	0.00	0.00	-	0.06	-	-	-		
NH ₃	0.00	0.00	-	-	-	-	-		
H ₂ O	-	25.06	0.15	0.01	<u>-</u>	-	-		

	HYDROGEN PRODUCTI	ON - NEAR ZERO EMISSION CASE - Case 5.3.1 - H&M BALANCE	REVISION	0	1	2
	CLIENT:	IEAGHG	PREP.	NF		
FOSTERWHEELER	PROJECT NAME:	CO ₂ capture at coal based power and hydrogen plants	CHECKED	LM		
	PROJECT NO:	1-BD-0681 A	APPROVED	LM		
	LOCATION:	The Netherlands	DATE	September 2013		
		_				

HEAT AND MATERIAL BALANCE UNIT 2300 - Acid Gas Removal (AGR)

	11	12	13	14	18	19	20	21	22	
STREAM	Raw Syngas from Syngas Cooling	Treated syngas from AGR (Selexol)	HP Purified Syngas to PSA	Acid gas to compression from amine unit	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	Acid Gas to SRU & TGT	Recycle Tail Gas from SRU	
Temperature (°C)	34	15	25	40	-9	-1	8	21	35	
Pressure (bar)	57	53	51	2	2.5	6.6	20.3	1.6	56.5	
TOTAL FLOW										
Mass flow (kg/h)	891,750	148,200	82,355	66,769	163,504	407,913	167,385	9,831	5,804	
Molar flow (kmol/h)	43,496	26,243	24,748	1,543	3,718	9,290	4,068	293	161	
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-	-	-	-	-	
GASEOUS PHASE										
Mass flow (kg/h)	891,750	148,200	82,355	66,769	163,504	407,913	167,385	9,831	5,804	
Molar flow (kmol/h)	43,496	26,243	24,747	1,543	3,718	9,290	4,068	293	161	
Molecular Weight	20.5	5.65	3.32	43.27	44.0	43.9	41.1	33.6	36.1	
Composition (vol %)										
H ₂	54.73	89.55	94.94	0.38	-	0.20	6.66	14.69	17.65	
СО	0.61	0.98	1.04	0.00	-	0.01	0.16	0.25	-	
CO ₂	41.98	5.73	0.01	97.34	99.87	99.73	92.95	42.76	77.90	
N_2	2.27	3.73	3.95	0.01	-	-	0.19	0.38	0.69	
O_2	-	-	-	0.00	-	-	-	-	-	
CH ₄	-	-	-	0.00	-	-	-	-	-	
H ₂ S + COS	0.26	0.00	0.00	0.00	-	-	-	41.30	3.76	
Ar	-	-	-	0.00	-	-	-	-	-	
HCN	-	0.01	-	2.27	-	-	-	-	-	
NH_3	-	-	-	0.00	-	-	-	-	-	
H ₂ O	0.15		0.01		0.13	0.06	0.04	0.61	-	

	HYDRO	GEN PRODUCTIO	N - NEAR ZERO EN	/IISSION CASE - Ca	ase 5.3.1 - H&M B	ALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTER WHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	and hydrogen plan	nts	CHECKED	LM		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
	<u>. I</u>			HEAT AND MATE	RIAL BALANCE		<u> </u>	<u> </u>		
			UNIT 2400 - Sulfu	r Recovery Unit (SRU) & Tail Gas Tr	reatment (TGT)				
	8	21	22	23	24					
STREAM	Oxygen to SRU	Acid Gas from AGR Unit	Claus Tail Gas to AGR Unit	Sour Gas from Sour water stripper	Product Sulphur					
Temperature (°C)	Ambient	21	35	80	-					
Pressure (bar)	6.0	1.6	56.5	4	-					
TOTAL FLOW										
Mass flow (kg/h)	1,933	9,831	5,804	170	3,000					
Molar flow (kmol/h)	60	293	161	4.5	-					
LIQUID PHASE										
Mass flow (kg/h)	-	-	-	-	-					
GASEOUS PHASE										
Mass flow (kg/h)	1,933	9,831	5,804	170	-					
Molar flow (kmol/h)	60	293	161	4.5	-					
Molecular Weight	32.2	33.6	36.1	38.0	-					
Composition (vol %)										
H ₂	-	14.69	17.65	0.84	-					
со	-	0.25	-	0.03	-					
CO ₂	-	42.76	77.90	75.60	-					
N_2	1.50	0.38	0.69	0.24	-					
O_2	95.00	-	-	-	-					
CH ₄	-	-	-	-	-					
H₂S + COS	-	41.31	3.76	2.95	-					
Ar	3.50	-	-	-	-					

7.85

12.49

0.00

0.61

HCN NH₃

 H_2O

	нург	ROGEN PRODUCTION	ON - NEAR ZERO E	WISSION CASE - Cas	se 5.3.1 - H&M BAL	ANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF	_	
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at coal based power and hydrogen plants					LM		
_	PROJECT NO:		1-BD-0681 A					LM		
	LOCATION:		The Netherlands				DATE	September 2013		
			U	HEAT AND MAT Init 2500 - CO2 Com	ERIAL BALANCE pression and Dryin	ng				
	18	19	20	14	40	41				
STREAM				Acid gas to						

	18	19	20	14	40	41		
STREAM	LP CO2 to Compression	MP CO2 to Compression	HP CO2 to Compression	Acid gas to compression from amine unit	CO ₂ to drying package	CO ₂ to storage		
Temperature (°C)	-9	-1	8	40	26	30		
Pressure (bar)	2.5	6.6	20.3	2	39.8	110.0		
TOTAL FLOW								
Mass flow (kg/h)	163,504	407,913	167,385	66,769	894,150	804,540		
Molar flow (kmol/h)	3,718	9,290	4,068	1,543	20,686	18,568		
LIQUID PHASE								
Mass flow (kg/h)	-	-	-	-	-	-		
GASEOUS PHASE								
Mass flow (kg/h)	163,504	407,913	167,385	66,769	894,150	804,540		
Molar flow (kmol/h)	3,718	9,290	4,068	1,543	20,686	18,568		
Molecular Weight	44.0	43.9	41.1	43.27	43.2	43.3		
Composition (vol %)								
H ₂	0.0	0.20	6.66	0.38	1.59	1.59		
CO	0.0	0.00	0.16	0.00	0.04	0.04		
CO ₂	99.87	99.74	92.95	97.34	98.09	98.33		
N_2	0.0	0.00	0.19	0.01	0.04	0.04		
O_2	0.0	0.00	0.00	0.00	0.00	0.00		
CH₄	0.0	0.00	0.00	0.00	0.00	0.00		
H₂S + COS	0.0	0.00	0.00	0.00	0.00	0.00		
Ar	0.0	0.00	0.00	0.00	0.00	0.00		
HCN	0.0	0.00	0.00	2.27	0.00	0.00		
NH ₃	0.0	0.00	0.00	0.00	0.00	0.00		
H ₂ O	0.13	0.06	0.04		0.24	0.00		

	HYDROG	EN PRODUCTION	N - NEAR ZERO EN	IISSION CASE - Ca	ase 5.3.1 - H&M E	BALANCE	REVISION	0	1	2
	CLIENT :		IEAGHG				PREP.	NF		
FOSTERWHEELER	PROJECT NAME:		CO ₂ capture at co	oal based power a	nd hydrogen plan	nts	CHECKED	LM		
	PROJECT NO:		1-BD-0681 A				APPROVED	LM		
	LOCATION:		The Netherlands				DATE	September 2013		
	•			HEAT AND MATE	RIAL BALANCE					
			UNI	T 2600 - Hydroge	n Production Uni	t	T			
	12	23	24							
STREAM	Syngas to PSA	High-purity Hydrogen	PSA off-gas to Boiler							
Temperature (°C)	25	20	10							
Pressure (bar)	53	52	5							
TOTAL FLOW										
Mass flow (kg/h)	82,355	44,430	37,925							
Molar flow (kmol/h)	24,748	20,780	3,968							
LIQUID PHASE										
Mass flow (kg/h)	-	-	-							
GASEOUS PHASE										
Mass flow (kg/h)	82,355	44,430	37,925							
Molar flow (kmol/h)	24,748	20,780	3,968							
Molecular Weight	3.32	2.14	9.6							
Composition (vol %)										
H_2	94.94	99.53	51.61							
CO	1.04	-	4.72							
CO ₂	0.01	-	27.50							
N_2	3.95	0.47	16.11							
02	-	-	-							
CH ₄	-	-	-							
H ₂ S + COS	0.00	-	0.00							
Ar HCN	-	-	-							
	0.06	_	_							
NH ₃	0.06	-	-							

The Netherlands

H₂ PRODUCTION - NEAR ZERO EMISSION CASE - Case 5.3.1 - H&MB **REVISION** 0 PREP. CLIENT: **IEAGHG** NF CO₂ capture at coal based power and H2 plants PROJECT NAME: **CHECKED** LM PROJECT NO: 1-BD-0681 A **APPROVED** LM Sept. 2013

HEAT AND MATERIAL BALANCE Unit 3000 - Power Island (*)

DATE

Stream	Description	Flowrate t/h	Temperature °C	Pressure bar a	Entalphy kJ/kg
26	PSA off-gas to Boiler	19.0	10	5.0	-
27	Flue gas from boiler (1)	128	140-150	АМВ	-
28	Boiler Main Steam	99.9	550	110.0	3492
29	HP Steam from process unit	265.5	408	115.0	3090
30	Steam to Condenser	358.4	29	0.04	2197
31	Condensate to Process Units	472.1	28	0.04	117
32	Condensate to Deaerator	548.6	155	7.2	654
33	HP BFW to Pumps (Boiler)	100.9	166	7.2	702
34	HP BFW to Pumps (G.I.)	268.6	166	7.2	702
35	LP BFW to steam generator	85.7	166	7.2	702
36	BFW make-up to gasification	113.5	166	7.2	702
37	Make-up water	113.7	15	6.0	64
38	Water Supply to Steam Condenser	16171	15	4.0	63
39	Water Return from Steam Condenser	16171	26	3.5	109

^(*) Flowrate figure refers to one train (50% capacity)

LOCATION:

⁽¹⁾ Flue gas molar composition at stack: N_2 : 67.4%; H_2O : 29.0%; O_2 : 0.3%; CO_2 : 15.4%; Ar: 0.7%.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

5. Utility consumption

Main utility and chemical consumption of the plant is reported in the following tables, compared with the reference cases figure (in brackets). More specifically:

Sheet: 11 of 19

- Steam / BFW / condensate interface summary, shown in Table 3.
- Water consumption summary is reported in Table 4,
- Electrical consumption summary is shown in Table 5.

With respect to the reference case, the following considerations can be made:

- The introduction of the amine unit for achieving 98% capture rate mainly affects the consumption of low pressure steam, as a significant amount of steam is required from the regenerator reboiler of the unit. As for that, additional LP steam has to be generated in the syngas treatment unit
- Cooling water consumption increases. In fact the higher cooling water requirements, related mainly to the amine unit and the increased consumption of the CO₂ compression train, overcome the reduced consumption in the syngas treatment line, due to the additional heat that is removed from the syngas upstream the final cooling water cooler to match the higher steam consumptions.
- In addition to the increased power demand of both the ASU and the amine unit, the higher plant overall power consumption is mainly related to the increased power demand of the CO₂ compressors.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Sheet: 12 of 19

Power Island: PSA off-gases fired boiler - Near-zero emission case

Table 3. Case 5.3.1 – Steam/BFW/condensate interface summary

FO	STER WHEELER	PROJECT: LOCATION:	IEAGHG CO2 capture at co The Netherlands 1-BD-0681 A	al based power an	d H2 plants	REVISION DATE ISSUED BY CHECKED BY APPROVED BY	Rev.0 August 2013 LC NF LM		
	Case 5.3.1 - H	2 production	plant - Near z	ero emission	- Steam and	water balance	e		
UNIT	DESCRIPTION UNIT	HP Steam barg 110	MP Steam barg 40	LP Steam barg 6.50	HP BFW	MP BFW	LP BFW	condensate recovery	Losses
		[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]	[t/h]
	PROCESS UNITS								
2100	Air Separation Unit (ASU)								
1000	Gasification Section	-517.1 (-531.9)			522.3 (<u>537.2)</u>				-5.2
2200	Syngas Treating and Conditioning Line			-160.2 (-96.1)			400.2 (335.3)	-11.1	-228.9 (-228.1)
2300	Acid Gas Removal & Amine Guard FS process			127.1 (64.0)				-127.1 (-64.0)	0.00
2400	Sulphur Recovery (SRU)			-8.0			8.8		0.80
3000	POWER ISLANDS UNITS	517.1 (531.9)		-26.1 (25.1)	-522.3 <u>(-537.2)</u>		-400.2 (-335.3)	153.1 (90.1)	-2.0
4000	UTILITY and OFFSITE UNITS			15.0				-15.0	0.00
	BALANCE	0.0	0.0	0.0	0.0	0.0	0.0	0.0	236.9 (236.3)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 13 of 19

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

Table 4. Case 5.3.1 – Water consumption summary

(FOS	PROJECT: LOCATION:	IEAGHG CO2 capture at coal based p The Netherlands 1-8D-0681 A	power and H2 plants	Revision Date ISSUED BY CHECKED BY APPR. BY	0 August 2013 LC NF LM
	Case 5.3.1 - H2 production plant - I	Near zero emission -	Water consumption	on summary	
UNIT	DESCRIPTION UNIT	Raw Water	Demi Water	Cooling Water Primary system	Cooling Water Secondary System
		[t/h]	[t/h]	[t/h]	[t/h]
	AIR SEPARATION UNIT (ASU)				
2100	Air Separation Unit				9810
	GASIFICATION SECTION (GS)				
1000	Gasification	145			3870
2200	Syngas treatment and conditioning line				1210 (3370)
2300	Acid Gas Removal and Amine Guard FS Process		2.0 (0.6)		10150 (6870)
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)				160
	CO ₂ COMPRESSION				
2500	CO ₂ Compression				6770 (5850)
	STEAM CYCLE				
	Steam Turbine and Generator auxiliaries		236.9 (236.2)	32340 (33080)	1290 (1320)
	Condenser				
4000	UTILITY UNITS (UU) Cooling Water System	1181 (1164)			
	Demineralized/Condensate Recovery/Plant and Potable Water Systems	358 (355)	239 (237)		
	Waste Water Treatment	-96.6			
	Balance of Plant (BOP)				400
	TOTAL CONSUMPTION	1588 (1567)	0.0	32340 (33080)	33350 (31650)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 14 of 19

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

Table 5. Case 5.3.1 – Electrical consumption summary

(гост	CLIENT: IEAGHG PROJECT: CO2 capture at coal based power and H2 plants LOCATION: The Netherlands FWI Nº: 1-BD-0681 A	Rev.0 Date: July 2013 ISSUED BY: GP CHECKED BY: NF APPR. BY: LM				
Case	5.3.1 - H2 production plant - Near zero emission - Electrical consumption	summary				
UNIT	UNIT DESCRIPTION UNIT					
	AIR SEPARATION UNIT (ASU)	[kW]				
2100	MAC consumptions	124220				
	BAC consumptions	12270				
	Miscellanea	1000				
	Wiscendified	1000				
	GASIFICATION SECTION (GS)					
900	Coal Receiving Handling and Storage	410				
1000	Gasification	8790				
2200	Syngas treatment and conditioning line	910				
2200	Syngas a cathlent and conditioning me	310				
2300	Acid Gas Removal and Amine Guard FS Process	21530 (20850)				
		(20830)				
2400	Sulphur Recovery (SRU) - Tail gas treatment (TGT)	700				
2500	CO ₂ Compression	39970 (33970)				
		(33370)				
	STEAM CYCLE					
3100	Condensate and BFW pumps	5070 (5000)				
3200	Bolier	1010 (1020)				
		(1020)				
3300	Steam Turbine auxiliaries and excitation system	400				
3300	Miscellanea	2730				
3300	Wiscenatiea	(2660)				
	UTILITY UNITS (UU)					
4000	Cooling Water System	8190 (8080)				
4000	Demineralized/Condensate Recovery/Plant and Potable Water Systems	730				
4000	Balance of Plant (BOP)	1060				
	TOTAL CONSUMPTION	228990 (217180)				

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Sheet: 15 of 19

Near-zero emission case

6. Overall performance

The following table shows the overall performance of Case 5.3.1, compared with the reference case performance.

FOSTER WHEELER

CLIENT:	IEAGHG	REVISION	0
PROJECT NAME:	CO2 capture at coal based power and hydrogen plants	DATE	Aug-13
PROJECT No. :	1-BD-0681 A	MADE BY	LC
LOCATION:	The Netherlands	APPROVED BY	LM

Case 5.3.1 - H₂ Plant Performance Summary

OVERALL PERFORMANCES						
		CASE 5.3.1	CASE 5.3 (reference)			
Coal Flowrate (as received)	t/h	349.1	349.1			
Coal LHV (as received)	kJ/kg	25870	25870			
Coal HHV (as received)	kJ/kg	27060	27060			
THERMAL ENERGY OF FEEDSTOCK	MWth (LHV)	2509	2509			
THERMAL ENERGY OF FEEDSTOCK	MWth (HHV)	2624	2624			
Thermal Power of Raw Syngas exit Scrubber	MWth (LHV)	1785	1785			
Thermal power of syngas to AGR	MWth (LHV)	1638	1638			
Thermal Power of Clean Syngas to Hydrogen PSA	MWth (LHV)	1600	1600			
Thermal Power of offgas to boiler island	MWth (LHV)	210	210			
HYDROGEN PRODUCTION	Nm3/h	465700	465700			
Thermal Power of Hydrogen	MWth (LHV)	1390	1390			
Steam turbine electric power output	MWe	253.4	259.1			
GROSS ELECTRIC POWER OUTPUT OF STEAM CYCLE	MWe	253.4	259.1			
Gasification Section units consumption	MWe	32.3	31.7			
ASU consumption	MWe	137.5	137.5			
Steam Cycle auxiliaries consumption	MWe	9.2	9.1			
CO2 Compression and Dehydration unit consumption	MWe	40.0	34.0			
Utility Units consumption	MWe	10.0	9.8			
ELECTRIC POWER CONSUMPTION OF GASIFICATION COMPLEX	MWe	229.0	222.0			
NET ELECTRIC POWER OUTPUT OF IGCC (Step-up transformer Eff. = 0.997)	MWe	24.3	37.0			
CO ₂ emission per net power production (*)	kg/MWh	18.1	93.7			

^(*) Referred to the net power production fo case 4.2

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

With respect to the reference case, the following consideration can be made:

• Gross power production is lower due to the higher steam required by the additional amine unit. In fact, the additional steam generation reduces the heat available in the syngas cooling for BFW pre-heating, resulting in a lower steam production in the gasifier and in the boiler.

January 2014

Sheet: 16 of 19

• The net power output decreases, due to the above consideration and to the increased electrical consumptions (around +3%) related to the required higher capture rate.

The following Table shows the overall CO₂ balance and removal efficiency of Case 5.3.1, compared with the reference case.

	CASE 5.3.1	CASE 5.3 (reference)
CO ₂ removal efficiency	Equivalent flow of CO ₂	Equivalent flow of CO ₂
	kmol/h	kmol/h
INPUT		
Fuel Mix (Carbon AR)	18730	18730
TOTAL (A)	18730	18730
ОUТРUТ		
Slag + Waste water (B)	101	101
CO ₂ product pipeline		
со	7	7
CO ₂	18261	16759
CH₄	0	0
cos	0	0
Total to storage (C)	18269	16766
Emission		
CO ₂ + CO (Combined Cycle)	360	1862
TOTAL	18730	18730
Overall Carbon Capture, % ((B+C)/A)	98.1	90.1

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

7. Environmental impact

Main gaseous emissions, liquid effluents, and solid wastes from the plant are summarized in the following sections.

Sheet: 17 of 19

7.1. Gaseous emissions

As for the reference case, main continuous emissions during normal operation are the flue gases from the boilers' stack. Table 6 summarises expected flow rate and concentration of the combustion flue gas from both the boiler included in the power island. The differences in the flue gas composition with respect to the reference case are related to the lower carbon content of the PSA-offgas, due to the higher carbon removal efficiency target. The same minor and fugitive emissions, related to leakages within the handling of solid materials, are valid for these alternative systems.

Table 6. Case 5.3.1 – Plant emission during normal operation

Flue gas to Boiler stack	
Emission type	Continuous
Conditions	
Wet gas flowrate, kg/h	255,900
Flow, Nm ³ /h ⁽¹⁾	218,000
Temperature, °C	140-150
Composition	(% vol)
Ar	0.70
N_2	67.37
O_2	0.31
CO ₂	2.63
H ₂ O	28.99
Emission	mg/Nm ^{3 (1)}
NOx	< 150
SOx	< 10
Particulate	< 10

⁽¹⁾ Dry gas, O₂ content 6% vol.

7.2. Liquid effluents

As per the reference case, Main liquid effluents are the cooling tower continuous blow-down, necessary to prevent precipitation of dissolved solids, and the effluent from the Waste Water Treatment, which flows to an outside plant battery limits recipient.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Sheet: 18 of 19

Power Island: PSA off-gases fired boiler

Near-zero emission case

Cooling Tower blow-down

Flowrate : $280 \text{ m}^3/\text{h}$

Waste Water Treatment effluent

Flowrate : $125 \text{ m}^3/\text{h}$

7.3. Solid effluents

No difference is expected in the production of solid by-products with respect to the reference case.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter E.9 - Case 5.3.1: Hydrogen and power co-production

Power Island: PSA off-gases fired boiler

Near-zero emission case

8. Main equipment design changes

The overleaf equipment summary table shows the major design differences between the present Case 5.3.1 and the reference Case 5.3.

Sheet: 19 of 19

Rev.: Draft CLIENT: IEAGHG REVISION Rev.: 1 Rev.2 Rev.3 LOCATION: The Netherlands DATE August 13 ISSUED BY LC PROJ. NAME: CO2 capture at coal based power and hydrogen plants CONTRACT N. 1-BD-0681 A CHECKED BY NF CASE: 5.3.1 - H2 production plant- High capture case APPROVED BY LM

MAIN EQUIPMENT CHANGES

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	Difference with respect to reference case
	UNIT 2200 - Syngas Treatment and conditioning line (2x50%)					
	LP steam generator BFW pre-heaters Condensate pre-heater Final syngas cooler					Size increased Size increased Size increased Size decreased
	UNIT 2350 - Amine Guard FS Process Unit (1x100%)					
	Amine Guard FS Process, including: One amine absorber one amine stripper total carbon capture: 85.3%	Solvent: amine	Feed gas: 588,200 Nm3/h 54 barg 15 °C			To be added
	Unit 2500 - CO ₂ compression Unit (2 x 50%)					
_	CO2 compression Unit (2 x 50%)		Feed gas flowrate: 224300 Nm3/h			Size changed (+ 16%)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 1 of 72

CLIENT : IEAGHG

PROJECT NAME : CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS

DOCUMENT NAME : ECONOMICS FWI CONTRACT : 1-BD-0681 A

ISSUED BY : L. CASTRONUOVO

CHECKED BY : N. FERRARI APPROVED BY : L. MANCUSO

Date	Revised Pages	Issued by	Checked by	Approved by

 $CO_{_2}$ Capture at Coal Based Power and Hydrogen Plants Date:

Chapter F - Economics

Date: January 2014

Sheet: 2 of 72

TABLE OF CONTENTS

1.	Intr	roduction	3
2.	Car	pital cost	6
	2.1.	Definitions	6
	2.2.	Estimating methodology	7
		2.2.1. Total Plant Cost	
		2.2.2. Total Capital Requirement	8
	2.3.	Total Plant Cost summary	9
		2.3.1. SC PC-based cases	9
		2.3.2. IGCC-based cases	13
		2.3.3. Gasification based cases for H_2 and power co-production	
		2.3.4. Sensitivity cases	
		2.3.5. Utilities and Offsite brake-down	36
3.	Ope	erating and Maintenance costs	38
	3.1.	Variable costs	38
	3.2.	Fixed costs	41
		3.2.1. Operating Labour costs	41
		3.2.2. Overhead charges	
		3.2.3. Maintenance costs	43
	3.3.	Summary	45
4.	Fin	ancial analysis	47
	4.1.	Objective of the economic modelling	47
	4.2.	Definitions	47
		4.2.1. Levelized Cost Of Electricity (LCOE) and Levelized Cost Of I	Hydrogen
		(LCOH)	47
		4.2.2. Cost of CO ₂ avoidance	47
	4.3.	Macroeconomic bases	48
	4.4.	Financial analysis results	49
	4.5.	Sensitivity analysis	54
		4.5.1. Coal cost sensitivity	55
		4.5.2. Discount rate variation	
		4.5.3. Plant life	
		4.5.4. CO ₂ transport & storage cost	
		4.5.5. CO ₂ emission cost	
		4.5.6. Load factor	
		4.5.7. Electricity selling price (Case 5.1 / 5.2 / 5.3)	72

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 3 of 72

1. Introduction

Purpose of this chapter is to present the results of the economic analysis, carried out to evaluate the Levelized Cost of Electricity (LCOE) and the CO₂ Avoidance Cost (CAC) of the study cases, or the Levelized Cost of Hydrogen (LCOH) production for the hydrogen and power co-production cases.

Capital cost and operating & maintenance (O&M) costs for the different cases have been evaluated and are presented in this chapter, along with the results of the financial model.

All economical inputs used to perform this analysis are set in accordance with the economic bases reported in chapter B of this report.

Due to the possible floating of some economic input data, an exhaustive sensitivity analysis is also performed and presented in this chapter on key parameters such as:

- Fuel cost,
- Plant life (project duration),
- Discount rate,
- Costs related to CO₂ emission or transport & storage.

A full economical assessment is made for all the main study cases, whose major characteristics are summarized in the overleaf Table 1, consisting of: three (3) pulverised boiler based plants (Case 1 to Case 3), three (3) IGCC-based plants (Case 4.1 to Case 4.3) and three (3) hydrogen and power co-production plants (Case 5.1 to Case 5.3).

For the sensitivity cases of the study, made to assess woody biomass co-firing, near-zero emissions and sensitivity to alternative types of cooling system, a delta capital cost with respect to the relevant reference case is also evaluated and presented in this chapter. The sensitivity study cases are listed in Table 2.

All the technical features of these cases are given in the previous chapters of the report. The following sections provide the results of the economical modelling only.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 4 of 72

Table 1. Study cases

Туре	Case	Plant type	CO ₂ capture target	Key technological features
pa	Case 1 (reference)	SC PC	-	Alstom Wet limestone scrubbing FGD
Boiler-based	Case 2	SC PC w CCS	90%	 Alstom Wet limestone scrubbing FGD CANSOLV solvent scrubbing (post-comb. capture)
Boil	Case 3	Oxy-SC PC	90%	 FW Energie Circulating Fluid Bed Scrubber CFBS FGD technology Air Products' Cryogenic Purification Unit
pa	Case 4.1	IGCC	90%	 Shell Coal Gasification Process withSyngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG)
IGCC-based	Case 4.2	IGCC	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) F-class gas turbines (~275 MWe eq. NG)
I	Case 4.3	IGCC	90%	 MHI, Air-Blown two-stage entrained-bed gasifier UOP Selexol solvent scrubbing Two (2) MHI 701 F4 gas turbines
	Case 5.1	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) E-class gas turbines (~ 130 MWe eq. NG)
H ₂ & Power	Case 5.2	IGCC + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Two (2) frame 6 (~ 77 MWe eq. NG)
H,	Case 5.3	Gasification + Boiler + H ₂ (PSA)	90%	 General Electric, Radiant Syngas Cooler UOP Selexol solvent scrubbing Off-gas based Boiler to mostly cover auxiliary power demand of the plant

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 5 of 72

Table 2. - Sensitivity study cases

Case	Plant type	CO ₂ capture target	Key technological features
Case 2.1	SC PC w CCS	100	As Case 2 + woody biomass co-firing (zero CO ₂ emission)
Case 3.1	Oxy-SC PC	98-99%	As Case 3 + Air Products' PRISM membranes
Case 4.2.1	IGCC	98-99%	As Case 4.2 + additional MDEA solvent scrubbing
Case 5.3.1	Gasification + Boiler + H ₂ (PSA)	98-99%	As Case 5.3 + additional MDEA solvent scrubbing
Case 1(SW)	SC PC	-	As Case 1, with seawater cooling
Case 1(AC)	SC PC	-	As Case 1, with air cooling
Case 2(SW)	SC PC w CCS	90%	As Case 2, with seawater cooling
Case 2(AC)	SC PC w CCS	90%	As Case 2, with air cooling
Case 3(SW)	Oxy-SC PC	90%	As Case 3, with seawater cooling
Case 3(AC)	Oxy-SC PC	90%	As Case 3, with air cooling
Case 4.2 (SW)	IGCC	90%	As Case 4.2, with seawater cooling
Case 4.2 (AC)	IGCC	90%	As Case 4.2, with air cooling

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 6 of 72

2. Capital cost

2.1. Definitions

Main cost estimating basis are described in chapter B of this report. This section provides details on the Total Capital Requirement (TCR), also named as Total Investment Cost (TIC), of the various study cases.

TCR is defined in general accordance with the White Paper "Toward a common method of cost estimation for CO_2 capture and storage at fossil fuel power plants", (March 2013), produced collaboratively by authors from EPRI, IEAGHG, Carnegie Mellon University, MIT, IEA, GCCSI and Vattenfall.

The **Total Capital Requirement** (**TCR**) is defined as the sum of:

- Total Plant Cost (**TPC**)
- Interest during construction
- Spare parts cost
- Working capital
- Start-up costs
- Owner's costs.

The Total Plant Cost (TPC) is the installed cost of the plant, including contingencies.

The TPC of the different study cases is presented in the following sections, broken down into the following main process units:

• SC-PC-based cases:

- Solids handling
- o Boiler
- o DeNOx
- o FGD
- Steam Cycle
- o CO₂ capture (Post-combustion capture cases)
- o CO₂ compression and dehydration (Oxy-combustion cases)
- ASU (Oxy-combustion cases)
- Utilities & offsites (including cooling system, electrical system, process and waste water system and other offsites).
- Gasification-based cases (power or power and hydrogen co-production):
 - Solids handling
 - Gasification Island
 - o ASU

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 7 of 72

- Syngas treatment and conditioning line
- o AGR
- o SRU & TGT
- o PSA (hydrogen cases)
- o Combined Cycle (or Boiler Island)
- o CO₂ compression and dehydration
- Utilities & offsites (e.g. cooling system, electrical system, demineralised water).

Moreover, for each process unit, the TPC is split into the following items, as further discussed in the next sections:

- Direct materials
- Construction
- EPC services
- Other costs
- Contingency.

2.2. Estimating methodology

The estimate is an AACE Class 4 estimate (accuracy range +35%/-15%), based on 2Q2013 price level, in euro (\in).

2.2.1. Total Plant Cost

The estimating methodology used by FW for the evaluation of the Total Plant Cost (TPC) items of the process units is described in the following sections.

Direct materials

For each different process unit, direct materials are estimated using company inhouse database or conceptual estimating models.

Where detailed and sized equipment list has been developed, K-base (commercially available software) run has been made for the equipment estimate. For units having capacity only, cost is based on previous estimates done for similar units, by scaling up or down (as applicable) the cost on capacity ratio.

For some cases of the study, technology suppliers provided specific budgetary quotations for certain equipment or units of the plant, which have been used as basis for the estimate of the case. These include the following main systems or units:

- Gasification Island;
- CO₂ capture units (AGR);
- FGD.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 8 of 72

Construction and EPC services

For each unit or block of units, construction and EPC services are factored on the direct materials costs; factor multipliers are based on FW in-house data from cost estimates made in the past for similar plants.

Other costs

Other costs mainly include:

- Temporary facilities;
- Freight, taxes and insurance;
- License fees.

Temporary facilities, freight, taxes, insurance and license fees are estimated as a percentage of the construction cost, in accordance with Foster Wheeler experience and in-house data bank.

Contingency

A project contingency is added to the capital cost to give a 50% probability of a cost over-run or under-run. For the accuracy considered in this study, FW's view is that contingency should be in the range of 10-15% of the total plant cost. 10% is assumed for this study for all the different units of the plant, for consistency with the other IEAGHG studies.

A process contingency is not added to the plant cost, because processes are not considered to be at very early stage of development and their design, performance, and costs are not highly uncertain.

2.2.2. <u>Total Capital Requirement</u>

As written before, Total Capital Requirement (TCR) is the sum of the TPC and following items:

- Interest during construction, assumed same as discount rate (8%).
- Spare parts cost, assumed as 0.5% of TPC.
- Working capital, including 30 days inventories of fuel and chemicals.
- Start-up costs, assumed as 2% of TPC, plus 25% of fuel cost for one month, plus 3 months O&M costs and 1 month of catalyst, chemicals etc.
- Owner's costs, assumed as 7% of TPC.

Further details on the above cost items are shown in chapter B of the report.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 9 of 72

2.3. Total Plant Cost summary

Table 4 to Table 9 show the TPC of the different study cases listed in Table 1. Each table is followed by the related pie chart of the total plant cost to show the percentage weight of each unit on the overall capital cost of the plant.

Total Plant Cost and Total Capital Requirement figures for the different cases are also reported in the below table for summary purpose.

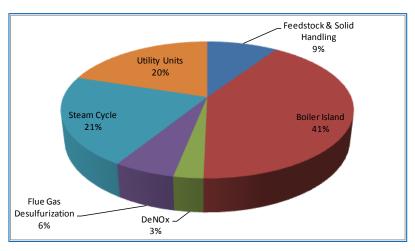
For the power production cases, the specific costs, defined as the ratio between either the TPC or the TCR and the net power output, are also reported.

Туре	Case	Total Plant Cost (TPC)	Total Capital Requirement (TCR) (M€)	Specific cost [TPC/Net Power] (€/kW)	Specific cost [TCR/Net Power] (€/kW)
۷_	Case 1	1,490	1,943	1,447	1,887
Boiler- based	Case 2	2,279	2,961	2,771	3,600
B	Case 3	2,301	2,986	2,761	3,583
<i>-</i> \ _	Case 4.1	2,538	3,497	3,157	4,350
IGCC- based	Case 4.2	2,688	3,705	3,074	4,238
I (Case 4.3	2,629	3,625	3,046	4,200
r	Case 5.1	2,461	3,394	N/A	N/A
H ₂ & Power	Case 5.2	2,390	3,297	N/A	N/A
Н	Case 5.3	2,101	2,901	N/A	N/A

Table 3. TPC and TCR of study cases

2.3.1. SC PC-based cases

The following tables and figures show the Total Plant Cost summary of the SC PC-based cases.


CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 1 - SC PC WITHOUT CARBON CAPTURE CLIENT: LOCATION DATE:

CONTRACT: 1-BD-0681A CLIENT: IEA GHG

LOCATION: THE NETHERLANDS DATE: MAY 2013

REV.: 0

									REV.: 0
		UNIT 1000	UNIT 2000	UNIT 2050	UNIT 2100	UNIT 3000	UNIT 6000	TOTAL COST	
POS.	DESCRIPTION	Feedstock & Solid Handling	Boiler Island	DeNOx	Flue Gas Desulfurization	Steam Cycle	Utility Units	EURO	NOTES / REMARKS
1	DIRECT MATERIAL	76,700,000	284,400,000	26,200,000	48,000,000 (3)	177,500,000	153,200,000	766,000,000	1) Total Installed Power: 1077 MW
***************************************									Average Cost: 1,384 €/kW
2	CONSTRUCTION	28,700,000	175,600,000	5,400,000	16,500,000	62,700,000	72,200,000	361,100,000	
									2) Total Net Power: 1029 MW
3	DIRECT FIELD COST	105,400,000	460,000,000	31,600,000	64,500,000	240,200,000	225,400,000	1,127,100,000	Average Cost: 1,488 €/kW
4	OTHER COSTS	6,100,000	31,400,000	1,400,000	3,600,000	13,500,000	14,000,000	70,000,000	(3) Including 12 M€ for the gas-gas
									heater
5	EPC SERVICES	14,700,000	64,400,000	4,400,000	9,100,000	33,600,000	31,500,000	157,700,000	
6	TOTAL INSTALLED COST	126,200,000	555,800,000	37,400,000	77,200,000	287,300,000	270,900,000	1,354,800,000	
7	PROJECT CONTINGENCY	12,600,000	55,600,000	3,700,000	7,800,000	28,700,000	27,100,000	135,500,000	
8	PROCESS CONTINGENCY	_		_	_				
	FROCESS CONTINGENCY	-	-	-	-	-	-	-	
9	TOTAL PLANT COST	138,800,000	611,400,000	41,100,000	85,000,000	316,000,000	298,000,000	1,490,300,000	

Figure 1. Case 1 – Unit percentage weight on TPC

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 2 - SC PC WITH CARBON CAPTURE

CONTRACT: 1-BD-0681A CLIENT: IEA GHG

LOCATION: THE NETHERLANDS

DATE: MAY 2013 REV.: 0

										ILV 0	
		UNIT 1000	UNIT 2000	UNIT 2050	UNIT 2100	UNIT 3000	UNIT 4000	UNIT 5000	UNIT 6000	TOTAL COST	
POS.		Feedstock & Solid Handling	Boiler Island	DeNOx	Flue Gas Desulfurization	Steam Cycle	CO2 Amine Absorption	CO2 Compression	Utility Units	EURO	NOTES / REMARKS
1	DIRECT MATERIAL	76,700,000	284,400,000	26,200,000	49,600,000 (3)	166,300,000	326,400,000	43,500,000	242,800,000	1,210,000,000	1) Total Installed Power: 958 MW Average Cost: 2,379 €/kW
2	CONSTRUCTION	28,700,000	175,600,000	5,400,000	18,500,000	62,700,000	86,200,000	31,400,000	102,600,000	511,100,000	2) Total Net Power: 822 MW
3	DIRECT FIELD COST	105,400,000	460,000,000	31,600,000	68,100,000	229,000,000	412,600,000	74,900,000	345,400,000		Average Cost: 2,772 €/kW
4	OTHER COSTS	6,100,000	31,400,000	1,400,000	4,200,000	13,200,000	21,000,000	5,300,000	20,700,000		(3) Including 12 M€ for the gas-gas heater
5	EPC SERVICES	14,700,000	64,400,000	4,400,000	9,600,000	32,100,000	57,900,000	10,500,000	48,300,000	241,900,000	
6	TOTAL INSTALLED COST	126,200,000	555,800,000	37,400,000	81,900,000	274,300,000	491,500,000	90,700,000	414,400,000	2,072,200,000	
7	PROJECT CONTINGENCY	12,600,000	55,600,000	3,700,000	8,100,000	27,400,000	49,200,000	9,100,000	41,400,000	207,100,000	
8	PROCESS CONTINGENCY	-	-	_	=	-	_	_	_		
9	TOTAL PLANT COST	138,800,000	611,400,000	41,100,000	90,000,000	301,700,000	540,700,000	99,800,000	455,800,000	2,279,300,000	

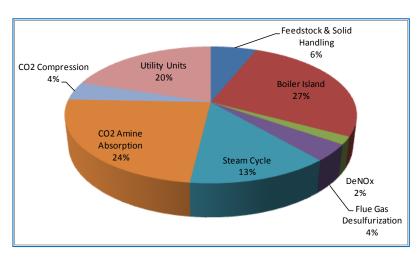
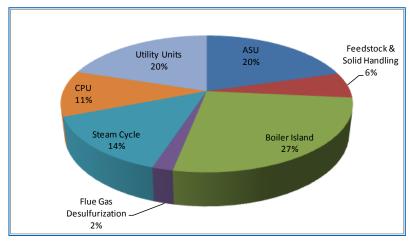


Figure 2. Case 2 – Unit percentage weight on TPC

Table 6. Case 3 – Total Plant Cost

${\rm CO_2}$ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 3 - OXYCOMBUSTION BOILER


LOCATION: THE NETHERLANDS
DATE: MAY 2013
REV: 0

IEA GHG

CONTRACT: 1-BD-0681A

CLIENT:

										REV.: 0
		UNIT 900	UNIT 1000	UNIT 2000	UNIT 2100	UNIT 3000	UNIT 4000	UNIT 6000	TOTAL	
POS.	DESCRIPTION	ASU	Feedstock & Solid Handling	Boiler Island	Flue Gas Desulfurization	Steam Cycle	СРИ	Utility Units	COST	NOTES / REMARKS
1	DIRECT MATERIAL	268,100,000	76,700,000	284,400,000	25,000,000	182,800,000	151,000,000	247,000,000	1,235,000,000	1) Total Installed Power: 1101 MW
										Average Cost: 2,090 €/kW
2	CONSTRUCTION	90,400,000	28,700,000	175,600,000	8,800,000	62,700,000	44,500,000	102,700,000	513,400,000	
										2) Total Net Power: 833 MW
3	DIRECT FIELD COST	358,500,000	105,400,000	460,000,000	33,800,000	245,500,000	195,500,000	349,700,000	1,748,400,000	Average Cost: 2,762 €/kW
4	OTHER COSTS	19,800,000	6,100,000	31,400,000	1,900,000	13,700,000	4,500,000	20,800,000	98,200,000	
5	EPC SERVICES	50,300,000	14,700,000	64,400,000	4,800,000	34,400,000	27,400,000	49,000,000	245,000,000	
-										
6	TOTAL INSTALLED COST	428,600,000	126,200,000	555,800,000	40,500,000	293,600,000	227,400,000	419,500,000	2,091,600,000	
7	PROJECT CONTINGENCY	42,900,000	12,600,000	55,600,000	4,100,000	29,400,000	22,600,000	42,000,000	209,200,000	
8	PROCESS CONTINGENCY	-	-	-	-	-	-	-	-	
9	TOTAL PLANT COST	471,500,000	138,800,000	611,400,000	44,600,000	323,000,000	250,000,000	461,500,000	2,300,800,000	

Figure 3. Case 3 – Unit percentage weight on TPC

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 13 of 72

2.3.2. <u>IGCC-based cases</u>

The following tables and figures show the Total Plant Cost summary of the IGCC-based cases.

Table 7. Case 4.1 – Total Plant Cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 4.1 - SHELL BASED IGCC with CARBON CAPTURE

CONTRACT: 1-BD-0681A
CLIENT: IEA GHG
LOCATION: THE NETHERLANDS
DATE: MAY 2013

REV.: 0

												REV.: U
		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 3000	UNIT 4000		
POS.	DESCRIPTION	Solid Handling	Gasification Island	ASU	Syngas Treatment & Sour Water System	AGR	SRU & TGT	CO2 Compression	Combined Cycle	Utility & Offsites	TOTAL COST EURO	NOTES / REMARKS
1	DIRECT MATERIALS	50,000,000	335,000,000	164,000,000	64,800,000	63,000,000	48,500,000	35,000,000	335,000,000	219,100,000	1.314.400.000	1) Total Installed Power: 1063 MW
					***************************************			***************************************	***************************************			Average Cost: 2,387 €/kW
2	CONSTRUCTION	17,400,000	140,000,000	70,000,000	41,300,000	47,000,000	30,000,000	24,500,000	150,000,000	62,000,000	582,200,000	
												2) Total Net Power: 807 MW
3	DIRECT FIELD COST	67,400,000	475,000,000	234,000,000	106,100,000	110,000,000	78,500,000	59,500,000	485,000,000	281,100,000	1,896,600,000	Average Cost: 3,145 €/kW
4	OTHER COSTS	3,700,000	23,500,000	11,700,000	7,300,000	8,000,000	5,400,000	4,300,000	29,600,000	14,600,000	108,100,000	
5	EPC SERVICES	10,700,000	76,000,000	37,500,000	15,900,000	17,600,000	12,600,000	9,500,000	77,600,000	44,900,000	302,300,000	
6	TOTAL INSTALLED COST	81,800,000	574,500,000	283,200,000	129,300,000	135,600,000	96,500,000	73,300,000	592,200,000	340,600,000	2,307,000,000	
7	PROJECT CONTINGENCY	8,200,000	57,500,000	28,300,000	12,900,000	13,500,000	9,700,000	7,300,000	59,200,000	34,100,000	230,700,000	
8	PROCESS CONTINGENCY	-	-	-	-	-	-	-	-	-	-	
					·							
9	TOTAL PLANT COST	90.000.000	632,000,000	311.500.000	142,200,000	149.100.000	106,200,000	80,600,000	651,400,000	374,700,000	2,537,700,000	

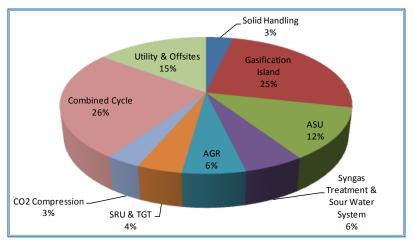
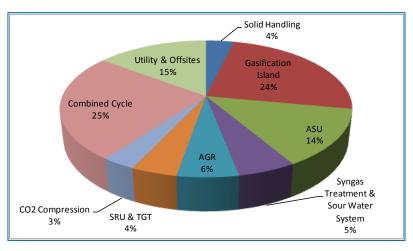


Figure 4. Case 4.1 – Unit percentage weight on TPC

Table 8. Case 4.2 – Total Plant Cost



${\rm CO_2}$ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 4.2 - GE BASED IGCC with CARBON CAPTURE

CONTRACT:	1-BD-0681A
CLIENT:	IEA GHG
LOCATION:	THE NETHERLAN
DATE:	MAY 2013

200/111011	
DATE:	MA'
REV.:	0

												REV.: 0
		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 3000	UNIT 4000	TOTAL	
POS.	DESCRIPTION	Solid Handling	Gasification Island	ASU	Syngas Treatment & Sour Water System	AGR	SRU & TGT	CO2 Compression	Combined Cycle	Utility & Offsites	COST	NOTES / REMARKS
1	DIRECT MATERIALS	55,000,000	345,000,000	194,000,000	67,350,000	64,000,000	52,000,000	36,400,000	348,000,000	232,400,000	1.394.150.000	1) Total Installed Power: 1141 MW
												Average Cost: 2,356 €/kW
2	CONSTRUCTION	19,700,000	145,000,000	80,000,000	41,700,000	49,000,000	33,000,000	25,500,000	156,000,000	65,000,000	614,900,000	
												2) Total Net Power: 874 MW
3	DIRECT FIELD COST	74,700,000	490,000,000	274,000,000	109,050,000	113,000,000	85,000,000	61,900,000	504,000,000	297,400,000	2,009,050,000	Average Cost: 3,076 €/kW
											, , ,	
4	OTHER COSTS	4,200,000	24,300,000	13,500,000	7,500,000	8,300,000	5,900,000	4,400,000	30,700,000	15,400,000	114,200,000	
***************************************			***************************************	***************************************	***************************************				***************************************	~~~~~		
5	EPC SERVICES	12,000,000	78,400,000	43,900,000	16,400,000	18,200,000	13,600,000	9,800,000	80,700,000	47,500,000	320,500,000	
6	TOTAL INSTALLED COST	90,900,000	592,700,000	331,400,000	132,950,000	139,500,000	104,500,000	76,100,000	615,400,000	360,300,000	2,443,750,000	
7	PROJECT CONTINGENCY	9,100,000	59,300,000	33,100,000	13,300,000	13,900,000	10,500,000	7,600,000	61,500,000	36,000,000	244,300,000	
8	PROCESS CONTINGENCY	-	-	-	-	-		-	-	-	-	
9	TOTAL PLANT COST	100,000,000	652,000,000	364,500,000	146,250,000	153,400,000	115,000,000	83,700,000	676,900,000	396,300,000	2,688,050,000	

Figure 5. Case 4.2 – Unit percentage weight on TPC

Table 9. Case 4.3 – Total Plant Cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 4.3 - MHI BASED IGCC with CARBON CAPTURE

CONTRACT: 1-BD-0681A
CLIENT: IEA GHG
LOCATION: THE NETHERLANDS
DATE: MAY 2013

												REV.: 0
		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 3000	UNIT 4000	TOTAL COST	
POS.	DESCRIPTION	Solid	Gasification	ASU	Syngas	AGR	SRU & TGT	CO2	Combined	Utility &	EURO	NOTES / REMARKS
		Handling	Island		Treatment			Compression	Cycle	Offsites		
1	DIRECT MATERIALS	55,000,000	450,000,000	INCLUDED in UNIT 1000	105,000,000	93,000,000	55,000,000	37,000,000	335,000,000	227,350,000	1,357,350,000	1) Total Installed Power: 1093 MW
												Average Cost: 2,405 €/kW
2	CONSTRUCTION	19,700,000	190,000,000	INCLUDED in UNIT 1000	47,000,000	70,000,000	34,500,000	25,700,000	150,000,000	69,750,000	606,650,000	
												2) Total Net Power: 863 MW
3	DIRECT FIELD COST	74,700,000	640,000,000	0	152,000,000	163,000,000	89,500,000	62,700,000	485,000,000	297,100,000	1.964.000.000	Average Cost: 3,046 €/kW
		, ,			, ,	, ,	, ,		, ,		1,001,000,000	-
4	OTHER COSTS	4,200,000	31,800,000	-	9,200,000	11,900,000	6,200,000	4,500,000	29,600,000	15,900,000	113,300,000	
***************************************		***************************************	***************************************	***************************************		***************************************	***************************************	***************************************	***************************************		110,000,000	
5	EPC SERVICES	12,000,000	102,400,000		22,700,000	26,200,000	14,300,000	10,100,000	77,600,000	47,500,000	312,800,000	
	El o delivideo	12,000,000	102,400,000	••••••	22,700,000	20,200,000	14,000,000	10,100,000	77,000,000	41,000,000	312,000,000	
6	TOTAL INSTALLED COST	90,900,000	774,200,000	0	183,900,000	201,100,000	110,000,000	77,300,000	592,200,000	360,500,000	2,390,100,000	
7	PROJECT CONTINGENCY	9,100,000	77,400,000	-	18,400,000	20,100,000	11,000,000	7,700,000	59,200,000	36,100,000	239,000,000	
8	PROCESS CONTINGENCY	-	-	-	-	-		-	-	-	-	
9	TOTAL PLANT COST	100,000,000	851,600,000	0	202,300,000	221,200,000	121,000,000	85,000,000	651,400,000	396,600,000	2,629,100,000	

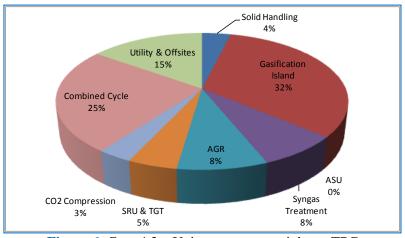
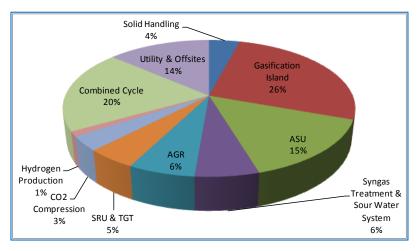


Figure 6. Case 4.3 – Unit percentage weight on TPC

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 17 of 72

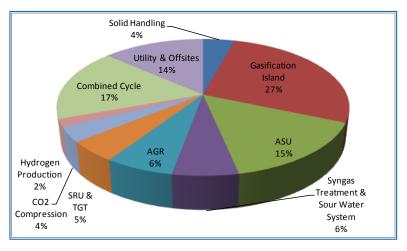
2.3.3. Gasification based cases for H_2 and power co-production


The following tables and figures show the Total Plant Cost summary of the hydrogen and power co-production cases.

${\rm CO_2}$ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 5.1 - IGCC (GE Energy) HYDROGEN PRODUCTION - CLASS E GTs

CONTRACT:	1-BD-0681A
CLIENT:	IEA GHG
LOCATION:	THE NETHERLANDS
DATE:	MAY 2013
REV.:	0

		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 2600	UNIT 3000	UNIT 4000		ILL V
POS.	DESCRIPTION	Solid Handling	Gasification Island		Syngas Treatment & Sour Water System		SRU & TGT	CO2 Compression	Hydrogen	Combined Cycle	Utility & Offsites	TOTAL COST EURO	
1	DIRECT MATERIALS	55,000,000	345,000,000	194,000,000	67,350,000	64,000,000	52,000,000	36,400,000	13,000,000	250,000,000	196,800,000	1,273,550,000	1
													1
2	CONSTRUCTION	19,700,000	145,000,000	80,000,000	41,700,000	49,000,000	33,000,000	25,500,000	8,000,000	110,000,000	54,400,000	566,300,000	ĺ
3	DIRECT FIELD COST	74,700,000	490,000,000	274,000,000	109,050,000	113,000,000	85,000,000	61,900,000	21,000,000	360,000,000	251,200,000	1,839,850,000	l
													ĺ
4	OTHER COSTS	4,200,000	24,300,000	13,500,000	7,500,000	8,300,000	5,900,000	4,400,000	1,400,000	21,800,000	12,900,000	104,200,000	1
													1
5	EPC SERVICES	12,000,000	78,400,000	43,900,000	16,400,000	18,200,000	13,600,000	9,800,000	3,300,000	57,600,000	40,100,000	293,300,000	i
6	TOTAL INSTALLED COST	90,900,000	592,700,000	331,400,000	132,950,000	139,500,000	104,500,000	76,100,000	25,700,000	439,400,000	304,200,000	2,237,350,000	İ
			***************************************	***************************************		***************************************	***************************************	***************************************		***************************************	***************************************	***************************************	1
7	PROJECT CONTINGENCY	9,100,000	59,300,000	33,100,000	13,300,000	13,900,000	10,500,000	7,600,000	2,600,000	43,900,000	30,400,000	223,700,000	ı
8	PROCESS CONTINGENCY	-	-	-	-	-	***************************************	-		-	-	-	ĺ
					***************************************	***************************************	***************************************			***************************************			ı
9	TOTAL PLANT COST	100.000.000	652,000,000	364.500.000	146,250,000	153,400,000	115,000,000	83,700,000	28,300,000	483,300,000	334.600.000	2,461,050,000	1


Figure 7. Case 5.1 – Unit percentage weight on TPC

${\rm CO_2}$ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS CASE 5.2 - IGCC (GE Energy) HYDROGEN PRODUCTION - FRAME 6 GTs

CONTRACT:	1-BD-0681A
CLIENT:	IEA GHG
LOCATION:	THE NETHERLANDS
DATE:	SEPTEMBER 2013
REV.:	0

		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 2600	UNIT 3000	UNIT 4000	TOTAL	
POS.	DESCRIPTION	Solid Handling	Gasification Island	ASU	Syngas Treatment & Sour Water System	AGR	SRU & TGT	CO2 Compression	Hydrogen Production	Combined Cycle	Utility & Offsites	COST EURO	NOTES / REMARKS
1	DIRECT MATERIALS	55,000,000	345,000,000	194,000,000	67,350,000	64,000,000	52,000,000	36,400,000	19,000,000	212,000,000	189,800,000	1,234,550,000	
2	CONSTRUCTION	19,700,000	145,000,000	80,000,000	41,700,000	49,000,000	33,000,000	25,500,000	13,000,000	94,000,000	51,300,000	552,200,000	
3	DIRECT FIELD COST	74,700,000	490,000,000	274,000,000	109,050,000	113,000,000	85,000,000	61,900,000	32,000,000	306,000,000	241,100,000	1,786,750,000	
	J	1 1,1 00,000	100,000,000	2. 1,000,000	,,,,,,,,,	1.0,000,000	00,000,000	0.,000,000	02,000,000	000,000,000	211,100,000	1,100,100,000	
4	OTHER COSTS	4,200,000	24,300,000	13,500,000	7,500,000	8,300,000	5,900,000	4,400,000	2,200,000	18,600,000	12,300,000	101,200,000	
5	EPC SERVICES	12,000,000	78,400,000	43,900,000	16,400,000	18,200,000	13,600,000	9,800,000	5,000,000	48,900,000	38,500,000	284,700,000	
_												0.470.050.000	
6	TOTAL INSTALLED COST	90,900,000	592,700,000	331,400,000	132,950,000	139,500,000	104,500,000	76,100,000	39,200,000	373,500,000	291,900,000	2,172,650,000	
7	PROJECT CONTINGENCY	9,100,000	59,300,000	33,100,000	13,300,000	14,000,000	10,400,000	7,600,000	3,900,000	37,400,000	29,200,000	217,300,000	
		***************************************	***************************************	······································	***************************************	***************************************	***************************************				***************************************	***************************************	
8	PROCESS CONTINGENCY	-	-	-	-	-		-	-	-	-	-	
9	TOTAL PLANT COST	100,000,000	652,000,000	364,500,000	146,250,000	153,500,000	114,900,000	83,700,000	43,100,000	410,900,000	321,100,000	2,389,950,000	

Figure 8. Case 5.2 – Unit percentage weight on TPC

.

Table 12. Case 5.3 – Total Plant Cost

${\rm CO_2}$ CAPTURE AT BASED POWER AND HYDROGEN PLANTS CASE 5.3 - IGCC (GE Energy) HYDROGEN PRODUCTION - BOILER

CONTRACT:	1-BD-0681A
CLIENT:	IEA GHG
LOCATION:	THE NETHERLANDS
DATE:	SEPTEMBER 2013
REV.:	0

		UNIT 900	UNIT 1000	UNIT 2100	UNIT 2200	UNIT 2300	UNIT 2400	UNIT 2500	UNIT 2600	UNIT 3000	UNIT 4000	TOTAL	ICE V
POS.	DESCRIPTION	Solid Handling	Gasification Island	ASU	Syngas Treatment & Sour Water System		SRU & TGT	CO2 Compression	Hydrogen	Steam Cycle (Boiler & ST)	Utility & Offsites	COST EURO	NOTES / REMAR
1	DIRECT MATERIALS	55,000,000	345,000,000	194,000,000	67,350,000	64,000,000	52,000,000	36,400,000	27,000,000	82,000,000	165,700,000	1,088,450,000	
		***************************************					***************************************						
2	CONSTRUCTION	19,700,000	145,000,000	80,000,000	41,700,000	49,000,000	33,000,000	25,500,000	17,000,000	32,800,000	39,300,000	483,000,000	
												4 554 450 000	
3	DIRECT FIELD COST	74,700,000	490,000,000	274,000,000	109,050,000	113,000,000	85,000,000	61,900,000	44,000,000	114,800,000	205,000,000	1,571,450,000	
<i>1</i>	OTHER COSTS	4,200,000	24,300,000	13,500,000	7,500,000	8,300,000	5,900,000	4,400,000	3,000,000	6,700,000	10,100,000	87,900,000	
	OTTEN COOTS	4,200,000	24,300,000	13,300,000	7,300,000	0,000,000	3,300,000	4,400,000	3,000,000	0,700,000	10,100,000	07,500,000	
5	EPC SERVICES	12,000,000	78,400,000	43,900,000	16,400,000	18,200,000	13,600,000	9,800,000	7,100,000	18,400,000	32,800,000	250,600,000	
6	TOTAL INSTALLED COST	90,900,000	592,700,000	331,400,000	132,950,000	139,500,000	104,500,000	76,100,000	54,100,000	139,900,000	247,900,000	1,909,950,000	
7	PROJECT CONTINGENCY	9,100,000	59,300,000	33,100,000	13,300,000	14,000,000	10,400,000	7,600,000	5,400,000	14,000,000	24,800,000	191,000,000	
8	PROCESS CONTINGENCY	-	-	-	-	-		-	-	-	-	-	
		100 000 000	050 000 000	004 500 000	440.050.000	450 500 000	444 000 000	00 700 000	50 500 000	450 000 000	070 700 000	0.400.050.000	
9	TOTAL PLANT COST	100,000,000	652,000,000	364,500,000	146,250,000	153,500,000	114,900,000	83,700,000	59,500,000	153,900,000	272,700,000	2,100,950,000	

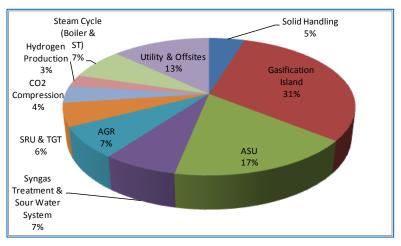


Figure 9. Case 5.3 – Unit percentage weight on TPC

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 21 of 72

2.3.4. Sensitivity cases

The following tables show the delta Total Plant Cost summary and its breakdown into process units of the sensitivity cases of the study listed in Table 2, made to assess woody biomass co-firing, near-zero emissions and sensitivity to alternative types of cooling system. Black figure represents the cost increase with respect to the reference case, while cost reductions are indicated with red figure in brackets.

 Table 13. TPC variation for sensitivity cases

FOSTER WHEELER	E	STIMATE CA	ASE SUMM/	ARY						CONTRACT: 1-BD-0681A CLIENT: IEA GHG LOCATION: THE NETHERLANDS DATE: SEPTEMBER 2013 REV.: 70
	TOTAL		DIRECT	MATERIAL COS	r - EURO		OVERALL	. PROJECT - EU	RO	
CASE NUMBER	COST-MAY 2013	BASE	DELTA EQUIPMENT	DELTA BULK MATERIAL	TOTAL DELTA	TOTAL	TOTAL COST	DELTA COST	DELTA %	NOTES / REMARKS
CASE 1 - SC PC W/O CARBON CAPTURE - A.C. SENSITIVITY CASE	1,490,300,000	766,000,000	(29,700,000)	(3,000,000)	(32,700,000)	733,300,000	1,455,000,000	(35,300,000)	(2.4)	
CASE 1 - SC PC W/O CARBON CAPTURE - S.W. SENSITIVITY CASE	1,490,300,000	766,000,000	(8,800,000)	(3,000,000)	(11,800,000)	754,200,000	1,467,300,000	(23,000,000)	(1.5)	
CASE 2 - SC PC WITH CARBON CAPTURE - A.C. SENSITIVITY CASE	2,279,300,000	1,213,900,000	(27,700,000)	(3,000,000)	(30,700,000)	1,183,200,000	2,247,000,000	(32,300,000)	(1.4)	
CASE 2 - SC PC WITH CARBON CAPTURE - S.W. SENSITIVITY CASE	2,279,300,000	1,213,900,000	(11,100,000)	(3,000,000)	(14,100,000)	1,199,800,000	2,252,800,000	(26,500,000)	(1.2)	
CASE 2.1 - SC PC WITH CARBON CAPTURE - CO-FIRING WITH BIOMASS	2,279,300,000	1,213,900,000	23,800,000	5,000,000	28,800,000	1,242,700,000	2,333,400,000	54,100,000	2.4	
CASE 3 - OXYCOMBUSTION BOILER - A.C. SENSITIVITY CASE	2,300,800,000	1,235,000,000	(28,400,000)	(3,000,000)	(31,400,000)	1,203,600,000	2,267,600,000	(33,200,000)	(1.4)	
CASE 3 - OXYCOMBUSTION BOILER - S.W. SENSITIVITY CASE	2,300,800,000	1,235,000,000	(2,600,000)	(600,000)	(3,200,000)	1,231,800,000	2,294,800,000	(6,000,000)	(0.3)	
CASE 3.1 - OXYCOMBUSTION - NEAR ZERO EMISSION	2,300,800,000	1,235,000,000	25,000,000	INCLUDED	25,000,000	1,260,000,000	2,325,800,000	25,000,000	1.1	
CASE 4.2 - GE BASED IGCC - COOLING WATER SENSITIVITY CASE (A.C.)	2,688,050,000	1,394,150,000	(23,200,000)	(2,000,000)	(25,200,000)	1,368,950,000	2,660,500,000	(27,550,000)	(1.0)	
CASE 4.2 - GE BASED IGCC - COOLING WATER SENSITIVITY CASE (S.W.	2,688,050,000	1,394,150,000	(6,100,000)	(1,000,000)	(7,100,000)	1,387,050,000	2,674,400,000	(13,650,000)	(0.5)	
CASE 4.2.1 - GE BASED IGCC - HIGH CAPTURE CASE	2,688,050,000	1,394,150,000	21,900,000	4,000,000	25,900,000	1,420,050,000	2,738,000,000	49,950,000	1.9	
CASE 5.3.1 - HYDROGEN PRODUCTION PLANT - HIGH CAPTURE	2,100,950,000	1,088,450,000	21,000,000	4,000,000	25,000,000	1,113,450,000	2,149,200,000	48,250,000	2.3	

Table 14. Case 1 – Air cooling sensitivity case – Capex breakdown into process units

(FOSTE	R	WHEELER
	· ·	W)

CLIENT: IEA GHG LOCATION: The Netherlands PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture - Air Cooled sensitivity case

REVISION	Rev.: Draft		Rev.: 1	Rev.2	Rev.3
DATE	03-Jun-13				
ISSUED BY	NF				
CHECKED BY	LM				
APPROVED BY	LM				

пем	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	AC CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					129,000,000	155,400,000	26,400,000	
PK- 3001 ST- 3001 PK- 3002	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package		1062 MWe			111,000,000	111,000,000	0	Size changed
E- 3001 AC- 3001	Steam condenser Air cooled Steam condenser		1055 MWth 1070 MWth	100 x 90 kW		18,000,000	44,400,000	(18,000,000) 44,400,000	To be deleted To be added
	COOLING SYSTEM					57,400,000	1,300,000	(56,100,000)	
AC- 6001	Closed loop air cooler		64 MWth	1700 kWe			400,000	400,000	To be added
P- 6002 A / B	Cooling Water Pumps (secondary system)	Centrifugal	6880 m3/h x 35 m	950	One in operation, one spare	900,000	900,000	0	Size changed
CT- 6001	Cooling Tower includind: Cooling water basin	Natural draft	1120 MWth			40,000,000		(40,000,000)	To be deleted
P- 6001 A//F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal centrifugal	15000 m3/h x 35 m 1735 m3/h x 30 m	1600 220	Six in operation	15,000,000 300,000		(15,000,000) (300,000)	To be deleted
	Cooling Water Filtration Package Cooling Water Sides tream Filters		Capacity: 9500 m3/h			1,000,000		(1,000,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
	•	TOTAL COS	ST - EURO		•	186,400,000	156,700,000	(29,700,000)	

Table 15. Case 1 – Seawater cooling sensitivity case – Capex breakdown into process units

FOSTERWHEELER

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

TRACT N. 1-BD-0681 A

CASE: 1 - SC PC without carbon capture - Sea Water sensitivity case

REVISION	Rev.: Draft		Rev.: 1	Rev.2	Rev.3
DATE	20-Jun-13				
ISSUED BY	NF				
CHECKED BY	LM				
APPROVED BY	LM				

ПЕМ	DES CRIPTION	ТҰРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	SW CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					129,000,000	147,000,000	18,000,000	
PK- 3001 ST- 3001 PK- 3002	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package		1091 MWe			111,000,000	111,000,000	0	Size changed
E- 3001 E- 3001	Steam condenser Steam condenser	Water cooled Sea Water cooled	1055 MWth 1040 MWth			18,000,000	36,000,000	(18,000,000)	
	COOLING SYSTEM					57,300,000	30,500,000	(26,800,000)	
E- 6001 P- 6001 A / / H	Closed cooling water cooler Sea Cooling Water Pumps	Centrifugal	65 MWth 17000 m3/h x 20 m	1600	Eight in operation		700,000 20,000,000	700,000 20,000,000	To be added
P- 6002 A / B	Machinery Cooling Water Pumps	Centrifugal	5150 m3/h x 35 m		One in operation, one spare	900,000	800,000	(100,000)	Size changed
CT- 6001	Seawater Intake Cooling Tower includind: Cooling water basin	Natural draft	1120 MWth			40,000,000	9,000,000	9,000,000 (40,000,000)	To be deleted
P- 6001 A//F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal centrifugal	15000 m3/h x 35 m 1735 m3/h x 30 m	1600 220	Six in operation	15,000,000 300,000		(15,000,000) (300,000)	To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 9500 m3/h			1,000,000		(1,000,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	To be deleted
	Antiscalant Package- Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
	•	TOTAL COS	ST - EURO	•	•	186,300,000	177,500,000	(8,800,000)	

Table 16. Case 2 – Air cooling sensitivity case – Capex breakdown into process units

FOSTERWY	VHEELER
	VIILLELLI

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. J.B.D.GOSI A

CONTRACT N. 1-BD-0681 A

CASE: 2 - SC PC with carbon capture - Air cooled sensitivity case

REVISION	Rev.: Draft		Rev.: 1	Rev.2	Rev.3
DATE	03-Jul-13				
ISSUED BY	NF				
CHECKED BY	LM				
APPROVED BY	LM				

ІТЕМ	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	AC CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					119,000,000	142,200,000	23,200,000	
PK- 3001 ST- 3001 PK- 3002	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package		947 MWe			105,000,000	105,000,000	0	Size changed
E- 3001 AC- 3001	Steam condenser Air cooled Steam condenser	Water cooled	800 MWth 780 MWth	70 x 90 kWe		14,000,000	37,200,000	(14,000,000) 37,200,000	
	UNIT 4000 - CO2 CAPTURE					-	2,000,000	2,000,000	
E- AC-001 E- AC-002 E- AC-004 E- AC-006	Flue gas cooling water air cooler Wash water air cooler Regenerator condenser Lean solution cooler		Duty: 610 MWth (both train)				2,000,000	2,000,000	Changed from CW cooler to air cooler
	UNIT 5000 - CO2 COMPRESSION					45,300,000	46,600,000	1,300,000	
K - 5001/2	CO2 compression trains	Axial, Electrical Driven 4 Stages	180150 Nm3/h p in : 1,6 bar a p out : 75 bar a	32000	Intercooling: Condensate from Power island	45,300,000	45,000,000	(300,000)	Size changed Intercooling medium changed
AC - 5001 / 2 / 3 / 4	Intercooler	Air cooler	35 MWth per train	510 kWe	Air cooled Cooling Water		1,600,000	1,600,000	
	COOLING SYSTEM					55,800,000	1,600,000	(54,200,000)	
AC- 6001	Closed loop air cooler		60 MWth	1600 kWe			800,000	800,000	To be added
P- 6002	Cooling Water Pumps (secondary system)	Centrifugal	6150 m3/h x 35 m	800	Four-One in operation, one spare		800,000	800,000	Size and number changed
CT- 6001	Cooling Tower includind: Cooling water-basin	Natural draft	1500 MWth			43,000,000		(43,000,000)	To be deleted
P- 6001 A//F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal centrifugal	16000 m3/h x 45 m 2370 m3/h x 30 m	1800 300	Four in operation	11,000,000 400,000		(11,000,000) (400,000)	To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 12000 m3/h			1,200,000		(1,200,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
	•	TOTAL COS	T - EURO	•		220,100,000	192,400,000	(27,700,000)	1

Table 17. Case 2 – Seawater cooling sensitivity case – Capex breakdown into process units

FOSTER	WHEELER	
	w	

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A
CASE: 2 - SC PC with carbon capture - Sea Water sensitivity case

 REVISION
 Rev.: Draft
 Rev.: 1
 Rev.: 2
 Rev.: 3

 DATE
 03-Jul-13
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 <t

пем	DESCRIPTION	ТҰРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	SW CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 3000 - STEAM CYCLE					119,000,000	132,000,000	13,000,000	
PK- 3001 ST- 3001 PK- 3002	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package		970 MWe			105,000,000	105,000,000	0	Size changed
E- 3001 E- 3001	Steam condenser Steam condenser	Water cooled Sea Water cooled	800 MWth 772 MWth			14,000,000	27,000,000		To be deleted To be added
	UNIT 5000 - CO2 COMPRESSION					45,300,000	43,000,000	(2,300,000)	
K - 5001 / 2	CO2 compression trains	Axial, Electrical Driven 4 Stages	180150 Nm3/h p in : 1,6 bar a p out : 75 bar a	29200	Intercooling: Condensate from Power island Sea Water Cooling Water	45,300,000	43,000,000	(2,300,000)	Size changed Intercooling medium changed
	COOLING SYSTEM					68,800,000	47,000,000	(21,800,000)	
E- 6001	Closed cooling water cooler		670 MWth				2,000,000	2,000,000	To be added
P- 6001 A / / H P- 6002 A/B/C/D/E	Sea Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system)	Centrifugal Centrifugal	16500 m3/h x 20 m 13500 m3/h x 35 m	1100 1500	Twelve in operation Four in operation, one spare	13,000,000	24,000,000 12,000,000		To be added Size changed
	Seawater Intake						9,000,000	9,000,000	
CT- 6001	Cooling Tower includind: Cooling water basin	Natural draft	1500 MWth			43,000,000		(43,000,000)	To be deleted
P- 6001 A//F P- 6003 A / B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal centrifugal	16000 m3/h x 45 m 2370 m3/h x 30 m	1800 300	Four in operation	11,000,000 400,000		(11,000,000) (400,000)	To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 12000 m3/h			1,200,000		(1,200,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
		TOTAL COST	Γ - EURO			233,100,000	222,000,000	(11,100,000)	1

Table 18. Case 2.1 – Biomass co-firing sensitivity case (near zero emission case) – Capex breakdown into process units

FOSTER WHEELER	3
----------------	---

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-8D-0681 A

CASE: 2.1 - SC PC with carbon capture - co-firing with biomass

ПЕМ	DESCRIPTION	ТҰРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	BIO-MASS CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 1000 - FEEDSTOCK AND SOLID HANDLING					76,700,000	86,700,000	10,000,000	
	Coal handling Biomass handling Limestone handling Ash handling Gypsum handling		300 t/h 86 t/h 8.5 t/h 39.7 t/h 15.8 t/h			76,700,000	86,700,000	10,000,000	Size changed (-7.7%) To be added Size changed (-7.6%) Size changed (-5.0%) Size changed (-6.5%)
	UNIT 2000 - BOILER ISLAND					284,400,000	292,900,000	8,500,000	
PK- 2001 K- 2001 PK- 2002 PK- 2003	Super Critical Boiler, including: ID fan Flue gas cleaning system Flue gas stack	Axial ESP cement stack	Capacity: 2852 t/h main steam production Thermal input: 2500 MWth (HHV) / 2335 MWth (LHV) Main steam condition: 270 bar(a)/600°C Reheat steam condition: 60 bar(a)/620°C Flowrate: 2870 x 10°3 Nm3/h Vol. Flow: 1100 m3/h Power consumption: 10835 kW			284,400,000	292,900,000	8,500,000	Size changes - Feed system: + 20% - Flue gas system: + 4% Size changed(+ 3.6%)
	SCR System								
	UNIT 2100 - Flue Gas Desulphurization					49,600,000	49,600,000		
	Wet FGD system		Flue gas inlet flowrate: 2870 x 10°3 Nm3/h gypsum production: 15.8 t/h Hot side flowrate: 2870 x 10°3 Nm3/h			49,600,000	49,600,000	0	Size changed: feed flowrate: +3.6% sorbent recirculation: -6.5%
	Gas-gas heat exchanger		Cold side flowrate: 2450 x 10^3 Nm3/h						Size changed
	Unit 4000 - CO2 Amine Absorption Unit					320,000,000	324,800,000	4,800,000	
	CO ₂ capture Unit		For each train (2x50%): Feed gas flowrate: 1450 x 10^3 Nm3/h			320,000,000	324,800,000	4,800,000	Size changed (+ 1.5%)
	Unit 5000 - CO2 compression Unit (2 x 50%)					45,300,000	45,800,000	500,000	
	CO2 compression Unit (2 x 50%)	TOTAL CO	Feed gas flowrate: 185000 Nm3/h OST - EURO			45,300,000 776,000,000	45,800,000 799,800,000	500,000 23,800,000	Size changed (+ 0.8%)

Table 19. Case 3 – Air cooling sensitivity case – Capex breakdown into process units

FOSTER	WHEELER)
--------	----------

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A
CASE Case 3 - Oxycombustion boiler - Air cooled Sensitivity case

 REVISION
 Rev.: Draft
 Rev.: 1
 Rev.2
 Rev.3

 DATE
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-13
 Jun-14
 Jun-14</

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	AC CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 900 - AIR SEPARATION UNIT					0	1,500,000	1,500,000	
PK - 901 A/B/C	Air Separation unit Main Air Compressor				Intercooling: Air Cooled Cooling Water		1,500,000	1,500,000	Intercooling medium changed
	UNIT 2000 - BOILER					0	500,000	500,000	
PK - 2003	Indirect Contact Cooler Contact cooler exchanger	Air Cooler Water cooled	146 MWth	1860 kWe			500,000	500,000	Size changed Intercooling medium changed
	UNIT 3000 - STEAM CYCLE					132,000,000	153,800,000	21,800,000	
PK- 3001 ST- 3001 PK- 3002	Steam Turbine and Generator Package Steam Turbine Steam Condenser Package		1085 MWe		Condensate pressure: 5.2 kPa	113,000,000	113,000,000	0	Size changed
E- 3001 AC- 3001	Steam condenser Steam condenser	Water cooled Air cooler	1210 MWth 1220 MWth	110 x 90 kWe		19,000,000	40,800,000	(- / /- /	To be deleted To be added
	COOLING SYSTEM					58,000,000	5,800,000	(52,200,000)	
AC - 6001	Closed loop air cooler		65 MWth	1770 kWe			800,000	800,000	To be added
P- 6002 A/B	Cooling Water Pumps (secondary system)	Centrifugal	7500 m3/h x 35 m	1700	One in operation, one spare		5,000,000	5,000,000	To be added
CT- 6001	Cooling Tower including: Cooling water basin	Natural draft	1550 MWth			40,000,000		(40,000,000)	To be deleted
P- 6001 A//F P- 6003 A/B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal Centrifugal	16000 m3/h x 35 m 2400 m3/h x 30 m	1900 300	Six in operation	17,000,000 400,000			To be deleted To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 2950 m3/h			400,000		(400,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	To be deleted
	51 51								
	Antisealant Package Dispersant storage tank Dispersant dosage pumps	FOTAL COST - I				100,000	161,600,000	(100,000)	

Table 20. Case 3 – Seawater cooling sensitivity case – Capex breakdown into process units

(FOSTER WHEELER)

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2 capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A
CASE Case 3 - Oxycombustion boiler - Sea Water Sensitivity case

 REVISION
 Rev.: Draft
 Rev.: 1
 Rev.2
 Rev.3

 DATE
 18-Jun-13
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ..

ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	AC CASE EURO	DELTA EURO	Difference with respect to reference case
	UNIT 900 - AIR SEPARATION UNIT					0	1,500,000	1,500,000	
PK - 901 A/B/C	Air Separation unit Main Air Compressor				Intercooling: Sea Water Cooled Cooling Water		1,500,000	1,500,000	Intercooling medium changed
	UNIT 2000 - BOILER					0	500,000	500,000	
PK - 2003	Indirect Contact Cooler Contact cooler exchanger	Sea Water Cooled Water cooled	146 MWth				500,000	500,000	Size changed Intercooling medium changed
	UNIT 3000 - STEAM CYCLE					133,000,000	153,000,000	20,000,000	
PK- 3001 ST- 3001	Steam Turbine and Generator Package Steam Turbine		1115 MWe		Condensate pressure: 3.0 kPa	113,000,000	113,000,000	0	Size changed
PK- 3002 E- 3001 E- 3001	Steam Condenser Package Steam-condenser Steam condenser	Water cooled Sea Water cooled	1210 MWth 1190 MWth			20,000,000	40,000,000		To be deleted To be added
	COOLING SYSTEM					59,300,000	34,700,000	(24,600,000)	
E - 6001	Closed Cooling Water cooler		67 MWth				800,000	800,000	To be added
P- 6001 A//H P- 6002 A/B	Sea Cooling Water Pumps (primary system) Cooling Water Pumps (secondary system)	Centrifugal Centrifugal	16500 m3/h x 20 m 5500 m3/h x 35 m	1150 1250	Twelve in operation One in operation, one spare		24,000,000 900,000	,,	To be added To be added
	Seawater Intake						9,000,000	9,000,000	
CT- 6001	Cooling Tower including: Cooling water-basin	Natural draft	1550 MWth			42,000,000		(42,000,000)	To be deleted
P- 6001 A//F P- 6003 A/B	Cooling Water Pumps (primary system) Cooling tower make up pumps	Centrifugal Centrifugal	16000 m3/h x 35 m 2400 m3/h x 30 m	1900 300	Six in operation	16,000,000 500,000			To be deleted To be deleted
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 2950 m3/h			600,000		(600,000)	
	Sodium Hypochlorite-Dosing Package Sodium Hypochlorite-storage tank Sodium Hypochlorite-dosage pumps					100,000		(100,000)	To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
		TOTAL COST - EU	TRO		1	192,300,000	189,700,000	(2,600,000)	1

Table 21. Case 3.1 – Near Zero Emission sensitivity case – Capex breakdown into process units

(гоѕте	ER WHEELER	LOCATION: PROJ. NAME: CONTRACT N.	3.1 - Oxycombustion SC PC - Near Zero	REVISION Rev.: Draft DATE Jul-13 ISSUED BY NF CHECKED BY LM APPROVED BY LM				Rev.: 1	Rev.2	Rev.3	
			MAIN	EQUIPMEN	T CHANGES						
ITEM	DESCRIPTION	ТҮРЕ	SIZE	Motor Rating [kW]	Remarks	BASE CASE EURO	NEAR ZERO CASE EURO	DELTA EURO	Difference wi	th respect to 1	eference cas
	AIR SEPARATION UNIT					0	0	0			
	AIR SEPARATION UNIT					0	U	U			
PK - 901 A/B/C	Air Separation unit		3 x 5555 t/d		Oxygen feed: -4% with respect to base				No changes i	n ASU size	
	CO2 COMPRESSION AND PURIFICATION					250,000,000	275,000,000	25,000,000			
PK - 4001	Sour compression section		Dry flue gas: 24,510 kmol/h 3.8% vol H ₂ O			250,000,000	275,000,000	25,000,000	Size changed		
	Including: - Raw flue gas compressors (two stages) - Contacting column with liquid pump around for sulphuric and nitric acid removal - Flue gas cooler downstream compressor			100 MWe					Size changed		
	BFW heater Condensate heater		26 MWth 27 MWth						Size changed Size changed		
PK - 4002	Dual Bed essicant system								Size changed		
PK - 4003	Cold box for inerts removal Including: - Main heat exchangers - CO2 liquid separator - CO2 distillation column										
	- CO2 compressors and coolers - Inerts heater			32 MWe					Size changed		
	- Inerts expander - Overhead recycle compressors			11.5 MWe 1.0 MWe					Size changed		
	COOLING SYSTEM					0	0	0			
CT- 6001	Cooling Tower including: Cooling water basin	Natural draft	1565 MWth								
P- 6002 A/B/C	Cooling Water Pumps (secondary system)	Centrifugal	14000 m3/h x 45 m	2250 kW	Two operating, one spare		255 000 000		Size changed		

250,000,000 275,000,000 25,000,000

TOTAL COST D&E BASIS - EURO

Table 22. Case 4.2 – Air cooling sensitivity case – Capex breakdown into process units

		CLIPATE	IEA GHG		REVISION	Rev 0	1	1		Rev.1	Rev.2	Rev.3
	_		The Netherlands		DATE	May 2013				Rev.1	Rev.2	Rev.,
ď	WHEELER		CO2 capture at coal based power and	l hydrogen plants	ISSUED BY	NF						
		CONTRACT N.		,	CHECKED BY	LM						
		CASE:	Case 4.2 - GE based IGCC - Cooling v	vater sensitivity (AC)	APPROVED BY	LM						
			MAI	N EQUIPMENT (CHANGES							
				motor rating			BASE CASE	AC CASE	DELTA PAGE 13			
	DESCRIPTION	ТҮРЕ	SIZE	[kW]	Rem	arks	EURO	EURO	EURO	Difference wit	h respect to refere	ice case
ι	UNIT 2100 - AIR SEPARATION UNIT						41,850,000	42,750,000	900,000			
ir	r compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 595600 Nm3/h	69500 kW	Intercooling: Air cooling Coolin	ıg Water	35,250,000	34,750,000		Size changed Intercooling med	ium changed	
a	air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW	Intercooling: Air cooling Coolin	ig Water	6,600,000	7,500,000	900,000	Intercooling med	ium changed	
C	compressors (GAN)	Electric motor driven, centrifugal, with intercooling	Flowrate: 257000 Nm3/h	19000 kW	Intercooling: Air cooling Cooling	1g Water		500,000	500,000	Intercooling med	ium changed	
ì	UNIT 2200 - SYNGAS TREATMENT						300,000	500,000	200,000			
n.	ngas cooler	Shell & Tube					300,000		(300,000)	To be deleted		
·	ngas cooler	Air cooler	4 MWth	45 kWe	each train		300,000	500,000	(//	To be added		
6		THE COOK!	7 W W U	45 RWC	euen iruin			,	,	To ix added		
	UNIT 2250 - SWS						300,000	800,000	500,000			
ite	ter stripper condenser	Shell & Tube					300,000		(300,000)	To be deleted		
	ter stripper condenser	Air cooler						800,000	800,000	To be added		
									* * * * * * * * * * * * * * * * * * * *			
	UNIT 2300 - AGR						0	3,000,000	3,000,000			
	poled heat exchangers and refrigerator cond talled rated capcity: 550 Mwe	enser in AGR will be replaced w	rith air cooling.					3,000,000	3,000,000			
	UNIT 2500 - CO2 COMPRESSION						16,000,000	15,300,000	(700,000)			
m	mpressors	Centrifugal, Electrical Driven, 8 intercooled Stages	187610 Nm3/h p in: 2,45 bar a p out: 80 bar a	17000 kW	Intercooling: Air cooling Coolin	ng Water	16,000,000	15,300,000		Size changed Intercooling med	ium changed	
	UNIT 3300 - STEAM TURBINE						80,000,000	101,800,000	21,800,000			
Tı	Turbine & Condenser Package											
Γu	urbine		435 MWe				67,000,000	67,000,000	0	Size changed		
e	Condenser		710 MWth		Water cooled		13,000,000		(13,000,000)	To be deleted		
Co	ondenser	air cooled	715 MWth	65 x 90 kWe				34,800,000	34,800,000	To be added		
Γu	urbine Generator		570 MVA					Included	Included	Size changed		
Гu	urbine Generator		570 MVA					1	Included	Included Included	Included Included Size changed	Included Included Size changed

CLIENT: IEA GHG
LOCATION: The Netherlands
PROJ. NAME: CO2-capture at coal based power and hydrogen plants
CONTRACT N. 1-BD-0681 A

CASE: Case 4.2 - GE based IGCC - Cooling water sensitivity (AC)

REVISION	Rev 0		Rev.1	Rev.2	Rev
DATE	May 2013				
ISSUED BY	NF				
CHECKED BY	LM				
APPROVED BY	LM				

пем	DESCRIPTION	ТҮРЕ	SIZE	motor rating [kW]	Remarks	BASE CASE EURO	AC CASE EURO	DELTA EURO	Difference with respect to reference case
	COOLING SYSTEM					55,100,000	6,400,000	(48,700,000)	
AC-4001	Closed loop air cooler		90 MWth	2500 kWe			1,000,000	1,000,000	To be added
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14000 m3/h x 35 m	1600 kW		6,500,000	5,400,000	(1,100,000)	Size changed
CT-4001	Cooling Tower Including Cooling water basin	Evaporative, Natural draft	Total heat duty 1070 MWth			38,000,000		(38,000,000)	To be deleted
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	13880 m3/h x 35 m	1600 kW		9,000,000		(9,000,000)	To be deleted - 4 Operating + 1 Spare
P-4003A/B	Raw water pumps (make-up)	cent rifugal	1690 m3/h x 35 m	200 kW		500,000		(500,000)	To be deleted - 2 Operating + 1 Spare
	Cooling Water Filtration Package Cooling Water Sidestream Filters		Capacity: 8500 m3/h			900,000		(900,000)	
	Sodium Hypochlorite Dosing Package Sodium Hypochlorite storage tank Sodium Hypochlorite dosage pumps					100,000		(100,000)	To be deleted
	Antiscalant Package Dispersant storage tank Dispersant dosage pumps					100,000		(100,000)	
	 	TOTAL COS	T - EURO	•		193,250,000	170,050,000	(23,200,000)	

Table 23. Case 4.2 – Seawater cooling sensitivity case – Capex breakdown into process units

												n
		CLIENT: IE			REVISION	Rev 0				Rev.1	Rev.2	Rev.3
(= 0 0 =	ER WHEELER	LOCATION: The			DATE	May 2013						
FOSI	ER W VOHEELER		O2 capture at coal based power and hy	ydrogen plants	ISSUED BY	NF						
		CONTRACT N. 1-			CHECKED BY	LM						
		CASE: Ca	ase 4.2 - GE based IGCC - Cooling water	er sensitivity (SW)	APPROVED BY	LM						
			N.	IAIN EQUIPM	ENT CHANGE	ES						
				motor rating			BASECASE	SW CASE	DELTA			
ITEM	DESCRIPTION	TYPE	SIZE	[kW]	Rem	arks	EURO	EURO	EURO	Differen	ce with respect to refer	ence case
				[KW]			ECKO	ECKO	ECKO			
	UNIT 2100 - AIR SEPARATION UNIT						41,850,000	42,750,000	900,000			
		But to the			r . P					g: 1 1		
	Main Air compressors (MAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 595600 Nm3/h	69500 kW	Intercooling: Sea Water Cooling W	V-4	35,250,000	34,750,000	(500,000)	Size changed Intercooling mediun		
		0 '			· ·	rurer				inter cooring mediui	Tenangeu	
	Booster air compressors (BAC)	Electric motor driven, centrifugal, with intercooling	Flowrate: 238200 Nm3/h	7500 kW	Intercooling: Sea Water Cooling W	Vator	6,600,000	7,500,000	900,000	Intercooling medium	a changed	
		Electric motor driven.				rarer						
	MP N2 compressors (GAN)	entrifugal, with intercooling	Flowrate: 257000 Nm3/h	19000 kW	Intercooling: Sea Water Cooling W	V-4		500,000	500,000	Intercooling mediur	n changed	
		centinugai, with intercooling			Sea water Cooring H	rarer						
	UNIT 2500 - CO2 COMPRESSION				İ		16,000,000	15,300,000	(700,000)	i		
C-2501	GO G	Centrifugal,	187610 Nm3/h	17000 kW	Intercooling:		16 000 000	15 200 000	(700,000)	Size changed		
C-2501	CO ₂ Compressors	Electrical Driven,	p in: 2,45 bar a	17000 kW	Sea Water Cooling W	Vater	16,000,000	15,300,000	(700,000)	Intercooling mediur	n changed	
		8 intercooled Stages	p out: 80 bar a									
	UNIT 3300 - STEAM TURBINE						80,000,000	93,000,000	13,000,000			
Z-3301	Steam Turbine & Condenser Package											
ST-3301	Steam Turbine		455 MWe				67,000,000	67,000,000	0	Size changed		
E-3303	Steam Condenser		710 MWth		Water cooled		13,000,000		(13,000,000)	To be deleted		
					C W . 1.1		22,000,000		(-2,000,000)			
T. 2202					Sea Water cooled			******	******			
E-3303	Steam Condenser		730 MWth		Inlet water tempera			26,000,000	26,000,000	To be added		
					Water temperature	rise 7°C						
G-3402	Steam Turbine Generator		600 MVA					Included	Included	Size changed		
	COOLING SYSTEM						55,100,000	35,800,000	(19,300,000)			
E-4001	Closed cooling loop exchanger		145 MWth					1,400,000	1,400,000	To be added		
P-4001A÷H	Sea Cooling Water pumps (primary system)	Vertical	18000 m3/h x 20 m	1250 kW	Eight in operation			20,000,000	20,000,000	To be added		
1 -400171.11	Sea Coomig Water pumps (primary system)	vertical	10000 HEF II X 20 H	12.50 KW	Eight in operation			20,000,000	20,000,000	To be under		
P-4002A/B/C	Cooling Water pumps (secondary system)	Vertical	14000 m3/h x 35 m	1600 kW			6,500,000	5,400,000	(1.100.000)	Size changed		
	g pp- () -))						-,,,,,,,,	-,,	(-,,)			
	Seawater Intake							9,000,000	9,000,000			
									.,,			
	Cooling Tower	Evaporative,	Total heat duty									
CT-4001	Including Cooling water basin	Natural draft	1070 MWth				38,000,000		(38,000,000)	To be deleted		
P-4001A/B/C/D	Cooling Water pumps (primary system)	Vertical	13880 m3/h x 35 m	1600 kW			9,000,000		(9.000.000)	To be deleted		
	8 hh (h) -))						.,,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
P-4003A/B	Raw water pumps (make-up)	centrifugal	1690 m3/h x 35 m	200 kW			500,000		(500,000)	To be deleted		
—	* * ` *'	· ·			1		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		, ,,,,,			
	Cooling Water Filtration Package											
	Cooling Water Sidestream Filters		Capacity: 8500 m3/h				900,000		(900,000)	1		
	Sodium Hypochlorite Dosing Package									1		
	Sodium Hypochlorite storage tank						100,000		(100,000)			
							100,000		(100,000)	To be deleted		
	Sodium Hypochlorite dosage pumps			+	+		-			4		
	Antiscalant Package						405		(400			
	Dispersant storage tank						100,000		(100,000)	1		

TOTAL COST - EURO

Table 24. Case 4.2.1 – Near Zero Emission sensitivity case – Capex breakdown into process units

		CLIENT:	IEA GHG		REVISION	Rev.: Draft				Rev.: 1	Rev.2	Rev.3
		LOCATION:	The Netherlands		DATE	June 13						
FOST	TER WHEELER	PROL NAME:	CO2 capture at coal based power and hydro	gen plants	ISSUED BY	GP						
		CONTRACT N.		8 F	CHECKED BY							
			4.2.1 - GE based IGCC - High capture case		APPROVED B							
		CASE	4.2.1 - GE based IGCC - High capture case		APPROVED B	I LIVI	Į.				l .	
			MAIN EQUIP	PMENT CH	ANGES							
				Motor rating								
ITEM	DESCRIPTION	TYPE	SIZE		Remarks		BASECASE	HIGH CAPTURE	DELTA	Difference	with respect to re	forence case
111241	DISCRII TRON	III	SIZE	[kW]	Kilidi Ka		EURO	EURO	EURO	Difference	mai respect to re	icrence case
	UNIT 2100 - AIR SEPARATION UNIT (2X50%)						22,000,000	23,100,000	1,100,000			
	MP N ₂ compressor (GAN)		Flowrate: 250250 Nm3/h	19500 kW			19,000,000	19,500,000	500,000	Size changed		
	MP N ₂ compressor - booster		Flowrate: 127560 Nm3/h	1250 kW			3,000,000			Size changed		
	WP N ₂ compressor - booster		Flowrate: 12/300 NIIB/II	1230 KW			3,000,000	3,000,000	000,000	Size changed		
	UNIT 2200 - Syngas Treatment and conditioning line (2x50%)					10,000,000	8,800,000	(1,200,000)			
EX - 2201	Syngas expander		Flowrate: 554700 Nm3/h	8800 kW			10,000,000	8,800,000	(1.200.000)	Size changed		
EA = 2201	by iigas expander		Flowrate: 554/00 NIIB/II	00UU K.W			10,000,000	0,000,000	(1,200,000)	Size changeu		
	UNIT 2350 - Amine Guard FS Process Unit (1x100%)						0	19,200,000	19,200,000			
Z - 2351	Amine Guard FS Process, including:											
1	One amine absorber		Feed gas: 588,200 Nm3/h									
	one amine stripper	Solvent: amine	54 barg					19,200,000	19.200.000	To be added		
1		Solvent, allune	15 °C					19,200,000	19,200,000	10 De added		
1	total carbon capture: 85.3%		15 °C									
	Unit 2500 - CO ₂ compression Unit (2 x 50%)						16,200,000	18,000,000	1,800,000			

ST - 3301	Steam Turbine (including steam turbine generator)		434 MWe		67,000,000	67,000,000	0	Size changed
E- 3301 P- 3301 A/B	Condenser Condensate Pump	centrifugal, vertical	680 MWth 1865 m3/h x 110 m	800 kW	13,000,000	12,700,000	(300,000)	Size changed
	Unit 4000 - Utility and Offsite				55,300,000	56,600,000	1,300,000	
CT - 4001	Cooling Tower Including Cooling water basin Raw Water CT make-up pump	Evaporative, Natural draft	1140 MWth		40,000,000	41,000,000	1,000,000	Size changed

1650 kW

Three operating, one spare

16,200,000

80,000,000

6,300,000

18,000,000

79,700,000

7,100,000

183,500,000 205,400,000 21,900,000

1,800,000 Size changed (+ 16%)

800,000 Numebr and size changed

Feed gas flowrate: 224300 Nm3/h

11950 m3/h x 35 m

vertical

TOTAL COST - EURO

CO2 compression Unit (2 x 50%)

Cooling Water pumps (secondary system)

P - 4002 A/B/C

Unit 3300 - Steam Turbine and Blowdown System (1 x 100%)

Table 25. Case 5.3.1 – Near Zero Emission sensitivity case – Capex breakdown into process units

(FOST	ER (WHEELER)	PROJ. NAME: CONTRACT N.	The Netherlands CO2 capture at coal based power and hydro		REVISION DATE ISSUED BY CHECKED BY APPROVED B'				Rev.: 1	Rev.2	Rev.3
ПЕМ	DESCRIPTION	ТҮРЕ	SIZE	Motor rating [kW]	Remarks	BASE CASE EURO	HIGH CAPTURE EURO	DELTA EURO	Difference wi	ith respect to re	ference case
	UNIT 2200 - Syngas Treatment and conditioning line (2x50%)				0	0	0			
	LP steam generator BFW pre-heaters Condensate pre-heater Final syngas cooler								Size increased Size increased Size increased Size decreased		
	UNIT 2350 - Amine Guard FS Process Unit (1x100%)					0	19,200,000	19,200,000			
Z- 2351	Amine Guard FS Process, including: One amine absorber one amine stripper total carbon capture: 85.3%	Solvent: amine	Feed gas: 588,200 Nm3/h 54 barg 15 °C				19,200,000	19,200,000	To be added		
	Unit 2500 - CO ₂ compression Unit (2 x 50%)					16,200,000	18,000,000	1,800,000			
	CO2 compression Unit (2 x 50%)		Feed gas flowrate: 224300 Nm3/h			16,200,000	18,000,000	1,800,000	Size changed (+	16%)	
	•	TOTAL COST	EURO			16,200,000	37,200,000	21,000,000			

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 36 of 72

2.3.5. <u>Utilities and Offsite brake-down</u>

The following table provides, for each plant-type assessed in the study, a break-down of the major Utilities and Offsite, mainly including cooling system, electrical systems, process and waste water systems.

CO₂ Capture at Coal Based Power and Hydrogen Plants

Date: January 2014

Chapter F - Economics Sheet: 37 of 72

Table 26. Break-down of U&O

	(FOSTER)	VHEELER	30			ι	JTILI	TY & OFFS	SITES	COST										CONTRACT: 1-BD-0681A CLIENT: IEA GHG LOCATION: THE NETHERLANDS DATE: SEPTEMBER 2013 REV.: 0
POS.	DESCRIPTION	CASE 1		CASE 2		CASE 3		CASE 4.1		CASE 4.2		CASE 4.1		CASE 5.1		CASE 5.2		CASE 5.3		NOTES / REMARKS
		EURO	%	EURO	%	EURO	%	EURO	%	EURO	%	EURO	%	EURO	%	EURO	%	EURO	%	,
1	COOLING WATER SYSTEM	174,800,000	58.7	265,900,000	58.3	269,800,000	58.5	177,000,000	47.2	193,500,000	48.8	201,000,000	50.7	160,700,000	48.0	162,200,000	50.5	148,700,000	54.5	
2	RAW WATER SYSTEM	4,000,000	1.3	4,000,000	0.9	2,000,000	0.4	10,000,000	2.7	9,800,000	2.5	12,000,000	3.0	9,500,000	2.8	9,100,000	2.8	8,000,000	2.9	
3	DEMINERALIZED WATER SYSTEM	3,000,000	1.0	3,600,000	0.8	1,500,000	0.3	19,100,000	5.1	14,600,000	3.7	19,100,000	4.8	13,800,000	4.1	13,000,000	4.0	10,200,000	3.7	
4	ELECTRICAL SYSTEM	53,600,000	18.0	72,900,000	16.0	78,100,000	16.9	74,900,000	20.0	79,300,000	20.0	70,000,000	17.7	66,900,000	20.0	56,600,000	17.6	37,600,000	13.8	
5	WASTE WATER SYSTEM	23,800,000	8.0	50,100,000	11.0	50,800,000	11.0	45,000,000	12.0	47,600,000	12.0	45,000,000	11.3	40,200,000	12.0	38,500,000	12.0	32,700,000	12.0	
6	OTHERS	38,800,000	13.0	59,300,000	13.0	59,300,000	12.8	48,700,000	13.0	51,500,000	13.0	49,500,000	12.5	43,500,000	13.0	41,700,000	13.0	35,500,000	13.0	
7	TOTAL - EURO	298,000,000	100.0	455,800,000	100.0	461,500,000	100.0	374,700,000	100.0	396,300,000	100.0	396,600,000	100.0	334,600,000	100.0	321,100,000	100.0	272,700,000	100.0	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 38 of 72

3. Operating and Maintenance costs

The definition of the Operating and Maintenance (O&M) costs is given in chapter B of the report. Following sections provide estimated operating and maintenance costs for the different cases, which are generally allocated as:

- Variable costs;
- Fixed costs.

However, accurately distinguishing the variable and fixed costs is not always feasible. Certain cost items may have both variable and fixed components; for instance, the planned maintenance and inspection of the gas turbine, that are known to occur based on number of running hours, should be allocated as variable component of maintenance cost.

3.1. Variable costs

Following tables show variable costs for the study cases listed in Table 1 and the near-zero emission cases listed in Table 2, including following main cost items:

- Feedstock
- Raw water make-up
- Solvents
- Catalysts
- Chemicals.

The consumption of the various items and the corresponding costs are yearly, based on the expected equivalent availability of the plant (90% / 85% capacity factor respectively for boiler and gasification based cases). Reference values for coal and main consumables prices are summarized in the table below.

Item	Unit	Cost
Coal	€/GJ (LHV)	2.5
Biomass	€/t, dry	100
Raw process water	€/m ³	0.2
Ash, slag, gypsum, and sulphur net disposal cost	€/t	0
CO ₂ transport and storage	€/t CO ₂ stored	10
CO ₂ emission cost	€/t CO ₂ emitted	0

The following tables report a summary of the variable costs for all the cases of the study.

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 39 of 72

FOSTER	EELER	Year	ly Variable	Costs - SCI	PC-based cas	ses	Revision: Date: Issued by:	0 June 2013 LC	1 August 2013 LC	
							Approved by:	LM	LM	
Yearly Operating hours = 7884	ı	SC-PC w	Case 1 rithout CO ₂ ca	pture	SC-PC	Case 2 with CO ₂ cap	oture	Oxy SC	Case 3 C-PC with CO ₂ c	apture
Consumables	Unit Cost €/t	Consumption Oper. Costs Hourly Yearly kg/h t/y €/y kg/h t/y		Yearly	Oper. Costs €/y	Consu Hourly kg/h	mption Yearly t/y	Oper. Costs €/y		
	€/1	Kg/II	t/y	€/ÿ	Kg/II	t/y	€/γ	Kg/II	L/ y	€/ÿ
Feedstock										
Coal	64.7	325,000	2,562,300	165,716,800	325,000	2,562,300	165,716,800	325,000	2,562,300	165,716,800
Auxiliary feedstock										
Limestone (Case 1 & 2)	20.0	8,852	69,788	1,395,800	9,215	72,651	1,453,000		0	0
Lime (Case 3)	45.0	-		0	-		0	6,951	54,802	2,466,100
Make-up water	0.20	1,658,000	13,071,672	2,614,300	2,095,000	16,516,980	3,303,400	2,033,000	16,028,172	3,205,600
Catalysts	not displayable	-	-	3,806,100	-	-	4,241,700	-	-	0
Chemicals (including Solvents)	not displayable	-	-	1,683,000	-	- (1)	10,494,900	-	-	453,600
Waste Disposal										
Slag disposal (wet)	0.0	0.0	0	0	0.0	0	0	0.0	0	0
Solvent disposal	not displayable	-	-	0	-	-	983,700	-	-	0
TOTAL YEARLY OPERATING COSTS	Euro/year			175,216,000			186,193,500			171,842,100
(1) Based on FW's assumption: specif		f 5 €/kg		, ,,,,,,,,				1		. , .

FOSTERWHE	EELER	Year	ly Variable	e Costs - IGO	CC-based cas	ses	Revision: Date: Issued by: Approved by:	0 June 2013 LC LM	1 August 2013 LC LM				
Yearly Operating hours = 7446		IGCC with	Case 4.1 n CO₂ capture	e (Shell)	IGCC wi	Case 4.2 th CO ₂ captur	e (GE)	IGCC wi	Case 4.3 th CO ₂ capture	e (MHI)			
Consumables	Unit Cost €/t	Consum Hourly kg/h	ption Yearly t/y	Oper. Costs €/y	Consum Hourly kg/h	ption Yearly t/y	Oper. Costs €/y	Consu Hourly kg/h	nption Yearly t/y	Oper. Costs €/y			
Feedstock Coal	64.7	314,913	2,344,842	151,652,700	349,146	2,599,739	168,138,100	345,110	2,569,690	166,194,700			
Fluxant (Limestone)	20.0	9,120	67,905	1,358,100	0	0	0	0	0	0			
Auxiliary feedstock													
Make-up water	0.20	2,020,000	15,040,920	3,008,200	2,122,000	15,800,412	3,160,100	2,328,000	17,334,288	3,466,900			
Catalysts	not displayable	-	-	4,332,450	-	-	3,081,250	-	-	6,426,000			
Chemicals (including Solvents ¹)	not displayable	-	-	3,252,950	-	-	3,511,350	-	-	4,267,850			
Waste Disposal													
Slag disposal (wet)	0.0	0.0	0	0	0.0	0	0	0.0	0	0			
Solvent disposal	-	-	-	0	-	-	0	-	-	0			
TOTAL YEARLY OPERATING COSTS	Euro/year			163,604,400			177,890,800			180,355,450			
(1) Solvent cost and make-up: confider	ntial information												

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 40 of 72

FOSTER	EELER	Yearly Variable Costs - H_2 and power co-production cases			r	Revision: Date: Issued by: Approved by:	0 June 2013 LC LM	1 August 2013 LC LM		
Yearly Operating hours = 7446		Case 5.1 IGCC (GE) / Hydrogen Production with CO₂ capture - 9E GTs			Case 5.2 IGCC (GE) / Hydrogen Production with CO ₂ capture - 6F GTs		Case 5.3 IGCC (GE) / Hydrogen Production with CO2 capture - Boiler			
Consumables	Unit Cost €/t	Consum Hourly kg/h	ption Yearly t/y	Oper. Costs €/y	Consum Hourly kg/h	ption Yearly t/y	Oper. Costs €/y	Consu i Hourly kg/h	mption Yearly t/y	Oper. Costs €/y
Feedstock Coal Fluxant (Limestone)	64.7 20.0	349,146 0	2,599,739 0	168,138,100 0	349,146 0	2,599,739 0	168,138,100 0	349,146 0		168,138,100 0
Auxiliary feedstock Make-up water	0.20	1,872,000	13,938,912	2,787,800	1,761,000	13,112,406	2,622,500	1,562,000	11,630,652	2,326,100
Catalysts	not displayable	-	-	3,081,250	-	-	3,081,250	-	-	3,081,250
Chemicals (including Solvents ¹)	not displayable	-	-	3,511,350	-	-	3,511,350	-	-	3,511,350
Waste Disposal Slag disposal (wet) Solvent disposal	0.0	0.0	0	0	0.0	0	0		0	0
TOTAL YEARLY OPERATING COSTS	Euro/year			177,518,500			177,353,200			177,056,800
(1) Solvent cost and make-up: confider) Solvent cost and make-up: confidential information									

_										Revision:	1		
FOSTERWHE	ELER)		V	arly Variab	le Costs - Ne	.ar zara ar	miccion coc	0.0		Date:	January 2014		
· 33 · Z · · · · · · ·		i	16	any vanau	ie Costs - ivi	eai zeio ei	IIISSIUII Cas	es		Issued by:	GP		
										Approved by:	LM		
Yearly Operating hours = 7884		SC-DC with	Case 2.1 CO ₂ capture	- hiomass		Case 3.1			Case 4.2.1		IGCC (GE)	Case 5.3.1 / Hydrogen P	roduction
really Operating Hours – 7004		30-r C With	cofiring	- Diomass	Oxy SC-F	C with CO ₂ c	apture	IGCC with CO ₂	capture (GE)	- hgh capture		ture - Boiler -	
Consumables	Unit Cost	Consum	ntion	Oper, Costs	Consum	ption	Oper. Costs	Consum	ption	Oper. Costs	Consur	nption	Oper. Costs
		Hourly	Yearly	-,	Hourly	Yearly	-,	Hourly	Yearly	-,	Hourly	Yearly	-,
	€/t	kg/h	t/y	€/y	kg/h	t/y	€/y	kg/h	t/y	€/y	kg/h	t/y	€/y
Feedstock													
Coal	64.7	300,600	2,369,930	153,275,200	325,000	2,562,300	165,716,800	349,200	2,600,143	168,164,300	349,146	2,599,739	168,138,100
Biomass	50.0	86,400	681,178	34,058,900	0	0	0	0	0	0	0	0	0
Auxiliary feedstock													
Limestone (Case 1 & 2)	20.0	8,600	67,802	1,356,000	0	0		2,100,000	16,083,360		1,588,000	11,824,248	2,364,800
Lime (Case 3)	45.0	-			6,600	52,034	2,341,500		0	0			
Make-up water	0.20	2,050,000	16,162,200	3,232,400	2,053,000	16,185,852	3,237,200	-	-	3,081,250	-	-	3,081,250
Catalysts (including membranes)	not displayable	-	-	4,241,700	-	-	900000 (1)	-	-	3,538,550	-	-	3,538,550
Chemicals (including Solvents)	not displayable	-	-	10,691,100	-	-	453,600	0	0	0	0	0	0
Waste Disposal								-	-	0	-	-	0
Slag disposal (wet)	0.0	0	0	0	0	0	0	0	0	0	0	0	O
Solvent disposal	not displayable	-	-	1,007,100	-	-	0	0	0	178,000,800	0	0	177,122,700
TOTAL YEARLY OPERATING COSTS	Euro/year			207,862,400			171,749,100			178,000,800			180,355,450
(1) Based on FW's assumption								•			•		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 41 of 72

3.2. Fixed costs

Fixed costs include:

- Operating Labour Costs
- Overhead Charges
- Maintenance Costs.

3.2.1. Operating Labour costs

The plants of the different study cases can be virtually divided into the following main areas of operation:

- SC-PC plants:
 - o Boiler island & flue gas treatment
 - o Steam Cycle & Utilities.
- Gasification plants:
 - o Air Separation Unit (ASU)
 - o Gasification and Process Units, including Syngas Treatment and Conditioning Line, AGR, SRU & TGT, CO₂ Compression, PSA, etc.
 - o Combined Cycle & Utilities.

The same division is reflected in the design of the centralized control room, which has the same number of main DCS control groups, each one equipped with a number of control stations, from where the operation of the units of each area is controlled.

The area responsible and his assistant supervise each area of operation; both are daily position. The shift superintendent and the electrical assistant are common for the different areas; both are shift position. The rest of the operation staff is structured around the standard positions: shift supervisors, control room operators and field operators.

The maintenance personnel are based on large use of external subcontractor for all medium-major type of maintenance work. Maintenance costs take into account the service outsourcing. Plant maintenance personnel like the instrument specialists perform routine maintenance and resolve emergency problems.

The yearly cost of the direct labour is calculated assuming for each individual an average cost equal to 60,000 Euro/year, referred to year 2013.

The following tables report the labour force for the different configurations, along with the direct labour cost.

Revision no.: Final **IEAGHG**

 $\mathsf{CO}_{_2}$ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Sheet: 42 of 72 Chapter F - Economics

Table 27. Case 1 – Operating Labor costs

	С	ase 1		
	Boiler Island & Flue Gas Treatment	Power Island & Utilities	TOTAL	Notes
OPERATION				
Area Responsible	1	1	2	daily position
Assistant Area Responsible	1	1	2	daily position
Shift Superintendent	ţ	5	5	1 position per shift
Electrical Assistant	ţ	5	5	1 position per shift
Shift Supervisor	5	5	10	2 positions per shift
Control Room Operator	10	10	20	4 positions per shift
Field Operator	15	15	30	8 positions per shift
Subtotal			74	
MAINTENANCE				
Mechanical group	(3	6	daily position
Instrument group	(3	6	daily position
Electrical group	Ę	5	5	daily position
Subtotal			17	
LABORATORY				
Superintendent+Analysts	4	1	4	daily position
Subtotal			4	
TOTAL			95	
Cost for personnel Yearly individual average	e cost =	60.000	Euro/year	
Total cost =		5.700.000	Euro/year	

Table 28. Case 2, 2.1, 3 and 3.1 – Operating Labor costs

Case 2 - 2.1 - 3 - 3.1								
	Boiler Island & Flue Gas Treatment	Power Island & Utilities	TOTAL	Notes				
OPERATION								
Area Responsible	1	1	2	daily position				
Assistant Area Responsible	1	1	2	daily position				
Shift Superintendent	5	5	5	1 position per shift				
Electrical Assistant	5	5	5	1 position per shift				
Shift Supervisor	5	5	10	2 positions per shift				
Control Room Operator	10	10	20	4 positions per shift				
Field Operator	15	25	40	8 positions per shift				
Subtotal			84					
MAINTENANCE								
Mechanical group	6	5	6	daily position				
Instrument group	6	5	6	daily position				
Electrical group	5	5	5	daily position				
Subtotal			17					
LABORATORY								
Superintendent+Analysts	4		4	daily position				
Subtotal			4					
TOTAL			105					
Cost for personnel								
Yearly individual average	je cost =	,	Euro/year					
Total cost =		6,300,000	Euro/year					

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 43 of 72

Table 29. Case 4 and 5 – Operating Labor costs

Cas	e 4.1 - 4.2	2 - 4.2.1 - 4.3	- 5.1 - 5.2 - 5	.3 - 5.3.1	
	ASU	Gasification	Power Island & Utilities	TOTAL	Notes
OPERATION					
Area Responsible	1	1	1	3	dailyposition
Assistant Area Responsible	1	1	1	3	dailyposition
Shift Superintendent		5		5	1 position per shift
Electrical Assistant		5		5	1 position per shift
Shift Supervisor	5	5	5	15	3 positions per shift
Control Room Operator	5	10	10	25	5 positions per shift
Field Operator	5	30	20	55	10 positions per shift
Subtotal				111	
MAINTENANCE					
Mechanical group		4		4	daily position
Instrument group		7		7	daily position
Electrical group		5		5	dailyposition
Subtotal				16	
LABORATORY					
Superintendent+Analysts		6		6	daily position
Subtotal				6	
TOTAL				133	
Cost for personnel Yearly individual average cost = 60,000 Euro/year Total cost = 7,980,000 Euro/year					

3.2.2. Overhead charges

All other company services not directly involved in the operation of the plant fall in this category, such as:

- Management;
- Administration;
- Personnel services;
- Technical services.

These services vary widely from company to company and are also dependent on the type and complexity of the operation. It is assumed that this cost is equal to 30 % of the operating labour and maintenance cost.

3.2.3. Maintenance costs

A precise evaluation of the cost of maintenance would require a breakdown of the costs amongst the numerous components and packages of the plant. Since these costs are all strongly dependent on the type of equipment selected and statistical maintenance data provided by the selected vendors, this type of evaluation of the maintenance cost is premature at study level.

For this reason the annual maintenance cost of the plant is estimated as a percentage of the Total Plant Cost of each case, as shown in the following:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 44 of 72

SC PC based cases 1.5% Gasification based cases 2.5%

In general, estimates can be separately expressed as maintenance labour and maintenance materials. A maintenance labour to materials ratio of 40:60 can be statistically considered for this breakdown.

The yearly maintenance cost for all cases of the study is reported in the following Table 30, with reference to year 2013.

Table 30. Maintenance costs (reference year: 2013)

Type	Case	Maintenance (%)	Total Plant Cost (M€)	Maintenance (M€/year)
	Case 1	1.5	1,490	22.4
eq	Case 2	1.5	2,279	34.0
-pas	Case 2.1	1.5	2,333	35.0
Boiler-based	Case 3	1.5	2,301	34.5
В	Case 3.1	1.5	2,325	34.9
	Case 4.1	2.5	2,538	63.4
	Case 4.2	2.5	2,688	67.2
IGCC- based	Case 4.2.1	2.5	2,738	68.5
IC Pi	Case 4.3	2.5	2,629	65.7
er	Case 5.1	2.5	2,461	61.5
& Power	Case 5.2	2.5	2,390	59.8
[2 &]	Case 5.3	2.5	2,101	52.5
H_2	Case 5.3.1	2.5	2,149	53.7

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 45 of 72

3.3. Summary

The following tables report the summary of O&M costs for the different cases.

FOSTERWHEELER	CO ₂ CAPTURE AT COAL FIRED POWER PLANTS SCPC-BASED CASES O&M COSTS (2013)			
	Case 1	Case 2	Case 3	
	€/year	€/year	€/year	
Fixed Costs				
Direct labour	5,700,000	6,300,000	6,300,000	
Adm./gen overheads	4,392,500	5,992,700	6,031,400	
Insurance & Local taxes	14,903,000	22,793,000	23,008,000	
Maintenance	22,354,500	34,189,500	34,512,000	
Subtotal	47,350,000	69,275,200	69,851,400	
Variable Costs (Availability = 90%)				
Feedstock	167,112,600	167,169,800	168,182,900	
Water Makeup	2,614,300	3,303,400	3,205,600	
Catalyst	3,806,100	4,241,700	0	
Chemicals (including Solvent)	1,683,000	10,494,900	453,600	
Waste disposal (incl. Solvent)	0	983,700	0	
Subtotal	175,216,000	186,193,500	171,842,100	
TOTAL O&M COSTS	222,566,000	255,468,700	241,693,500	

FOSTER WHEELER	CO2 CAPTURE AT COAL FIRED POWER PLANTS IGCC-BASED CASES O&M COSTS (2013)			
	Case 4.1	Case 4.2	Case 4.3	
	€/year	€/year	€/year	
Fixed Costs				
Direct labour	7,980,000	7,980,000	7,980,000	
Adm./gen overheads	10,007,100	10,458,200	10,281,300	
Insurance & Local taxes	25,377,000	26,880,500	26,291,000	
Maintenance	63,442,500	67,201,300	65,727,500	
Subtotal	106,806,600	112,520,000	110,279,800	
Variable Costs (Availability = 85%)				
Feedstock	153,010,800	168,138,100	166,194,700	
Water Makeup	3,008,200	3,160,100	3,466,900	
Catalyst	4,332,450	3,081,250	6,426,000	
Chemicals (including Solvent)	3,252,950	3,511,350	4,267,850	
Waste disposal (incl. Solvent)	0	0	0	
Subtotal	163,604,400	177,890,800	180,355,450	
TOTAL O&M COSTS	270,411,000	290,410,800	290,635,250	

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 46 of 72

	CO₂ CAPTURE AT COAL FIRED POWER PLANTS					
FOSTER WHEELER	H ₂ & POWER	CO-PRODUC	TION CASES			
	0&	M COSTS (20	13)			
	Case 5.1	Case 5.2	Case 5.3			
	€/year	€/year	€/year			
Fixed Costs						
Direct labour	7,980,000	7,980,000	7,980,000			
Adm./gen overheads	9,777,200	9,563,900	8,696,900			
Insurance & Local taxes	24,610,500	23,899,500	21,009,500			
Maintenance	61,526,300	59,748,800	52,523,800			
Subtotal	103,894,000	101,192,200	90,210,200			
Variable Costs (Availability = 85%)						
Feedstock	168,138,100	168,138,100	168,138,100			
Water Makeup	2,787,800	2,622,500	2,326,100			
Catalyst	3,081,250	3,081,250	3,081,250			
Chemicals (including Solvent)	3,511,350	3,511,350	3,511,350			
Waste disposal (incl. Solvent)	0	0	0			
Subtotal	177,518,500	177,353,200	177,056,800			
TOTAL O&M COSTS	281,412,500	278,545,400	267,267,000			

FOSTER WHEELER	CO₂ CAPTURE AT COAL FIRED POWER PLANTS NEAR ZERO EMISSION CASES O&M COSTS (2013)					
	Case 2.1	Case 3.1	Case 4.2.1	Case 5.3.1		
	€/year	€/year	€/year	€/year		
Fixed Costs						
Direct labour	6,300,000	6,300,000	7,980,000	7,980,000		
Adm./gen overheads	6,090,100	6,076,400	10,608,000	8,841,600		
Insurance & Local taxes	23,334,000	23,258,000	27,380,000	21,492,000		
Maintenance	35,001,000	34,887,000	68,450,000	53,730,000		
Subtotal	70,725,100	70,521,400	114,418,000	92,043,600		
Variable Costs (Availability = 90%)						
Feedstock	188,690,100	168,058,300	168,164,300	168,138,100		
Water Makeup	3,232,400	3,237,200	3,216,700	2,364,800		
Catalyst (including membranes)	4,241,700	900,000	3,081,250	3,081,250		
Chemicals (including Solvent)	10,691,100	453,600	3,538,550	3,538,550		
Waste disposal (incl. Solvent)	1,007,100	0	0	0		
Subtotal	207,862,400	172,649,100	178,000,800	177,122,700		
TOTAL O&M COSTS	278,587,500	243,170,500	292,418,800	269,166,300		

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 47 of 72

4. Financial analysis

4.1. Objective of the economic modelling

The economic modelling is a simplified financial analysis that estimates, for each case, the Levelized Cost of Electricity (LCOE) and the CO₂ Avoidance Cost (CAC), based on specific macroeconomic assumptions.

For the hydrogen and power co-production cases, the Levelized Cost of Hydrogen (LCOH) production is also estimated.

The LCOE and the LCOH predictions are calculated under the assumption of obtaining a zero Net Present Value (NPV) for the project, corresponding to an Internal Rate of Return (IRR) equal to the Discount Rate (DR). Therefore, the financial analysis is a high-level economical evaluation only, while the rigorous project profitability for the specific case is beyond the scope of the present study.

4.2. Definitions

4.2.1. <u>Levelized Cost Of Electricity (LCOE) and Levelized Cost Of Hydrogen (LCOH)</u>

The Cost of Electricity (COE) in power production plants is defined as the selling price at which electricity must be generated to reach the break even at the end of the plant lifetime for a targeted rate of return.

However, with the purpose of screening different technology alternatives, the levelized value of the cost of electricity (LCOE) is commonly preferred to the year-by-year data. The LCOE is defined as the uniform annual amount which returns the same net present value as the year-by-year amounts.

In this analysis, long-term inflation assumptions and price/cost variations throughout the project life-time are not considered and, therefore, the COE matches with the LCOE.

The same considerations apply to the hydrogen and power co-production cases, where the power selling price is valued at the cost of production of the base case with power production only (Case 4.2, GE-based IGCC).

4.2.2. Cost of CO_2 avoidance

For the power production cases, the CO₂ Avoidance Cost (CAC) is calculated by comparing the costs and specific emissions of a plant with CCS with those of the reference case without CCS. For a power generation plant, it is defined as follows:

$$CO_2 \text{ Avoidance Cost (CAC)} = \frac{LCOE_{CCS} - LCOE_{Reference}}{CO_2 \text{Emissions }_{Reference} - CO_2 \text{Emissions }_{CCS}}$$

where:

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 48 of 72

Cost of CO₂ avoidance is expressed in Euro per tonne of CO₂ LCOE is expressed in Euro per kWh CO₂ emissions is expressed in tonnes of CO₂ per kWh.

The selected reference case for the evaluation of the CAC is Case 1, i.e. the conventional SC-PC power plant without capture of the generated carbon dioxide.

4.3. Macroeconomic bases

The economic assumptions and macroeconomic bases are reported in chapter B of the report. These mainly include:

- Reference dates and construction period,
- Financial leverage,
- Discount rate,
- Interests during construction,
- Spare parts cost,
- Working capital,
- Start-up cost,
- Owner's cost,
- Insurance cost.
- Local taxes and fees,
- Decommissioning cost.

The principal financial bases assumed for the financial modelling are reported also hereafter for reader's convenience:

ITEM	DATA
Type of fuel	Bituminous Coal at 2.5 €/GJ (LHV)
Discount Rate	8%
Capacity factor (SC-PC/Gasification based)	90% / 85%
CO ₂ transport & storage cost	10 €/t _{STORED}
CO ₂ emission cost	0 €/t _{EMITTED}
Inflation Rate	Constant Euro
Currency	Euro reported in 2Q2013

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 49 of 72

4.4. Financial analysis results

This section summarizes the results of the financial analysis performed for all cases of the study, based on the input data reported above.

Figure 10 to Figure 14 report the LCOE, LCOH and CAC for all study cases. LCOE and LCOH figures also show the relative weight of:

- Capital investment,
- Fixed O&M,
- Variable O&M,
- Fuel,
- CO₂ transportation & storage,
- CO₂ emission.

A summary of the economical modelling results is also reported in the following Table 31 and Table 32.

Case	Description	LCOE €/MWh	CO ₂ emission avoidance cost
~ 1	00.00		€/t
Case 1	SC-PC w/o CCS	52.0	-
Case 2	SC-PC w/CCS	94.7	65.4
Case 2.1	SC-PC w/CCS near zero emission	100.5	65.1
Case 3	OXY SC-PC	91.6	60.8
Case 3.1	OXY SC-PC near zero emission	94.2	58.3
Case 4.1	IGCC (Shell)	116.5	98.9
Case 4.2	IGCC (GEE)	114.4	95.8
Case 4.2.1	IGCC (GEE) near zero emission	119.2	92.5
Case 13	IGCC (MHI)	11/15	97.4

Table 31. Financial results summary: LCOE and CO₂ avoidance cost

For the power production cases, the results of the economic analysis clearly show that for the cases with carbon capture and for each plant type, i.e. for the coal boilers and IGCCs based alternatives, both the LCOE and the CAC fall in a narrow range of variation, especially considering the accuracy level of the investment cost (+35%/-15%).

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 50 of 72

Table 32. Financial result summary: LCOH⁽¹⁾

Case	Description	LCOH ^{(1).} c€/Nm ³
Case 5.1	H ₂ &Power production: 2 x E-class GTs	19.5
Case 5.2	H ₂ &Power production: 2 x frame 6 GTs	18.3
Case 5.3	H ₂ &Power production: 2 x Boiler	17.3
Case 5.3.1	H ₂ &Power production: 2 x Boiler – near zero emission	18.1

⁽¹⁾ Assuming LCOE = 114.4 €/MWh as per reference Case 4.2 (power production only)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 51 of 72

Chapter F - Economics

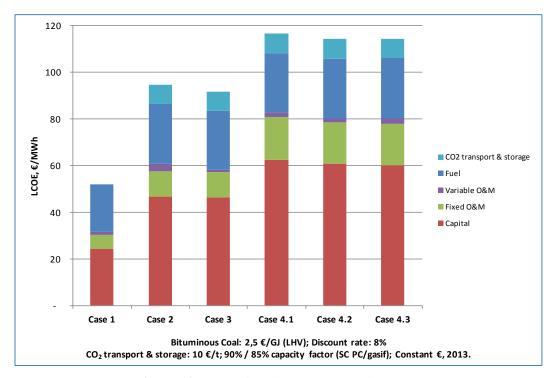


Figure 10. LCOE for all power production cases

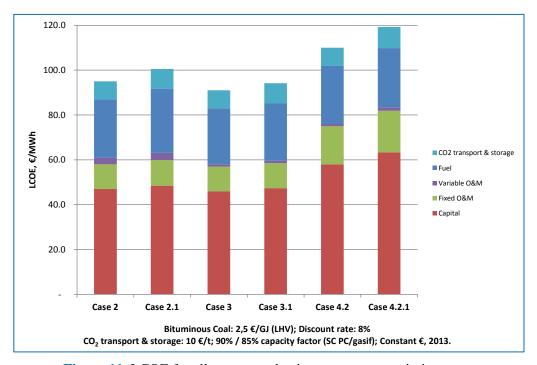


Figure 11. LCOE for all power production – near zero emission cases

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 52 of 72

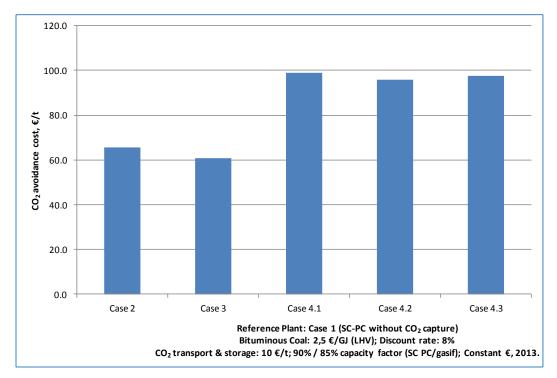


Figure 12. Cost of CO₂ avoidance for all power production cases

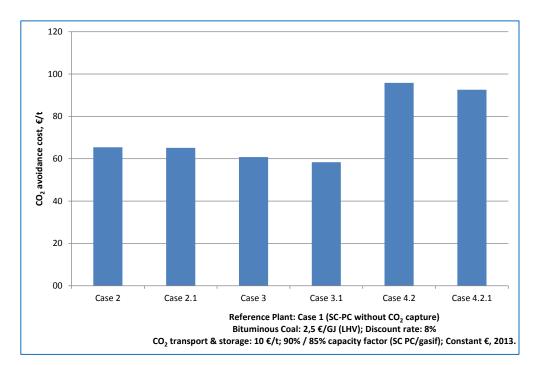


Figure 13. Cost of CO₂ avoidance for all power production – near zero emission cases

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Sheet: 53 of 72

Chapter F - Economics

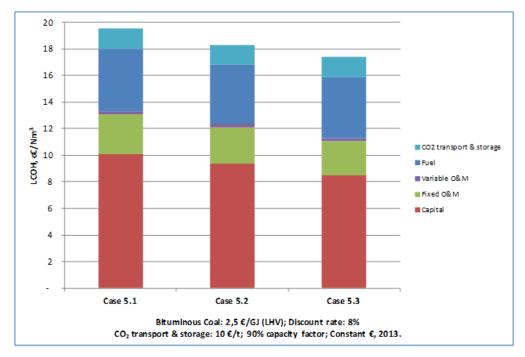


Figure 14. LCOH for all power and hydrogen co-production cases

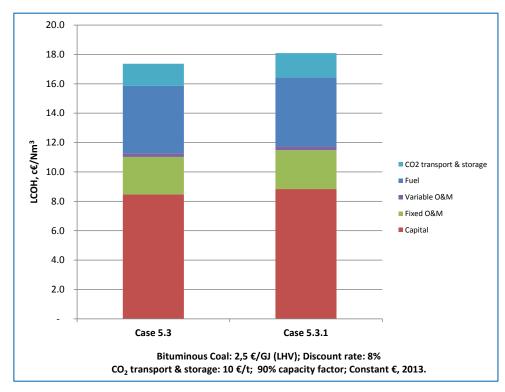


Figure 15. LCOH for near zero emission - power and hydrogen co-production case

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 54 of 72

4.5. Sensitivity analysis

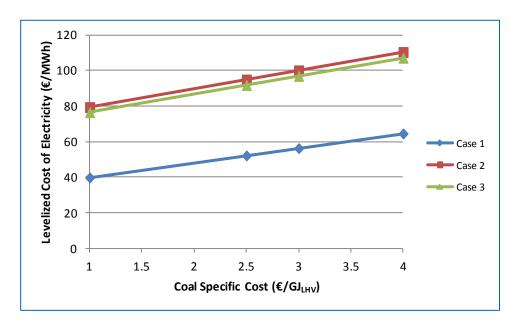
This section summarizes the results of the sensitivity analyses performed to estimate the LCOE and the CO_2 Avoidance Cost of the different study cases, versus the variation of the following main economical parameters:

- Coal cost,
- Discount rate,
- Plant life (project duration),
- CO₂ transport & storage cost,
- CO₂ emission cost,
- Load factor.

The sensitivity range has been selected in accordance with the study requirement, of which the following table represents a summary.

Sensitivity relevant to all cases			
Criteria	Unit	Base Case	Sensitivity Range
Fuel Price			
Coal	€/GJ (LHV)	2.5	1 - 4
Discount rate	%	8	5 - 10
Plant life	years	25	25 - 40
CO ₂ transport & storage	€/t stored	10	0 - 20
CO ₂ emission costs	€/t emitted	0	0 - 100
Capacity factor			
USC-PC	%	90	50 - 90
IGCC	%	85	50 - 90
Sensitivity analyses relevant to Case 5.1 / 5.2 / 5.3			
Electricity selling price	€/MWh	114.4	114 - 150

January 2014


IEAGHG Revision no.: Final

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter F - Economics Sheet: 55 of 72

4.5.1. Coal cost sensitivity

LCOE

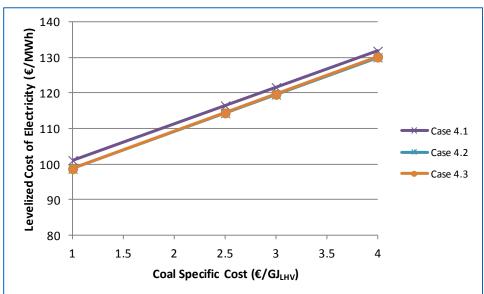
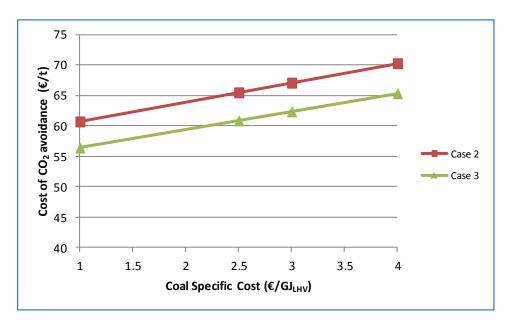



Figure 16: LCOE variation as function of coal price

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 56 of 72

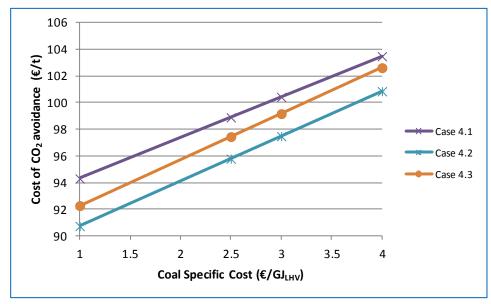
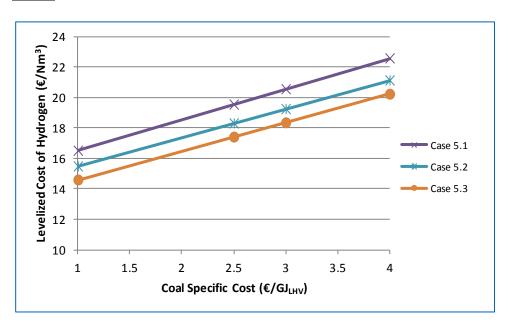
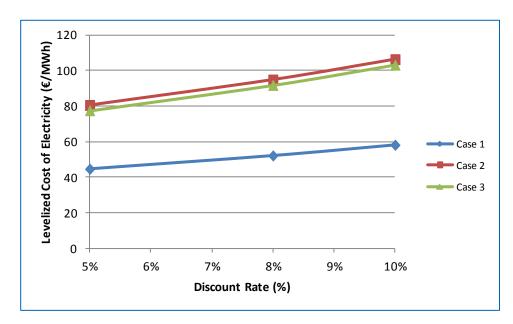


Figure 17: CO₂ emission avoidance cost variation as function of coal price

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter F - Economics Sheet: 57 of 72




Figure 18: LCOH variation as function of coal price

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter F - Economics Sheet: 58 of 72

4.5.2. <u>Discount rate variation</u>

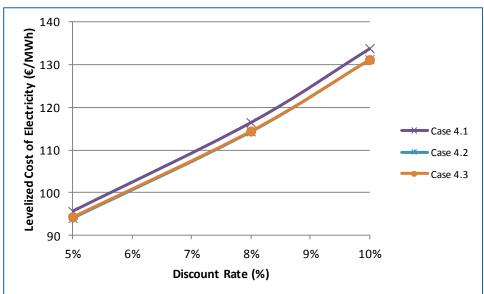
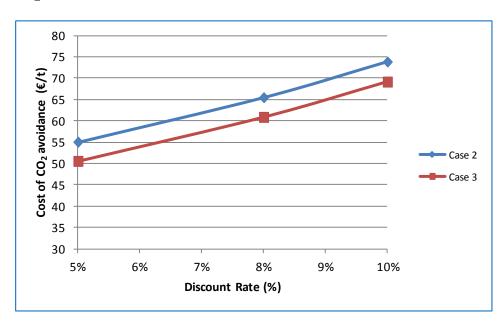



Figure 19: LCOE variation as function of discount rate

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 59 of 72

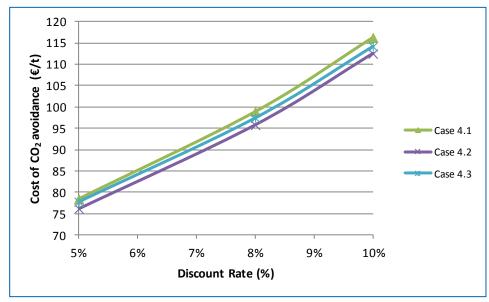


Figure 20: CO₂ emission avoidance cost variation as function of discount rate

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter F - Economics Sheet: 60 of 72

LCOH

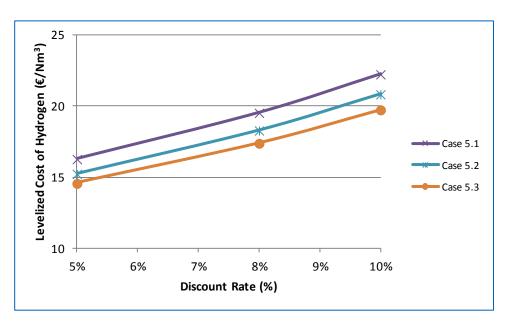
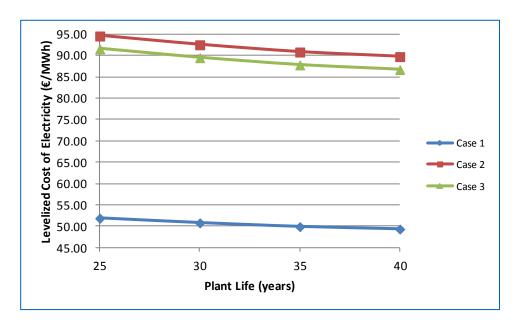


Figure 21: LCOH variation as function of discount rate



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter F - Economics Sheet: 61 of 72

January 2014

4.5.3. <u>Plant life</u>

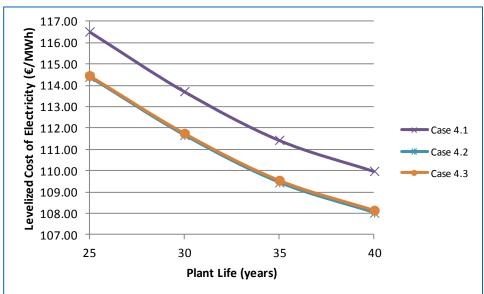
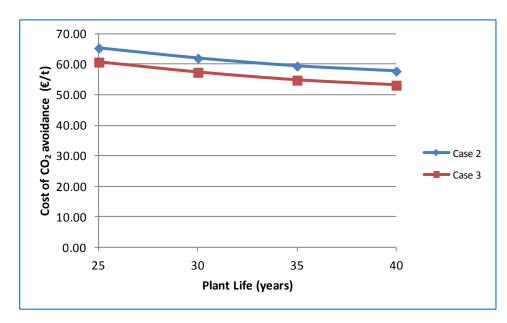



Figure 22: LCOE variation as function of plant life (project duration)

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 62 of 72

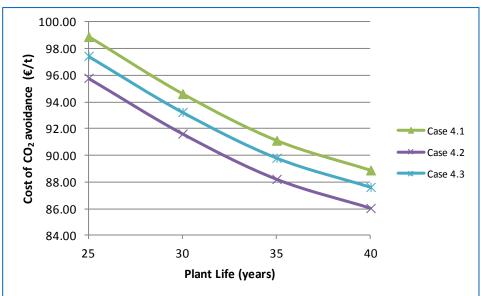


Figure 23: CO₂ emission avoidance cost variation as function of plant life (project duration)

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter F - Economics Sheet: 63 of 72

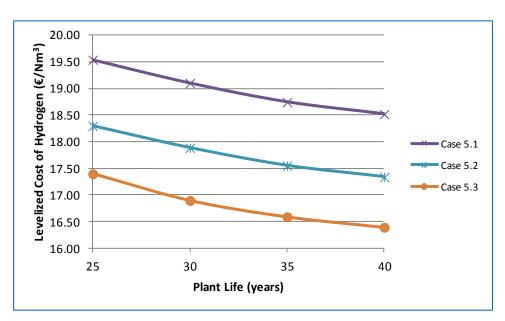
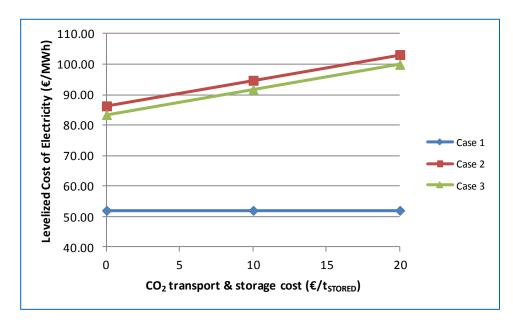


Figure 24: LCOH variation as function of plant life (project duration)



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter F - Economics Sheet: 64 of 72

January 2014

4.5.4. <u>CO₂ transport & storage cost</u>

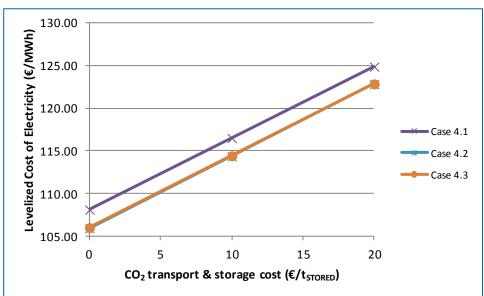
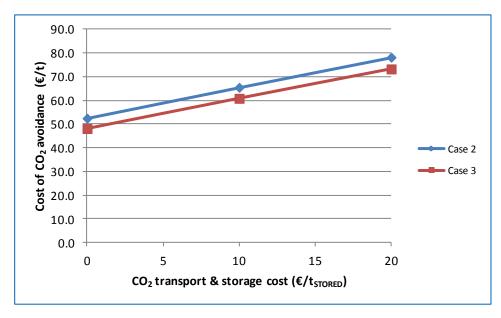



Figure 25: LCOE variation as function of CO₂ transport & storage cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 65 of 72

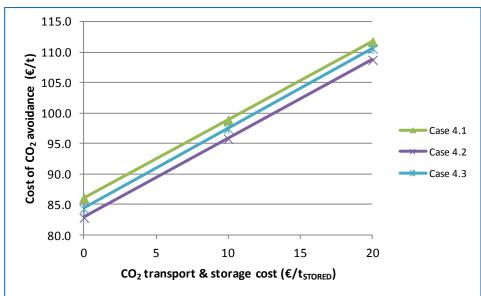


Figure 26: CO₂ emission avoidance cost variation as function of CO₂ transport & storage cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 66 of 72

LCOH

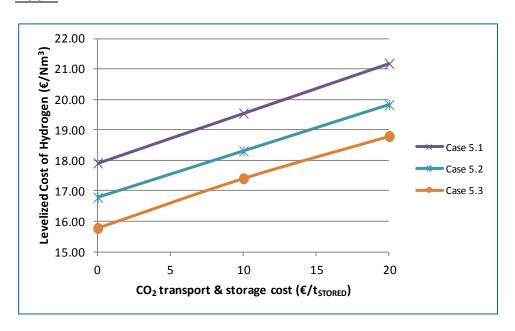
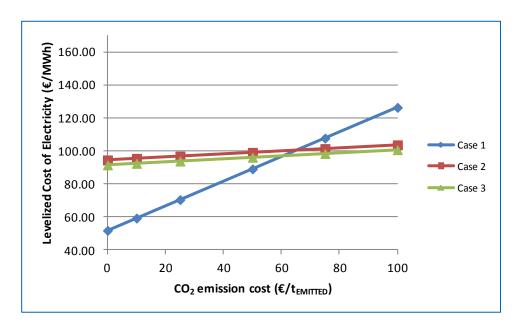


Figure 27: LCOH variation as function of CO₂ transport & storage cost



CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date:

Chapter F - Economics Sheet: 67 of 72

January 2014

4.5.5. CO_2 emission cost

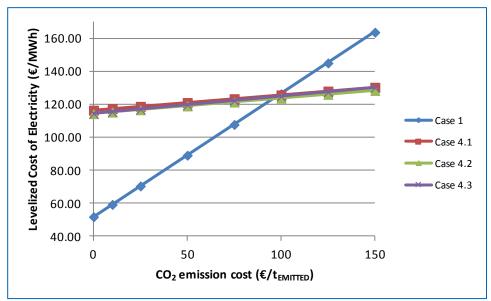


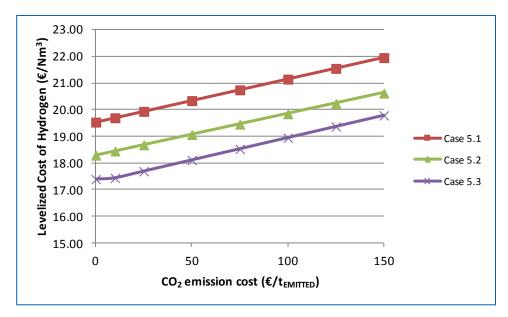
Figure 28: LCOE variation as function of CO₂ emission cost

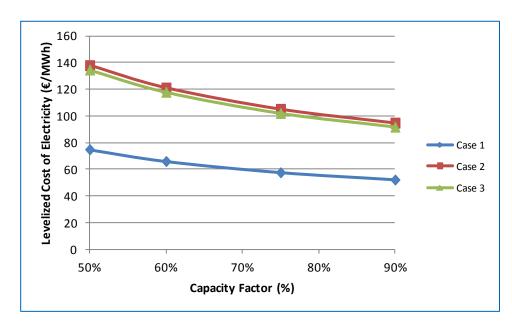
CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 68 of 72

CO2 emission avoidance cost

The CO₂ emission avoidance cost in neutral to the variation of CO₂ emission cost.




Figure 29: LCOH variation as function of CO₂ emission cost

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 69 of 72

4.5.6. <u>Load factor</u>

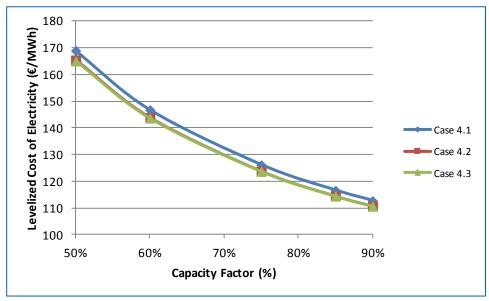
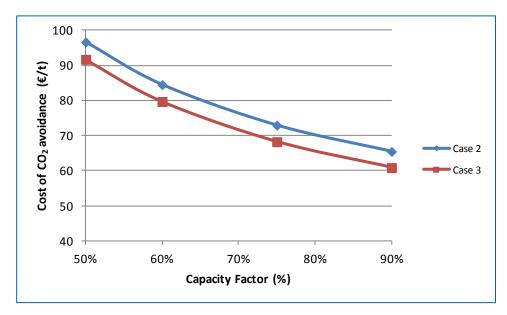



Figure 30: LCOE variation as function of plant load factor

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 70 of 72

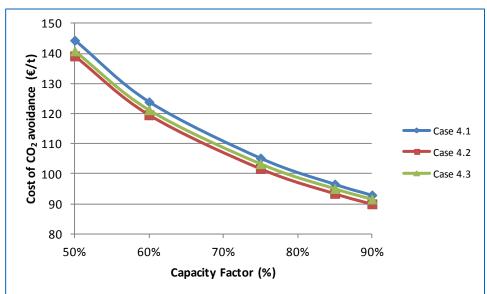


Figure 31: CO₂ emission avoidance cost variation as function of plant load factor

CO₂ Capture at Coal Based Power and Hydrogen Plants Date: January 2014

Chapter F - Economics Sheet: 71 of 72

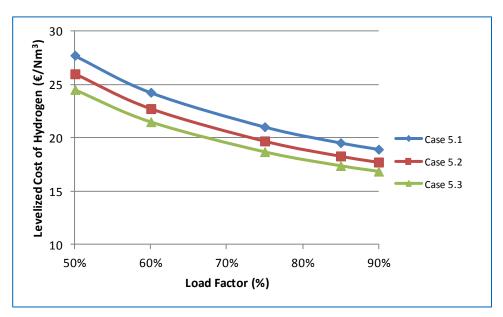


Figure 32: LCOH variation as function of plant load factor

CO₂ CAPTURE AT COAL BASED POWER AND HYDROGEN PLANTS Date: January 2014

Chapter F - Economics Sheet: 72 of 72

4.5.7. Electricity selling price (Case 5.1/5.2/5.3) LCOH

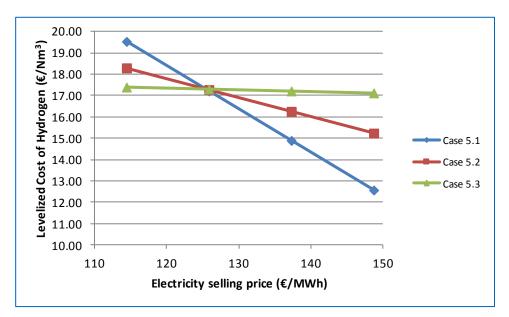


Figure 33: LCOH variation as function of electricity selling price